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Abstract

The presence of semantic information in multivariate patterns
of neural activity has been explored as a method of measuring
knowledge and learning. Using fMRI, we investigated whether
novice learners of American Sign Language (ASL) showed
overlapping representations of semantic categories for words
presented in a well-known (English) or newly learned (ASL)
language. We find evidence of neural patterns that were
partially shared between sign and speech in novice
participants. This result provides evidence for the influence of
even brief learning on neural representations in cross-modality
language processing.
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Introduction

A fundamental concern of educational neuroscience is the
ability to detect and characterize changes in knowledge and
understanding over the course of learning. While traditional
methods of quantifying learning include a wide array of
behavioral measures (multiple-choice tests, essay exams, oral
exams, etc.), prior work has found that data-driven
neuroimaging methods such as multivariate representational
similarity analysis (RSA) (Kriegeskorte et al., 2008) and
other multivariate pattern analysis techniques can
complement traditional methods of assessing an individual’s
knowledge, for example by identifying cortical areas where
neural response patterns correlate with the semantic structure
between stimuli. Multivariate patterns of brain activity which
are associated with understanding or expertise have been
investigated in a number of conceptual domains, including
physics and engineering (Cetron et al., 2019; Cetron et al.,
2020; Mason & Just 2015), computer science (Meshulam et
al., 2020), and foreign language (Qu et al., 2019; Zinszer et
al., 2016).

Furthermore, studies of semantic processing suggest that
neural representations of real-world semantic concepts are to
some extent “modality-independent”: the same concept
presented in two different modalities such as pictures and text
(Shinkareva et al., 2011) or cued with homologous words in
two different languages (Correia et al., 2014; Honey et al.,
2012) can evoke similar neural patterns associated with the
underlying semantic meaning. Evans et al. (2019) found

evidence of partially shared semantic representations across
languages even when the languages in question were of
different modalities (spoken British English and British Sign
Language). This suggests that language cues from two
different modalities may evoke a shared underlying semantic
concept. However, these studies focus on fluent bilingual
participants, who have extensive training in both studied
languages. Another study (Zinzer et al., 2012) found that
neural pattern similarity between responses evoked by
participants’ first and second languages correlated with
proficiency in the second language (e.g. spoken English and
spoken Chinese).

Here, we sought to investigate whether overlapping
conceptual representations across modality (i.e., expressed in
spoken compared to signed language) could be observed in
novice learners after brief exposure to a small set of words in
an unfamiliar language. If so, this overlap of neural patterns
in response to familiar and newly-learned languages could
serve as a useful measure of learning. We recruited two
groups of participants who were fluent English speakers with
no prior training in either American Sign Language (ASL) or
Russian.

Each group completed three brief trainings in one of the
two target languages (ASL or Russian), learning a total of 24
concrete nouns. All participants underwent fMRI scanning
while watching short video clips in ASL, Russian, and
English and completing a semantic task. Using multivariate
analytical methods which leverage meaningful dimensions of
similarity between the ASL signs, including semantic
distance and conceptual categories, we decoded neural
patterns which were partially shared between sign and speech
for the ASL group. Importantly, similar evidence of cross-
language decoding was not found for the unstudied language,
Russian. This result provides a proof of concept for research
concerning the influence of even brief learning on neural
representations of cross-modality language processing.

Method

Participants

Twenty-two Dartmouth College students participated in this
study. Data from two participants were excluded due to
incomplete scans, resulting in a sample of N = 20 (13 female,



mean age = 20 years, SD = 1.70). All participants were fluent
English speakers who reported no prior knowledge of
American Sign Language or Russian. Participants provided
informed consent prior to participation in each day of data
collection and were compensated either with curricular extra
credit points or a gift card. All protocols were approved by
the Dartmouth Committee for the Protection of Human
Subjects.

Stimuli and Design

Stimuli for the behavioral and scanner tasks (i.e. the language
lessons and semantic task, detailed in the section
“Procedure”) were short audiovisual clips each containing
one vocabulary word in ASL, Russian, or English. The ASL
videos were provided by ASL-LEX, a database of lexical and
phonological properties of ASL signs (Caselli et al., 2017).
The Russian and English videos were created with efforts to
mimic the style of the ASL-LEX videos by lab volunteers
who are fluent in the respective languages. Each video clip
consisted of the presenter seated before a neutral background,
demonstrating a single vocabulary word. Of the 24 words, 12
were members of the semantic categories of interest (animals,
fruits, and vehicles), while another 12 were selected as
distractor items to obscure the intended categories from
participants. To ensure that participants would not be able to
guess the meanings of the words without training, ASL signs
which were rated greater than average in iconicity (the extent
to which a sign’s form and meaning are non-arbitrarily
related) by a sample of 950 hearing nonsigners collected by
the creators of the ASL-LEX corpus were excluded from the
stimulus set. Additionally, all ASL and Russian stimuli were
pilot tested on Amazon Mechanical Turk to confirm that
native English speakers with no training in ASL or Russian
were not able to guess the meanings of the words and that
subjective ratings of visual similarity (for ASL) and auditory
similarity (for Russian) between the words did not correlate
with object category.

Procedure

Participants completed three short (approx.. 30 min) online
behavioral sessions on the two days preceding and the day of
the fMRI scan. Half of the participants (N=10) were assigned
to learn the set of 24 concrete nouns in ASL, while the other
half learned the same nouns in Russian. The lessons were
administered through Qualtrics (Qualtrics, Provo, UT).
During each of the first two learning sessions, participants
learned 12 new words in their target language through
watching and mimicking the expert videos. They then
completed a set of multiple-choice questions, a free recall
task, and finally used their computer’s webcams to record
videos of themselves practicing each word. In the third
practice session, which occurred on the same day as the fMRI
scan, participants reviewed all 24 words that they had
previously learned, created a final set of webcam recordings
of themselves performing each word, and completed another
free recall quiz before arriving for the fMRI scan session.

During the fMRI session, participants watched the same
audiovisual clips followed by questions which probed either
the semantic meaning of each noun (such as “Is this object
colorful?” or “Would it be easy to cause this object to
move?”) or non-semantic perceptual features of the clip
(“Has this word been presented already in this block?”’). They
answered this question by pressing a button with their right
index finger or middle finger. All participants, regardless of
which language they had studied in the learning period, saw
clips in ASL, Russian, and English. ASL and Russian were
presented in counterbalanced blocks of 16 trials each during
the first two functional runs. The English stimuli were
presented in similar blocks of 16 trials during the third
functional run, due to concern that knowledge that the same
24 nouns were presented in each language might help
participants “guess” the words in the unstudied language. The
non-semantic question trials were included to encourage
participants to pay attention even during blocks when they
did not know the semantic meanings of the words. Each target
word was presented twice in each language.

fMRI Data Acquisition

Brain images were acquired using a 3 Tesla Siemens
PRISMA fMRI scanner with a 32-channel head coil. A single
high-resolution T1-weighted anatomical scan and three 8-
minute functional runs were performed for each participant.
Each 2D EPI sequence consisted of 192 measurements with
a 240 mm? field of view to provide full brain coverage over
46 slices (Flip angle = 79°; TE = 32 ms; TR = 2500 ms; 3mm?
voxels). In the scanner, stimuli were presented using
PsychoPy (Pierce et al., 2019) version 2021.2.3 (using
Python 3.6).

Image Preprocessing and Univariate Analyses

Brain images were preprocessed using the FSL FEAT
software package (Jenkinson et al., 2012). Each high-
resolution T1-weighted anatomical image was first skull-
stripped using the FSL brain-extraction tool. Skull-stripping,
motion correction, slice timing correction, and highpass
temporal filtering were then applied to each functional EPI
volume. Finally, the functional EPIs were registered to the
participant’s individual anatomical volume using the FSL
linear registration tool (Smith 2002).

A univariate regression model using the GLM was then
calculated at the trial level, such that beta-value estimates for
each stimulus were generated separately for each run. For
each trial, brain activity was sampled from the initial
presentation of the video stimulus through a short intra-trial
fixation and a 4 s response period. Trials were separated by a
jittered fixation interval to allow for an unconfounded
estimate of BOLD signal. For stimuli which appeared in more
than one run (ASL and Russian words), beta estimates were
additionally combined across runs with an item-level
regression model, yielding a single contrast estimate for each
word in each language. All beta-value estimates were then
aligned to the individual’s T1 volume and resampled to 2
mm? using the FSL mathematical manipulation tool.



Finally, cortical surface reconstructions were generated for
each subject’s TI1-weighted anatomical image using
FreeSurfer’s recon-all toolbox (Fischl & Dale, 2000) and
transformed to Surface Mapping (SUMA) format (Saad &
Reynolds, 2012). Formatted cortical surface maps were fitted
to standard mesh grids based on an icosahedron with 32 linear
divisions, yielding 20,484 nodes for the whole-brain cortical
surface. Sulcal alignment of each participant’s cortical
surface to the FreeSurfer average brain (Fischl et al., 1999)
allowed for anatomical correspondence between surface
nodes across participants.
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Figure 1: Word2vec semantic dissimilarity matrix. Pairwise
semantic distances between each of the twelve target stimuli
derived from the word2vec model are shown. The orange
boxes indicate the three semantic categories (animals, fruits,
and vehicles).

Multivariate Analyses

A whole-brain searchlight analysis was conducted within
each participant using spherical Smm searchlights, utilizing
the PyYMVPA toolbox (Hanke et al., 2009). This was repeated
for the twelve item-level betas for the target stimuli set in
each language (ASL, Russian, and English). In each
searchlight sphere, the correlation distance between each pair
of stimuli in the model was calculated to form a dissimilarity
matrix (DM) for every node and its surrounding

neighborhood.

Our goal was to examine whether the participants
displayed unique neural activity patterns with respect to
vocabulary in the language they had studied during the
learning period. To this end, RSA was conducted separately
for neural data recorded during presentation of stimuli in each
language. Specifically, we compared the DMs at each
searchlight location with a model constructed from lexical
word embeddings calculated with word2vec (Mikolov et al.,
2013), which represent item-level similarities between each
of the twelve stimuli (shown in Figure 1). Spearman
correlation between the node-level DM and the word2vec
model was calculated for every node, passed through a Fisher
z-transformation and compared to a null distribution
calculated as the dot product of the word2vec model and a
randomly permuted model and standardized over 1,000

iterations. The resulting correlations for each participant were
subjected to a one-sample t-test at every node within each
group. The resulting set of nodes where p < 0.05 (after node-
level permutation correction) was further subjected to spatial
cluster correction using the AFNI SurfClust function (Cox,
1996). For an FDR-corrected alpha of 0.05, only clusters with
area greater than 121 mm? were included in further analyses.

An average DM for each cluster in the English model was
then computed by averaging values at each node for all
subjects within each group, then averaging across each node
belonging to the cluster. Each cluster-level DM was then
projected into two dimensions using multidimensional
scaling (MDS), and a support vector machine (SVM)
classifier with a radial basis function kernel was employed
using leave-one-item-per-category-out cross-validation at
each cluster to determine the degree to which the patterns of
activity in that cluster reflected the categorical relationships
between the items (animals vs. fruits vs. vehicles). These
steps were implemented in Python using the scikit-learn
package (Pedregosa et al., 2011).

In addition, for each of these clusters which had been
identified as sensitive to categorical distinctions in the
English stimuli with the aforementioned procedure, we also
constructed an average DM of response patterns to the other
two languages and repeated the same classification steps.

Results

Target Language Quiz Performance

At the end of the final training session and before the fMRI
scan, participants completed a free recall quiz in which they
were shown a video clip containing one of the words they had
learned and asked to type the English translation into a text
box. We calculated mean accuracy for the ASL group (Mast
= 98.75%, SDasL = 2.01%) and the Russian group (Mrus =
62.92%, SDrus = 18.89%). Due to the sizable difference in
performance between the two groups, notably, the near-
ceiling performance of the ASL group compared to the poor
and highly variable performance of the Russian group, all
subsequent analyses reported here focus exclusively on the
ASL group.

Searchlight Representational Similarity Analysis

The ASL group’s quiz performance immediately prior to the
scan session indicated that they had achieved full mastery of
the target words, so we hypothesized their fMRI data would
show overlapping patterns of brain activity for a newly
learned language (ASL) and a well-known language
(English). Likewise, within-language semantic information
(i.e., the representation of semantic categories) in ASL would
also be an indication of newly learned knowledge
representations.

Out of 20,484 5 mm surface searchlights probed for
correlation between responses to the English stimuli and the
a priori word2vec semantic model, 1,212 nodes were found
to be significant after comparison with the permuted null
model within subjects, and a 1-sample-test at the group level



(a = .05, permutation corrected). After the cluster correction
step (o = .05, FDR corrected), seven significant clusters were
identified, shown in Figure 2. Correlation with the word2vec
semantic model in these areas indicates the presence of
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Figure 2: English RSA Results. Seven clusters (displayed on
a semi-inflated cortical surface projection) were identified
where the pattern of responses to the English stimuli
significantly correlated with item-level dissimilarities in the
word2vec model.

semantic information about the English stimuli being
represented in these areas during the trial.

For the correlation between responses to the ASL stimuli
and the word2vec semantic model, 1,474 nodes survived the
group-level thresholding procedures after RSA (a = .05,
permutation corrected), and 18 significant clusters were
identified after FDR correction (o = .05, FDR corrected),
shown in Figure 3.

Support Vector Machine Classification

Because all subjects were fluent English speakers with very
limited training in ASL, we probed the seven clusters
identified by the English model RSA for information about

the object categories for all three languages. At each cluster,
1,000 iterations of SVM classification were run and the mean
accuracy score was taken. On each iteration, the model was
trained on nine items from the average cluster DM for five
participants and tested on the held-out items in the average
cluster DM of the other five participants. Mean accuracy and
standard deviation for each cluster are shown in Table 1.
Because data from the English trials were also used to define
the clusters using RSA, English classification accuracy
scores are provided primarily as a reference for the other two
languages. Notably, cluster 1 was among the highest-
performing clusters for both the English stimuli and ASL
stimuli, for which the participants were aware of the words’
semantic meaning. For the unstudied language, Russian,
however, the classifier performed at chance levels in all but
two clusters. The distribution of classification accuracies
over 1000 iterations for cluster 1 in each language are shown
in Figure 4.

Figure 3: ASL RSA Results. Neural activity recorded
during presentation of the ASL stimuli resulted in eighteen
clusters (displayed on a semi-inflated cortical surface
projection) that significantly correlated with item-level
dissimilarities in the word2vec model.

Table 1. English RSA Cluster SVM Classification Accuracy

Cluster MEenG SDenG Mast SDast Mrus SDrus
1. L Supramarginal Gyrus 58.58*** 12.45 67.03%%* 14.47 28.79 9.43
2. R Ant. Lateral Fissure 60.32%** 13.00 35.86%** 12.59 31.08 10.46
3. R Calcarine Sulcus 54.65%** 13.96 31.97* 13.00 32.54 8.93
4. L Marginal Sulcus 53.67*** 13.06 41.36%** 11.97 27.19 13.11
5. R Post. Lateral Fissure 51.39%** 11.40 45.02%%* 12.67 30.39 10.64
6. L Pericallosal Sulcus 52.26%** 12.37 39.04%%* 14.55 36.74%%% 12.08
7. L Planum Temporale 53.43%** 12.55 42.43%%% 13.11 34.48* 11.37

Table 1: SVM classification accuracy in each cluster was calculated as the mean of 1,000 iterations with leave-one-item-
per-category-out cross-validation. Classification results from the English trials are shown as a reference for the other two
languages, where the classified data were independent from cluster selection. The highlighted rows indicate overlap with the
ASL RSA results. Results from a one-tailed t-test against a distribution of permuted classification scores which exhibited
chance classification (33%) in each cluster are also reported (* = p < 0.05, ** =p <0.01, *** =p <(.001).
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Figure 4: SVM Classification Results

(A) Violin plots show SVM classification accuracies over 1,000 iterations in Cluster 1 for each of the three languages
(English, ASL, and Russian). The horizontal lines indicate the maximum, mean, and minimum for each language condition
and the curves represent frequency of the result in the distribution. Chance accuracy (33%) is indicated by the dashed line.

(B) An example MDS-SVM plot for each cluster. The Cluster 1 average DM for each language was projected into two
dimensions using MDS, and an SVM model was fitted to classify the items into the three semantic categories. Decision
boundaries are plotted to demonstrate the separability of the item categories

Mean classification accuracy and standard deviation for
all three languages in the significant clusters identified by
the RSA of the ASL trials is shown in Table 2. The same
iterative half-sample and leave-one-item-per-category out
cross-validation procedure as before was performed in
each cluster.

Discussion

The results of the present study indicate that shared
semantic representations can be observed across language
modalities (sign and speech), even for novice learners.
Thus, decoding across languages and within a newly-
learned language can provide a stable neural indicator of
learning, even following relatively brief training. This
finding is consistent with studies which have found
common category-based coding between items presented
as pictures and text (Shinkareva et al., 2011), or presented
to fluent bilinguals in languages of different modality
(Evans et al., 2019). The cluster with the greatest extent of

category classification in both English and ASL for the
ASL group was located in the left supramarginal gyrus
(SMGQG), an area which has previously been associated with
word recognition (Stockel et al., 2009) and phonological
processing (Sliwinska et al., 2012). In particular, Alfred et
al. (2020) found that cross-modal decoding (between
words and pictures) in the left SMG was predicted by
individual differences in preference for attending to verbal
labels over pictorial representations.

Even beyond the category-level information used for
cross-language decoding, these results provide evidence
that patterns of brain activity reflecting item-level semantic
information can be observed in novice learners of a new
language. Significant clusters within areas with well-
documented roles in language processing including the
planum temporale (Shapleske et al., 1999) and left angular
gyrus (Seghier, 2013) were found to represent the semantic
structure of the word2vec model for the ASL stimuli
condition, despite a short training period of three 30-



Table 2. ASL RSA Cluster SVM Classification Accuracy

Cluster Meng SDenG MasL SDast MRrus SDrus
1. L. Lateral Fusiform Sulcus 53.52%*%*  14.79 57.64%%* 10.24 33.69 11.61
2. L. Medial Lingual 37.74%*% 10.25 58.02%** 15.16 37.32 %% 10.51
3. L. Parietal Occipital Sulcus 51.80%** 11.79 51.08%** 15.49 32.17 11.22
4. L. Inf. Angular Gyrus 43.55%*%% 1140 63.27%** 13.79 44.0] %** 13.66
5. L. Sup. Precentral Gyrus 43.36*** 12.88 47.85%%* 13.09 24.33 9.40
6. L. Parahippocampal Gyrus 37.02%**% 11.22 55.70%** 11.42 36.95%** 10.48
7. R. Circular Insular Sulcus 51.45%*% 13.05 34.66%** 11.49 28.46 11.32
8. L. Ant. Lateral Fissure 44 44%** 13 .66 48.93*** 11.49 32.01 11.31
9. L. Precuneus 32.30%* 11.28 29.18%** 12.05 31.18 11.65

10. L. Parietal Occipital Sulcus 36.78***  10.67
11. L. Frontal Middle Sulcus 32.48 13.47
12. L. Planum Temporale 42.33*%** 1432
13. R. Orbital H-shaped Gyrus 31.70 12.44
14. L. Sup. Lateral Gyrus 40.57*** 12.24
15. R. Precuneus 33.92%* 10.75
16. L. Circular Insular Sulcus 46.48*** 1251
17. L. Supramarginal Gyrus 55.53*%**%  14.62
18. R. Paracentral Sulcus 35.62***  9.03

4]1.47%** 9.83

44.34%*%* 11.29
48.32%** 13.58
43.89*** 16.36

35.83%*x* 9.57

47.50%** 13.11
35.04%*x* 12.65
39.49%*x* 14.29

51.76%** 14.78 26.76 10.64
31.71 11.66 35.61%** 10.36
62.24%%* 10.37 30.53 8.74
61.50%** 13.15 29.88 9.13
36.26%** 10.70 30.93 13.08

Table 2: SVM classification accuracy in each cluster from the ASL RSA was calculated as the mean of 1,000 iterations
with leave-one-item-per-category-out cross-validation. On each iteration, the model was trained on the average of 5
participants and tested on the average of the held-out five. Classification results from the ASL trials (the same trials which
were used to define the clusters in RSA) are shown as a reference for the other two languages, where the classified data were
independent from cluster selection. Results from a one-tailed t-test against a distribution of permuted classification scores
which exhibited chance classification (33%) in each cluster are also reported. The highlighted rows indicate areas of overlap
with the English trial RSA results.

minute sessions. Importantly, similarly robust evidence of
semantic representation in relevant areas was not observed
for the unstudied language, Russian. Furthermore, a
significant cluster in the left visual motion processing area
MT was found in the ASL RSA but not the English RSA.
This is consistent with the findings of Evans et al. (2019),
who found V5/MT to be selective for sign but not speech.
Research in fluent signers has suggested that age of sign
language acquisition modulates recruitment of V5/MT for
sign processing (Bavelier et al., 2001; Neville et al. 1998).
Another direction for future study could be to investigate
whether left MT activity correlates with proficiency in the
earlier stages of learning as well.

Another study by Zinszer et al. (2012) concluded that
similarity between neural activity patterns evoked by
participants’ first and second languages correlated with
proficiency in the second language. While the present
study examined responses to a specific set of target words
for which the participants had been trained to ceiling, an
important future direction could apply this approach as an
individual differences measure to predict language
proficiency as measured by more traditional learning
assessments such as quiz scores.

The present study demonstrated that through
multivariate pattern analysis methods, it is possible to

detect overlapping neural representations of semantic
concepts evoked by homologous words in two different
languages even in novices with very brief exposure to a
new language. Although the sample size of 10 participants
is a limitation of this preliminary study, this finding
provides a proof of concept for the study of overlapping
semantic representation in novice language learners. We
found evidence of shared representations evoked by
languages of different modalities, such as sign and speech,
and we found evidence of newly learned semantic
representations in the second language. Future research
may also consider using this and similar multivariate
neuroimaging approaches not only to detect but to quantify
the extent of learning in individual learners, and to
correlate neural response patterns with other indicators of
real-world knowledge.
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