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Maize is a globally valuable commodity and one of the most extensively
studied genetic model organisms. However, we know surprisingly little
about the extent and potential utility of the genetic variation found in wild
relatives of maize. Here, we characterize a high-density genomic variation
map from 744 genomes encompassing maize and all wild taxa of the

genus Zea, identifying over 70 million single-nucleotide polymorphismes.
The variation map reveals evidence of selection within taxa displaying
novel adaptations. We focus on adaptive alleles in highland teosinte and
temperate maize, highlighting the key role of flowering-time-related
pathwaysintheir adaptation. To show the utility of variants in these data, we
generate mutant alleles for two flowering-time candidate genes. This work
provides an extensive sampling of the genetic diversity of Zea, resolving
questions on evolution and identifying adaptive variants for direct use in
modernbreeding.

Global crop productionis currently insufficient to meet the anticipated ~ declines in productivity for many major crops*. New varieties displaying
demands of agrowing human population'?. Climate changeis affecting  both higher yield and better adaptation to diverse environments are
crop productioninmany areas, further exacerbating this problem®,and  thus urgently needed to increase crop productivity under changing
projected shifts in temperature and precipitation will lead to further  climate scenarios>®.
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Maize (Zea mays subspecies mays) is one of the world’s most widely
grown crops. Native American peoples domesticated the wild grass Z.
mays subspecies parviglumis (hereafter parviglumis) approximately
9,000 years ago in the southwest of Mexico’®. Population genetics
analyses largely agree that maize underwent asubstantial population
bottleneck during domestication’ ", reducing the genetic diversity
available for adaptation. Although maize rapidly spread fromits center
of domestication across awiderange of environments, successful adap-
tation required hundreds or thousands of years”. As global populations
increase and climate change accelerates, unprecedented maize yield
losses are projected to become commonplace in most maize-producing
regions>'*". To facilitate adaptation to these new challenges, breeders
will need to maximize the use of the genetic diversity at their disposal,
looking beyond modern elite lines to traditional cultivated varieties
and locally adapted wild relatives’.

The wild congeners of maize—collectively called teosintes—are
annual and perennial grasses native to Mexico and Central America
(Fig. 1a). They are adapted to a diverse range of environments, from
hot, humid, subtropical regions of Central America to cold, dry, high
elevations of the Mexican Central Plateau'®, Teosintes exhibit biotic
and abiotic adaptations that are absent in modern maize” ", providing
awealth of genetic diversity that could be utilized inmodern breeding.
Recent examples show that the alleles from teosintes can help maize
toadapt to low-temperature and low-phosphorus environments* and
conferresistance to multiple diseases”. Other studies have used genetic
mapping to capitalize on teosinte alleles for nutrition®>*, adaptation
to extreme environments®** and disease resistance’* %, Population
genetics evidence suggests that diverse alleles fromthe teosinte Z. mays
subspecies mexicana (hereafter mexicana) played animportantrolein
allowing maize to adapt to arid highland conditions**°.

Despite the potential for teosintes to contribute to the breeding
and adaptation of cultivated maize, we know relatively little about the
genetic diversity and history of these taxa. Estimates of the age of the
genus vary substantially®*, and the phylogenetic relationships of sev-
eraltaxaare debated or unknown'*¢*%, Considerable cytological diver-
sity is found within the genus, and transposable element variation®*!
andlarge inversions***” have been documented as well. Moreover, com-
mon garden studies have demonstrated that phenotypic differentiation
inbothteosintesand maize landracesis the result of local adaptation*®*.
Low-density genotyping or pooled sequencing approaches in parvig-
lumisand mexicanahaveidentified anumber of candidate locirelated
to soil, climate and disease resistance, highlighting the importance of
inversions***°*', However, for most taxain Zea, their potential as sources
of useful diversity in maize remains poorly understood.

Here, we present a genus-wide resource of genome-scale genetic
diversity in Zea. We resequenced 237 teosinte accessions, including
all seven taxa of teosinte, and combined these data with sequences
from 507 maizeinbred lines. Our analysesreveal a detailed phylogeny
and demography of the genus Zea, identify substantial novel genetic
diversity and expand our understanding of adaptationin the genus Zea.
We predict that these resources will substantially facilitate the efficient
use of diverse Zea taxain modern maize breeding and improvement.

Results

The diversity map and phylogeny of the genus Zea

We resequenced 237 teosinte accessions encompassing all of the
described species and subspeciesin the genus Zea (Fig.1a,b) to an aver-
age depth of 22x and combined these data with genome resequenc-
ing data from 507 cultivated maize inbred lines representing both
temperate and tropical regions* (Supplementary Table 1). To ensure
the quality of this Zea diversity map, we used a set of strict filtering
conditions (Methods). We identified a final set more than 70 million
single-nucleotide polymorphisms (SNPs) and nearly 9 million inser-
tions/deletions (indels) (Supplementary Table 2), with nearly 80% of
SNPs segregating as rare variants (minor allele frequency (MAF) < 0.05)

(Supplementary Fig.1). Both classes of variants appeared to be enriched
ingenicand regulatory regions (30% of SNPs and 45% of indels in 14% of
the genome), probably reflecting difficultiesin read mappingin repeti-
tive regions of the genome. We validated a subset of genic SNPs using
Sanger sequencing, with a median concordance between datasets of
>95% and reasonable false positive and false negative rates (both -5% on
average) for non-reference alleles (Supplementary Table 3). Based on
population structure analysis, samples with >60% ancestry in a single
group were clustered into parviglumis (n =70), mexicana (n=81),Z. mays
subspecies huehuetenangensis (n = 5; hereafter, huehuetenangensis),
Zeadiploperennis (n = 20; hereafter, diploperennis), Zea perennis (n =19;
hereafter, perennis), Zea luxurians (n = 14; hereafter, luxurians), Zeanica-
raguensis (n = 14; hereafter, nicaraguensis), tropical maize (n = 210) and
temperate maize (n = 280) (Extended DataFig.1a,b and Supplementary
Tablel). Principal componentanalysis (PCA) of these lineswasinstrong
concordance with population structure results (Extended Data Fig. 1c).

We inferred phylogenetic relationships for the genus Zea under
the multispecies coalescent model® (Fig. 1c) and maximum likelihood
phylogenies®, which produced largely congruent results (Extended
Data Fig. 2 and Supplementary Fig. 2). Notably, we estimated a very
recent origin for the genus, splitting from its sister genus Tripsacum
only~650,000 years ago. This young age is especially striking given the
pronounced differences in chromosome structure and sub-genome
organization resulting from the two genera’s shared polyploidy event
>10 millionyears ago®. Within the genus, our results suggest that nica-
raguensis probably represents a subspecies of luxurians, with a diver-
gencetime similar to those among subspecies of Z. mays. The phylogeny
supports earlier analysis® suggesting that divergence among Z. mays,
luxurians and diploperennis was nearly contemporaneous, occurring
~120,000 yearsago (95% highest posterior density (HPD) interval for lux-
uriansdivergence from other taxa =119,400-127,200 years ago; Fig. 1c
and Supplementary Table 4). We further estimate that perennis split
fromits diploid progenitor diploperennis only -48,000 years ago (95%
HPD interval =38,033-119,100 years ago). Tree topologies and diver-
gencetimes also supportearlier analyses®® showing that huehuetenan-
gensisisasubspecies of Z.mays, diverging from other annual subspecies
~68,000 years ago (95% HPD interval = 60,133-106,467 years ago),
followed by the divergence of highland mexicana and lowland parvig-
lumis~30,000 years ago (95% HPD interval = 26,733-34,500 years ago).
Our phylogeny estimates the divergence of maize from parviglumis
at~12,000 years—only slightly older than the earliest archeological evi-
dence®and probably due to population structure within parviglumis®*°.
Independent estimates of divergence times taken from rates of
cross-coalescence’ between taxa are strikingly consistent (Fig. 1d).

Population genetic analysis of diversity further reveals changesin
demography among taxain Zea. Coalescent estimates of the effective
population size (N,) over time reveal the well-established bottleneck
associated with maize domestication but also a continued decline in
population size for the annual subspecies parviglumis and mexicana
since their divergence (Supplementary Fig. 3). All other taxa in the
genus show parallel trends, with steady declines in populationsize until
~10,000 years ago and with more recent increases for luxurians and
diploperennis. Patterns of shared derived alleles and sequence diver-
gencebothsuggest ahistory of introgressionamong taxa (Fig. 1e, Sup-
plementaryFig.4 and Supplementary Table 5), including bidirectional
admixture between parviglumis/huehuetenangensis and nicaraguensis/
luxurians and unidirectional introgression from huehuetenangensis/
mexicana into domesticated maize, highlighting the important role
of gene flow in crop adaptation®®.

Novel diversity in Zea

SNP datahighlight the impressive genetic diversity present in teosintes.
Despite the potential downward bias due to strict filtering parameters
and read mapping to a maize reference, heterozygosity and nucleotide
diversity are both higher in teosinte taxa than the much larger panel
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Fig.1|Phylogeny of the Zea genus. a, Geographical distribution of the collected
teosintes. The taxa were identified and are colored based on morphology. Adapted
from Google Imagery © 2022 TerraMetrics. b, Morphological characteristics of
teosintes. nicaraguensis and luxurians are distinguished from the other teosintes
based onaerenchymain their stems (which aerate the roots during submergence),
while nicaraguensis has amore robust tassel than luxurians. perennisis arecent
autotetraploid of diploperennis; the rhizomatous root systems of these perennial
taxadistinguish them from the other teosintes. The Mexican annual teosintes
parviglumis and mexicana are distinguished from each other based on the presence

Zea mays subspecies mays

of macro-hairs and pigment along their stems—two traits that are linked to highland
adaptation. Credit: AndiKur. ¢, Divergence times estimated from the multispecies
coalescent model. The blue bars indicate 95% HPD intervals. Stars indicate nodes
witha posterior probability of 1. d, Rates of cross-population coalescence among
teosinte species. The curves were computed using four phased haplotypes.

e, Introgression among taxa. The arrows indicate the taxainvolved (a one-way
arrow indicates unidirectional introgression whereas a two-way arrow indicates
bidirectional introgression) and the arrow color shows the value of Patterson’s
Dstatistic (Supplementary Table 5).

of maize lines, even among teosinte with limited geographic ranges
(Fig.2a,b, Extended DataFig.3 and Supplementary Table 2). Differentia-
tion (F¢;) between teosinte taxais often lower than that found between
inbred maize and teosintes (Fig. 2a), consistent with the historical
reduction of diversity that occurred during modern maize breeding™.
The annual subspecies of Z. mays show much faster decay of linkage

disequilibrium than our diverse panel of maize inbreds (10-50 kilo-
bases (kb) compared with ~200 kb; Fig. 2¢), but historical recombi-
nation in other teosintes appears to be even more limited (>500 kb).
Nearly one-quarter (24%) of the SNPs and 20% of the indels identified
across alltaxa are taxon specific (Supplementary Table 2) and there are
significantly more SNPs specific to each teosinte accession than maize
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(Fig.2d and Supplementary Table 6). This tendency remains the same
after choosing comparable samples in each taxon (Supplementary
Fig. 5). In teosintes, a substantial proportion of taxon-specific SNPs
andindels are located in genic and regulatory regions (promoter and
cis-regulatory elements®’; Supplementary Fig. 6), suggesting the pres-
ence of biologically functional alleles with the potential forimproving
modern maize.

Short-read mapping approaches pose challenges in char-
acterizing genetic diversity, including difficulty with repetitive
sequences and reference bias. To circumvent some of these obsta-
cles, we used a reference-free k-mer approach to characterize the
diversity of each taxon (Methods). Consistent with the reference
mapping bias (-8% unmapped reads on average), most taxa showed
asubstantial proportion of unique k-mers (Supplementary Fig. 7a,b
and Supplementary Table 2), and a higher number of unique k-mers
were exhibited in the species other than Z. mays (Fig. 2e, Supple-
mentary Fig. 7c,d and Supplementary Table 6). These results not
only highlight the novel genetic diversity present in teosintes but
also probably point to the ongoing importance of evolutionary
processesin generating and filtering diversity in traditional maize
populations in Mexico®'.

Next, we investigated the diversity and abundance of transpo-
sons and inversion polymorphisms in Zea. Transposable elements
are an important driver shaping the structure and evolution of the
genome® and over 85% of the maize genome is repetitive sequence®.
Repeat clusters from our short-read data account for an average of
~74% of the genomic sequence across species (Supplementary Table 7),
with the vast majority (60-70%) coming from long-terminal repeat
retrotransposons. Mapping reads from individual genomes to these
clusters revealed broadly similar patterns across species, consistent
with previous comparisons of Z. mays and luxurians*°. Nonetheless,
we identified a notable decrease in the content of Ty3 retrotranspo-
sons in Z. mays compared with other species, as well as an increased
abundance of DNA transposons in diploperennis and perennis (Fig. 2f
and Extended Data Fig. 4).

Inversions are known to play important roles in adaptation and
speciation®*®*, and previous work has highlighted the evolutionary
relevance of several large inversions in Zea®**>***°, including Inv9e in
mexicana adaptation*®*°', Multidimensional scaling of SNP diversity
across the genome® allowed us to identify eight large genomic regions
(>1 megabase) indicative of inversion polymorphism (Supplementary
Fig. 8 and Supplementary Table 8), showing the clustering patterns
delineating three genotypes: (1) standard, (2) heterozygous inversion
and (3) homozygous inversion (Fig. 2g, Extended Data Fig. 5 and Sup-
plementary Table 9).

Given previous evidence suggesting the association between
inversions and soil characteristics*®, we performed genome-wide
association analysis with nine representative soil traits (Methods) from
arich database of more than 200 soil properties®® (Supplementary
Fig.9aand Supplementary Table 10). /nv9e was significantly associated
with gypsum content (0.829-1.383 m), whichis arepresentative of 29
soil properties (Supplementary Fig. 9b and Supplementary Table 10).

We merged nearby significant SNPs located in /nv9e into two quan-
titative trait loci (QTLs) on chromosome 9: base pairs 127,017,047-
127,356,295 and 138,354,955-139,84 6,464 (Supplementary Fig. 10 and
Supplementary Table 11). These QTLs contain 15 genes that have been
functionally validated inrice or Arabidopsis (Supplementary Table 12),
including two (Zm00001d047667 and Zm00001d047694) with
orthologs that have been confirmed to affect root development in
rice®®’®and may provide clues to further explore the function of Inv9e
inadaptation. Given that many inversions found segregating at appreci-
able frequency are probably adaptive insome environments”’?, these
dataargue thatimproved assemblies and characterization of structural
variants in teosinte would be a promising avenue for the discovery of
new functional genetic diversity.

Signals of selection from allele frequency data

Theirgenetic, ecological andlife history diversity make teosintes anideal
model system for studying adaptation”. Toidentify potential targets of
selection, we calculated Fi; between each teosinte taxon and cultivated
maizein 5-kb sliding windows (Methods). We found that a high propor-
tion of outlier windows were shared between the closely related taxa
(56% overlapped between nicaraguensis and luxurians and 54% over-
lapped between diploperennis and perennis; Supplementary Table 13
andSupplementaryFig.11).Sharedgenes(5,706;SupplementaryTable14)
in nicaraguensis and luxurians comparisons were enriched in core
cell component and reproductive system developmental processes
(GO:0061458; P=1.15 x107*; false discovery rate = 6.87 x 107%; Supple-
mentary Table 15). Candidate adaptive genes (4,659; Supplementary
Table16) indiploperennis and perennis comparisons were enriched in
some basic biological process and core cellular components such asthe
nucleus (GO:0005634; P=1.25 x 1072 false discovery rate = 2.89 x 10™°)
(Supplementary Fig.12 and Supplementary Table 17).

We also identified a number of genes related to meiosis”, QTLs
in regrowth” and waterlogging”™”’ (Supplementary Table 18). These
included Zm00001d002945—an ortholog of the Arabidopsis gene
AtNACOS2 involved in the regulation of leaf senescence’*—which
showed high Fq; in diploperennis-maize and perennis-maize com-
parisons and was located in a QTL region controlling regrowth™. In
nicaraguensis-maize and luxurians-maize comparisons, we found
genes potentially involved in the response to waterlogging not only
by regulating the content of ethylene and wax, but also photosyn-
thetic efficiency potentially related to adaptation to wetter climates
in Guatemala". These include Zm00001d015637, the maize ortholog
of AtOSPI1in Arabidopsis, which transcribes a GDSL lipase (a subclass of
lipolytic enzymes) thatis required for wax biosynthesis and stomatal
formation”. These genes highlight the value of our diversity data in
identifying candidate loci of potential adaptive relevance for maize,
and present a catalog of genes worthy of further exploration.

In addition to identifying differences among species, our exten-
sive sampling of parviglumis (n =70), mexicana (n = 81) and tropical
(n=210) and temperate (n = 280) maize accessions allowed investiga-
tion of more recent adaptation to highlands and high latitudes. Both
high elevationand high latitude reflect a climate of lower temperature

Fig. 2| Variation in the Zea genus. a, Mean nucleotide diversity in each taxon
(nodes) and mean population differentiation Fg; between taxa (edges). The size
ofthe nodes and values within the nodes represent the nucleotide diversity,
whereas the width and color of the edges represent Fg;. b, Distribution of
nucleotide diversity along chromosome 10 in Zea. The colors of the taxa are the
same as ina. Mb, megabases. ¢, Linkage disequilibrium (LD) decay of the Zea
genus. The labels indicate the distance at which mean r* = 0.1. The colors of the
taxaare the same asin a.d, Taxon-specific SNPs. TEM, temperate maize; TST,
tropical maize. e, 31-bp k-mers in Zea. The lines show statistical comparisons of
all teosintes with TST and TEM (d) and of luxurians/diploperennis/perennis with
Z.mays (e). Each gray point represents an individual of nicaraguensis (n=14),
luxurians (n=14), diploperennis (n=20), perennis (n =19), huehuetenangensis

(n=5), mexicana (n=81), parviglumis (n=70), TST (n=210) or TEM (n =280).
The squares indicate mean values and the vertical lines show s.d. Statistical
significance was determined by two-sided ¢-test for each comparison.**P < 0.01
(Pairwise comparisons of P values are provided in Supplementary Table 6).

f, Abundance of transposon elements relative to B73. Each column represents
asample.LTR, long terminal repeat; centr, centromere; rRNA, ribosomal RNA.

g, Distribution of inversions across the chromosomes. Each colored segment
represents aninversion, with colors referring to the populationin which the
inversionis most prevalent (deep red, diploperennis; blue, perennis; deep blue,
mexicana). The inset shows PCA of SNP data from within /nv9e, clearly separating
the three genotype classes (left, standard; middle, heterozygous inversion; right,
homozygousinversion).
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Fig.3|Local adaptation in teosintes and maize. a,b, Genome-wide selection
signals (W statistic reflecting the smoothed cross-population composite
likelihood ratio score) between mexicana and parviglumis (a) and temperate
and tropical maize (b). The horizontal gray dashed line represents the top 5%
cut off. Genes associated with flowering time and floral development in maize,
rice and Arabidopsis thaliana are marked with green points. ¢, Days to tassel of
wild-type and ZmPRR7 knockout (KO) mutants under tropical (Hainan Province,
Chinain2019 and 2020 (2019DHN and 2020DHN, respectively); 109° E, 18° N)
and temperate environments (Jilin Province, Chinain 2020 and 2021 (2020JL
and 2021JL, respectively); 125° E, 44° N). d, ZmPRR7 KO mutants showed earlier
flowering relative to wild types. The picture was taken inJilin Province in 2020

77 d after planting (scale bar, 5 cm). Credit: X.L. e, Days to tassel of wild-type
and ZmCOL9 KO mutants under tropical and temperate environments. NS, no
significant difference between mutants and wild types. f, Days to tassel of wild-
type and ZmCOL9 overexpression (OE) mutants under tropical and temperate
environments. g, ZmCOL9 OE mutants showed later flowering relative to wild
types. The picture was taken in Jilin Province in 2020 78 d after planting (scale
bar, 20 cm). Credit: X. Ye.Inc, e and f, the gray points show the number of days
to tassel for each individual. The numbers at the bottom of the bars indicate the
number of individuals used for phenotyping. The bars represent s.d. Statistical
significance was determined by two-sided ¢-test.

and longer light periods, and previous work identified evidence of con-
vergent selection between temperate maize andits broadly distributed
temperate relative Tripsacum®. Here, we extended this comparison
toinvestigate convergence between high-elevation-adapted teosinte
(mexicana) and temperate maize. We applied a composite likelihood
genome scan (Methods) for selection between mexicana versus parvi-
glumis and temperate versus tropical maize (Fig. 3a,b and Supple-
mentary Tables 19 and 20). We found significant overlap in selected
windows (P=0.047; 14.7% higher than permutations; Extended Data
Fig. 6a), but less overlap than expected in candidate genes (P=0.97;
27% less than permutations). Notably, ~90% of selected windows in
both comparisons were found in non-coding regions of the genome,
suggesting that adaptation may have predominantly targeted regula-
tory regions. To test for convergence in regulatory adaptation, we used
RNA sequencing datasets from the shoot base of parviglumis, mexi-
cana and tropical and temperate maize to search for changes in gene
expression. We identified 595 genes that are differentially expressed
between mexicana and parviglumis (Supplementary Table 21) and 437
genesthatare differentially expressed between temperate and tropical
maize (Supplementary Table 22), with significant overlap between the
two lists (P=0.006; 102% higher than permutations; Extended Data
Fig. 6b). These results may point to the importance of convergent
regulatory evolution in teosinte and maize local adaptation.

Selectionfor variants that promote early flowering enabled maize
to break day-length restrictions and facilitated the spread of maize
across a broad geographical range®.. The alleles involved in flower-
ing time are also a major target of highland landrace adaptation®”.
Experimental data in maize® and from orthologs®* in other species
show that at least 51 genes associated with highland adaptation and
61 genes associated with high-latitude adaptation were involved in
flowering-time pathways (Extended Data Fig. 7 and Supplementary
Table 23). For example, the genes G/, BASI and PRR7—all of which are
knownto participate inthe circadian clock pathway in Arabidopsis and
rice® ¥—show evidence of selection both in mexicana and temperate
maize. Tracking the flowering-time pathway, we found that temperate
maize has more genes under selection in the photoperiod pathway
(eightin temperate maize and five in mexicana; Supplementary Table
23), which may be a signal of adaptation to changing latitude.

To validate the utility of the selection scan approach, we tested
the function of ZmPRR7 (Zm00001d047761), which shows convergent
patterns in teosintes and maize, and the maize-specific candidate
ZmCOL9 (Zm00001d051684), which is involved in the photoperiod
pathway. Mutants of these two genes were obtained from a CRISPR-
Cas9-based high-throughput targeted mutagenesis library’’. The
mutant allele of ZmPRR7 is a 5.8-kb deletion in the gene region that
leads tothetotalloss of protein function. Plants harboring the mutant
allele exhibit significantly earlier flowering than the wild type in both
tropical and temperate environments (Fig. 3c,d and Extended DataFig.
8). Theloss-of-functionallele of ZmCOL9includes a 5-bp deletion/1-bp
insertion in the intron and a 2-bp deletion/4-bp deletion in the third
exon (Extended Data Fig. 9a,d), which resultin premature translation
termination. Ina tropical environment (Hainan, China; 109° E, 18° N),
ZmCOL9 knockout mutants showed no difference in flowering time

compared with the wild type (Fig. 3e and Extended Data Fig. 9b,e),
but plants with overexpression exhibited a later flowering phenotype
(Fig. 3f and Extended Data Fig. 10a,b). In contrast, when planted in a
temperate environment (Jilin, China; 125° E, 44° N), ZmCOL9 knock-
out mutants flowered earlier (Fig. 3e and Extended Data Fig. 9¢,f) and
overexpression lines flowered later than the wild type (Fig. 3f,g and
Extended Data Fig. 10c,d). These results confirm key roles for both
ZmPRR7 and ZmCOL9 in regulating flowering time and contributing
to the adaptation of highland teosintes and modern maize.

Discussion

Thetwin projections of increasing human population and decreasing
suitable farmland highlight the challenge breeders face in producing
high crop yields and this has motivated an increasing interest in crop
wild relatives as sources of genetic diversity forimprovment® % Here,
we present a high-resolution genetic variation map that greatly expands
the publicly available genetic sequence information for the genus Zea.
All of the data and results of this work have been integrated into the
ZEAMAP database” for easy query and retrieval.

We provide acomplete picture of the phylogeny and demography
of the genus Zea using genome-wide data, including both divergence
times and effective population sizes of Zea species. We reaffirm several
aspects of the phylogeny of Zea, but our data identify anumber of new
features, including the likely subspecies status of nicaraguensis, the
short divergence times between the perennial taxa and the relatively
young age of the genus. We caution that our divergence estimate for
Tripsacum may be underestimated because of the difficulty of map-
ping short reads from divergent genomes; therefore, high-quality
Tripsacum and teosinte reference genomes will be essential to better
answer this question®.

Our broad sampling of the genus allows us to take advantage
of population genetics tools to identify candidate genes involved in
adaptation across both long and short time scales. We find evidence of
convergent adaptation of highland teosintes and high-latitude maize,
exemplifying the utility of studying variationin wild relatives toidentify
genesimportantincrops. Finally, we validate these approaches using
genome editing to knock out two candidate flowering-time genes.

It is particularly noteworthy that our work identifies a vast trove
of genetic variation that is absent in cultivated maize and even in its
closest wild relative parviglumis. Our functional analysis of candidate
adaptationgenes clarifiesthe great potential in the utilization of the wild
relatives of maize in identifying novel alleles or highlighting potential
genes for subsequent editing, potentially accelerating modern genetic
improvements®. The dataand discoveries presented in this study pro-
videafoundation for the use of crop wild relative resources for breeding
inthe face ofincreasing human populations and decreasing farmland.

Online content

Any methods, additional references, Nature Research reporting sum-
maries, source data, extended data, supplementary information,
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Methods

Samples and whole-genome resequencing

A total of 237 teosinte accessions from CIMMYT, the United States
Department of Agriculture and collaborators were obtained, consisting
of 90 mexicana, 79 parviglumis, 20 diploperennis, 15 perennis, 15 luxu-
rians, 13 nicaraguensis and five huehuetenangensis species, according
to morphological classification (Supplementary Tables1and 2). Two
Tripsacum dactyloides were obtained from the laboratory of F. Chen
(Henan Agricultural University, China). Young leaves were used for
DNA extraction for sequencing using the lllumina HiSeq 3000 plat-
form (150-bp paired-end reads; conducted by BGI, Shenzhen, China)
and NovaSeq 6000 platform (150-bp paired-end reads; conducted by
Novogene, Sacramento, USA). The DNA sequencing data of 507 culti-
vated maizes were downloaded from the NCBISequence Read Archive
database (PRJNA531553; Supplementary Table1).

Read mapping and SNP calling

Raw reads of teosintes were first processed using FastQC (version
0.11.3; http://www.bioinformatics.babraham.ac.uk/projects/fastqc/).
Trimmomatic®® (version 0.33; HiSeq 3000 platform; LEADING:3
TRAILING:3 SLIDINGWINDOW:4:15 MINLEN:36) and fastp” (ver-
sion 0.19.4; NovaSeq 6000 platform; -g -136) were used to remove
poor-quality base calls and adapters. Reads of teosintes and maize
were then aligned to the B73 reference genome’® (version 4) using
Bowtie 2 (ref.”’; version 2.1.0; --very-fast) Unique mapped reads were
sorted and indexed using Picard (version 1.119; http://broadinstitute.
github.io/picard/). SAMtools'°® (version 1.3.1) and the UnifiedGeno-
typer module from GATK (version 3.5; https://software.broadinsti-
tute.org/gatk/) were used to estimate the variants for each individual.
Hard filtering of the individual SNP calls was carried out with a map-
ping quality of <20.0, a minimum sequencing coverage of <5and a
maximum sequencing coverage of >200. Then, variants from the 237
teosintes and 507 maizes were combined using GATK CombineVari-
ants to asingle variant-calling file. To confirm whether the unknown
variants were discarded reference genotypesin eachindividual call,
we recalled these sites and replaced them with reference genotypes
ifthey had supported reads. Finally, sites with a missing rate >75% in
all samples were excluded. To validate the accuracy of SNPs called
fromresequencing data, 224 sites in 80 accessions were selected for
Sanger sequencing (Supplementary Table 3).

Populationstructure and PCA

We evaluated patterns of population structure using a set of SNPs
that were filtered to remove multi-allelic loci and with a MAF of <0.05
(--maf 0.05 -biallelic-only) using PLINK' (version 1.9). We then ran
admixture'® for different values of the number of clusters (K) from
21020 (--cv =10; version 1.3.0). Each individual with admixture com-
ponents < 0.6 was classified as teosinte (mix) or maize (mix). We per-
formed PCA using this same set of SNPs with GCTA'® (version1.26) by
recording the first ten components (--pca10).

Phylogenetic tree construction

We annotated SNPs with a missing data rate of <0.7 in teosinte and
maize with SnpEff (version 4.1g; http://snpeff.sourceforge.net/index.
html) using the first transcript of B73 v4 genes. Then, the synonymous
and non-coding SNPs were used to construct a simple phylogenetic
tree with SNPhylo** (version 20140701) under default parameters and
the tree was visualized with iTOL'*,

Species tree analysis

Species delimitation and species trees were inferred using BPP** (model
All; version4.1.4). We used the following samples in BPP: three tropical
maizes, three parviglumis, three mexicana, three nicaraguensis, three
diploperennis, three perennis, three luxurians, two huehuetenangensis
andtwo T. dactyloides (Supplementary Table 1). Low-quality base calls

and adapters from raw reads of T. dactyloides were removed using Trim-
momatic, and the remaining sequences were aligned to the B73 version
4 reference genome using Bowtie 2, as described in the section ‘Read
mapping and SNP calling’. The consensus base was estimated from
the uniquely mapped reads using ANGSD'* (version 0.930). Using the
B73 annotation, we randomly selected 2,000 coding sequence genes
to estimate the species delimitation and species tree. The prior distri-
bution of ancestral population size (6) and divergence time from the
root (1) followed an inverse-gamma (IG) prior with means of 0.005
(IG (3,0.01)) and 0.75 (IG (3, 1.5)), respectively. The consensus of A1l
species trees was visualized using DensiTree'*® (version 2.2.6).

Imputation and demographic estimation

SNPsin the 237 teosintes and 507 maizes were imputed with BEAGLE'””
(version4.0). Divergence times within teosintes and the effective popu-
lation size of each teosinte were estimated using BPP (AOO model) and
MSMC2 (ref.*; version 2.1.1). The topological tree in BPP (A00 model)
was fixed asthe species tree with the highest posterior probability (A1l
model) estimated from the above species tree analysis. Sequences used
inthe Allmodel were applied to estimate the effective population size
and divergence time using the same priors as above. In MSMC2, four
haplotype models were applied (Supplementary Table1). The mutation
rate used in BPP (AOO model) and MSMC2 was 3 x 1078 (ref. %%),

ABBA-BABA test

We used Patterson’s D statistic'*"° to test for introgression between
teosintes. Assuming 7. dactyloidesto be the outgroup (0), we assessed D
statistics for the tree (((P1, P2), P3), 0), where P1,P2 and P3 represent dif-
ferent taxain Zea (the autotetraploid perennis was excluded). The num-
bers of ABBA and BABA patternsineachblock were calculatedin ANGSD
(-blockSize 10000). To overcome the problem of non-independence
within the sequence, a block-jackknifing procedure was used to test
for statistical significance.

Divergence-based introgression polarization test

To estimate the directions of introgression, the consensus base was
estimated from the uniquely mapped reads using ANGSD to repre-
sentindividuals in different taxa of Zea and Tripsacum (eight taxain
total). The whole-genome consensus files from different taxa were
then concatenated into multiple sequence alignment files by differ-
entchromosomes. Finally, this eight-taxon alignment was pruned to
containfourtaxa, accordingto each testasshowninSupplementary
Fig. 4, and divided into 5,000-bp windows, which were used as the
input of DIP™.

Linkage disequilibrium, nucleotide diversity and Fy;
calculation

Thelinkage disequilibria (%) of nicaraguensis (14), luxurians (14), diplo-
perennis (20), perennis (15), huehuetenangensis (five), mexicana (81),
parviglumis (70) and maize (507) were estimated for all biallelic SNPs
within 500 kb window (--geno 0.5--maf 0.05--biallelic-only --snps-only)
using PLINK. The nucleotide diversity of nicaraguensis (14), luxuri-
ans (14), diploperennis (20), perennis (15), huehuetenangensis (five),
mexicana (81), parviglumis (70) and maize (110 randomly selected
individuals) was calculated using ANGSD (version 0.930; -doMaf'1
-doMajorMinor1-uniqueOnly1-minMapQ30-minQ20-GL2-fold1-win
5000-step 5000). The differentiation (Fs;) between maize and teosinte
for five randomly selected samples was estimated in VCFTools™ (ver-
sion 0.1.16; --fst-window-size 5000).

Taxon-specific SNPs, indels and k-mer analysis

SNPs and indels found only in one specific taxon of Zea (supported
by atleast twoindividuals) were regarded as taxon-specific SNPs. The
longest transcripts of each gene inthe B73 annotationand arecent atlas
of cis-regulatory elements®® were used to annotate variants. K-mers
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unique to each taxon that appeared at least twice were obtained with
sourmash' (version 3.2.0; --scaled 1000).

Transposon element analysis

RepeatExplore2 (ref. ™*; version 0.3.8) was used to identify repeat
clusters of each taxon of Zea (two samples were randomly selected
from each taxon). Clusters were further annotated by applying Repeat-
Masker (http://www.repeatmasker.org/; version4.1.0; -species maize).
Reads were mapped to the above repeat clusters using BWA-MEM'®
(version 0.7.10) and the number of mapped readsin each repeat cluster
was calculated with SAMTools. The abundance of the repeat elements
between samples was normalized by their sequenced library sizes.

Inversion calling

Localized heterogeneity across chromosomes was identified using
lostruct® (version1.0) inwindows containing 10,000 SNPs. The most
related 5% of windows in each chromosome around one of the four
outliers (maximum, minimum, MDS1 or MDS2) were regarded as
candidate inversions and were genotyped using invClust"® (version
1.0) with the genotype of B73 as the reference state. Genotypes of the
candidates were confirmed via PCA of the SNPsin the corresponding
region. Only candidates with three clearly different haplotypesiden-
tified by PCA were regarded as true inversions. Candidates near the
centromeres were filtered out. Centromere information was obtained
by combining thelocations fromallindividualsin the nested associa-
tion mapping population®,

Genome-wide association analysis

SNPs from mexicana were obtained from the imputed teosinte panel
accordingtothe name of samples, then the population structure was cal-
culated withadmixture (version1.3.0;--cv=10;K=1,2,3,4,5). The K value
with thelowest cross validation error (K =2) was used in the downstream
analysis. Estimation of the kinship matrix and association analyses using
the compressed mixed linear model were performed using TASSEL3
(ref."”; version3.0.174) witha Pvalue cut offset to1/N (where Nis the num-
ber oftested SNPs; Bonferronitest). Latitude and longitude information
was obtained fromthelaboratory of S. Taba. Global soil properties used
as phenotypes for the genome-wide association study were extracted
using the R package ncdf4 (version1.16; http://cirrus.ucsd.edu/~pierce/
ncdf/) fromthe Global Soil Dataset for Earth System Modeling®®*—a com-
prehensive database with eight layers to a depth of 2.3 m (0-0.045,
0.045-0.091, 0.091-0.166, 0.166-0.289, 0.289-0.493, 0.493-0.829,
0.829-1.383 and 1.383-2.296 m). To find the best cluster method and
number, all the soil properties were clustered using the R package
clvalid"® (version 0.7), underring hierarchical, k-means and k-medoides
methodincombinationwith clusters from2to 40. Genome-wide associa-
tion studies were performed on a subset of nine features identified by
hierarchical cluster analysis (Supplementary Fig.10).

Identification of adaptive regions in non-Z. maystaxa
Whole-genome adaptive genetic variation between different non-Z.
maystaxa and maize was estimated by calculating their Fs; values with
VCFTools (--fst-window-size 5000). Under each comparison, all avail-
able teosinte and maize samples were used. We then Z-transformed
the Fy; in each window (windows with ZF; values exceeding the 95th
percentile of the whole genome were declared as candidate adap-
tive regions). Gene Ontology enrichment analysis was conducted
using PANTHER with default parameters”*'?° (https://doi.org/10.5281/
zenodo.5725227; released 16 November 2021) and visualized with
GlueGo"! (version2.5.9).

Selective sweeps in teosintes and maize

Whole-genome scanning for regions of teosinte elevation adaptationand
maize temperate adaptation was implemented using a mixed method.
First, two genetic maps were obtained fromaB73 x teosinte population'?

and a maize B73 x By804 population'” and the physical locations were

converted to coordinates of the B73 version 4 reference sequence using
CrossMap'** (version 0.2.9). The genetic distances between SNPs in
mexicanaand parviglumiswere then calculatedbased onthe B73 x teo-
sinte genetic map, while the distances in temperate maize and tropical
maize were calculated based on the B73 x By804 genetic map. Genetic
distances between SNPs located between the genetic markers were
assigned based ontheir physical distances. The likelihood of multi-locus
allele frequency differentiation between two tested populations was
modeled using XP-CLR™ (version 1.0; -w1 0.005100 1000 -p0 0.7) in
both the teosinte group (mexicana, with parviglumis as the reference)
and the maize group (temperate maize, with tropical maize as the refer-
ence). Finally, we applied a spline window method (GenWin'*® version
0.1; smoothness = 100) to smooth the results. The top 5% of genomic
regions with the highest W statistic in mexicana and parviglumis were
regarded as candidate teosinte altitude adaptation regions and the top
5% of W statistic regions intemperate and tropical maize were regarded
as candidate maize temperate adaptationregions. Enrichment analysis
between candidate teosinte altitude adaptation regions and maize
temperate adaptation was conducted using the shuffle function (-excl
-noOverlapping) in BEDTools' (version 2.25.0). Genes, including the
promoter (2 kb away the transcription start site), that overlapped with
theregionsidentified above wereregarded as candidate adaptive genes.

RNA sequencing sampling, library construction and data
analysis

The base tissues of V5-stage shoots (1-2 cm) of maize (five tropical
maize and five temperate maize) and teosintes (three parviglumis
and three mexicana) were sampled for messenger RNA and total RNA
extraction using the Quick RNAIsolation Kit (Huayueyang Biotechnol-
ogy).Bothmessenger RNA and total RNA samples were used for library
preparation according to lllumina strand-specificlibrary construction
protocols. Paired-end libraries were sequenced using a mixture of
platforms (HiSeq 3000, X10 and NovaSeq) with 150 cycles. Raw reads
were filtered to remove the poor-quality base calls and adapters specifi-
cally for each platform (NovaSeq: fastp -g -136; X10: fastp -136; HiSeq
3000: Trimmomatic LEADING:3 TRAILING:3 SLIDINGWINDOW:4:15
MINLEN:36). Reads were then aligned to the B73 reference genome (v4)
using TopHat2 (ref."*%; version 2.2.1) and read counts for each gene were
calculated using htseq-count' (version 0.9.1). Finally, differentially
expressed genes were identified between mexicana and parviglumis,
aswell as between temperate and tropical maize, using DESeq2 (ref. *°;
version 1.10.1), with an absolute fold change of >1 and P < 0.05.

Functional validation of ZmPRR7 and ZmCOL9
Mutants of ZmPRR7 and ZmCOL9 were generated from a
high-throughput genome editing design®. In brief, line-specific single
guide RNAs were filtered based on the assembled pseudo-genome of
the receptor KN5585, then a double single-guide-RNA-pool approach
was used to construct vectors. The vectors (CPB-ZmUbi-hspCas9)
were transformed into the receptor KN5585 and the targetsof each T,
individual were assigned by barcode-based sequencing. The genotype
of gene-editing lines was identified by PCR amplification and Sanger
sequencing using target-specific primers (Supplementary Table 24).
Transgenic lines generated with DNA fragments of ZmCOL9 driven
by the ZmUbi promoter were created using the modified binary vec-
tor pCAMBIA3300. Immature zygotic embryos of maize hybrid Hill
(B73 x A188) were infected with Agrobacterium tumefaciens strain
EHA105 harboring the binary vector, based on the published method
for ZmCOL9 (ref. ). Transgenic plants were identified by real-time
quantitative reverse transcription PCR as well as tests for herbicide
resistance and the presence of the bar gene. The flowering-time phe-
notypes of transgenic plants with mutations in ZmPRR7 and ZmCOL9
wereinvestigated inJilin Province (125° E, 44° N) and Hainan Province
(109°E,18°N).
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Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

DNA and RNA sequencing reads from this study were deposited in the
NCBISequence Read Archive with the accession codes PRINA641489,
PRJNA816255, PRJNA816273 and PRJNA645739. The SNP data can
be downloaded from https://ftp.cngb.org/pub/CNSA/data3/
CNP00O01565/zeamap/02_Variants/PAN_Zea_Variants/Zea-vardb/.
Source data are provided with this paper.

Code availability
All of the custom scripts used in this study are available at https://doi.
0rg/10.5281/zenodo.6818334 (ref.*?).
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Extended Data Fig. 1| STRUCTURE and principle component analysis (PCA)
of 507 maize and 237 teosinte. a, Population structure for K =2-16. maize (TEM)
indicates temperate maize (including 8 components), maize (TST) indicates
tropical maize (including 3 components). Samples with assignment to maize
(TEM) or maize (TST) lower than 0.6 were classified as maize (mix), and mexicana

or parviglumis samples with assignment lower than 0.6 to any teosinte were
classified as teosinte (mix). b, Cross-validation error for K =2-20 showing K = 15
with the lowest cross validation error. ¢, PCA of maize and teosinte; points are
colored according to the admixture result (K =15).
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Extended Data Fig. 2| Phylogenetic tree of Zea genus. The maximum likelihood tree was estimated with SNPhylo**. Populations are colored based on the admixture
result for K=15.
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Extended Data Fig. 4 | Repeat comparison of Zea. Boxplot of reads mapped
to different repeat classes across the samples in different taxa. Center lines in
the boxplotindicate the median, edges represent the 25th and 75th percentiles,
whiskers further extend by +1.5 times the interquartile range from the limits
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of each box. Each point shows the percentage of mapped reads to different
transposon classes in eachindividual. nicaraguensis (n =14), luxurians (n=14),
diploperennis (n = 20), perennis (n =19), huehuetenangensis (n = 5), mexicana
(n=81), parviglumis (n=70), TST (n = 210) and TEM (n = 280).
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Extended Data Fig. 6 | Enrichment analysis between highland and high Grey points represent the statistics of each permutation. Bars represent SD.
latitude adaptation. 1,000 independent permutations were performed to P-values derived from permutation test are indicated.

accesses overlap using a, selected regions or b, differently expressed genes.
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Extended Data Fig. 8 | See next page for caption.
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Extended Data Fig. 8 | Phenotype analysis of CRISPR/Cas9 mutation for China; E125°, N44°; temperate environment). ns: no significance, two-sided
ZmPRR?7 in different environments. a, Gene structure and sequences of t-test P-value shown. Numbers in the blank in x-axis represents the number of
ZmPRR7 target regions in wild type, ZmPRR7 CRISPR/Cas9 knockout mutants. individuals. Each point shows the statistics of traits for each individual. Center
band c, Statics of days to tassel, days to anthesis, days to silk in Hainan province lines in the boxplot indicate the median, edges represent the 25th and 75th
(2019 and 2020; China; E109°, N18°; tropical environment). d and e, Statics of percentiles, whiskers further extend by +1.5 times the interquartile range from
days to tassel, days to anthesis, days tosilk in Jilin province (2020 and 2021; the limits of each box.
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Extended Data Fig. 9 | See next page for caption.
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Extended Data Fig. 9 | Phenotype analysis of different CRISPR/Cas9 mutation
ZmCOL9in different environments. a, Gene structure and sequences of
ZmCOL9target regions in wild type, ZmCOLI9 CRISPR/Cas9 knockout mutants 1.
b, Statics of days to tassel, days to anthesis, days to silk in Hainan province (2019;
China; E109°,N18°; CRISPR/Cas9 mutation). ¢, Statics of days to tassel, days to
anthesis, days to silkinJilin province (2020; China; E125°, N44°; CRISPR/Cas9
mutation).d, Gene structure and sequences of ZmCOL9 target regions in wild
type, ZmCOL9 CRISPR/Cas9 knockout mutants 2. e, Statics of days to tassel, days

to anthesis, days to silk in Hainan province (2019; China; E109°, N18°; CRISPR/
Cas9 mutation). f, Statics of days to tassel, days to anthesis, days tosilk in Jilin
province (2020; China; E125°, N44°; CRISPR/Cas9 mutation). ns: no significance,
two-sided t-test P-value shown. Numbersin the blank in x-axis represents the
number of individuals. Each point shows the statistics of traits in each individual.
Center lines in the boxplot indicate the median, edges represent the 25thand
75th percentiles, whiskers further extend by +1.5 times the interquartile range
from the limits of each box.
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introgression polarization analysis, nucleotide diversity analysis were preformed by using the function "rand" in PERL. Random shuffled region
were used in enrichment analysis between highland and high latitude adaptation regions by using BEDTools. Random genes used in

enrichment analysis between teosinte and maize differently expression genes also randomly selected by using the function "rand" in PERL.

Blinding No blinding for this study. Phenotype were collected without knowledge of genotype information.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods
Involved in the study n/a | Involved in the study
|:| Antibodies |Z |:| ChiIP-seq
Eukaryotic cell lines |Z |:| Flow cytometry
Palaeontology and archaeology |Z |:| MRI-based neuroimaging

Animals and other organisms
Human research participants

Clinical data
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