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We present an e�cient implementation of periodic Gaussian density fitting (GDF) using the Coulomb metric. The three-
center integrals are divided into two parts by range-separating the Coulomb kernel, with the short-range part evaluated
in real space and the long-range part in reciprocal space. With a few algorithmic optimizations, we show that this new
method – which we call range-separated GDF (RSGDF) – scales sublinearly to linearly with the number of k-points
for small to medium-sized k-point meshes that are commonly used in periodic calculations with electron correlation.
Numerical results on a few three-dimensional solids show about 10-fold speedups over the previously developed GDF
with little precision loss. The error introduced by RSGDF is about 10�5 Eh in the converged Hartree-Fock energy with
default auxiliary basis sets and can be systematically reduced by increasing the size of the auxiliary basis with little
extra work.

Introduction. For one-electron basis sets in periodic elec-
tronic structure calculations, translational symmetry-adapted
atom-centered Gaussian functions1–4 are an alternative to the
historically prevalent plane waves.5–9 Using Gaussian ba-
sis functions provides a more compact representation of or-
bitals, allows natural access to all-electron calculations with-
out pseudopotentials, and facilitates the adaptation of accu-
rate quantum chemistry methods for solids.1,10–17 The down-
side of atom-centered orbitals is the introduction of four-index
electron repulsion integrals (ERIs), with O(N3

k n4
AO) storage

and O(N2
k n4

AO) CPU costs for Hartree-Fock (HF) calculations,
where Nk is the number of k-points sampled in the Brillouin
zone and nAO is the number of atomic orbitals in the unit cell.
Moreover, the direct real-space evaluation of ERIs requires an
expensive triple lattice summation. The Gaussian and plane
wave (GPW) method18 reduces the scaling of the storage to
O(N2

k n2
AONPW) and the HF cost to O(N2

k n2
AONPW ln NPW) by

evaluating the ERIs entirely in reciprocal space using an aux-
iliary PW basis of size NPW. However, doing so necessitates a
pseudopotential and hence precludes all-electron calculations.
In addition, a large PW basis may be needed if the basis set
contains relatively compact orbitals.

Another way to reduce the cost of manipulating the ERIs
is with Gaussian density fitting19–21 (GDF). In GDF, the or-
bital pair densities used to evaluate the ERIs are expanded in
a second, auxiliary Gaussian basis of size naux, from which the
four-center ERIs can be approximated using two- and three-
center integrals evaluated with some metric function.22–25 The
number of the latter integrals scales as O(N2

k n2
AOnaux), which

is much lower than that of the ERIs if naux is not too big.
For molecules, highly optimized auxiliary basis sets26 with
naux ⇡ 3nAO have made GDF a great success in both mean-
field27–29 and correlated calculations.30–34 We note that the
GPW treatment of ERIs can also be understood as a PW den-
sity fitting where NPW � nAO.

The application of GDF to periodic systems has been a rela-
tively recent e↵ort.10,35–44 The main challenge is the high com-
putational cost of evaluating the three-center integrals in real
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space if the Coulomb metric is used. There are two classes
of periodic GDF schemes. The first class exploits locality to
limit the auxiliary expansion based on the proximity to the tar-
get pair density.10,37–39,42,44,45 The locality could arise from the
system itself,44 an explicit use of a local metric other than the
Coulomb operator,42 or the use of Poisson-type orbitals.10,37,38

The other class insists on a global, Coulomb metric-based
GDF and accelerates the integral evaluation by calculating the
slowly convergent, long-range part separately, e.g., in recipro-
cal space using a PW basis15,46 or in real space using a multi-
pole expansion.40,41,43,47,48 The global GDF with the Coulomb
metric is generally considered more accurate but less compu-
tationally e�cient than the local one.49–53

Here, we introduce an e�cient implementation of a global,
Coulomb metric-based GDF for periodic systems. We use
the error function to range-separate the Coulomb metric in-
tegrals, evaluating the short-range part in real space and
the long-range part in reciprocal space, similar in spirit to
Refs. 46, 54, and 55. With a few algorithmic developments,
we show that the new scheme – which we call range-separated
Gaussian density fitting (RSGDF) – scales sublinearly to lin-
early with Nk for small to medium-sized k-point meshes that
are commonly used in periodic calculations with electron
correlation.14,16,56–59 Numerical tests on three simple three-
dimensional solids demonstrate that RSGDF accelerates pre-
vious implementations of GDF by an order of magnitude with
negligible precision loss in the computed energies. We also
show that the accuracy of the HF60,61 energy computed using
RSGDF can be systematically improved with little extra com-
putational e↵ort by increasing the size of the auxiliary basis;
we achieve accuracies on the order of 10�6 Eh per atom with
speedups of one to two orders of magnitude compared to ref-
erence GPW calculations.

While finalizing this work, a preprint by Sun62 reported a
similar range-separation idea to accelerate the direct computa-
tion of the four-center Coulomb and the exchange integrals for
periodic HF calculations, i.e. without density fitting. There-
fore, we will also compare our RSGDF to this new method
(referred to as RSJK henceforth) in terms of accuracy and
computational cost.

Theory. We begin with a brief review of periodic GDF us-
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ing a basis of nAO symmetry-adapted atomic orbitals (AOs)

�kµ (r) =
X

m

eik·m�mµ (r) (1)

where k is a crystal momentum in the first Brillouin zone, m
is a lattice translation vector, and �mµ (r) = �µ(r �m). An
analogous equation holds for the naux auxiliary atom-centered
Gaussian basis �kP(r). The ERIs are the Coulomb repulsion
between pair densities

(⇢k1k2
µ⌫ |⇢k3k4

�� ) =
Z

⌦

dr1

Z
dr2
⇢k1k2
µ⌫ (r1)⇢k3k4

�� (r2)
r12

(2)

where ⌦ is the unit cell volume, ⇢k1k2
µ⌫ (r) = �k1⇤

µ (r)�k2
⌫ (r),

and the four crystal momenta satisfy (k1�k2+k3�k4)·m = 0
for all m. In GDF, the pair densities are approximated by an
auxiliary expansion

⇢k1k2
µ⌫ (r) ⇡

nauxX

Q

dk1k2
Qµ⌫ �

k12
Q (r), (3)

with k12 = �k1 + k2. Minimizing the fitting error in some
metric w(r12) leads to a linear equation for dk1k2 ,

nauxX

Q

Jk12
PQ dk1k2

Qµ⌫ = Vk1k2
Pµ⌫ , (4)

where the two- and three-center metric integrals are

JkPQ = (�k⇤P |w|�kQ), (5)

Vk1k2
Pµ⌫ = (�k12⇤

P |w|⇢k1k2
µ⌫ ). (6)

Once {dk1k2 } are determined, the ERIs can be easily recov-
ered,

(⇢k1k2
µ⌫ |⇢k3k4

�� ) ⇡
nauxX

P,Q

dk1k2
Pµ⌫ (�k12

P |�
k34
Q )dk3k4

Q�� . (7)

The fixed size of the auxiliary Gaussian basis is responsible
for a DF error compared to a calculation without DF (through-
out, we will call this the accuracy, to be contrasted with the
precision with which the two- and three-center integrals are
evaluated for a fixed auxiliary basis). Although in principle
the same is true of GPW, the auxiliary PW basis is typically
grown to achieve arbitrarily accurate results that are free of
DF error.

The computational bottleneck of periodic GDF is due to
the three-center integrals in Eq. (6), which, when using the
long-ranged Coulomb metric w(r12) = r�1

12 , are expensive to
evaluate in real space or reciprocal space. The current imple-
mentation of periodic GDF in PySCF15 aims to address this
challenge by introducing a Gaussian charge basis {⇠kP } to re-
move the charge and multipoles of the auxiliary basis. This
splits Eq. (6) into two parts

Vk1k2
Pµ⌫ = (�k12

P � ⇠
k12
P |w|⇢k1k2

µ⌫ ) + (⇠k12
P |w|⇢k1k2

µ⌫ ). (8)

The Gaussian exponents of {⇠kP } are optimized so that the first
term in Eq. (8) can be evaluated in real space using a lat-
tice summation and the second term in reciprocal space us-
ing Eq. (15). Although this yields an improvement over any
attempt to evaluate the three-center integrals entirely in real
or reciprocal space, the two separate summations can both
be relatively slow to converge. Our new periodic RSGDF
takes a di↵erent approach to evaluate the three-center integrals
in Eq. (6). All techniques introduced below can be readily
adapted to the evaluation of the two-center integrals in Eq. (5).

In RSGDF, we range-separate the Coulomb operator using
the error function63 r�1

12 = wSR(r12;!) + wLR(r12;!),

wSR(r12;!) =
erfc(!r12)

r12
(9a)

wLR(r12;!) =
erf(!r12)

r12
(9b)

so that Eq. (6) is split into a short-range (SR) part and a long-
range (LR) part with ! controlling their relative weights. We
evaluate the LR integrals in reciprocal space,

(Vk1k2
Pµ⌫ )LR

! = 4⇡
NPWX

G

0 e�|G+k12 |2/4!2

|G + k12|2
�̃k12

P (�G)⇢̃k1k2
µ⌫ (G), (10)

where �̃ and ⇢̃ are the Fourier transform of � and ⇢ and the
primed summation indicates G , 0 for k1 = k2;14 the G = 0
term contributes to finite-size errors and is handled on a case-
by-case basis in the subsequent electronic structure calcula-
tions and not in the ERIs. A relatively small number of PWs
are necessary for convergence due to the presence of the Gaus-
sian damping factor. The analytical Fourier transform (AFT)
is needed for compact auxiliary orbitals and pair densities,
while the fast Fourier transform (FFT) can be used for dif-
fuse ones;64,65 we will return to this point later. The cost of
this step is therefore dominated by the AFT of the orbital pair
densities

⇢̃k1k2
µ⌫ (G) =

NAFT
cellX

m

e�ik2·m
Z

dr �0µ (r)�m⌫ (r)e�i(k12+G)·r . (11)

This AFT has two separate steps: the evaluation of the real-
space integrals and the subsequent contraction of these inte-
grals with phase factors, which scale as O(NkNAFT

cell NPWn2
AO)

and O(N2
k NAFT

cell NPWn2
AO), respectively. Note that the number

of unique crystal momentum pair di↵erences grows linearly
with Nk and NAFT

cell can be estimated from the orbital overlap.
The SR part can be easily evaluated in real space by lattice

summation

(Vk1k2
Pµ⌫ )SR

! =

NcellX

mn

e�ik1·meik2·n(V0,mn
Pµ⌫ )SR

!

� ⇡

⌦!2 S k12
P S k1k2

µ⌫ �k1,k2

(12)

where

(V0,mn
Pµ⌫ )SR

! =

Z

⌦

dr1

Z
dr2 �

0
P(r1)wSR(r12;!)

⇥ �mµ (r2)�n⌫ (r2),
(13a)
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S k12
P =

Z

⌦

dr �k12
P (r), (13b)

S k1k2
µ⌫ =

Z

⌦

dr ⇢k1k2
µ⌫ (r), (13c)

and the summation range Ncell scales as O(!�3) for three-
dimensional solids because !�1 is the decay length of the SR
potential. The second term in Eq. (12) cancels the G = 0
component of the first term. With proper integral screening,
only O(Ncell) terms contribute significantly to the double lat-
tice summation to achieve a finite precision ✏ (see Supplemen-
tary Material for a detailed derivation). Therefore, the costs
scale as O(Ncellnauxn2

AO) for the evaluation of real-space inte-
grals in Eq. (13a) and O((N2

k Ncell + NkN2
cell)nauxn2

AO) for the
double phase factor contraction in Eq. (12).

Since NAFT
cell and Ncell can be as large as 104, the phase fac-

tor contractions in both Eqs. (11) and (12) would account for
most of the computational cost (except for very small k-point
meshes). However, if the k-points are sampled from a uniform
(e.g. Monkhorst-Pack66) mesh that includes the � point, then
the phase factors satisfy eik·m = eik·(m̃+M ) = eik·m̃, where
m̃ is inside the Born-von Karman supercell and M is a lat-
tice translation vector of the Born-von Karman supercell. For
example, the summation in Eq. (12) can then be rewritten as

NkX

m̃ñ

e�ik1·m̃eik2·ñ
X

m!m̃,n!ñ

(V0,mn
Pµ⌫ )SR

! , (14)

where the phase factor contraction now costs O(N3
k nauxn2

AO); a
similar treatment for Eq. (11) gives O(N3

k NPWn2
AO) cost for

the phase factor contraction. This process significantly re-
duces the total cost of these contractions so that they are
subdominant (at least for moderately sized k-point meshes
where Nk is much smaller than Ncell or NAFT

cell ). The remain-
1
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FIG. 1. Schematic illustration of how di↵erent components of the
three-center integrals [Eq. (6)] are evaluated in RSGDF. Both the
auxiliary and the AO bases are split into a compact (“C/c”) set and
di↵use (“D/d”) set. The compact integrals (shaded in red) are range
separated to yield short-range (SR) and long-range (LR) contribu-
tions that are evaluated in real space (by lattice summation) and in
reciprocal space (by Fourier transforms), respectively; the di↵use in-
tegrals (shaded in blue) are evaluated entirely in reciprocal space us-
ing Fourier transforms. Note that the column corresponding to “dc”-
type pair densities is similar to the “cd”-column and hence omitted
for simplicity.

ing cost-determining steps are the real-space integral evalu-
ations in Eqs. (11) and (13a), which as a reminder scale as
O(NkNAFT

cell NPWn2
AO) and O(Ncellnauxn2

AO), respectively. Note
that the cost of these expensive steps is no worse than linear
in the number of auxiliary Gaussian basis functions.

The algorithm described so far yields significant perfor-
mance improvements over existing periodic GDF schemes.
We have identified an additional minor improvement, moti-
vated by the observation that the real-space lattice summations
needed for the SR part are slow to converge because of di↵use
orbitals, i.e. those with small Gaussian exponents (recall that
the FFT can be used in the LR part for di↵use orbitals). There-
fore, we split both the auxiliary and the AO bases into a com-
pact (“C/c”, upper case for auxiliary) and a di↵use (“D/d”)
set based on a cuto↵ ↵cut for the primitive Gaussian expo-
nents. Similar ideas of compact and di↵use basis splitting
have also been explored by Pulay and co-workers for molec-
ular calculations.65 This leads us to six types of three-center
integrals as shown in Fig. 1. Four of the integral types have
either a di↵use bra or a di↵use ket (shaded in blue; note that
both “cc” and “cd” are compact) and can thus be readily eval-
uated in reciprocal space using a relatively small PW basis65

without range separation,

Vk1k2
Pµ⌫ = 4⇡

NPWX

G

0 �̃
k12
P (�G)⇢̃k1k2

µ⌫ (G)
|G + k12|2

. (15)

To summarize, in RSGDF, we evaluate these four integral
types directly in reciprocal space and the remaining two in-
tegral types with compact bra and ket using the range separa-
tion scheme defined above. Note that the expensive AFTs of
the compact auxiliary orbitals and pair densities can be calcu-
lated once and used in the evaluation of both integral types.
In practice, a large majority of orbitals are defined as compact
and so we find that this separation of orbitals speeds up our
calculations by a factor of two or less compared to a direct
application of RSGDF for all orbitals.

While the above presentation suggests a computational
scaling that is linear in Nk for typical mesh densities, the actual
scaling is complicated by the choice of the parameters, NPW,
!, and ↵cut, which we discuss more below. Empirically we
find that the optimal choice of NPW scales as O(N�1/2

k ) (Fig.
S3), and the overall cost of RSGDF scales roughly as O(N0.8

k )
for all the systems tested in this work (Fig. S6). However,
this sublinear scaling only holds for small Nk, because NPW
eventually reaches a minimum value. Beyond that point, the
AFTs needed for the LR part dominate the cost and we expect
a linear scaling of RSGDF with Nk, at least for medium-sized
k-point meshes.

Computational details. We implemented RSGDF as pre-
sented above in a local version of the PySCF software
package.2 We test its performance in terms of precision, ac-
curacy, and computational e�ciency using three simple three-
dimensional solids: diamond, MgO, and LiF. For diamond, we
perform all-electron calculations using the cc-pVDZ basis;67

for MgO and LiF, we use GTH pseudopotentials68,69 and the
corresponding GTH-DZVP basis.18 We use the cc-pVDZ-jkfit
basis70 and the even-tempered basis (ETB) generated with a
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FIG. 2. Timing of RSGDF for diamond/cc-pVDZ using Nk = 13 to 53. (a) Total DF initialization CPU time as a function of the number of
PWs used to compute the LR integrals [Eqs. (10) and (15)]. (b) CPU time for computing the SR integrals [Eq. (12)] as a function of ! for all
k-point meshes except for Nk = 13. (c) CPU time for computing the LR integrals [Eqs. (10) and (15)] as a function of NkNPW for all k-point
meshes except for Nk = 13. For (b) and (c), the black lines are power law fits to all data points leading to exponents as shown.

progression factor � = 2.0 for the auxiliary expansion of the
cc-pVDZ and the GTH-DZVP bases, respectively.

We compare RSGDF to GDF,15 GPW (called FFTDF in
PySCF),18 and RSJK,62 as implemented in PySCF. For RSJK,
we use eq. (23) in ref. 62 to determine an appropriate ! for
a given system and k-point mesh. For RSGDF, we manually
test a range of NPW and for each we determine the maximum!
and ↵cut that guarantee precision ✏ in all integrals; future work
will focus on the automated selection of these parameters. As
a general trend, using a larger PW basis slows down the LR
part by increasing the number of expensive real-space integra-
tions to be performed in Eq. (11) but accelerates the SR part
by allowing larger values for ! and ↵cut; a smaller PW basis
has the opposite e↵ect. Unless otherwise mentioned, all cal-
culations are run with a target precision of ✏ = 10�8 a.u. for
integral evaluation, which is the default setting for production-
level periodic calculations in PySCF. The finite-size error of
the HF exchange energy is corrected with a Madelung con-
stant, which yields O(N�1

k ) convergence to the thermodynamic
limit71–73 (Fig. S7); other possibilities exist73–76 but would re-
quire modification of the DF algorithm. All timing data re-
ported below are the CPU time recorded using a single CPU
core (Intel Xeon Gold 6126 2.6 GHz) with 16 GB of memory
and 100 GB of disk space except for GPW which requires
larger memory for Nk � 43. The current implementations
of GDF and RSGDF are not integral-direct, meaning that we
solve Eq. (4) only once and save the coe�cients {dk1k2 } to
disk for later use; this step is called “DF initialization” be-
low and requires O(N2

k nauxn2
AO) disk space which limits our

calculations to a maximum k-point mesh of Nk = 53 for all
three systems. The other two methods, GPW and RSJK, are
both implemented in an integral-direct manner and hence re-
quire little disk space. An integral-direct implementation of
RSGDF tailored for specific applications will be presented in
future work.

Results and discussion. We first verify our scaling analy-
sis of the CPU cost of RSGDF. In Fig. 2a, we show the RS-
GDF initialization time as a function of NPW for diamond us-
ing Nk = 13 to 53 k-points (recall that all calculations achieve

the same target precision). The optimal NPW – identified as
the minimum on each curve – indeed decreases with Nk as
O(N�1/2

k ) (the fitted exponent is about �0.44; see Fig. S3).
The inverse cubic dependence of the SR time on ! is verified
in Fig. 2b, and the linear scaling of the LR time with NkNPW
is verified in Fig. 2c. Similar results are observed for the other
two systems (Figs. S1 and S2), although the optimal values
of NPW for a given Nk vary slightly from system to system.
We leave the automatic determination of the optimal NPW to a
future work as it requires a more careful calibration. In what
follows, we will simply use the manually optimized values
from Fig. 2a and Figs. S1a and S2a (summarized in Tab. S1).

The di↵erent choices of NPW (and hence ! and ↵cut) in RS-
GDF do not cause any inconsistency in the computed ener-
gies. As shown in Fig. S4, the converged RSGDF HF ener-
gies di↵er from the GDF results by less than 10�7 Eh for dia-
mond and MgO and about 10�6 Eh for LiF for all data points
shown in Fig. 2 and Figs. S1 and S2. We attribute the larger
deviation observed for LiF to the linear dependency found
in the auxiliary basis. Nonetheless, these deviations are ac-
ceptable as they are at least one order of magnitude smaller
than the error introduced by DF itself (vide infra). Beyond
the HF energy, we have also verified that the electron corre-
lation energy of diamond computed with RSGDF using the
second order Møller-Plesset perturbation theory77 agrees with
the GDF results to better than 10�8 Eh for all k-point meshes
tested (Tab. S2). These observations confirm that the algorith-
mic developments in RSGDF cause negligible precision loss
compared to the original implementation of GDF.

Next, we study the computational e�ciency of RSGDF. In
Fig. 3, we plot the per-SCF-cycle time as a function of Nk for
computing the Coulomb and the exchange integrals in a HF
calculation for all three systems using four di↵erent methods
to handle the ERIs: GPW (green), RSJK (red), GDF (grey),
and RSGDF (blue). Since the first two are implemented in an
integral-direct fashion, we include the DF initialization time
for GDF and RSGDF to enable a fair comparison.

We first compare GDF and RSGDF, which both compute
the three-center integrals through a SR part in real space and
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FIG. 3. CPU time (per SCF cycle) for computing the Coulomb and the exchange integrals in a HF calculation for (a) diamond/cc-pVDZ, (b)
MgO/GTH-DZVP, and (c) LiF/GTH-DZVP using GPW (green), RSJK (red), GDF (grey), and RSGDF (blue) to handle the ERIs. For GDF and
RSGDF, the DF initialization time is included. For RSGDF, results using a larger auxiliary basis are also included (RSGDF*, white triangles).
Precise timing data are given in Table S3. Insets show the deviation of the RSGDF HF energies from RSJK for diamond (a) and deviations of
the RSGDF and the RSJK HF energies from GPW for MgO (b) and LiF (c), where the x-axis is Nk and the y-axis is in Eh.

a LR part in reciprocal space. Although both methods ex-
hibit a similar sublinear scaling with Nk at large Nk, only the
GDF timings plateau at small Nk. This di↵erence arises from
the adjustment of the PW basis size for each Nk and for each
system (Tab. S1), which ultimately balances the SR-LR cost
in RSGDF as analyzed above (Fig. S5). More importantly,
the algorithmic optimizations developed for RSGDF in this
work significantly reduce its computational cost and lead to
speedups of one to two orders of magnitude over the previous
GDF for all three systems studied here.

We next compare RSGDF with the two other methods with-
out DF error, i.e. GPW and RSJK. The GPW timing shows
the characteristic O(N2

k ) scaling of computing exact exchange
starting from Nk = 23 and is 40 to 400 times slower than RS-
GDF for the largest Nk tested here. The very high cost of
GPW for MgO is caused by the compact primitive Gaussians
in the 2s and 2p orbitals of Mg, which require 833 PWs to
reach the target precision of 10�8 (cf. 513 for LiF). We empha-
size that lowering the precision requirement for GPW (hence
lowering NPW) only moderately reduces the cost due to the
O(NPW ln NPW) scaling of FFT. For example, using ✏ = 10�6

and 10�4 requires 753 and 663 PWs for MgO and reduces the
cost by only factors of 1.4 and 2.1, respectively.

The RSJK timings are similar to those of GPW; although
they show a slightly weaker dependence on Nk, the precise
scaling is unclear. This peculiar Nk-dependence of RSJK
arises from a significant SR-LR cost unbalance (Fig. S5) and
suggests a breakdown of eq. (23) in ref. 62 for determining the
optimal ! for RSJK. Despite this, RSJK still achieves com-
putational e�ciency similar to GDF and much higher than
GPW for moderately sized k-point meshes, which is remark-
able given that RSJK does not use DF.

Finally, we examine the accuracy of the HF energies com-
puted by RSGDF, which is a combination of the DF error due
to the auxiliary basis set and the precision error when calculat-
ing the matrices in Eqs. (5) and (6). The RSJK results are used
as the benchmark for diamond and the GPW results are used
as the benchmark for MgO and LiF. To probe the possibility of

achieving higher accuracy with DF, we also include results for
RSGDF using a larger auxiliary basis (denoted by “RSGDF*”
in Fig. 3); we use the cc-pVTZ-jkfit basis for diamond and an
ETB whose size is about 1.25 times larger (obtained by us-
ing a smaller �) for MgO and LiF. The per-atom errors of the
converged HF energies are plotted in the insets of Fig. 3.

With the default auxiliary basis, the error introduced by
RSGDF is about 10�5 Eh for diamond and MgO and about
10�4 Eh for LiF; these errors are typical for DF-based HF
calculations.40,46 Using the slightly larger auxiliary basis (RS-
GDF*) reduces the error by a factor of three or more and, most
remarkably, requires little extra work as can be seen from the
nearly identical timings of RSGDF and RSGDF* in Fig. 3.
This is because the LR part is dominated by the AFTs of the
orbital pair densities, Eq. (11), whose cost is independent of
naux, while the SR part scales linearly with naux. By contrast,
the accuracy of RSJK is in general very high (10�7 Eh or less),
but relatively large errors of about 10�2 Eh are also observed
for certain k-point meshes (inset of Fig. 3c); the accuracy loss
in the latter cases is likely due to an inaccurate integral screen-
ing, as tightening the precision to 10�10 reduces the error to
about 10�5 Eh for the calculation of LiF using 43 k-points.
These results demonstrate that RSGDF provides an extremely
cost-e↵ective approach to calculating accurate HF energies in
periodic systems.

Conclusion. To summarize, we have presented an e�cient
scheme that uses range separation for Gaussian density fit-
ting (RSGDF) for periodic systems. The computational scal-
ing is analyzed to be sublinear with Nk for small k-point
meshes and linear for medium-sized ones. With all-electron
and pseudopotential-based numerical results on a few three-
dimensional solids, we verified the scaling of RSGDF and
showed that it achieves about 10-fold speedups over the pre-
viously developed GDF with little precision loss. The error
introduced by RSGDF is about 10�5 Eh with default auxiliary
basis sets and can be systematically reduced by increasing the
size of the auxiliary basis with little extra work.

The primary purpose of the current integral-indirect imple-
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mentation of RSGDF is to speed up Hartree-Fock (and hybrid
density functional theory) calculations for a given Gaussian
basis and auxiliary basis. Motivated by the excellent perfor-
mance seen in these preliminary calculations, we are currently
working on the automatic determination of the optimal NPW,
!, and ↵cut. Looking forward, the fast integral construction
enabled by RSGDF encourages the development of integral-
direct algorithms tailored to specific tasks such as the evalua-
tion of exact exchange,44 the ERI orbital transformation,37,38

and post-HF calculations.38,42 Such integral-direct methods
would significantly reduce the high memory footprint cur-
rently required by post-HF calculations on periodic systems
with Gaussian basis sets.

SUPPLEMENTARY MATERIAL

See the supplementary material for (i) RSGDF initialization
time for di↵erent choices of NPW and ! for MgO and LiF; (ii)
optimal choices of NPW for Nk from 13 to 53 and di↵erent
systems; (iii) di↵erence of the HF energies computed using
RSGDF and GDF; (iv) SR and LR component time of RS-
GDF, GDF, and RSJK for varying size of k-point meshes; (v)
Nk-scaling of RSGDF and GDF for the timing data shown in
Fig. 3; (vi) values of the parameters needed by RSGDF, GDF,
RSJK, and GPW; (vii) comparison of the MP2 correlation en-
ergies computed using RSGDF and GDF for diamond; (viii)
CPU time for computing the Coulomb and exchange integrals
per SCF cycle by RSGDF, GDF, RSJK, and GPW; (ix) De-
tails of the treatment of exchange divergence; (x) derivations
of the conditions for prescreening the double lattice summa-
tion in Eq. (12).
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