
W������: Systematic Crash Consistency Testing for
Non-Volatile Memory Key-Value Stores

Xinwei Fu
Virginia Tech

Wook-Hee Kim
Virginia Tech

Ajay Paddayuru
Shreepathi

Stony Brook University

Mohannad Ismail
Virginia Tech

Sunny Wadkar
Virginia Tech

Dongyoon Lee
Stony Brook University

Changwoo Min
Virginia Tech

Abstract
The advent of non-volatile main memory (NVM) enables the
development of crash-consistent software without paying
storage stack overhead. However, building a correct crash-
consistent program remains very challenging in the presence
of a volatile cache. This paper presents W������, a system-
atic crash consistency testing framework, which detects both
correctness and performance bugs in NVM-based persistent
key-value stores and underlying NVM libraries, without test
space explosion and without manual annotations or crash
consistency checkers. To detect correctness bugs,W������
automatically infers likely correctness conditions by analyzing
data and control dependencies between NVM accesses. Then
W������ validates if any violation of them is a true crash
consistency bug by checking output equivalence between
executions with and without a crash. Moreover, W������
detects performance bugs by analyzing the execution traces.
Evaluation with 20 NVM key-value stores based on Intel’s
PMDK library shows that W������ discovers 47 (36 new)
correctness consistency bugs and 158 (113 new) performance
bugs in both applications and PMDK.

CCS Concepts: • Hardware ! Emerging technologies;
• Software and its engineering! Software testing and
debugging.

Keywords: Non-volatile Memory, Crash Consistency, De-
bugging, Testing

ACM Reference Format:
Xinwei Fu, Wook-Hee Kim, Ajay Paddayuru Shreepathi, Mohannad
Ismail, Sunny Wadkar, Dongyoon Lee, and Changwoo Min. 2021.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for pro�t or commercial advantage and that
copies bear this notice and the full citation on the �rst page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci�c
permission and/or a fee. Request permissions from permissions@acm.org.
SOSP ’21, October 26–29, 2021, Virtual Event, Germany
© 2021 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-8709-5/21/10. . . $15.00
h�ps://doi.org/10.1145/3477132.3483556

W������: Systematic Crash Consistency Testing for Non-Volatile
Memory Key-Value Stores . In ACM SIGOPS 28th Symposium on
Operating Systems Principles (SOSP ’21), October 26–29, 2021, Virtual
Event, Germany. ACM, New York, NY, USA, 16 pages. h�ps://doi.
org/10.1145/3477132.3483556

1 Introduction
Non-volatile main memory (NVM) technologies, such as
Intel’s Optane DC Persistent Memory [15, 61], is on the rise:
e.g., Google Cloud [2] and Aurora supercomputer [1]. NVMs
provide persistence of storage along with traditional DRAM
characteristics such as byte addressability and low access
latency. The ability to directly access NVMs using regular
load and store instructions provides a new opportunity to
build crash-consistent software (e.g., NVM-backed key-value
stores) without paying storage stack overhead. Programs can
recover a consistent state from a persistent NVM state in the
event of a software crash, or a sudden power loss.

However, it is hard to design and implement a correct and
e�cient crash-consistent NVM program. NVM data on a
volatile cache may not be persisted after a crash. A cache can
also evict cache lines in an arbitrary order. Thus, the updates
to di�erent NVM locations may not be persisted in the same
order as the program (store) order. The existing ISAs also do
not support updating multiple NVM locations atomically.
To ensure crash consistency, the current NVM program-

ming model requires (either application or library) devel-
opers to explicitly add a cache line �ush and store fence
instructions (e.g., clwb and sfence in x86 architecture) and
to devise a custom mechanism to enforce proper persistence
ordering and atomicity guarantees. NVM programming thus
becomes error-prone and misuse of NVM primitives may
lead to correctness bugs (e.g., misplaced �ush/fence) or per-
formance bugs (e.g., redundant �ush/fence). A correctness
bug1 is particularly critical as a program may lead to an in-
consistent NVM state on a crash and fail to recover with
permanent data corruption, irrecoverable data loss, etc.
Recently, several solutions have been proposed to detect

persistence bugs in NVM programs. However, there are two
critical issues, namely (1) scalability against testing possible

1In this paper, we refer to a crash consistency bug as a correctness bug to
di�er it from a performance bug, though it is one kind of correctness bugs.

100

https://doi.org/10.1145/3477132.3483556
https://doi.org/10.1145/3477132.3483556
https://doi.org/10.1145/3477132.3483556
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current

NVM states and (2) the need to create manual test oracles
to validate testing correctness. These issues still make it
challenging to e�ectively test NVM-backed persistent key-
value stores, one of the most prominent application domains
among NVM software: e.g., Level Hashing [88], RECIPE [54],
Redis [13], and Memcached [10].
A line of testing tools that attempt to exhaustively test

all possible NVM states (e.g., Yat [52], PMReorder [39], and
SCMTest [69]) has the potential to detect many bugs, but
often su�er from test space explosion. To bound search cost,
persistent key-value stores are typically backed by data struc-
tures with rebalancing operations (e.g., rehashing in a hash
table, split-merge in a B-tree). Triggering such operations
and detecting persistence bugs therein require a test case
with a large number of operations (a long execution), making
exhaustive testing infeasible in practice.
Moreover, for a test oracle, existing NVM testing tools

require users to provide a manually-designed, application-
speci�c consistency checker to validate a program under
test: e.g., manual annotations in PMTest [57] and XFDetec-
tor [56], consistency checkers in Yat [52], application-speci�c
oracles in Agamotto [67], ordering con�gurations in PMDe-
bugger [26]. Persistent key-value stores often employ dif-
ferent forms of inconsistency tolerable and/or recoverable
design. Devising application-speci�c test oracles not only
requires signi�cant manual e�orts, but also is error-prone.
This paper presents W������, a new crash consistency

testing framework that systematically explores the NVM
state test space (without test space explosion) and automati-
cally validates if each feasible NVM state is consistent or not
(without manual test oracles). W������ detects application-
speci�c correctness bugs (e.g., persistence ordering and atom-
icity violations) using application-agnostic rules. It can also
identify performance bugs (e.g., extra �ush/fence) by analyz-
ing the execution trace.
To address the test space challenge, W������ infers a

set of likely-correctness conditions that are believed true to
be crash-consistent by analyzing program data/control de-
pendencies among NVM accesses. W������ then tests only
those NVM states that violate the likely-correctness con-
ditions, signi�cantly reducing the NVM state test space.
ThoughW������ may unsoundly prune some NVM states
to test, our evaluation shows that it can e�ectively prune
the test space and detect many new correctness bugs. Since
the likely-correctness conditions were derived from common
NVM programming patterns, they are applicable to non-key-
value applications. We show that W������ detects crash
consistency bugs in PMDK’s persistent pool management
codes (§7.2) and non-key-value applications (§7.7).

Tomitigate the test oracle problem,W������ employs out-
put equivalence checking between program executions with
and without a (simulated) crash. Persistent key-value stores
are often designed to provide atomic (all or nothing) seman-
tics upon a crash at the operation granularity (e.g., insert,

delete), more formally, durable linearizability [44]. If a key-
value store resuming from anNVM state that violates a likely-
correctness condition produces an output that is di�erent
from the executions without a crash, then we can con�dently
conclude that the program is not crash-consistent, and the
violation is indeed a true crash consistency bug. Our output
equivalence checking requires determinism and checks for
durable linearizability. ThusW������may not be applicable
to NVM programs that permit non-deterministic output (e.g.,
timestamp) or non-durable-linearizable behaviors.
We evaluatedW������ with 20 NVM-backed persistent

key-value stores that are ported with Intel’s PMDK library.
Using randomly generated test cases with 2000 operations,
W������ detected 47 (36 new) correctness bugs and 158 (113
new) performance bugs in 20 programs.W������ can detect
bugs not only in applications but also in low-level PMDK
libraries whose bug manifests as di�erent outputs at the ap-
plication level. For instance, W������ �nds a correctness
bug in PMDK’s persistent pool/heap management library,
classi�ed as “Priority 1: showstopper” [8]. All new correct-
ness bugs are con�rmed by the developers.

This paper makes the following contributions:
• We propose a new NVM software testing approach that
infers likely-correctness conditions to e�ectively explore
NVM state test space, and performs output equivalence
checking to identify an incorrect execution without user-
provided test oracles. To the best of our knowledge,W������
is the �rst NVM testing tool that uses application-agnostic
rules to �nd application-speci�c correctness bugs.

• W������ detects 205 (149 new) correctness/performance
bugs in NVM-backed key-value stores and PMDK library.
W������ does not su�er from test space explosion nor
requires manual test oracles to detect them. The current
W������ prototype focuses on testing key-value stores in
which operation interfaces are well known and thus output
equivalence checking can be automatically performed. The
proposed ideas can be extended and applied to other NVM
programs beyond key-value stores.

2 Background
This section demonstrates the types of correctness bugs (§2.1)
and performance bugs (§2.2) thatW������ found in crash-
consistent NVM programs, along with real-world examples.

2.1 Correctness Bugs

As a processor can evict cache lines in an arbitrary order and
does not support atomic update of multiple NVM locations,
crash consistency is the problem of guaranteeing persistence
ordering and atomicity of NVM locations according to pro-
gram’s semantics. Thus, violating these is the primary reason
for correctness bugs in NVM programs.
(1) Persistence ordering violations. We found that many
crash consistency and recovery mechanisms rely on a certain
(application-speci�c) persistence ordering of NVM variables.

101

However, a buggy NVM program may not maintain proper
persistence ordering using a cache line �ush and a store
fence instructions when updating multiple NVM locations.

For example, Level Hashing [88] introduces log-free write
operations. It maintains a �ag token for each key-value slot
where the token denotes if the corresponding key-value slot
is empty or not. Figure 1(b) shows the log-free level_insert
function. It intends to update the key-value slot (Lines 14, 15)
before updating the token (Line 18). However, if a crash hap-
pens after the token’s cache line is evicted (thus persisted) but
before the key-value slot’s cache line is not (before enforcing
cache line �ushes at Lines 20–22), an inconsistent state could
occur – the token indicates that the corresponding key-value
slot is non-empty, but the slot is never written to NVM. Thus,
the garbage value can be read (as in Figure 3(h)), implying
that the insert operation failed to provide an atomic (all or
nothing) semantic upon a crash. The persistent barriers at
Lines 20-23 should be moved before updating the token at
Line 18.
(2) Persistence atomicity violations. To ensure the in-
tegrity of NVM data, many NVM programs rely on atomic
update of NVM variables. However, a buggy NVM program
may not correctly enforce persistence atomicity among mul-
tiple NVM updates. If a program crashes in the middle of a
sequence of NVM updates, an inconsistent state may occur.
Figure 1(c) shows a persistence atomicity bug found in

Level Hashing’s level_update function. Level Hashing op-
portunistically performs a log-free update. If there is an
empty slot in the bucket storing the old key-value slot, a
new slot is stored to the empty slot (Lines 34, 35), and then
the old and new tokens are modi�ed (Lines 38, 39). Since the
new slot is not overwritten to the old slot, Level Hashing
can avoid costly logging operations. However, the code in-
correctly assumes that updating two tokens is atomic. If a
crash happens right after turning o� the old token (Line 38)
and the cache line of the old token is evicted (persisted), the
crash consistency problem happens. Since the old token is
persisted with 0 (empty) but the new token (Line 39) is not
turned on, we permanently lose the updating key. To solve
this bug, we have to persist two tokens atomically.

2.2 Performance Bugs

Previous studies [57, 67] found that performance bugs are
prevalent in real-world NVM programs. Performance bugs
do not cause an inconsistent state, yet it requires signi�cant
developer’s time and e�ort to spot and �x them. Similar to
prior work, we classify NVM performance bugs as follows:
(1) Unpersisted performance bugs. SomeNVMprograms
unnecessarily place volatile data that does not require persis-
tence in NVM. Developers do not use �ush/fence for volatile
data. However, NVM incurs higher latency than DRAM. De-
velopers should have placed them in DRAM.

// (c) @level_hashing.c:413 (Level Hashing 28eca31)
31 uint8_t level_update(
32 level_hash *level, uint8_t *key, uint8_t *new_val) {
33 // ...
34 memcpy(level->buckets[i][f_idx].slot[k].key, key, K_LEN);
35 memcpy(level→buckets[i][f_idx].slot[k].value,
36 new_val, V_LEN);
37
38 level→buckets[i][f_idx]. token[j] = 0;
39 level→buckets[i][f_idx]. token[k] = 1;
40
41 pflush((uint64_t *)&level->buckets[i][f_idx].slot[k].key);
42 pflush((uint64_t *)&level->buckets[i][f_idx].slot[k].value);
43 asm_mfence();
44 pflush((uint64_t *)&level->buckets[i][f_idx].token[j]);
45 asm_mfence();
46 // ...

// (a) @level_hashing.c:334 (Level Hashing 28eca31)
 1 uint8_t* level_static_query(level_hash *level, uint8_t *key) {
 2 // ...
 3 if (level→buckets[i][f_idx]. token[j] == 1 &&
 4
 5 strcmp(level→buckets[i][f_idx].slot[j]. key , key)==0) {
 6
 7 return level→buckets[i][f_idx].slot[j]. value ;
 8 // ...

 cdD2: R(value) R(token)

 cdD1: R(key) R(token)
 hbI2: P(value) W(token)

 hbI1: P(key) W(token)

I3: AP(token[j], token[k])

Dependencies Likely-Correctness Conditions

 cd

 cd

Atomicity Likely Atomicity
Violation!

// (b) @level_hashing.c:492 (Level Hashing 28eca31)
11 uint8_t level_insert(
12 level_hash *level, uint8_t *key, uint8_t *value) {
13 // ...
14 memcpy(level->buckets[i][f_idx].slot[j].key, key, K_LEN);
15 memcpy(level→buckets[i][f_idx].slot[j].value,
16 value, V_LEN);
17
18 level→buckets[i][f_idx]. token[j] = 1;
19
20 pflush((uint64_t *)&level→buckets[i][f_idx].slot[j]. key);
21
22 pflush((uint64_t *)&level→buckets[i][f_idx].slot[j]. value);
23 asm_mfence();
24 pflush((uint64_t *)&level->buckets[i][f_idx].token[j]);
25 level->level_item_num[i] ++;
26 asm_mfence();
27 // ...

 hb

 hb

Likely Ordering Violation

!

!

R(X): read X W(X): write X P(X): persist X AP(X,Y): X, Y persisted atomically

E1
cd�! E2: E1 is control dependent on E2 E1

hb��! E2: E1 should happen before E2

Figure 1. Using the likely-correctness conditions inferred from (a),
W������ �nds two correctness bugs (b) and (c) in Level Hashing.

(2) Extra �ush and (3) extra fence performance bugs.
An extra �ush or fence instruction on an NVM variable
causes unnecessary high overhead. The extra can be removed
without breaking the correctness of an NVM program.
(4) Extra logging performance bugs. When an NVM pro-
gram relies on a transaction library (e.g., Intel’s PMDK) for
crash consistency, the NVM data should be (undo) logged
before it is modi�ed the �rst time. Logging the same NVM
region redundantly in a transaction is a performance bug.

102

3 Overview of Our Approach
We �rst introduce how W������ �nds correctness bugs
(§3.1) and performance bugs (§3.2). Then we will discuss
howW������ advances exiting approaches (§3.3).

3.1 Correctness Bug Finding

To detect correctness bugs,W������ infers likely-correctness
conditions (§3.1.1) and performs output equivalence check-
ing to validate the NVM states violating them (§3.1.2).

3.1.1 Inference of Likely-CorrectnessConditions. We
propose a novel approach that analyzes program data/control
dependencies amongNVMaccesses to infer likely-correctness
conditions enforcing persistence ordering and persistence
atomicity guarantees amongNVMaccesses. Our key observa-
tion is that programmers often left some hints on what they
want to ensure in the source code in the form of data/control
dependencies and we can infer the corresponding likely per-
sistence ordering/atomicity conditions.
Using the aforementioned Level Hashing example, let us

demonstrate how we can infer a likely-correctness condition
from the query function level_static_query in Figure 1(a),
and apply it to �nd the correctness bugs in level_insert and
level_update in Figure 1(b) and (c). level_static_query
reads the key/value only if the token is non-empty. In other
words, there is control dependency between the read of a
token and a key-value pair (Lines 3-7); e.g., we denote it
as R(slot[j].key) cd��!R(token[j]). We analyze the implica-
tion of this control dependency as follows.

We �rst refer to the common NVM programming pattern
that uses a �ag (token) to ensure the persistence atomic-
ity of data (key/value) as guarded protection. We have ob-
served this guarded protection pattern in many NVM pro-
grams including key-value stores [4, 60, 82], logging im-
plementations [16, 35, 36, 43, 51, 74, 81], persistent data
structures [22, 24, 37, 49, 53, 54, 65, 71], memory alloca-
tors [17, 25, 38, 70, 77], and �le systems [23, 27, 28, 46, 83].
The guarded protection follows the following reader-writer
pattern around a �ag variable, which we call “guardian” ; (1)
The writer ensures that both key and value are “persisted be-
fore” the �ag is persisted (Figure 1(b)); (2) The reader checks
if the �ag is set before reading the key and value, which we
call “guarded read” (Figure 1(a)). The persistence ordering
(for the writer side) and the guarded read (for the reader
side) together ensure that the reader reads atomic (both old
or both new) states of key and value.
From the guarded read pattern in Figure 1(a), we infer

the �rst likely persistence ordering condition; a key-value
pair should be persisted before a token – we denote it as
P(slot[j].key/value)

hb��!W(token[j]). We then extend it
to the second likely persistence atomicity condition – the
updates of two or more guardians should be atomic (i.e.,
AP(token[j],token[k])). Otherwise, an atomic update of
multiple key-value slots cannot be guaranteed.

Later we �nd that level_insert violates the persistence
ordering condition at Line 18, and level_update violates the
persistence atomicity condition at Line 39. W������ tests
only NVM states that violate the inferred likely-correctness
conditions. For example, in level_insert we test only one
case that a token is persisted but a key-value pair is not
persisted, which violates the writer pattern in the guarded
protection. Similarly, in level_updatewe test two cases that
one token is persisted and another token is not.

In this way,W������ uses likely-correctness conditions to
reduce NVM state testing space without manual annotations.
In §4.2, we present more generalized rules to infer likely-
correctness conditions beyond guarded protection.W������
does not require prior knowledge of truth and does not as-
sume the conditions are always correct; if two conditions
contradict, we test both cases to discern which one is correct
using output equivalence checking.

3.1.2 Validation with Output Equivalence Checking
W������ uses output equivalence checking to validate if an
NVM state that violates an inferred likely-correctness con-
dition is indeed inconsistent, indicating a crash consistency
bug. Many NVM programs, including a persistent key-value
store, aim to provide durable linearizability [44] at the op-
eration granularity (e.g., insert, delete). That is, upon a
crash, an NVM program should behave as if the operation
where the crash occurred is either fully executed or not at all
executed (i.e., all or nothing semantics). Therefore,W������
can validate crash consistency by comparing the outputs
of executions with and without a crash. If a program that
recovers from an NVM state violating a likely-correctness
condition produces an output di�erent from the executions
without a crash, then we can con�dently conclude that the
program is not crash-consistent. If so, the violation of a
likely-correctness condition is a true bug.

Output equivalence checking allowsW������ to automat-
ically detect correctness bugs without manual annotations
or a user-provided full consistency checker. Output equiv-
alence checking requires that the test case is deterministic;
i.e., given the same input, a program should produce the
same output. Moreover, output equivalence checking relies
on test cases, and thus some crash consistency bugs may not
be detected if they do not produce visible symptoms (e.g.,
segmentation fault, di�erent output, etc.) on the given test
cases. This implies that we may have false negatives. How-
ever, any detected output divergence is indeed an indicator
of a true correctness bug; i.e., we do not have false positives.

3.2 Dynamic Trace Based Performance Bug Finding

W������ uses a trace-based approach to detect performance
bugs. Unlike �nding correctness bugs, which requires search-
ing possible crashedNVM states, detecting performance bugs
does not need crash simulation and only requires tracking
the NVM persistence state in program order. For example,

103

Test space exploration Crash consistency
Input NVM State validation (oracle)

Yat [52]
PMReorder [39]

user-provided
test case exhaustive user-provided

oracle

Jaaru [32] user-provided
test case

model checking
with pruning visible manifestation

PMTest [57]
XFDetector [56]

user-provided
test case manual annotation user-provided

oracle

Agamotto [67] symbolic
execution

PM-aware
search algorithm

user-provided
oracle

PMDebugger [26] user-provided
test case

user-provided
oracle

user-provided
oracle

W������
(this work)

user-provided
test case

systematic pruning based on
likely-correctness conditions

output equivalence
checking

Table 1. Comparison with existing crash consistency testing tools.

to detect an extra �ush performance bug, the persistence
state of the cacheline to be �ushed before executing the �ush
instruction is needed.W������ leverages the collected dy-
namic program trace and detects performance bugs during
NVM persistence simulation.

3.3 Comparison with Existing Solutions

Table 1 summarizes how W������ is di�erent from existing
crash consistency testing tools when it comes to detecting
correctness bugs. For performance bugs,W������ is similar
to existing work, and §7.6 later shows the pros and cons of
W������’s trace-based approach, compared to the symbolic
execution-based approach in Agamotto [67].

Exhaustive testing tools, such as Yat [52] and PMReorder [39],
attempt to permute all possible NVM states on a crash. How-
ever, they often do not scale. For example, during testing
Level Hashing with 2000 operations, Yat attempts to test 1031
total permutations (see §7.5). Moreover, for each crashed
state, they rely on a user-provided consistency checker to
validate whether NVM data is consistent. However, the cor-
rectness of a manual checker is often a concern [45]. Re-
cently, Jaaru [32], a model checking approach, proposed a
(sound) state pruning solution based on the actual values
read by post-failure executions, yet the test space may still
remain huge. Empirically, Jaaru has been applied to the test
cases with up to (small) 40 operations. In addition, Jaaru can
only identify bugs that lead to visible crashes (e.g., segmenta-
tion faults) or assertion failures. Later in §7.5, we show that
W������ e�ectively prunes NVM state test space based on
likely-correctness conditions.

The test space explosion problemmotivated the annotation-
based approach, such as PMTest [57] and XFDetector [56].
However, annotating a large NVM software soundly and pre-
cisely is very challenging. A missing/wrong annotation may
lead to false negatives/positives. In addition, PMTest lacks
support for detecting persistence atomicity violations such as
Figure 1(c). XFDetector relies on user’s manual investigation
for validation. Agamotto [67] takes a di�erent approach, us-
ing symbolic execution to explore input test space (program
paths). It provides universal bug oracles for common bug
patterns (i.e., missing or redundant �ush/fence bug patterns).
However, for app-speci�c correctness bugs (e.g., persistence

ordering/atomicity violations), Agamotto still requires users
to provide test oracles. Similarly, PMDebugger [26] requires
user-provided oracles (i.e., ordering debugger con�guration
�le) to detect app-speci�c correctness bugs. Later in §7.6, we
showW������with output equivalence checking can detect
the correctness bugs that the prior testing tools found and
more without user-provided oracles or annotations.

4 Design of W������
Figure 2 illustratesW������ architecture that takes as input
a target program (NVM-based persistent key-value stores)
and a test case (some sequences of insert, delete, query,
etc. operations); and reports as output detected correctness
and performance bugs in the program. W������ �rst in-
struments the program and runs the test case to collect a
memory trace (§4.1). For correctness bugs,W������ infers
likely-correctness conditions from the trace (§4.2), constructs
a set of crash NVM images violating the likely-correctness
conditions (§4.3), and performs output equivalence checking
to validate if a likely-correctness condition violation is a true
correctness bug (§4.4).W������ analyzes the same trace to
detect performance bugs as well (§4.5).

W������ supports testing not only applications (key-value
stores) but also PMDK libraries (e.g., persistent heap manage-
ment, transaction undo logging) as the PMDK libraries inter-
nally use low-level persistence primitives (such as flush and
fence instructions) for crash consistency.W������ provides
limited support for multi-threading, whichwill be further dis-
cussed in §5.2. This section assumes testing single-threaded
programs.

4.1 Tracing Memory Accesses

W������ instruments an NVM program using an LLVM
compiler pass [14] and executes the instrumented binary
with a test case to collect the execution trace. We trace load,
store/non-temporal store2 (including the updated value),
branch, call/return, �ush and memory fence instructions.
Suppose we trace Level Hashing in Figure 1 using the

test case with four operations in Figure 3(a). Figure 3(b)
shows the trace of the last level_static_query(k). Each
trace includes a unique Trace ID (TID), a Static instruction ID
(SID), which is the instruction location in the binary, and the
instruction type. For load and store, W������ additionally
traces its address, length (not shown), and data (for store),
and whether it accesses DRAM (white) or NVM (gray).

4.2 Inferring Likely-Correctness Conditions

W������ correlates program data/control dependencies with
NVM crash consistency correctness conditions. We �rst de-
scribe a set of inference rules for (1) likely persistence order-
ing conditions and (2) likely persistence atomicity conditions

2Non-temporal stores are supported/modeled as store+�ush.

104

Program

Test Cases

insert(k,v1)
delete(k)
insert(k,v2)
query(k)

Tracing
Memory
Accesses

(§4.1)

Traces

store K
store V
store T
flush K,V
...

Likely-correctness
Conditions Crash NVM Images

 Persisted Unpersisted
IMG1 T K, V
IMG2 K T, V
...

P(K) <
hb

W(T)
P(V) <

hb
 W(T)

...

Inferring
Likely

Correctness
Conditions

(§4.2)

Output
Equivalence

Checking
(§4.4)

Generating
Crash NVM

Images
(§4.3)

Trace-based Performance Bug Detection (§4.5)

Correctness Bugs

Performance Bugs

Figure 2. The architecture ofW������. W������ automatically detects (application-speci�c) correctness bugs (in blue) and performance
bugs (in green) based on a given test case and its trace (in gray) without either manual annotation/oracle or exhaustive testing.

TID SID type addr data

300 3 load &i

301 3 load &f_idx

302 3 load &j

303 3 load &bucket

304 3 load &token

305 3 branch

306 5 load &key

307 5 branch

308 7 load &val

...

operation

0 insert(k, v0)

1 delete(k)

2 insert(k, v1)

3 query(k)

(f): Trace of insert(k, v1)

TID SID type addr data

200 14 store &key “k”

201 15 store &val “v1”

202 18 store &token 1

203 20 flush &key

204 22 flush &val

205 23 fence

(h): Output Equivalence Checking

insert(k,v0)

delete(k)

insert(k,v1)

Recovery

query(k)

insert(k,v0)

delete(k)

insert(k,v1)

query(k)

insert(k,v0)

delete(k)

query(k)

Crash Oracle

(e): Inferred Likely-correctness Cond’s

hb
P(key) W(token)

hb
P(val) W(token)

hb
P(val) W(key)

AP(token, key)

I1: I2:

I3: I4:

(g): Crash NVM Images

Persisted Unpersisted Condition

IMG1 token key,val I1,I3,I4

IMG2 key token,val I2,I4

TID NVM access

other instTID

“v0”

“v1” or null

mismatch

Bug!

(d): Persistence PDG (PPDG)

304306308

tokenkeyval

cd cd

300

301

302

303

306

308

307

dd

dd

cd

dd dd

dd dd

dd
dd

d
d

dd

cd
cd

control
dependency

data
dependency

cd

dd

cd

304 305

Figure 3. An example ofW������’s correctness bug detection steps.

(§4.2.1). Then we explain how W������ uses program de-
pendence analysis to infer the likely-correctness conditions
from the trace (§4.2.2).
4.2.1 Inference Rules Table 2 summarizes the inference
rules. At a high level, each rule looks for control and/or
data dependency Hints between NVM locations X and Y in a
program.W������ then infers a Persistence Ordering (PO)
likely-correctness condition that “X should be persisted be-
fore Y” or a Persistence Atomicity (PA) condition that “X and
Y should be persisted atomically”. W������ later constructs
an NVM state that violates a likely-correctness condition –
e.g., “Y is persisted, but X is not” (§4.3) and tests if the likely
ordering/atomicity violation is a true crash consistency bug
using output equivalence checking (§4.4). In other words,
for two NVM addresses X and Y, if W������ does not detect
any dependency, it does not test such cases involving X and
Y. Hence, it saves the test time, assuming that independent
NVM objects do not lead to an inconsistent state.

Hint Likely-correctness Cond NVM Image
Example Rule Example Rule P U

PO1 Y=X+3; W(Y)
dd��!R(X) X=...;Y=...; P(X) hb��!W(Y) Y X

PO2 if(X){Y=3;} W(Y)
cd��!R(X) X=...;Y=...; P(X) hb��!W(Y) Y X

PO3 if(X){Z=Y+3;} R(Y)
cd��!R(X) Y=...;X=...; P(Y) hb��!W(X) X Y

PA1
if(X){M=N+3;} R(N)

cd��!R(X)
X=...;Y=...; AP(X,Y)

X Y

if(Y){K=J+3;} R(J)
cd��!R(Y) Y X

R(X): read X W(X): write X P(X): persist X P: persisted U: unpersisted

E1
cd�! E2: E1 is control dependent on E2 E1

dd��! E2: E1 is data dependent on E2

E1
hb��! E2: E1 should happen before E2 AP(X,Y): X and Y persisted atomically

Table 2. The inference rules PO1–PO3 are for persistence ordering
likely-correctness conditions and PA1 is for persistence atomicity.

(PO1) A data dependency implies a persistence order-
ing. Consider the code “Y=X+1” where the write of Y is data-
dependent on the read of X (which we denote W(Y)

dd��!R(X)).
From the data dependency, we infer a PO condition that
for another code region where X and Y are updated, the de-
veloper would want X to be persisted before updating Y (i.e.,
P(X)

hb��!W(Y) where hb��! stands for happens-before). Other-
wise, she may update Y based on “unpersisted” X, leading
to an inconsistent state. Based on the reasoning, PO1 in Ta-
ble 2 says: for two NVM locations X and Y, if we �nd a Hint
W(Y)

dd��!R(X), we infer a likely PO condition P(X)
hb��!W(Y).

We later test an NVM state that violates the PO condition in
which Y is persisted, but X is not.
(PO2) A control dependency implies a persistence or-
dering. Based on the same rationale, we infer another
PO condition from the control dependency as well: e.g.,
“if(X) Y=1”. More formally, PO2 says: for two NVM locations
X and Y, if we �nd a Hint W(Y)

cd�!R(X), we infer a likely PO
condition P(X)

hb��!W(Y). Then we test a state violating the PO
condition where only Y is persisted.
(PO3) A guarded read implies a persistence ordering.
As discussed in §3.1.1, guarded protection is a common NVM
programming pattern. It achieves the atomicity of data us-
ing the writer-side persistence ordering and the reader-side
guarded read. Based on this observation, if we see a guarded
read pattern at a reader side, we infer a PO condition at a
writer side. In other words, PO3 says: for two NVM locations
X and Y, if we �nd a Hint R(Y)

cd�!R(X), we infer a Likely PO
Condition P(Y)

hb��!W(X). We note that here X is a guardian in

105

the guarded read pattern (e.g., token in Figure 1) and thus
it should be persisted last (after key and value). We then
validate an NVM state violating the condition such that X is
persisted but Y is not.
(PA1) Guardian implies persistence atomicity. As in
the PO3 likely-correctness condition, we can �nd a set of
guardians: e.g., token[j] and token[k] in Figure 1. A pro-
gram state could be inconsistent if all the guardians are not
updated atomically — no one guards the guardians. Based
on this observation, we infer a PA likely-correctness condi-
tion such that two or more guardians should be atomically
updated. PA1 says: for two guardians X and Y from PO3, we
infer the Likely PA Condition AP(X,Y) that X and Y should
be atomically persisted. We later test NVM states such that
only one guardian is persisted. This approach allows us to
reduce testing space signi�cantly because we will not test
persistence atomicity for well-guarded NVM data. For exam-
ple, if a program applies the guarded read patterns on key
and value in all places (using token as a guardian), then we
do not test persistence atomicity between them. Given N
guardians, there will be N 2 PA1 conditions. To avoid scalabil-
ity issues, when checking a PA1 violation, W������ keeps
track of a set of N guardians instead of N 2 conditions, and
checks if two stores before a fence belong to the set.

4.2.2 Data/ControlDependenceAnalysis W������ per-
forms program dependence analysis to infer likely-correctness
conditions from the source codes and execution traces.W������
�rst constructs a Program Dependence Graph (PDG) [31, 34,
68] where a node represents a traced instruction, and an edge
represents data or control dependency. Then, W������ sim-
pli�es the PDG into what we called Persistence Program De-
pendence Graph (PPDG) that captures dependencies between
NVM accesses to make it easy to apply the likely-correctness
condition inference rules. For example, Figure 3(c) shows the
PDG of the trace (b), and (d) shows the PPDG.

W������ uses a mix of static and dynamic trace analysis
to construct a PDG. When instrumenting the source code for
tracing (§4.1), it performs static analysis to capture register-
level data and control dependency. Then it extracts memory-
level data dependence by analyzing memory-level data-�ow
in the collected trace. This dynamic memory-level data de-
pendency analysis improves PDG’s precision compared to
static-only analysis, which su�ers from the imprecision of
pointer analysis. The static instruction IDs (binary address)
are used to map static and dynamic information.

W������ converts a PDG to a PPDG as follows. Initially,
the PPDG has only (gray) NVM nodes.W������ traverses
the PDG from one NVM node to another NVM node. If there
is at least one control-�ow edge along the path, it adds a
control-�ow edge in the PPDG. If a path includes only data-
�ow edges, it adds a data-�ow edge in the PPDG. No path
implies no dependency.

Given the PPDG, W������ then applies the inference
rules in Table 2. For each edge and two nodes in the PPDG,
W������ considers the type of edge (control vs. data) and
the type of instructions (store vs. load). When W������
�nds a Hint, it records the corresponding Likely-correctness
Condition. For example, the PPDG in Figure 3(d) shows that
R(key)

cd�!R(token). Based on PO3, we infer the PO condi-
tion I1: P(key)

hb��!W(token) in (e). Similarly, we can infer
the PO conditions I2 and I3. Moreover, as token and key are
guardians for guarded reads, based on PA1, we infer the PA
condition I4: AP(token,key).

4.3 Generating Crash NVM Images

The next step is to generate a set of crash NVM images3
that violate the likely-correctness conditions. Later in §4.4,
we will describe how W������ loads these NVM images
and uses output equivalence checking to validate if a likely-
correctness condition violation is a true bug or not.
At a high level, W������ generates crash NVM images

as follows. W������ takes as input the same trace used to
collect likely-correctness conditions and performs cache and
NVM simulations along the trace. During the simulation,
W������ cross-checks if there is any violation of likely-
correctness conditions. Each violating NVM state forms a
crash NVM image to test.W������ produces a set of crash
NVM images for further validation.

4.3.1 Simulating Cache and NVM States The goal of
the cache/NVM simulations is to generate only feasible NVM
states that violate likely-correctness conditions but still obey
the semantics of a persistence control at a cache line granular-
ity (e.g., the e�ects of a flush instruction). Starting from the
empty cache and NVM states,W������ simulates the e�ects
of store, flush, and fence instructions along the trace while
honoring the memory (consistency) model of a processor.
In particular,W������ supports Intel’s x86-64 architecture
model, as in Yat [52]. The following two rules are, in par-
ticular, relevant to the cache/NVM simulations: (1) A fence
instruction guarantees that all the prior flush-ed stores are
persisted. (2) A processor does not reorder two store instruc-
tions in the same cache line (following the x86-TSO memory
consistency model [42, 78]).

Consider the trace of Level Hashing’s level_insert code
in Figure 3(f). After simulating the �rst three store instruc-
tions (TID 200-202), there could bemultiple valid cache/NVM
states. For example, the data “k” for key could either remain
in a cache (unpersisted) or could be evicted (persisted). The
same is true for the val and token. However, after �nishing
the execution of the last fence instruction (TID 205), key and
val are guaranteed to be persisted (due to flush and fence).
Still, token could be either unpersisted or persisted.

3In PMDK, an NVM image is a regular �le containing an NVM heap state
created, loaded, and closed by PMDK APIs [40].

106

4.3.2 Detecting Likely-Correctness Condition Viola-
tions During the simulation,W������ checks if there could
be an NVM state that violates a likely-correctness condition
before executing each fence instruction because the fence
ensures a persistent state change.W������ considers all pos-
sible persisted/unpersisted states while honoring the above
cache/NVM simulation rules.

Consider the trace of Level Hashing’s level_insert code
in Figure 3(f) again. Before we execute the last fence in-
struction (TID 205), we check the four likely-correctness
conditions against the trace as shown in (e). For instance,
I1 says that P(key)

hb��!W(token). The state violating the PO
condition is the one that token is persisted, but key is not.
We check if this PO violation is feasible in this code region
(before the fence). The answer is yes – a program crashes
between the TID 202 store and the TID 203 flush instruc-
tions, and the cache line for token is evicted (persisted) but
not for key and val (unpersisted). This forms the �rst crash
NVM image IMG1 in (g). Similarly, we can �nd that IMG1 is
also the state that I3 and I4 are violated. We can also �nd
the second IMG2 in (g) violating I2 and I4.

Each crash NVM image is indeed represented as a pair of a
fence ID and a set of store IDs, which speci�es where to crash
and which stores to be persisted, respectively.W������ re-
peats the process along the trace and generates a set of crash
NVM images that will be validated in the next step.
4.4 Output Equivalence Checking

W������ validates the crash NVM images violating likely-
correctness conditions and detects crash consistency bugs
using output equivalence checking. In particular,W������
focuses on testing durable linearizability [44]. That is, a crash-
consistent NVM program should behave as if the operation
where the crash occurred is either fully executed (commit-
ted) or not at all executed (rolled back). Thus, the program
resumed from a crash NVM image should produce the same
output as one of these two committed or rolled-back execu-
tions, which we call oracles.

Consider the example in Figure 3 again. Using the test case
insert(k,v0), delete(k,v0), insert(k,v1), and query(k)
in (a), we analyzed the trace of the third insert(k,v1) op-
eration in (f) and generated two crash NVM images in (g).
The �rst IMG1 re�ects an NVM state that the �rst two oper-
ations, insert(k,v0) and delete(k,v0), are correctly per-
formed, and the program crashes in the middle of the third
insert(k,v1) where only token is persisted, and key and
value remain unpersisted – i.e., IMG1 has the old value v0.

W������ generates two oracles to compare. The �rst
oracle re�ects an execution where the crashed operation
is committed – thus we run the test case insert(k,v0),
delete(k,v0), insert(k,v1), and query(k) (no crash) and
records v1 (the new value) as the output of query(k). The
second oracle mimics an execution where the crashed oper-
ation is rolled back – we run the same test case without the

third insert(k,v1) and log null as the output of query(k).
Altogether, the oracles say that the correct output of the last
query(k) is either v1 or null.

W������ uses the same test cases (used for tracing and
inference) for output equivalence checking.W������ loads a
crash NVM image, runs a recovery code (if it exists), executes
the rest of the test cases, records their outputs, and compares
them with the oracles. For example with IMG1, query(k) re-
turns the old value v0 (as neither the deletion of k nor the
insertion of new value v1 was persisted) – W������ detects
the mismatch and reports the test case and the crash NVM
image information (the crash location as the fence TID, and
the persistence state as the persisted store ID). On the other
hand, a similar analysis with the second IMG2 shows that
the output (null) matches the oracles, soW������ does not
report it as correctness bugs.

One key bene�t of output equivalence checking is that all
the reported cases indeed indicate buggy inconsistent states
(no false positives). Nonetheless, many cases may share the
same root cause: e.g., a bug in insert operation may repeat-
edly appear in a trace if the test case has many insert calls.
To help programmers analyze the root causes,W������ clus-
ters the bug reports according to operation type (e.g., insert,
delete) and execution path (a sequence of basic blocks) that
appeared in the trace. We found that our clustering scheme
signi�cantly facilitates the root cause analysis. After one
root cause is found, reasoning about the redundant cases
along the same program path is relatively simpler. Multiple
clusters may share the same root cause.

4.5 Performance Bug Detection

W������ detects the following performance bugs based on
trace-based cache/NVM simulation.W������ reports an un-
persisted performance bug if a store still remains in the cache
(not persisted) at the end of simulation yet it passes an output
equivalence checking. When simulating a �ush instruction,
W������ reports an extra �ush performance bug if all prior
stores have already been �ushed by prior �ush instructions.
When simulating a fence instruction, W������ reports an
extra fence performance bug if there are no preceding �ush
instructions. For transactional NVM programs, W������ re-
ports an extra logging performance bug if a memory region
or its subset has already been logged by preceding logging
operation in the same transaction.

5 Discussion

5.1 Testing Non-Key-value Store NVM Programs

The current W������ prototype is designed to test NVM-
backed key-value stores in which (1) the granularity of “op-
eration” and programming interfaces are well known (e.g.,
insert, delete, etc.); and (2) durable linearizability is used as a
correctness criterion. Testing non-key-value NVM programs
requires a user to de�ne its own operation granularity and

107

create a deterministic test case for output equivalence check-
ing. For instance, NVM-based �le systems may use POSIX
�le I/O interfaces. Besides durable linearizability, W������
can be extended for other correctness criteria: e.g., bu�ered
durable linearizability [44], and strict serializability for trans-
actional programs [73]. These criteria produce di�erent sets
of oracles to compare during output equivalence checking.

5.2 Testing Multi-threaded NVM Programs

W������ supports a limited form of testing formulti-threaded
NVM programs. When testing multi-threaded programs,
likely-correctness conditions can still be inferred with no
modi�cation. However, output equivalence checking requires
two special considerations. First, the test case used for out-
put equivalence checking should remain deterministic. This
implies that the “pre�x” test case before a crash is simu-
lated during concurrent executions should be sequential (and
produce deterministic outputs). Second, output equivalence
checking should consider more oracles for multi-threaded
cases. Each per-thread operation has two legal states (all or
nothing), and we also need to consider di�erent permuta-
tions of a linearization order. This implies that the cost of
testing increases super-linearly. W������ focuses on prun-
ing the NVM state space in a systematic manner, and we
leave thread-interleaving space reduction as future work.

6 Implementation
We built tracing and program dependency analysis based on
Giri [76], a dynamic program slicing tool implemented in
LLVM [14]. Our Giri modi�cation comprises around 3,600
lines of C++ code. Other W������ components are written
in 4,400 lines of Python code. The W������ prototype is
available at h�ps://github.com/cosmoss-vt/witcher.
Our current prototype supports an NVM program built

on PMDK libpmem or libpmemobj libraries to create/load an
NVM image from/to disk. To ensure the virtual address of
mmap-ed NVM heap are the same across di�erent executions,
we set PMEM_MMAP_HINT environment variable [41].W������
runs PPDG construction, crashed NVM image generation,
and output equivalence checking in parallel.
To support output equivalence checking, W������ pro-

vides a template driver with placeholders for test program ini-
tialization, recovery, and operations (e.g., lookup/insert/delete).
Note that users do not need to specify the correct output
(e.g., E_NOTFOUND v.s. NULL) because W������ checks if the
test and oracle executions produce the same outputs.

7 Evaluation
7.1 Evaluation Methodology

Tested NVM programs. We evaluateW������ with four
groups of 20 (in total) real-world NVM-backed key-value
stores (persistent indexes) (Table 3). The �rst group includes
�ve highly optimized persistent key-value indexes, which are
the backbone of many key-value stores and storage systems.

Application Version Lib Design Core
NVM Construct

Concu-
rrency

NVM
KV

Index

WOART [53] 5b4cf3e PMDK v1.8 LL radix tree ST
WORT [53] 5b4cf3e PMDK v1.8 LL radix tree ST
Fast Fair [37] c86f5fb PMDK v1.8 LL B+ tree LB

Level Hash [88] 28eca31 PMDK v1.8 LL hash table ST
CCEH [65] d53b336 PMDK v1.8 LL hash table LB

RECIPE

P-ART [54] 5b4cf3e PMDK v1.8 LL radix tree LB
P-BwTree [54] 5b4cf3e PMDK v1.8 LL B+ tree LF
P-CLHT [54] 5b4cf3e PMDK v1.8 LL hash table LB

P-CLHT-Aga [54] 53923cf PMDK v1.8 LL hash table LB
P-CLHT-Aga-TX [54] 53923cf PMDK v1.8 TX hash table LB

P-Hot [54] 5b4cf3e PMDK v1.8 LL trie LB
P-Masstree [54] 5b4cf3e PMDK v1.8 LL B tree + trie LB

PMDK

B-Tree v1.4 PMDK v1.8 TX B tree ST
C-Tree v1.4 PMDK v1.8 TX crit-bit tree ST
RB-Tree v1.4 PMDK v1.8 TX red-black tree ST

RB-Tree-Aga v0.4 PMDK v1.8 TX red-black tree ST
Hashmap-TX v1.4 PMDK v1.8 TX hash table ST

Hashmap-atomic v1.4 PMDK v1.8 LL hash table ST

Server Memcached 8f121f6 PMDK v1.8 LL hash table LB
Redis v3.2 PMDK v1.8 TX hash table ST

LL: low-level persistence primitives TX: transaction
ST: single-threaded LB: lock-based LF: lock-free

Table 3. The description of tested NVM programs.

For high performance, they all have their own crash consis-
tency mechanism using low-level (LL) persistence primitives
such as flush and fence instructions. For example, FAST-
FAIR [37] incorporates inconsistency tolerable design where
a naive crash consistency bug detection approach would
lead to false positives. The second group includes seven con-
current persistent indexes converted by RECIPE [54]. We
used three di�erent versions/con�gurations of P-CLHT to
compare with Agamotto [67]. Similar to the �rst group, they
implement index-speci�c custom crash consistency logic
using low-level primitives for performance (except for P-
CLHT-Aga-TX using PMDK transaction). The third group
includes six (example) persistent indexes in PMDK. They
used PMDK’s low-level (LL) or transactional (TX) persis-
tence programming model. We used two versions of RB-tree
for the comparison with Agamotto. The last group includes
PMDK-based Memcached and Redis using PMDK’s LL and TX
persistence APIs, respectively. We also note that Memcached
and Redis maintain only a part of its application state in
NVM as a persistent hash table, which turns out to be much
simpler in design, compared to the other tested KV indexes.
All tested applications use PMDK library (libpmemobj)

for persistent memory allocation or transaction. For some
applications that originally used a volatile memory allocator
to emulate NVM using DRAM, we modi�ed the code to use
the PMDK memory allocator. We did not add or remove
any persistence primitives, nor introduce additional memory
operations, which may potentially a�ect the bug detection
evaluation.W������ traces and analyzes both applications
and PMDK libraries such as persistence heap allocation and
transactional undo logging logics.
Test cases. W������ requires a deterministic test case such
that it produces the same output for a given input for output
equivalence checking (§3.1.2). Any deterministic test case
with good code coverage would su�ce. We leave a smarter
test case generation (e.g., fuzzing) as future work, and instead
used random test case generation for well-known key-value

108

https://github.com/cosmoss-vt/witcher

Name (Total #Bugs) Bug ID New Code Type Description Impact Fix strategy
libpmemobj (1) 1 X memblock.c:1337 C-O Incorrect persistence order in allocation Inconsistent structure persistence reorder [8]
WOART (1) 2 X woart.c:727 C-A Atomicity in node split Inconsistent structure inconsistency-recoverable design
FAST-FAIR (4) 3 X btree.h:224 C-O Missing persistence primitives Lost key-value add persistence primitives

4 X btree.h:213 C-A Partial inconsistency is never recovered Inconsistent structure inconsistency-recoverable design
5 ⇥ btree.h:576 C-A Atomicity in node splitting Inconsistent structure logging/transaction
6 ⇥ btree.h:299 C-A Atomicity in node merge Inconsistent structure logging/transaction

Level Hashing (17) 7 X level_hashing.c:492 C-O Incorrect persistence order Unexpected key-value persistence reorder [5]
8 X level_hashing.c:507 C-O Incorrect persistence order Unexpected key-value persistence reorder [5]
9 X level_hashing.c:417 C-O Incorrect persistence order Unexpected key-value persistence reorder [5]
10 X level_hashing.c:610 C-O Incorrect persistence order Unexpected key-value persistence reorder [5]
11 X level_hashing.c:616 C-O Incorrect persistence order Unexpected key-value persistence reorder [5]
12 X level_hashing.c:657 C-O Incorrect persistence order Unexpected key-value persistence reorder [5]
13 X level_hashing.c:677 C-O Incorrect persistence order Unexpected key-value persistence reorder [5]
14 X level_hashing.c:545 C-O Incorrect persistence order Unexpected key-value persistence reorder [5]
15 X level_hashing.c:560 C-O Incorrect persistence order Unexpected key-value persistence reorder [5]
16 X level_hashing.c:445 C-O Incorrect persistence order Unexpected key-value persistence reorder [5]
17 X level_hashing.c:112 C-A Atomicity in rehashing Inconsistent structure logging/transaction
18 X level_hashing.c:228 C-A Atomicity in rehashing Inconsistent structure logging/transaction
19 X level_hashing.c:609 C-A Atomicity between two metadata Duplicated key-value inconsistency-tolerable design
20 X level_hashing.c:665 C-A Atomicity between two metadata Duplicated key-value inconsistency-tolerable design
21 X level_hashing.c:685 C-A Atomicity between two metadata Duplicated key-value inconsistency-tolerable design
22 X level_hashing.c:416 C-A Atomicity between two metadata Lost key-value merge to word size [5]
23 X level_hashing.c:444 C-A Atomicity between two metadata Lost key-value merge to word size [5]

CCEH (2) 24 ⇥ CCEH_MSB.cpp:103 C-A Atomicity in rehashing Inconsistent structure inconsistency-recoverable design
25 X CCEH_MSB.cpp:29 C-A Partial inconsistency is never recovered Unexpected op failure inconsistency-recoverable design

P-ART (2) 26 X N16.cpp:15 C-A Atomicity between metadata and key-value Inconsistent structure inconsistency-tolerable design [11]
27 X N4.cpp:17 C-A Atomicity between metadata and key-value Inconsistent structure inconsistency-tolerable design [11]

P-BwTree (2) 28 X bwtree.h:2012 C-O Missing persistence primitives Inconsistent structure add persistence primitives
29 X bwtree.h:2369 C-O Missing persistence primitives Inconsistent structure add persistence primitives

P-CLHT (1) 30 X clht_lb_res.c:166 C-O Missing persistence primitives Lost key-value add persistence primitives [12]
P-CLHT-Aga (3) 31 X clht_lb_res.c:177 C-O Missing persistence primitives Lost key-value add persistence primitives

32 X clht_lb_res.c:578 C-O Missing persistence primitives Lost key-value add persistence primitives
33 ⇥ clht_lb_res.c:583 C-O Missing persistence primitives Lost key-value add persistence primitives

P-CLHT-Aga-TX (2) 34 ⇥ clht_lb_res.c:559 C-O Missing persistence primitives Lost key-value add persistence primitives
35 ⇥ clht_lb_res.c:583 C-O Missing persistence primitives Lost key-value add persistence primitives

P-HOT (3) 36 X TwoEntriesNode.hpp:30 C-O Missing persistence primitives Inconsistent structure add persistence primitives [12]
37 X HOTRowexNode.hpp:315 C-O Missing persistence primitives Inconsistent structure add persistence primitives [12]
38 X HOTRowex.hpp:270 C-O Missing persistence primitives Inconsistent structure add persistence primitives [12]

P-Masstree (1) 39 X masstree.h:1378 C-A Atomicity in node splitting Inconsistent structure logging/transaction
B-Tree (1) 40 ⇥ btree_map.c:201 C-A Missing logging in a transaction Inconsistent structure add logging
RB-Tree (1) 41 ⇥ rbtree_map.c:417 C-A Missing logging in a transaction Inconsistent structure add logging
RB-TreeAga (2) 42 ⇥ rbtree_map.c:174 C-A Missing logging in a transaction Inconsistent structure add logging

43 ⇥ rbtree_map.c:355 C-A Missing logging in a transaction Inconsistent structure add logging
Hashmap-TX (1) 44 X hashmap_tx.c:281 C-O Use-after-free Unexpected op failure copy before free
Hashmap-atomic (2) 45 ⇥ hashmap_atomic.c:129 C-A Atomicity when creating hashmap Inconsistent structure logging/transaction

46 X hashmap_atomic.c:198 C-A Atomicity when assigin pool id and o�set Inconsistent structure inconsistency-recoverable design
Memcached(1) 47 ⇥ items.c:538 C-O Missing persistence primitives Inconsistent structure add persistence primitives

NOTE: C-O: persistence order correctness bug C-A: persistence atomicity correctness bug

Table 4. List of correctness bugs discovered byW������. All 47 bugs have been con�rmed by authors or existing tools, and 36 of 47 bugs
are new. There are 25 persistence ordering bugs and 22 persistence atomicity bugs. One bug (ID 1) is in the PMDK library.

interfaces such as insert, delete, update, query, and scan.
W������ randomly generates a list of operations, keys, and
values. For operation parameters, to make some dependent
operations more meaningful, we assign a higher probability
to (1) generate an unused key for insert; and (2) to generate
a used key for the other operations – delete, update, query,
and scan – which work on existing keys.

We run the NVM programs with a test case consisting of
2,000 randomly generated operations. We found that 2,000
operations are large enough to achieve a reasonable and
stable code coverage (50%-80%) for our tested NVM pro-
grams. Missing code coverages are due to unused features
(e.g., garbage collection) and debugging codes.
Experimental setup. We ran all experiments on a 64-bit
Fedora 29 machine with two 16-core Intel Xeon Gold 5218
processors (2.30GHz), 192 GB DRAM, and 512 GB NVM.

7.2 Detected Correctness Bugs

W������ detected 47 (36 new) crash consistency bugs from
18 programs. There were 25 persistence ordering bugs and
22 persistence atomicity bugs. All the bugs were con�rmed
by the developers. Table 4 presents the source code locations,
impacts, and �x strategies of the detected correctness bugs.

The detected bugs have diverse impacts: lost, unexpected,
duplicated key-value pairs; unexpected operation failure; and
inconsistent structure. For example, a crash in the middle of
rehashing operation in Level Hashing (Bug IDs 17 and 18 in
Table 4) may lead to lost, unexpected, duplicated key-value
pairs since the metadata is not consistent with the stored
key-value pairs. In FAST-FAIR (Bug ID 5), if a crash happens
while splitting the root node and right before setting the
new root node, the B+tree will be in an illegal state: the root
node connects to a sibling node. Any further operation on
the B+tree will lead to a program crash.

109

Name

Correctness Performence

Total

Likely-Correctness Cond’ Inference Output Equivalence Checking

C-O C-A P-U P-EFL P-EFE P-EL # ordering
conditions

atomicity
conditions

execution
time

crash
NVM
images

image w/
output

mismatch

#
cluster

execution
time

Library libpmemobj 1 0 5 0 0 0 6 - - - - - - -

NVM
KV

Index

WOART 0 1 1 2 3 0 7 7601 1126 31m29s 31859 26 8 7m53s
WORT 0 0 1 1 0 0 2 15975 3423 26m28s 56265 1 1 9m14s
Fast Fair 1 3 5 0 1 0 10(2) 413232 1201 22m6s 59644 46878 104 20m25s

Level Hash 10 7 11 12 0 0 40 28080 1708 1h2m 55114 45263 33 1h32m
CCEH 0 2 8 1 1 0 12(1) 8935 1839 28m48s 19141 860 5 59m29s

RECIPE

P-ART 0 2 9 0 1 0 12 4155 3570 3h53m 44243 41 8 11m37s
P-BwTree 2 0 1 0 1 0 4 32945 5333 1h24m 38572 4826 80 1h26m
P-CLHT 1 0 7 0 1 0 9 1580 364 1h23m 10370 476 3 27m27s

P-CLHT-Aga 3 0 10 0 1 0 14(1) 8090 1084 55m49s 39918 248 5 1h43m
P-CLHT-Aga-TX 2 0 10 4 1 2 19(17) 4358 477 2h 27949 242 5 49m25s

P-Hot 3 0 0 0 4 0 7 20132 16403 5h10m 96295 905 155 21m35s
P-Masstree 0 1 5 0 1 0 7 16139 2983 48m27s 115590 142 10 25m6s

PMDK

B-Tree 0 1 0 0 0 5 6(6) 1148 131 1h4m 114161 23255 46 20m15s
C-Tree 0 0 0 0 0 0 0 9757 705 2h20m 30113 0 0 20m38s
RB-Tree 0 1 0 0 0 0 1(1) 15342 726 1h24m 376891 5976 64 1h12s

RB-Tree-Aga 0 2 0 0 0 13 15(15) 16188 725 1h23m 386252 82801 219 2h29m
Hashmap-TX 1 0 0 0 0 0 1 8991 802 2h 30364 469 11 21m33s

Hashmap-atomic 0 2 0 0 0 0 2(1) 7931 1078 2h 30068 272 8 1h22m

Server Memcached 1 0 29 1 0 0 31(12) 11089 2746 1h12m 11348 0 0 1h29m
Redis 0 0 0 0 0 0 0 7787 1270 6h49m 260526 0 0 3h3m

Total 25(3) 22(8) 102(17) 21(8) 15(2) 20(18) 205(56) 639455 47694 36h37m 1834683 212681 765 18h58m

C-O: persistence order correctness bug C-A: persistence atomicity correctness bug (#): number of known bugs
P-U: unpersisted performance bug P-EFL: extra �ush performance bug P-EFE: extra fence performance bug P-EL: extra logging performance bug

Table 5. The tested NVM programs, the number of detected bugs, and the detailed statistics ofW������ bug �nding.

Case studies. W������ detects many critical and sophisti-
cated bugs. For instance, Bug ID 1 was a persistence ordering
bug in PMDK’s persistent pool allocator pmemobj_tx_zalloc,
classi�ed as “Priority 1: showstopper” [8]. The bug did not
manifest in other TX-PMDK applications as it resides in a
code path that requires a large-size object allocation. As an-
other example, the bug in CLHT (Bug ID 30) only occurs
when a program crashes at a speci�c moment during rehash-
ing while leaving a speci�c set of stores unpersisted.
Fixing persistence ordering bugs. W������ detected 25
persistence ordering bugs in total. 14 persistence ordering
bugs occurred because developers did not add persistence
primitives (flush/fence) or passed incorrect addresses as
parameters. Fixing these bugs is straightforward. The rest
of the 11 persistence ordering bugs had persistence primi-
tives, but they persisted multiple stores in an incorrect order.
Fixing them requires reordering persistence primitives. For
example, Bug ID 1 in PMDK’s pool allocator and Bug ID 7 in
level_insert (Figure 1(b)) were �xed by reordering source
codes [5, 8].
Fixing persistence atomicity bugs. W������ detected 22
persistence atomicity bugs in total. Four cases (Bug IDs 40-43)
were a missing logging problem in transactional programs.
Fixing is relatively trivial – add logging. For the rest of the
18 bugs appearing in low-level NVM programs, all of them
indeed required design or implementation-level changes. We
observed the following four �xing strategies: (1) To merge
multiple writes into one word-size write to guarantee atomic-
ity [42]. (2) To make program crash-inconsistency-tolerable in
which an operation that notices any inconsistent state �xes
it on behalf of another operation. This is similar to the con-
current data structure’s helping mechanism [19], where an

operation started by one thread but failed is later completed
by another thread. (3) To make program crash-inconsistency-
recoverable. This solution introduces a recovery code that is
executed after a crash and �xes any observed inconsistency.
(4) To use logging/transaction techniques.

7.3 Detected Crash Performance Bugs

Table 5 shows thatW������ detected 158 performance bugs
from PMDK library and tested applications in total and 113
of them are new bugs. W������ detected 102 unpersisted
performance bugs; 21 extra �ush performance bugs; 15 extra
fence performance bugs; and 20 extra logging performance
bugs, as classi�ed in §2.2.

7.4 Statistics ofW������ Bug Finding

Table 5 also presents the detailed statistics ofW������. Across
20NVMprograms, when testedwith 2,000 operations,W������
infers in total 639K (32K on average) likely-ordering condi-
tions and 48K (2.4K) likely-atomicity conditions.W������
generated 1835K (92K) crash NVM images, 213K (11K) of
which failed output equivalence checking.

For correctness bugs,W������ �nally generated 765 bug
reports clustered by operation type and execution path (§4.4).
To analyze the root cause of the correctness bugs and to com-
municate with the developers, we investigated all generated
bug reports. W������ provides su�cient information for
root cause analysis, including execution trace, crash location,
persisted and unpersisted writes, and a crash NVM image,
which can be loaded for further gdb debugging. As the third-
party tester, we could identify the root causes of detected
correctness bugs from the W������’s reports, manually but
guided by gdb-based debugging. Multiple clusters shared the

110

100

106

1012

0
50
0
10
00

15
00

20
00

100

106

1012

0
50
0
10
00

15
00

20
00

100

106

1012

0
50
0
10
00

15
00

20
00

#
te
st
s

ops

Level Hashing

ops

W������
Yat

FAST-FAIR

ops

CCEH

Figure 4. Test space comparison for 2,000 random operations.

same root causes, and we reported and con�rmed 25 persis-
tence ordering bugs and 22 persistence atomicity bugs. For
performance bugs, W������ provides execution traces and
locations of unpersist stores and extra �ush/fence/logging.
Root cause analysis of performance bugs is much simpler
since it does not require crash simulation.
Table 5 reports testing time. Inferring likely-correctness

conditions took a few minutes to seven hours. Output equiv-
alence checking took a few minutes to three hours, whose
total cost is proportional to the number of tested crash NVM
images and the cost of each test run. Testing Memcached and
Redis based on live networking generally takes longer than
the others. Note thatW������ systematically explores and
validates feasible NVM states (one by one) and thus it may
take longer than other dynamic tools (e.g., PMTest) testing
one execution, yet it is much faster than other exhaustive
testing tools (e.g., Yat) thanks to pruning based on likely-
correctness conditions. We make the comparison in the fol-
lowing sections.

7.5 Scalability and Comparison with Yat

This section evaluates how e�ectively our likely-correctness
condition-based approach can prune the testing space, and
thus improve scalability. First, we simulate the existing exhaustive-
testing-based tool Yat [52] and compare the number of crash
states that Yat will validate using the same trace with 2,000
random operations. Figure 4 shows the representative results
for Level Hashing, FAST-FAIR, and CCEH programs. The test
space of Yat is several orders larger than W������. Sudden
spikes happen in Yat when there is a rehashing in Level Hash-
ing and CCEH or a node split/merge in FAST-FAIR.W������
only tests when there is a violation of likely-correctness con-
ditions, signi�cantly reducing the number of test cases (yet
detecting many bugs).
Second, Table 5 shows that with likely-correctness con-

ditions,W������ tested 19K-60K NVM states for the three
programs. Ideally, we wanted to test the entire NVM states
and check if there is any bug that W������ may miss. How-
ever, as shown in Yat simulation, the NVM state space is
too huge to explore them all. Alternatively, we tested 100
million randomly chosen NVM states (without considering
likely-correctness conditions), which is 1677⇥-5224⇥ larger
NVM test space. Running 100M cases costs around one week
for each program. The results show that the random 100M

cases can only detect one or two of the bugs thatW������
detected, yet there was no new bug. Without a full search,
we cannot conclude that likely-correctness conditions are
sound. However, the result shows that random pruning does
not work, and our approach e�ectively detects many bugs.

7.6 Bug Detection E�ectiveness Comparison

We compared the correctness and performance bugs detected
by W������, Agamotto, PMTest, and XFDetector. Making
an apples-to-apples comparison among testing tools is hard
with di�erent test cases, testing resources and budgets, bug
targets, etc. Therefore, we focus on checking ifW������ can
detect the bugs that the others have found. In §7.2 and §7.3,
we reported that W������ discovered 36 new correctness
and 113 new performance bugs.
Agamotto. We tested Agamotto with the same test cases
(2,000 operations) used to evaluate W������. We set the
memory resource as 32GB and the time limit as 24 hours for
each Agamotto test. To detect PMDK transaction bugs, we
enabled Agtamotto’s custom checker. We evaluated B-Tree,
RB-Tree, Hashmap-atomic, P-CLHT, Memcached and Redis
including PMDK libraries. We used a modi�ed version of
Agamotto from the paper. To execute the same test cases, we
asked the authors to support non-symbolic client connec-
tions for Memcached and Redis. We also asked them to �x a
bug in the bug reporting logic. The modi�ed Agamotto in
our experiments found more bugs than the original paper.
For correctness bugs, W������ detected all seven bugs

detected by Agamotto. Agamotto missed two bugs (Bug IDs 1
and 46) due to the lack of application-speci�c oracles, show-
ing the bene�ts of output equivalence checking. For perfor-
mance bugs, both discovered 61 bugs in common. W������
detected 9 unique bugs and Agamoto found 43 bugs. Recall
that the performance bug detection depends on tested pro-
gram paths. The result implies that W������ and Agamotto
explored di�erent program paths, showing the pros and cons
of (guided) symbolic execution by Agamotto and trace-based
approach by W������. 43 Agamotto-unique performance
bugswere found in PMDK libraries that Agamotto’s symbolic
execution did explore but W������ did not.
PMTest and XFDetector. We also compared W������
with two annotation-based approaches. Seven programs
were tested by W������, PMTest, and XFDetector in com-
mon: B-Tree, C-Tree, RB-Tree, Hashmap-TX,Hashmap-atomic,
Memcached and Redis. For performance bugs, W������ de-
tects the one bug that PMTest detected. XFDetector does
not detect new performance bugs. For correctness bugs,
W������ detects three out of four bugs PMTest/XFDetector
found in B-Tree (Bug ID 40), RB-Tree (Bug ID 41), andHashmap-
atomic (Bug ID 45). In addition, W������ detected three
more new bugs (Bug IDs 1, 44 and 46), which were missed
by PMTest/XFDetector.

111

W������ missed one bug in Redis reported by PMTest
and XFDetector. The bug turns out to be benign. The bug
is in the server initialization code. After allocating a PMDK
root object, Redis initializes the root object to zero “out-
side” of a PMDK transaction. PMTest/XFDetector detects
this unprotected update as a bug. However, this is benign –
it does not lead to an inconsistent state. The root object was
allocated using POBJ_ROOT [9], which already zeroed out the
newly allocated object. Both the old and new values are zero.
Therefore, it does not matter if the new zero update is per-
sisted or not. W������ actually detected this store violating
a likely-atomicity condition, and performed output equiva-
lence checking. But it does not show any visible divergence.
This example particularly shows the bene�t of our output
equivalence checking, pruning false positives.
Summary. W������ is able to detect all the known cor-
rectness bugs and identify new correctness bugs as well.
W������ uses application-agnostic rules to �nd application-
speci�c correctness bugs.W������ detects a new group of
application-speci�c correctness bugs, which cannot be de-
tected by previous works because of the lack of application-
speci�c oracles. W������’s e�ciency could be further im-
proved if integrated with a smart test case generator (e.g.,
fuzzing, symbolic execution), with which new program paths
can be explored, or the same program paths can be achieved
with simpler test cases.
7.7 Testing Non-Key-value Store NVM Programs
We extended W������ for testing a persistent array [6] and
a persistent queue [7] from PMDK to demonstrate the fea-
sibility of applying W������ to non-key-value NVM pro-
grams. The persistent array supports allocation, reallocation,
deallocation, and print operations. The persistent queue sup-
ports enqueue, dequeue, and print operations. We extended
our template driver to support these non-key-value opera-
tions. For output equivalence checking,W������ leverages
outputs from print operations, which list all data in an ar-
ray or a queue. We redirect the output of each operation
to an output �le to check if the test and oracle executions
produce the same outputs. Similar to previous experiments,
W������ tested them using test cases with randomly gener-
ated 2,000 operations.W������ detected one (known) cor-
rectness bug [3] in the persistent array.

8 Related Work

Likely-correctness conditions. Prior works have used a
concept of likely-correctness conditions to detect program
bugs [30, 47, 50, 59, 62, 87], to verify the network [58], and
to identify resource leaks [80]. To the best of our knowledge,
W������ is the �rst work that infers likely-correctness con-
ditions in the context of NVM crash consistency testing.
Output equivalence checking. Burckhardt et al. [18] and
Pradel et al. [72] detect thread-safety violations by compar-
ing the concurrent execution to linearizable executions of

a test.W������ shares a similar idea in the sense that they
all compare an observed execution with “oracles”, but is
uniquely designed to detect NVM crash consistency bugs.
Heuristic-based test space pruning. An iterative con-
text bound [64] or delay bound [29] has been used to (un-
soundly yet e�ectively) prune the thread-interleaving test
space when testing multithreaded programs. W������ uses
likely-correctness conditions to prune the NVM state space.
Crash consistency testing in �le systems. There has
been a long line of research in testing and guaranteeing crash
consistency in �le systems [20, 21, 33, 48, 63, 75, 79, 84–86].
In-situ model checking approaches such as EXPLODE [85]
and FiSC [86] systematically test every legal action of a
�le system. B3 [63] performs exhaustive testing within a
bounded space, which is heuristically decided based on the
bug study of real �le systems. In contrast, W������ reduces
test space by using inferred likely-correctness conditions.
Feedback-driven File system fuzzers, such as Janus [84] and
Hydra [48], mutate both disk images and �le operations to
thoroughly explore �le system states.
Crash consistency testing in NVM. Most closely related
bug detection works have been discussed in §3.3. In addition,
PMFuzz [55] proposes a fuzzing technique to generate di-
verse inputs for dynamic NVM bug detectors. These inputs
can be fed intoW������ (instead of using random test cases).
Hippocrates [66] proposes an automated NVM bug �xing
solution, placing �ush and fence instructions at the right
(optimal) positions.

9 Conclusion
We present W������, a systematic crash consistency test-
ing framework for NVM-backed persisted key-value stores.
W������ infers likely-correctness conditions and performs
output equivalence checking to validate their violations. This
approach allows W������ to use application-agnostic rules
to �nd application-speci�c correctness bugs without manual
annotations, user-provided consistency checker, or exhaus-
tive testing. W������ also detects performance bugs during
NVM state simulation.

Acknowledgments
We thank the anonymous reviewers and Donald Porter (our
shepherd) for their insightful comments and feedback. We
thank Sam H. Noh, Vijay Chidambaram, Beomseok Nam, Yu
Hua, Sekwon Lee, Hokeun Cha, Pengfei Zuo, and Intel PMDK
developers for the bug con�rmation. We thank Samira Khan,
Baris Kasikci, Brian Demsky, Dong Li, Sihang Liu, Ian Neal,
Hamed Gorjiara, and Bang Di for their help in understanding
and using their bug detectors. This work was supported
by Institute for Information & communications Technology
Promotion (IITP) grant funded by the Korean government
(MSIT) (No. 2014-3-00035) and in part by National Science
Foundation grant No. CSR-2029720.

112

References
[1] Argonne National Lab’s Aurora Exascale System. URL:

h�ps://www.intel.com/content/www/us/en/customer-spotlight/
stories/argonne-aurora-customer-story.html.

[2] Available �rst on Google Cloud: Intel Optane DC Persistent Memory.
URL: h�ps://cloud.google.com/blog/topics/partners/available-first-on-
google-cloud_intel-optane-dc-persistent-memory.

[3] Detected correctness bug in the persistent array. URL: h�ps://github.
com/pmem/pmdk/issues/4927.

[4] Key/Value Datastore for Persistent Memory. URL: h�ps://github.com/
pmem/pmemkv.

[5] Level Hashing commit to �x reported bugs. URL:
h�ps://github.com/Pfzuo/Level-Hashing/commit/
5a6f9c111b55b9ae1621dc035d0d3b84a3999c71.

[6] Persistent array in PMDK. URL: h�ps://github.com/pmem/pmdk/tree/
stable-1.8/src/examples/libpmemobj/array.

[7] Persistent queue in PMDK. URL: h�ps://github.com/pmem/pmdk/
tree/stable-1.8/src/examples/libpmemobj/queue.

[8] PMDK issue to �x reported bug in allocation. URL: h�ps://github.com/
pmem/pmdk/issues/4945.

[9] PMDK Root Object APIs. URL: h�ps://pmem.io/pmdk/manpages/
linux/master/libpmemobj/pmemobj_root.3.

[10] Pmem-Memcached. h�ps://github.com/lenovo/memcached-pmem.
[11] RECIPE commit to �x reported bugs. URL:

h�ps://github.com/utsaslab/RECIPE/commit/
4b0c27674ca7727195152b5604d71f47c0a0a7a2.

[12] RECIPE commit to �x reported bugs. URL:
h�ps://github.com/utsaslab/RECIPE/commit/
950ae0ea5ed23ce28840615976e03338b943d57a.

[13] Redis v3.2. h�ps://github.com/pmem/redis/tree/3.2-nvml.
[14] The LLVM Compiler Infrastructure. URL: h�ps://llvm.org/.
[15] Anandtech. Intel Launches Optane DIMMs Up To 512GB: Apache Pass

Is Here!, 2018. URL: h�ps://www.anandtech.com/show/12828/intel-
launches-optane-dimms_up-to-512gb-apache-pass-is-here.

[16] Joy Arulraj, Matthew Perron, and Andrew Pavlo. Write-behind Log-
ging. In Proceedings of the 42nd International Conference on Very Large
Data Bases (VLDB), New Delhi, India, March 2016.

[17] Kumud Bhandari, Dhruva R. Chakrabarti, and Hans-J. Boehm. Makalu:
Fast recoverable allocation of non-volatile memory. In Proceedings
of the 27th Annual ACM Conference on Object-Oriented Programming,
Systems, Languages, and Applications (OOPSLA), pages 677–694, Ams-
terdam, Netherlands, October 2016. ACM.

[18] Sebastian Burckhardt, Chris Dern, Madanlal Musuvathi, and Roy Tan.
Line-up: a complete and automatic linearizability checker. In Proceed-
ings of the 2010 ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI), pages 330–340, Toronto, Canada,
June 2010.

[19] Keren Censor-Hillel, Erez Petrank, and Shahar Timnat. Help! In
Proceedings of the 34th ACM SIGACT-SIGOPS Symposium on Princi-
ples of Distributed Computing (PODC), pages 241–250, Donostia-San
Sebastián, Spain, July 2015.

[20] Haogang Chen, Tej Chajed, Alex Konradi, StephanieWang, Atalay İleri,
Adam Chlipala, M Frans Kaashoek, and Nickolai Zeldovich. Verifying
a high-performance crash-safe �le system using a tree speci�cation.
In Proceedings of the 26th Symposium on Operating Systems Principles,
pages 270–286, 2017.

[21] Haogang Chen, Daniel Ziegler, Tej Chajed, Adam Chlipala, M Frans
Kaashoek, and Nickolai Zeldovich. Using crash hoare logic for cer-
tifying the fscq �le system. In Proceedings of the 25th Symposium on
Operating Systems Principles, pages 18–37, 2015.

[22] Shimin Chen and Qin Jin. Persistent B+-trees in Non-volatile Main
Memory. In Proceedings of the 41st International Conference on Very
Large Data Bases (VLDB), Hawaii, USA, September 2015.

[23] Jeremy Condit, Edmund B. Nightingale, Christopher Frost, Engin Ipek,
Benjamin Lee, Doug Burger, and Derrick Coetzee. Better i/o through
byte-addressable, persistent memory. In Proceedings of the 22nd ACM
Symposium on Operating Systems Principles (SOSP), Big Sky, MT, Octo-
ber 2009.

[24] Tudor David, Aleksandar Dragojevic, Rachid Guerraoui, and Igor
Zablotchi. Log-free concurrent data structures. In Proceedings of
the 2018 USENIX Annual Technical Conference (ATC), Boston, MA, July
2018.

[25] Anthony Demeri, Wook-Hee Kim, Madhava Krishnan Ramanathan,
Jaeho Kim, Mohannad Ismail, and Changwoo Min. Poseidon: Safe,
Fast and Scalable Persistent Memory Allocator. InMiddleware ’20: 21st
International Middleware Conference, Delft, The Netherlands, December
7-11, 2020, pages 207–220. ACM, 2020.

[26] Bang Di, Jiawen Liu, Hao Chen, and Dong Li. Fast, �exible and com-
prehensive bug detection for persistent memory programs extended
abstract. In Proceedings of the 26th ACM International Conference on Ar-
chitectural Support for Programming Languages and Operating Systems
(ASPLOS), Virtual, April 2021.

[27] Mingkai Dong, Heng Bu, Jifei Yi, Benchao Dong, and Haibo Chen.
Performance and protection in the zofs user-space nvm �le system. In
Proceedings of the 27th ACM Symposium on Operating Systems Princi-
ples, SOSP ’19, page 478–493, New York, NY, USA, 2019. Association for
Computing Machinery. URL: h�ps://doi.org/10.1145/3341301.3359637,
doi:10.1145/3341301.3359637.

[28] Subramanya R. Dulloor, Sanjay Kumar, Anil Keshavamurthy, Philip
Lantz, Dheeraj Reddy, Rajesh Sankaran, and Je� Jackson. System
software for persistent memory. In Proceedings of the 9th European
Conference on Computer Systems (EuroSys), Amsterdam, The Nether-
lands, April 2014.

[29] Michael Emmi, Shaz Qadeer, and Zvonimir Rakamarić. Delay-bounded
scheduling. In Proceedings of the 38th Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL ’11, page
411–422, NewYork, NY, USA, 2011. Association for ComputingMachin-
ery. URL: h�ps://doi.org/10.1145/1926385.1926432, doi:10.1145/
1926385.1926432.

[30] Dawson Engler, David Yu Chen, Seth Hallem, Andy Chou, and Ben-
jamin Chelf. Bugs As Deviant Behavior: A General Approach to
Inferring Errors in Systems Code. In Proceedings of the 18th ACM Sym-
posium on Operating Systems Principles (SOSP), pages 57–72, Chateau
Lake Louise, Ban�, Canada, October 2001.

[31] Jeanne Ferrante, Karl J Ottenstein, and Joe D Warren. The program
dependence graph and its use in optimization. In Proceedings of the
ACM Transactions on Programming Languages and Systems, 1987.

[32] Hamed Gorjiara, Guoqing Harry Xu, and Brian Demsky. Jaaru: E�-
ciently model checking persistent memory programs. In Proceedings of
the 26th ACM International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (ASPLOS), Virtual, April
2021.

[33] Haryadi S. Gunawi, Cindy Rubio-González, Andrea C. Arpaci-Dusseau,
Remzi H. Arpaci-Dussea, and Ben Liblit. EIO: Error handling is occa-
sionally correct. In Proceedings of the 6th USENIX Conference on File
and Storage Technologies (FAST), pages 14:1–14:16, 2008.

[34] Mary Jean Harrold, Brian Malloy, and Gregg Rothermel. E�cient
construction of program dependence graphs. ACM SIGSOFT Software
Engineering Notes, 18(3):160–170, 1993.

[35] Jian Huang, Karsten Schwan, and Moinuddin K. Qureshi. NVRAM-
aware Logging in Transaction Systems. pages 389–400, September
2014.

[36] Yihe Huang, Matej Pavlovic, Virendra Marathe, Margo Seltzer, Tim
Harris, and Steve Byan. Closing the Performance Gap Between Volatile
and Persistent Key-Value Stores Using Cross-Referencing Logs. In
Proceedings of the 2018 USENIX Annual Technical Conference (ATC),
Boston, MA, July 2018.

113

https://www.intel.com/content/www/us/en/customer-spotlight/stories/argonne-aurora-customer-story.html
https://www.intel.com/content/www/us/en/customer-spotlight/stories/argonne-aurora-customer-story.html
https://cloud.google.com/blog/topics/partners/available-first-on-google-cloud_intel-optane-dc-persistent-memory
https://cloud.google.com/blog/topics/partners/available-first-on-google-cloud_intel-optane-dc-persistent-memory
https://github.com/pmem/pmdk/issues/4927
https://github.com/pmem/pmdk/issues/4927
https://github.com/pmem/pmemkv
https://github.com/pmem/pmemkv
https://github.com/Pfzuo/Level-Hashing/commit/5a6f9c111b55b9ae1621dc035d0d3b84a3999c71
https://github.com/Pfzuo/Level-Hashing/commit/5a6f9c111b55b9ae1621dc035d0d3b84a3999c71
https://github.com/pmem/pmdk/tree/stable-1.8/src/examples/libpmemobj/array
https://github.com/pmem/pmdk/tree/stable-1.8/src/examples/libpmemobj/array
https://github.com/pmem/pmdk/tree/stable-1.8/src/examples/libpmemobj/queue
https://github.com/pmem/pmdk/tree/stable-1.8/src/examples/libpmemobj/queue
https://github.com/pmem/pmdk/issues/4945
https://github.com/pmem/pmdk/issues/4945
https://pmem.io/pmdk/manpages/linux/master/libpmemobj/pmemobj_root.3
https://pmem.io/pmdk/manpages/linux/master/libpmemobj/pmemobj_root.3
https://github.com/lenovo/memcached-pmem
https://github.com/utsaslab/RECIPE/commit/4b0c27674ca7727195152b5604d71f47c0a0a7a2
https://github.com/utsaslab/RECIPE/commit/4b0c27674ca7727195152b5604d71f47c0a0a7a2
https://github.com/utsaslab/RECIPE/commit/950ae0ea5ed23ce28840615976e03338b943d57a
https://github.com/utsaslab/RECIPE/commit/950ae0ea5ed23ce28840615976e03338b943d57a
https://github.com/pmem/redis/tree/3.2-nvml
https://llvm.org/
https://www.anandtech.com/show/12828/intel-launches-optane-dimms_up-to-512gb-apache-pass-is-here
https://www.anandtech.com/show/12828/intel-launches-optane-dimms_up-to-512gb-apache-pass-is-here
https://doi.org/10.1145/3341301.3359637
http://dx.doi.org/10.1145/3341301.3359637
https://doi.org/10.1145/1926385.1926432
http://dx.doi.org/10.1145/1926385.1926432
http://dx.doi.org/10.1145/1926385.1926432

[37] Deukyeon Hwang, Wook-Hee Kim, Youjip Won, and Beomseok Nam.
Endurable Transient Inconsistency in Byte-addressable Persistent B+-
tree. In Proceedings of the 16th USENIX Conference on File and Storage
Technologies (FAST), pages 187–200, Oakland, California, USA, Febru-
ary 2018.

[38] INTEL. Persistent Memory Development Kit, 2019. URL: h�p://pmem.
io/.

[39] Intel. pmreorder, 2019. URL: h�ps://pmem.io/pmdk/manpages/linux/
master/pmreorder/pmreorder.1.html.

[40] INTEL. PMDK man page: pmemobj_open, 2020. URL: h�ps://pmem.
io/pmdk/manpages/linux/master/libpmemobj/pmemobj_open.3.

[41] INTEL. PMDKman page: libpmem - persistentmemory support library,
2021. URL: h�ps://pmem.io/pmdk/manpages/linux/v1.0/libpmem.3.
html.

[42] Intel Corporation. Intel 64 and IA-32 Architectures Software Devel-
oper’s Manual, 2019. h�ps://so�ware.intel.com/en-us/articles/intel-
sdm.

[43] Joseph Izraelevitz, Terence Kelly, and Aasheesh Kolli. Failure-Atomic
Persistent Memory Updates via JUSTDO Logging. In Proceedings of
the 21st ACM International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS), Atlanta,
GA, April 2016.

[44] Joseph Izraelevitz, Hammurabi Mendes, and Michael L Scott. Lineariz-
ability of persistent memory objects under a full-system-crash failure
model. In Proceedings of the 30st International Conference on Distributed
Computing (DISC), pages 313–327, Paris, France, September 2016.

[45] Shehbaz Ja�er, Stathis Maneas, Andy Hwang, and Bianca Schroeder.
Evaluating �le system reliability on solid state drives. In Proceedings
of the 2019 USENIX Annual Technical Conference (ATC), pages 783–798,
Renton, WA, July 2019.

[46] Rohan Kadekodi, Se Kwon Lee, Sanidhya Kashyap, Taesoo Kim,
Aasheesh Kolli, and Vijay Chidambaram. Splitfs: reducing software
overhead in �le systems for persistent memory. In Proceedings of the
27th ACM Symposium on Operating Systems Principles, pages 494–508,
2019.

[47] Samantha Syeda Khairunnesa, Hoan Anh Nguyen, Tien N. Nguyen,
and Hridesh Rajan. Exploiting implicit beliefs to resolve sparse usage
problem in usage-based speci�cation mining. Proc. ACM Program.
Lang., 1(OOPSLA), October 2017. URL: h�ps://doi.org/10.1145/3133907,
doi:10.1145/3133907.

[48] Seulbae Kim, Meng Xu, Sanidhya Kashyap, Jungyeon Yoon, Wen Xu,
and Taesoo Kim. Finding semantic bugs in �le systems with an exten-
sible fuzzing framework. In Proceedings of the 27th ACM Symposium
on Operating Systems Principles, pages 147–161, 2019.

[49] Wook-Hee Kim, R. Madhava Krishnan, Xinwei Fu, Sanidhya Kashyap,
and Changwoo Min. PACTree: A High Performance Persistent Range
Index Using PAC Guidelines. In SOSP ’21: 28th ACM Symposium on
Operating Systems Principles, October 25-28, 2021. ACM, 2021.

[50] Ted Kremenek, Paul Twohey, Godmar Back, Andrew Ng, and Dawson
Engler. From uncertainty to belief: Inferring the speci�cation within.
In Proceedings of the 7th symposium on Operating systems design and
implementation, pages 161–176, 2006.

[51] R. Madhava Krishnan, Jaeho Kim, Ajit Mathew, Xinwei Fu, Anthony
Demeri, ChangwooMin, and Sudarsun Kannan. Durable Transactional
Memory Can Scale with Timestone. In Proceedings of the 25th ACM
International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), Lausanne, Switzerland,
April 2020.

[52] Philip Lantz, Subramanya Dulloor, Sanjay Kumar, Rajesh Sankaran,
and Je� Jackson. Yat: A validation framework for persistent mem-
ory software. In Proceedings of the 2014 USENIX Annual Technical
Conference (ATC), Philadelphia, PA, June 2014.

[53] Se Kwon Lee, K. Hyun Lim, Hyunsub Song, Beomseok Nam, and SamH.
Noh. WORT: Write Optimal Radix Tree for Persistent Memory Storage
Systems. In Proceedings of the 15th USENIX Conference on File and
Storage Technologies (FAST), Santa Clara, California, USA, February–
March 2017.

[54] Se Kwon Lee, Jayashree Mohan, Sanidhya Kashyap, Taesoo Kim, and
Vijay Chidambaram. RECIPE: Converting Concurrent DRAM Indexes
to Persistent-Memory Indexes. In Proceedings of the 27th ACM Sympo-
sium on Operating Systems Principles (SOSP), Ontario, Canada, October
2019.

[55] Sihang Liu, Suyash Mahar, Baishakhi Ray, and Samira Khan. Pmfuzz:
Test case generation for persistent memory programs. In Proceedings
of the 26th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS), Virtual,
April 2021.

[56] Sihang Liu, Korakit Seemakhupt, Yizhou Wei, Thomas Wenisch,
Aasheesh Kolli, and Samira Khan. Cross-Failure Bug Detection in
Persistent Memory Programs. In Proceedings of the 25th ACM Interna-
tional Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS), page 1187–1202, Lausanne, Switzer-
land, April 2020.

[57] Sihang Liu, YizhouWei, Jishen Zhao, Aasheesh Kolli, and Samira Khan.
PMTest: A Fast and Flexible Testing Framework for Persistent Memory
Programs. In Proceedings of the 24th ACM International Conference
on Architectural Support for Programming Languages and Operating
Systems (ASPLOS), pages 411–425, Providence, RI, April 2019.

[58] Nuno P. Lopes, Nikolaj Bjørner, Patrice Godefroid, Karthick Jayaraman,
and George Varghese. Checking beliefs in dynamic networks. In 12th
USENIX Symposium on Networked Systems Design and Implementation
(NSDI), pages 499–512, Oakland, CA, May 2015. USENIX Association.
URL: h�ps://www.usenix.org/conference/nsdi15/technical-sessions/
presentation/lopes.

[59] Shan Lu, Soyeon Park, Chongfeng Hu, Xiao Ma, Weihang Jiang,
Zhenmin Li, Raluca A. Popa, and Yuanyuan Zhou. Muvi: Auto-
matically inferring multi-variable access correlations and detecting
related semantic and concurrency bugs. In Proceedings of Twenty-
First ACM SIGOPS Symposium on Operating Systems Principles, SOSP
’07, page 103–116, New York, NY, USA, 2007. Association for Com-
puting Machinery. URL: h�ps://doi.org/10.1145/1294261.1294272,
doi:10.1145/1294261.1294272.

[60] Virendra J. Marathe, Margo Seltzer, Steve Byan, and Tim Harris. Persis-
tentMemcached: Bringing Legacy Code to Byte-Addressable Persistent
Memory. In Proceedings of the 17th Workshop on Hot Topics in Storage
and File Systems, Santa Clara, CA, July 2017.

[61] Micro. 3D XPoint Technology, 2019. URL: h�ps://www.micron.com/
products/advanced-solutions/3d-xpoint-technology.

[62] Changwoo Min, Sanidhya Kashyap, Byoungyoung Lee, Chengyu Song,
and Taesoo Kim. Cross-checking semantic correctness: The case of
�nding �le system bugs. In Proceedings of the 25th Symposium on
Operating Systems Principles, pages 361–377, 2015.

[63] Jayashree Mohan, Ashlie Martinez, Soujanya Ponnapalli, Pandian
Raju, and Vijay Chidambaram. Finding Crash-Consistency Bugs with
Bounded Black-Box Crash Testing. In Proceedings of the 13th USENIX
Symposium on Operating Systems Design and Implementation (OSDI),
page 33–50, Carlsbad, CA, October 2018.

[64] Madanlal Musuvathi and Shaz Qadeer. Iterative context bounding for
systematic testing of multithreaded programs. In Proceedings of the
28th ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI ’07, page 446–455, New York, NY, USA, 2007.
Association for Computing Machinery. URL: h�ps://doi.org/10.1145/
1250734.1250785, doi:10.1145/1250734.1250785.

[65] Moohyeon Nam, Hokeun Cha, Young-ri Choi, Sam H Noh, and Beom-
seok Nam. Write-Optimized Dynamic Hashing for Persistent Memory.
In Proceedings of the 17th USENIX Conference on File and Storage Tech-
nologies (FAST), Boston, MA, February 2019.

114

http://pmem.io/
http://pmem.io/
https://pmem.io/pmdk/manpages/linux/master/pmreorder/pmreorder.1.html
https://pmem.io/pmdk/manpages/linux/master/pmreorder/pmreorder.1.html
https://pmem.io/pmdk/manpages/linux/master/libpmemobj/pmemobj_open.3
https://pmem.io/pmdk/manpages/linux/master/libpmemobj/pmemobj_open.3
https://pmem.io/pmdk/manpages/linux/v1.0/libpmem.3.html
https://pmem.io/pmdk/manpages/linux/v1.0/libpmem.3.html
https://software.intel.com/en-us/articles/intel-sdm
https://software.intel.com/en-us/articles/intel-sdm
https://doi.org/10.1145/3133907
http://dx.doi.org/10.1145/3133907
https://www.usenix.org/conference/nsdi15/technical-sessions/presentation/lopes
https://www.usenix.org/conference/nsdi15/technical-sessions/presentation/lopes
https://doi.org/10.1145/1294261.1294272
http://dx.doi.org/10.1145/1294261.1294272
https://www.micron.com/products/advanced-solutions/3d-xpoint-technology
https://www.micron.com/products/advanced-solutions/3d-xpoint-technology
https://doi.org/10.1145/1250734.1250785
https://doi.org/10.1145/1250734.1250785
http://dx.doi.org/10.1145/1250734.1250785

[66] Ian Neal, Andrew Quinn, and Baris Kasikci. Hippocrates: Healing
persistent memory bugs without doing any harm extended abstract.
In Proceedings of the 26th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS),
Virtual, April 2021.

[67] Ian Neal, Ben Reeves, Ben Stoler, Andrew Quinn, Youngjin Kwon, Si-
mon Peter, and Baris Kasikci. AGAMOTTO: How persistent is your
persistent memory application? In 14th USENIX Symposium on Oper-
ating Systems Design and Implementation (OSDI 20), pages 1047–1064.
USENIX Association, November 2020. URL: h�ps://www.usenix.org/
conference/osdi20/presentation/neal.

[68] Karl J Ottenstein and Linda M Ottenstein. The program dependence
graph in a software development environment. volume 19, pages
177–184. ACM, 1984.

[69] Ismail Oukid, Daniel Booss, Adrien Lespinasse, and Wolfgang Lehner.
On Testing Persistent-memory-based Software. In Proceedings of the
International Workshop on Data Management on New Hardware, pages
5:1–5:7, San Francisco, California, June 2016.

[70] Ismail Oukid, Daniel Booss, Adrien Lespinasse, Wolfgang Lehner,
Thomas Willhalm, and Grégoire Gomes. Memory Management Tech-
niques for Large-scale Persistent-main-memory Systems. In Proceed-
ings of the 43rd International Conference on Very Large Data Bases
(VLDB), TU Munich, Germany, August 2017.

[71] Ismail Oukid, Johan Lasperas, Anisoara Nica, Thomas Willhalm, and
Wolfgang Lehner. FPTree: A Hybrid SCM-DRAM Persistent and Con-
current B-Tree for Storage Class Memory. In Proceedings of the 2015
ACM SIGMOD/PODS Conference, San Francisco, CA, USA, June 2016.

[72] Michael Pradel and Thomas R. Gross. Fully automatic and precise
detection of thread safety violations. SIGPLAN Not., 47(6):521–530,
June 2012. URL: h�ps://doi.org/10.1145/2345156.2254126, doi:10.
1145/2345156.2254126.

[73] Azalea Raad, John Wickerson, and Viktor Vafeiadis. Weak persis-
tency semantics from the ground up: Formalising the persistency
semantics of armv8 and transactional models. Proc. ACM Program.
Lang., 3(OOPSLA), October 2019. URL: h�ps://doi.org/10.1145/3360561,
doi:10.1145/3360561.

[74] Madhava Krishnan Ramanathan,Wook-Hee Kim, Xinwei Fu, Sumit Ku-
mar Monga, HeeWon Lee, Minsung Jang, Ajit Mathew, and Changwoo
Min. TIPS: making volatile index structures persistent with DRAM-
NVMM tiering. In ATC ’21: 2021 USENIX Annual Technical Conference,
July 14-16, 2021, pages 773–787. USENIX Association, 2021.

[75] Cindy Rubio-González, Haryadi S. Gunawi, Ben Liblit, Remzi H. Arpaci-
Dusseau, and Andrea C. Arpaci-Dusseau. Error propagation analysis
for �le systems. In Proceedings of the 2009 ACM SIGPLAN Conference
on Programming Language Design and Implementation (PLDI), pages
270–280, Dublin, Ireland, June 2009.

[76] Swarup Kumar Sahoo, John Criswell, Chase Geigle, and Vikram Adve.
Using likely invariants for automated software fault localization. In
Proceedings of the 18th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS),
pages 139–152, Houston, TX, March 2013.

[77] David Schwalb, Tim Berning, Martin Faust†, Markus Dreseler, and
Hasso Plattner†. nvm malloc: Memory Allocation for NVRAM. In
Proceedings of the 41st International Conference on Very Large Data
Bases (VLDB), Hawaii, USA, September 2015.

[78] Peter Sewell, Susmit Sarkar, Scott Owens, Francesco Zappa Nardelli,
and Magnus O Myreen. x86-tso: a rigorous and usable programmer’s
model for x86 multiprocessors. Communications of the ACM, 53(7):89–
97, 2010.

[79] Helgi Sigurbjarnarson, James Bornholt, Emina Torlak, and Xi Wang.
Push-button veri�cation of �le systems via crash re�nement. In 12th
USENIX Symposium on Operating Systems Design and Implementation
(OSDI), pages 1–16, 2016.

[80] Emina Torlak and Satish Chandra. E�ective interprocedural resource
leak detection. In Proceedings of the 32nd ACM/IEEE International
Conference on Software Engineering-Volume 1, pages 535–544, 2010.

[81] TianzhengWang and Ryan Johnson. Scalable Logging Through Emerg-
ing Non-volatile Memory. In Proceedings of the 40th International Con-
ference on Very Large Data Bases (VLDB), Hangzhou, China, September
2014.

[82] Fei Xia, Dejun Jiang, Jin Xiong, and Ninghui Sun. HiKV: A Hybrid In-
dex Key-Value Store for DRAM-NVMMemory Systems. In Proceedings
of the 2017 USENIX Annual Technical Conference (ATC), Santa Clara,
CA, July 2017.

[83] Jian Xu and Steven Swanson. NOVA: A log-structured �le system
for hybrid volatile/non-volatile main memories. In Proceedings of the
14th USENIX Conference on File and Storage Technologies (FAST), Santa
Clara, California, USA, February 2016.

[84] Wen Xu, Hyungon Moon, Sanidhya Kashyap, Po-Ning Tseng, and
Taesoo Kim. Fuzzing �le systems via two-dimensional input space
exploration. In 2019 IEEE Symposium on Security and Privacy (SP),
pages 818–834. IEEE, 2019.

[85] Junfeng Yang, Can Sar, and Dawson Engler. explode: A lightweight,
general system for �nding serious storage system errors. In Proceed-
ings of the 7th USENIX Symposium on Operating Systems Design and
Implementation (OSDI), pages 10–10, Seattle, WA, November 2006.

[86] Junfeng Yang, Paul Twohey, and Dawson. Using model checking
to �nd serious �le system errors. In Proceedings of the 6th USENIX
Symposium on Operating Systems Design and Implementation (OSDI),
pages 273–288, San Francisco, CA, December 2004.

[87] Insu Yun, Changwoo Min, Xujie Si, Yeongjin Jang, Taesoo Kim, and
Mayur Naik. APISan: Sanitizing API Usages through Semantic Cross-
Checking. In 25th USENIX Security Symposium (USENIX Security),
pages 363–378, 2016.

[88] Pengfei Zuo, Yu Hua, and Jie Wu. Write-Optimized and High-
Performance Hashing Index Scheme for Persistent Memory. In Pro-
ceedings of the 13th USENIX Symposium on Operating Systems Design
and Implementation (OSDI), Carlsbad, CA, October 2018.

115

https://www.usenix.org/conference/osdi20/presentation/neal
https://www.usenix.org/conference/osdi20/presentation/neal
https://doi.org/10.1145/2345156.2254126
http://dx.doi.org/10.1145/2345156.2254126
http://dx.doi.org/10.1145/2345156.2254126
https://doi.org/10.1145/3360561
http://dx.doi.org/10.1145/3360561

	Abstract
	1 Introduction
	2 Background
	2.1 Correctness Bugs
	2.2 Performance Bugs

	3 Overview of Our Approach
	3.1 Correctness Bug Finding
	3.2 Dynamic Trace Based Performance Bug Finding
	3.3 Comparison with Existing Solutions

	4 Design of Witcher
	4.1 Tracing Memory Accesses
	4.2 Inferring Likely-Correctness Conditions
	4.3 Generating Crash NVM Images
	4.4 Output Equivalence Checking
	4.5 Performance Bug Detection

	5 Discussion
	5.1 Testing Non-Key-value Store NVM Programs
	5.2 Testing Multi-threaded NVM Programs

	6 Implementation
	7 Evaluation
	7.1 Evaluation Methodology
	7.2 Detected Correctness Bugs
	7.3 Detected Crash Performance Bugs
	7.4 Statistics of Witcher Bug Finding
	7.5 Scalability and Comparison with Yat
	7.6 Bug Detection Effectiveness Comparison
	7.7 Testing Non-Key-value Store NVM Programs

	8 Related Work
	9 Conclusion
	References

