2022 IEEE 28th Real-Time and Embedded Technology and Applications Symposium (RTAS) | 978-1-6654-9998-9/22/$31.00 ©2022 IEEE | DOI: 10.1109/RTAS54340.2022.00012

2022 IEEE 28th Real-Time and Embedded Technology and Applications Symposium (RTAS)

Compiler-Directed High-Performance Intermittent
Computation with Power Failure Immunity

Jongouk Choi
Purdue University
choi658 @purdue.edu

Larry Kittinger
Block.one
larry kittinger @block.one

Abstract—This paper introduces power failure immunity (PFI),
an essential program execution property for energy harvesting
systems to achieve efficient intermittent computation. PFI ensures
program code regions never fail more than once i.e., at most
single in-region outage, during intermittent computation as if
they are immunized after the first power outage. To enforce PFI
automatically for such batteryless systems that use a tiny energy
buffer instead, we present its compiler-directed enforcement.
The compiler leverages a precise static analysis to partition the
program into recoverable regions with the energy buffer size in
mind so that their execution can be completed—using the full
energy buffered in a single charge cycle—regardless of program
execution paths. In this way, no matter how unstable the energy
harvesting source is, no region fails more than once.

In the virtue of PFI, this paper presents ROCKCLIMB, a high-
performance and rollback-free intermittent computation scheme.
It guarantees that PFI-enforced regions never fail, i.e., there
is no in-region outage at all. To achieve this, ROCKCLIMB
checks if the fully buffered energy is secured at each region
boundary. If it is not secured, ROCKCLIMB waits until the
energy buffer is fully charged, before executing the following
region. In particular, the rollback-free nature of ROCKCLIMB
obviates the need to log memory writes—required for rollback
recovery—since no region is power-interrupted. As a result,
PFI+ROCKCLIMB achieves rollback-free and memory-log-free
intermittent computation, ensuring forward execution progress
and maximizing it even in the presence of frequent power outages.
Our real board experiments demonstrate that PFI+ROCKCLIMB
outperforms the state-of-the-art work by 5%—550% on average
in various energy harvesting conditions.

I. INTRODUCTION

The ARM roadmap predicts that the number of devices
connected to the Internet of Things (IoT) will reach ~50
billion in the next few years [1], and wearables devices are
expected to generate the most mass consumer adoption [2].
Powering these IoT devices is a pressing challenge; it is not
feasible to change the batteries of billions of the devices. Apart
from that, a battery is heavy and bulky for small IoT devices
such as wearables. This has brought a tremendous interest
in energy harvesting to self-power the devices using ambient
energy sources. Owing to the self-sustaining, maintenance-
free, and environmentally-friendly nature, energy harvesting
is the logical next step in the evolution of IoT [3], [4].

However, energy harvesting systems are prone to power
failure due to the unstable nature of harvested energy and the
absence of a battery. Since the systems use a tiny capacitor as
an energy buffer, they intermittently compute when it provides
sufficient energy, which would otherwise die, thus being called

978-1-6654-9998-9/22/$31.00 ©2022 IEEE
DOI 10.1109/RTAS54340.2022.00012

40

Qingrui Liu
Annapurna Labs
gingrui @amazon.com

Changhee Jung
Purdue University
chjung @purdue.edu

intermittent computation. This implies that frequent power
interruptions become the norm of program execution, forcing
it to restart from the beginning. Hence, an intermittently-
powered microcontroller (MCU) uses nonvolatile memory
(NVM) as main memory without caches—due to their power
demand—and has some form of recovery support to backup
and restore necessary data across a power outage.'

Existing software-based recovery schemes partition program
into a series of recoverable regions (tasks) with checkpoint-
ing/logging their input register/memory data in NVM. If
any region is interrupted due to power failure, the recov-
ery schemes, in the wake of the failure, first restore the
checkpointed/logged data by loading them from NVM and
then resume the program at the beginning of the interrupted
region [10]-[13]; this is so-called rollback recovery.

Unfortunately, the existing recovery schemes are not sys-
tematic, forming their regions sometimes too conservatively
or aggressively. If regions are too short (i.e., unnecessarily
making frequent checkpoints at each region boundary), the
schemes consume more energy for checkpointing but use less
energy for computing; that is because checkpoints are the most
energy-consuming in that they are essentially NVM stores.
While one could take an aggressive approach by forming
long regions for fewer checkpoints, expensive re-execution
penalty has to be paid by restarting such a long region
possibly many times across power outages. Either way, the
forward execution progress is limited leading to significant
performance degradation. Even worse, the existing recovery
schemes could suffer from a stagnation problem [14], [15]—
livelock-like situation where power failure repeatedly occurs
before some long region finishes—making no forward progress
in spite of continuous energy consumption (also called a non-
terminating bug [16]).

To overcome these challenges, this paper introduces power
failure immunity (PFI), a novel program execution property
for achieving energy-efficient intermittent computation. PFI
ensures that each code region can fail at most once, i.e., a
single in-region outage, regardless of power failure frequency.
If a region ever encounters power failure, it never fails again
during the re-execution—as if it was immunized after the
first failure. The never-fail-again nature makes it possible

'We target traditional single-core energy harvesting systems and leave
multi-core [5] and accelerator systems [6]-[9] for our future work.

Authorized licensed use limited to: SUNY AT STONY BROOK. Downloaded on November 17,2022 at 18:01:05 UTC from IEEE Xplore. Restrictions apply.

for intermittent computation schemes to take the aggressive
region formation (i.e., long regions) without the expensive re-
execution penalty.

Thus, enforcing PFI technically solves the stagnation prob-
lem unlike dynamic testing (measurement-based) approaches,
e.g., auto-tuning [12] and manual energy-debugging [16]-[18]
that try to avoid stagnation in a best-effort manner; they both
require a huge amount of testing time (up to more than a
hundred hours to cover various program inputs and paths).
In contrast to the dynamic testing approaches, this paper
takes a static analysis approach and presents compiler-directed
PFI enforcement that can automatically form stagnation-free
regions within a few seconds.

The key insight is energy harvesting systems do not boot
until their energy buffer (capacitor) is fully charged as with
commodity systems like WISP [19]. In the wake of power
outages, it is thus assured that program can make as much
progress as the full energy buffer allows, even if no additional
energy is harvested. This insight serves as a basis for enforcing
the PFI at compile time without paying the high cost of
dynamic testing approaches and their false negatives; unlike
static analysis, testing might miss stagnations due to the
inherent unsoundness [20].

To enforce PFI statically, our compiler partitions program
into a series of code regions considering the energy buffer size,
so that each region can be completed using the energy buffered
in a single charge cycle. Given the fully-buffered energy, the
compiler analyzes how long an energy harvesting MCU can
sustain its execution under the maximum power consumption
mode of the MCU which drains the energy from the capacitor
at the highest rate; we refer to such a minimum sustainable
time bound as safe active time (SAT). More precisely, our
compiler carefully partitions program into a series of SAT-
aware regions such that their worst-case execution time in any
given path is never greater than SAT.

In particular, this paper leverages PFI to achieve rollback-
free intermittent computation without expensive hardware
support, e.g., just-in-time (JIT) checkpointing of nonvolatile
processors which preserves their volatile states when power is
about to be cut off [21]—[25]. To achieve the rollback freedom,
we propose ROCKCLIMB guarantees that PFI-enforced regions
never fail, i.e., there is no in-region outage at all. In particular,
ROCKCLIMB checks if a fully buffered energy is secured at
each region boundary to ensure the completion of the next
region without power failure. If it is not secured, ROCKCLIMB
waits at the boundary until the energy buffer is fully charged
before executing the following region. The upshot is that
the rollback-free nature of ROCKCLIMB obviates the need to
perform logging for each memory write—required for prior
work [10], [12], [13], [16], [26], [27] to achieve rollback
recovery of power failure.

However, although no region is power-interrupted, a power
outage can still occur while ROCKCLIMB waits for the energy
buffer to be fully charged at a region boundary; volatile states,
i.e., registers, can still be lost upon an outage. To address
the issue, our compiler leverages a novel optimization called

41

distributed checkpointing that saves only essential registers
without compromising the recovery guarantee. Unlike prior
rollback recovery schemes [10]-[13] that insert checkpoints
(i.e., store instructions saving registers to NVM) at the begin-
ning of each region/task boundary, distributed checkpointing
spreads them out where each register is defined, thereby elimi-
nating unnecessary checkpoints and their energy consumption.
Consequently, PFI+ROCKCLIMB achieves high-
performance intermittent computation, ensuring forward
execution progress and maximizing it even in the presence
of frequent power outages. Our real board experiments
demonstrate that PFI-enforced program never suffers from
stagnation, and PFI+ROCKCLIMB outperforms the state-
of-the-art intermittent computation work by 5%—550% on
average depending on power failure behaviors.
We define PFI as a basic program execution property for
achieving energy-efficient intermittent computation and
implement its compiler-directed enforcement.
Our compiler automatically enforces PFI forming
stagnation-free regions in 1.4 seconds on average, unlike
dynamic approaches that take many hours of testing but
can only remove the stagnation found on tested paths.
We propose ROCKCLIMB that can ensure PFI-enforced
regions never fail, i.e., there is no in-region outage at all.
We propose a new compiler optimization called dis-
tributed checkpointing that can remove unnecessary
checkpoints thus extending forward progress with their
saved energy.
To the best of our knowledge, PFI+ROCKCLIMB is the
most performant software-based intermittent computation
scheme that outperforms the state-of-the-art work (up to
a 5.5x speedup on average).

II. BACKGROUND AND MOTIVATION
A. Energy Harvesting System Architecture

Due to frequent power outages, researchers equip energy
harvesting systems with byte-addressable nonvolatile memory
(NVM) as main memory for efficient checkpoint/recovery
across the outages. For example, TI's MSP430FR series of
microcontrollers (MCU) have integrated FRAM [29]. This
paper targets such MCUs with NVM and a simple in-order
processor, that has no cache, as in prior works [11], [14],
[15], [29]-[37]. Thus, only volatile data in the processor—
i.e., registers—will be lost on a power outage and therefore
should be checkpointed for recovery.

B. Crash Consistent Power Failure Recovery

Due to unreliable ambient energy sources, energy harvesting
systems suffer frequent power failure that must be recov-
ered in a crash consistent manner [8], [11], [38]-[58]. To
achieve the crash consistency, (software-based) prior works
partition program into a series of recoverable regions/tasks
(and back up necessary data therein to NVM) so that their
re-executions result in the same and correct output across
power failure; hereafter, we use the term region(s) as the same
meaning as task(s). To a large extent, there are two crash

Authorized licensed use limited to: SUNY AT STONY BROOK. Downloaded on November 17,2022 at 18:01:05 UTC from IEEE Xplore. Restrictions apply.

Partitioning Time Analysis Memory Log HW Support User Intervention Checkpoint Type Re-execution
Auto-tuning [12] Very long Dynamic Yes No No Centralized Yes
Chinchilla [13] Very long Dynamic Yes Yes [16], [18], [28] Yes (energy debugging) Centralized Yes
PFI+ROCKCLIMB Short Static No No No Distributed No

TABLE I: Comparison of prior software solutions for a stagnation problem in energy harvesting systems. Partitioning time
means how long it takes to form stagnation-free regions/tasks. H/'W Support represents an energy debugger requirement while
User Intervention means whether a programmer must use a special programming language. Log indicates whether the work
requires a logging mechanism for memory restoration. Re-execution shows whether the work involves re-execution inherently.

consistency approaches that both require handling memory
antidependence [59] also known as Write-After-Read (WAR)
dependence—since it overwrites an input to be read for re-
execution.

First, automatic idempotent region formation such as
Ratchet [11], places a region boundary to cut the antidepen-
dence(s) and checkpoints live [59] registers. By checkpointing
registers, this paper means storing them in NVM, i.e., check-
points are essentially such store instructions. Second, users
can alternatively partition program into a series of regions on
their own, preserve the memory locations being overwritten
by antidependent stores with logging the original value to
NVM, and checkpoint registers [10], [12], [13]. In the wake
of power failure, the prior works restart from the beginning of
the interrupted region after restoring the checkpointed registers
and the logs from NVM.

C. Expensive Centralized Checkpointing

No matter how antidependence is addressed, the prior
works [10]-[13] checkpoint every volatile input at the begin-
ning of each region, thus being called centralized checkpoint-
ing. More precisely, they checkpoint all live-in [59] registers—
that hold live [59] values at the beginning of a region—for
every region at its entry in case it is interrupted due to power
failure; in the wake of the failure, the interrupted region must
be restarted from the entry for recovery. Unfortunately, many
of live-in register checkpoints tend to be unnecessary wasting
harvested energy that could otherwise be used to make further
execution progress; it is important to note that because of the
NVM write latency/energy, checkpoints are the most expensive
instruction in energy harvesting MCUs.

We observe that the live-in registers are often not used in the
current region, but read in the later regions; the more regions
the live-range [59] of registers spans, the more redundant
checkpoint stores the centralized checkpointing generates. As
an extreme example, if registers are defined at the beginning of
program and read at the end of it, they must be checkpointed
at every single region entry. The takeaway is that although
the registers are not used in the current region, the centralized
checkpointing has no choice but to save them, otherwise their
values are lost upon power failure; this is why all the prior
works end up checkpointing all live-in registers every time a
region starts. With that in mind, we propose a new compiler
optimization called distributed checkpointing. It spreads out
checkpoint stores to where volatile registers become live-

42

out [59], i.e., at their last-update point in each region.? In this
way, they do not have to be checkpointed repeatedly in the
following regions unless they are updated and live-out again.
Section V-B details the distributed checkpointing.

D. Stagnation in Energy Harvesting Systems

Suppose a region whose execution time is greater than the
power failure period, i.e., the time between the failures. If they
periodically occur with the same frequency, the program ends
up rolling back to the beginning of the region indefinitely.
That is because the failures keep occurring before the end
of the region is reached, in which case the program just
wastes harvested energy in vain making no forward execu-
tion progress. Researchers call this livelock-like phenomenon
stagnation [12]-[16], [18], [28].

Hll Re-execution [Forward Progress

Energy Cons.
Break.[%]

basicmath
dhrystone
stringsearch
gmean(Total)

stagnation

Fig. 1: Energy breakdown of Ratchet for a real energy har-
vesting condition. For dhrystone, 100% re-execution means
stagnation. A geometric mean (gmean) is calculated only for
those non-stagnated.

It turns out that prior works can suffer the stagnation
problem [7], [10], [11], [34], [62]-[64]. To investigate the
phenomenon, we conducted experiments by using one of the
prior works, the idempotence-based power failure recovery
scheme called Ratchet [11]. We ran 11 benchmark applications
on a real energy harvesting board (the evaluation setting is
described in Section VI-A) and analyzed the cost of re-
execution across power failure by breaking down the total
energy consumption of each application into two parts: re-
execution and forward progress as shown in Figure 1. Note that

2Distributed checkpointing is akin to incremental checkpointing that can
be achieved with either hardware [60] or runtime support [61], because they
checkpoint only updated registers. However, all updated registers do not
require checkpointing, e.g., some registers could be re-defined before their
use, in which case the incremental checkpointing wastes harvested energy
by persisting such dead registers unnecessarily. In contrast, our distributed
checkpointing preserves only essential (live-out) registers by taking into
account their liveness at compile time.

Authorized licensed use limited to: SUNY AT STONY BROOK. Downloaded on November 17,2022 at 18:01:05 UTC from IEEE Xplore. Restrictions apply.

we disabled Ratchet’s timer based checkpointing, since it could
result in wrong recovery for those regions that have Write-
After-Read-After-Write (WARAW) dependence [59], [65].

We discover that Ratchet can be trapped in some long
regions leading to stagnation, thus never finishing the program
as in the case of dhrystone in Figure 1; region size analysis
is deferred to Section VI-A. Even for non-stagnating applica-
tions, Ratchet ends up wasting 47-75% of hard-won energy
by repeatedly checkpointing/restarting the same interrupted
region across power failure—before getting out of the region.
Overall, Ratchet spends 52% of the total energy consumption
for re-executions, leading to significant performance degrada-
tion. On the contrary, our proposal can always make forward
progress across power failure without re-execution and stagna-
tion at all, thereby achieving energy-efficient and rollback-free
intermittent computation (Section III-B).

E. Prior works are Not a Solution for Stagnation

To address the stagnation problem, the state-of-the-art works
use dynamic testing approaches by using an energy debug-
ger [13], [16], [18], [28] or an auto-tuning framework [12]
as summarized in Table I. However, such dynamic testing
approaches have several limitations.

The energy debugger based approach requires multi-step
expert-level user interventions for precise diagnosis [13], [16],
[18], [28]. First, users should manually measure basic blocks’
energy consumption with randomized inputs. Second, users
need to compare the energy consumption of a given basic
block to the total energy availability obtained by estimating
the storage capacity of the energy buffer. Third, if the basic
block consumes more energy than the available amount thus
being vulnerable to stagnation, users should rewrite the code
or let the prior work [16] split the block to smaller pieces with
inserting checkpoint stores and memory logs therein.

The crux of the problem with the debugger based schemes
is that the energy profiling [16] takes about 30 minutes on
average even for toy applications, which makes the schemes
impractical. Furthermore, the resulting program can still suf-
fer stagnation provided some of untested program paths is
taken; this is technically possible since users cannot cover
all possible paths with dynamic testing due to its inherent
unsoundness [20]. Due to the issue, the state-of-the-art work
Chinchilla [13] ends up inserting its region boundary at each
basic block, rendering the regions too small—though it can
adaptively skip register checkpointing when energy harvesting
condition is good.

On the other hand, the auto-tuning based dynamic approach
first tests a user-defined range of region sizes (instruction
counts) for a given power failure trace and then picks the best-
performing size for all regions of each program. However, it is
based on one-size-fits-all assumption, i.e., every region size is
identical. Also, due to the large search space, the tuning time
takes a while. Unfortunately, users must go through the same
tuning procedure again for the change of the energy harvesting
condition, which is frequent and unpredictable in reality.

43

Benchmark Auto-tuning Energy-debugging Compiler-directed
Application [12] [13], [16], [18] PFI enforcement
[12], [13], [66], [67] (in hours) (in hours) (in seconds)
basicmath 124.2 9.3 2
blinker 11.2 0.5 1
bitcnt 9.6 9.7 4
crcl6 2.3 1.7 1
cre32 18.1 3.7 1
dijkstra 7.2 5 1
fft 8.9 19.3 2
fir 6.0 2 1
dhrystone 1.0 5 1
stringsearch 6.2 22 2
gsort 53.5 4 1
geomean 9.6 hours 4.7 hours 1.4 seconds

TABLE II: Comparison of stagnation-aware region formation
schemes in terms of the time taken to complete the region
formation

To evaluate the usability of the prior dynamic testing
approaches, we measured the total elapsed time for completion
of their recoverable region formation; two different test inputs
were used for each of 11 applications. For the auto-tuning
approach, we tested 200 different region size variants as
suggested in the original work [12] with two different power
failure traces. As shown in Table II, the auto-tuning (2nd
column) and the energy-debugging (3rd column) approaches
take a considerable amount of time for each application (up
to more than 5 days as in basicmath). Note that although
both dynamic approaches finally form regions after many
hours, such a high cost has to be paid anew for different
program/input combinations and various power failure behav-
iors. Unfortunately, this is a serious problem in that energy
harvesting systems inevitably encounter the significant change
of the failure behavior—because the underlying harvesting
condition often unpredictably varies over time. In contrast, our
proposal only requires a few seconds of compilation time as
shown in the 4th column in the table. On average, PFI compiler
is five orders of magnitude faster than the both dynamic
testing approaches. More importantly, unlike the approaches,
our static analysis can guarantee stagnation-free execution
regardless of program paths and inputs.

III. OUR APPROACH: PFI+ROCKCLIMB

The goal of this paper is to achieve high-performance
energy harvesting systems. As the first step to achieving the
goal, this paper defines power failure immunity (PFI), a basic
execution property of intermittent program. PFI ensures that
each recoverable region of program never fails more than
once i.e., at most single in-region outage (Section III-A).
Thus, PFI-enforced regions are robust against both stagnation
and expensive re-executions across power failure, achieving
energy-efficient power failure recovery.

The second step is leveraging PFI to achieve rollback-free
and high-performance intermittent computation—that we call
RockCLIMB—where no region is power-interrupted (Sec-
tion III-B). That is, ROCKCLIMB not only ensures that hard-
won energy is never wasted for region re-execution, but also
maximizes the forward execution progress fully utilizing the
energy only for computation. Furthermore, since all regions

Authorized licensed use limited to: SUNY AT STONY BROOK. Downloaded on November 17,2022 at 18:01:05 UTC from IEEE Xplore. Restrictions apply.

are sure to finish thanks to ROCKCLIMB, it can eliminate
expensive per-region memory logging—that is required by
prior work for crash consistent rollback recovery—without
compromising the correctness guarantee. The rest of this
section details the PFI and its compiler-directed enforcement,
the workflow of which is shown in Figure 2, and shows how
it guarantees that no region ever fails.

A. PFI: Power Failure Immunity

To prevent repetitive in-region outages, this paper leverages
two important observations. First, energy harvesting systems
do not start to operate their microcontoller (MCU) until the
energy buffer (capacitor) is fully charged as with virtually all
commodity systems, e.g., WISP [19]. That is, when the MCU
is ready to resume the execution in the wake of power outage,
the capacitor is always sure to have the fully buffered (charged)
energy at the starting point of the resumption. The implication
is that the power-interrupted region can make as much progress
as the full energy buffer allows, even if there is no additional
energy is harvested. We refer to the minimum progress time,
for which the MCU can be sustained under the fully buffered
energy, as safe active time (SAT).

The second observation is that if the worst-case execution
time (WCET) of any region is shorter than the SAT, the region
is assured to finish with no power failure under the fully
buffered energy.

PFI enforcement constraint: WCET (r) < SAT (u) (1)

With that in mind, for a given region (r) and the underlying
MCU (u), we formulate the problem of ensuring the forward
execution progress as Eq.1 above.

Thus, PFI can achieve stagnation freedom by partitioning
the original program into SAT-safe regions, each of which
satisfies the PFI constraint Eq.1; even if the SAT-safe regions
may encounter power failure, they never fail again upon
recovery from the failure. In other words, when power comes
back, the previously interrupted region never retreats before
reaching the end of the region, which ensures forward progress
to the next region without exception.

1) SAT Calculation under Worst-Case Execution Scenario:
To calculate the SAT for a given MCU’s full energy buffer
in a sound way (where all regions satisfy the PFI constraint
Eq.1), we must consider the worst-case scenario of MCU
operation, which would otherwise fail to achieve PFI for those
regions power-interrupted under the scenario. Hence, our PFI
compiler considers the most harsh environmental setting where
there is no harvested energy, and the MCU consumes the
maximum amount of energy all the time. That is, the compiler
calculates the SAT by analyzing how long program can sustain
its execution, under the maximum power consumption mode
of the MCU—which drains the energy from the capacitor at
the highest rate—to take into account the worst-case scenario.

2) PFI Region Formation: To form PFI-enforced regions
that satisfy the above constraint Eq.1, the compiler takes a
2-step approach. First, it forms initial regions at function
call boundaries and loop headers. As shown in Figure 2 (b),

44

the input program (a) gets to have a region boundary at a
Print () callsite and the entry of a for loop.

Second, after finishing the initial region formation, the
compiler performs per-region WCET analysis to check if
the initial regions satisfy the PFI constraint Eq.l1. If so,
the regions remain the same—until they are instrumented
later for rollback-free intermittent computation; otherwise, the
compiler partitions the SAT-unsafe region, that violates the PFI
constraint Eq.1, into a series of SAT-safe regions; the SAT-
driven partitioning might need to be repeated if the remainder
of the cut is still too long to satisfy the constraint. For example,
as shown in Figure 2 (c), the first two initial regions in (b) are
both cut at the point where their WCET hits SAT. As a result,
every program point belongs to one of SAT-safe regions where
PFI is enforced.

B. ROCKCLIMB: Never Fail Whatsoever!

Once SAT-safe regions are formed, our compiler enables
ROCKCLIMB that leverages the PFI as a basis for achieving
rollback-free intermittent computation, i.e., extending the PFI
to much stronger guarantee that no region ever fails. In fact,
the name ROCKCLIMB is inspired by rock climbing; climbers
divide their route into multiple sections, and at the entry of
each section they usually rest eating energy bars until they get
powered up enough to pass the section. Similarly, to complete
each PFI-enforced region with no power failure, ROCKCLIMB
checks the energy buffer at each region boundary. If the buffer
is not fully charged, ROCKCLIMB waits for the buffer to secure
the full energy before starting the next region; otherwise,
it is immediately started with the guarantee of failure-free
completion—because a PFI-enforced region can always finish
with a fully buffered capacitor.?

In particular, ROCKCLIMB’s guarantee of no in-region
failure simplifies achieving crash consistency obviating the
memory logs in each region. As discussed in Section II-B,
a root cause of the memory inconsistency is that in the
wake of power failure, program control rolls back across
antidependence, reading values updated by stores left behind
the failure. That is why prior work logs memory inputs of
each region to make a copy of the original values before they
are overwritten by antidependent store instructions.

On the contrary, since ROCKCLIMB’s regions are never
power-interrupted (thus no rollback), they do not have to log
memory inputs at all; the absence of rollback recovery means
no need to handle the restoration of memory inputs. The
upshot is that ROCKCLIMB’s rollback-freedom saves the high
energy/latency of the NVM logging stores, thereby achieving
an energy-efficient and high-performance energy harvesting
system. Figure 3 highlights ROCKCLIMB compared to prior
works that partition program into several regions with memory
logs for recovery. While the prior works keep spending their
energy for logging, restoring, and re-executing as shown
in the figure, ROCKCLIMB here makes a further forward

3This paper assumes that the energy harvesting system does not suffer
accidental reliability issues such as energetic particle striking or capacitor
malfunctioning in the circuit.

Authorized licensed use limited to: SUNY AT STONY BROOK. Downloaded on November 17,2022 at 18:01:05 UTC from IEEE Xplore. Restrictions apply.

>

| Z SAT ° Z SAT-unsafe point .X SAT-safe point @~ Last updated point of live-out registers | NVM

main(){ fmainO{_____ . main(){ |] main(){ x
————"—' ———————————————— 1»2 ————————————————— =

for(i=0;i<100;i++){ foogctonien | Q& | frtoictoogesit | | forfi=o;<a00;is+) | o
All] += blil*c; - [Ali] +=bli]*c; m—p | Al +=blil*c; - | | Alil += bliI*C; for
} } %Z e 4 ,g B 1B S |- registers
Print(); Prnty e & LI prine; %
D ¢l :
) }) X }

(a) Original program (b) Initial region formation

(c) SAT-driven region partitioning

(d) In-region instrumentation

Fig. 2: Workflow of PFI compiler: it partitions program into a series of PFl-enforced regions and instruments them to achieve

rollback-free and high-performance intermittent computation.

Recharging Recharging Recharging Region 2 in Task A

Task A B[100] += c[100]*¢;

| log restoration ” log restoration |

Original binary Prior works PFl-only PFI+RockClimb Energy in Cap-i
Task A Region 1in Task A Region 1in Task A Region 1in Task A I
— blOl*c: A[0] += b[0]*c; A[0] += b[0]*c; A[0] += b[0]*c; o
Al0] +=b[0]*c; (undo/redo) logs (undo/redo) logs 7
- . . A[100] += b[100]*c; EY
A[100] += b[100]*c; A[100] += b[100]*¢; R &
B[0]+- clo}*c; | [Region 5 in Task A — slol+=clor°c; G} g
A[100] += b{100]*c; | | Region 2in Task A 2
INAAAAAN INAAAANA R s s |
2
g
£
=}
&

Region 5 in Task A
A[100] += b[100]*c;

Region 2 in Task A
B[O] += c[0]*c;

Al0] += b[0]*c;

awny
HOA

Fig. 3: Comparison of intermittent computation schemes: Each
scheme runs the same program (Task A). While prior works
form many regions, e.g., Region 1~5 in Task A, PFI generates
a few regions, and PFI+ROCKCLIMB further lengthens the
region size and eliminates the re-execution.

progress due to its log-free and re-execution-free intermittent
computation.

a) Region Instrumentation: When a program control
reaches the end of a region, ROCKCLIMB checks the energy
availability (full capacitance) before starting the next region.
For this purpose, as shown in left side of Figure 2 (d), the
compiler thus inserts—at each region boundary—the voltage-
level checking code offered by commodity energy harvesting
systems, e.g., TI-MSP430’s power management library [68],
[69] supports the checking through a voltage comparator
interrupt; Section V-A offers more details.

Finally, our compiler, if necessary, inserts checkpointing
stores to save volatile registers in some regions. Although
PFI-enforced regions are never interrupted by power failure,
it can still occur at region boundaries while ROCKCLIMB
waits the capacitor to be fully charged. In this case, unlike
NVM resident data, volatile registers are lost on power failure.
To this end, as shown in the right side of Figure 2 (d),
the compiler checkpoints registers using a novel compiler
optimization called distributed checkpointing that saves only
essential registers without compromising the recovery guaran-
tee (Section V-B).

IV. IMPLEMENTATION
A. SAT Calculation

To obtain the safe active time (SAT), our PFI compiler first
measures the available energy input as:

Awailable Energy Input = %Cbuf * (mew — V,im), 2)

where Chy £, Vinaz, Vmin are capacitance, MCU power-on volt-
age level, and MCU power-off voltage level, respectively.
Then, the compiler measures MCU’s energy consumption
during operation as [70]:

Eiot = Prott = Vaalieart + ConspViis 3)

where Vyq, Ijcqk, Cmsp are input voltage to MCU, leakage
current, and the MCU capacitance, respectively. However,
the input voltage (V;4) is not constant; it decreases as the
energy buffer is discharged (Section III-A). With that in
mind, we consider the MCU as a resistance-capacitor (RC)
circuit, i.e., our PFI compiler substitutes the input voltage
with v,(t) = V,e */CF, where the capacitance (C) is the
same as Cpyy, and the resistance (R) can be estimated as
R = V/I. Here, we can readily get the V and I as the operating
voltage and the maximum current, respectively, from the MCU
manual. If a certain MCU’s manual does not specify them, our
compiler can adapt the typical leakage current and capacitance
model [70].

The key insight of PFI is that, to guarantee the forward
progress, the available energy input obtained by Eq. 2 should
be always greater than the energy consumption of the underly-
ing MCU given by Eq. 3. In light of this, ROCKCLIMB obtains
the SAT by calculating a threshold time ¢ in the following
formula (Eq. 4).

5Ot * (Vi = Vikin) > Voo /P (Iieai)t + Consp (Vie ™/

C))
In particular, SAT should also cover the system recovery
cost to safely restore the checkpointed registers at the system
reboot time in the wake of power failure. We use the simple
energy profiling model—which can be further improved by
using a recent advanced model [69], [71]. For simplicity, our
PFI compiler conservatively updates SAT (Eq.2) as SAT =
S AT — Recovery_Cost by assuming all registers are restored
upon recovery as with prior work [11].

B. WCET Analysis

First of all, our WCET calculation is straightforward for
two reasons: (1) the energy-harvesting MCU architecture is
simple, i.e., a cache-free single in-order core, unlike multi-
core systems backed with out-of-order execution and deep
cache hierarchy [72], [73], and (2) unlike traditional WCET

45

Authorized licensed use limited to: SUNY AT STONY BROOK. Downloaded on November 17,2022 at 18:01:05 UTC from IEEE Xplore. Restrictions apply.

calculation [74], [75], ours does not require whole program
analysis.

To analyze WCET for each initial region shown in Fig-
ure 2(a), our PFI compiler navigates all possible paths in
region-based control flow subgraph; while whole-program-
analysis based WCET calculation is challenging, our region-
based (intra-region) analysis makes it possible to run the
WCET analysis for all the benchmarks we tested.

Also, our compiler identifies a basic block that has initial
region boundaries in the middle of it, and splits it into different
basic blocks. This allows that region boundaries always start
at the beginning of basic blocks, thus facilitating the next SAT-
driven region partitioning.

For instruction-level WCET calculation, we build a cost
model by referring to the MCU manual which gives the
execution cycles of each instruction [76]*; if executing some
instructions takes a range of cycles, our compiler takes the
worst latency. Since the worst-case execution cycles of in-
structions are fixed, the timing cost model is simple and safe
unlike the profile-based energy consumption model [16] that
can be inaccurate in different execution environments.

C. SAT-Driven Region Formation

Once the SAT is obtained, our PFI compiler statically
converts it to the MCU cycles and splits those initial regions,
that are SAT-unsafe, into SAT-safe regions. As shown in
Figure 4(a), the compiler keeps accumulating the execution
time (cycles) of instructions on every path in a given initial
region, i.e., the accumulated sum is the WCET of the path
between the region entry and the current instruction just visited
there.

During the instruction time accumulation on each path,
if the sum becomes greater than or equal to the SAT (i.e.,
the current instruction and its successors are susceptible to
power failure), then the compiler cuts the susceptible path by
placing a new region boundary before the current instruction
with zeroing the sum for a further partitioning.’> This happens
recursively until the last instruction of the path is reached.
Figure 4(b) shows the final shape after partitioning the original
region with SAT of 200 cycles.

Algorithm 1 details the overall region formation process
highlighting how to cut and reform SAT-unsafe regions. In a
given initial region, the PFI compiler traverses the CFG in
a topological order. During the path traversal, it updates the
sum of current and incoming basic blocks’ cycles by using
the instruction-level cost model from the beginning of the
latest region boundary along the path (line 5~16). If the sum
becomes greater than SAT before the next region boundary
is reached, the compiler places a cut (line 11~15). After
re-partitioning, the compiler inserts register checkpoints with
distributed checkpointing (Section V-B).

4For example, a simple register update instruction takes 1 cycle while a
load instruction takes 5 cycles at least.

STechnically, the region boundary instruction is a checkpoint store for
saving a program counter so that it serves as a recovery point in case the
following region is power-interrupted.

46

(a) (b)

Fig. 4: Region partitioning with the SAT threshold of 200; the
number in each basic block (box) represents its total execution
cycles, and dashed lines represent region boundaries.

Algorithm 1 Region Formation Algorithm

1: for each basic block bb; in CFG do

2: Cycleps; < Cycle_orip,; + CkptCyclesyy,

3: IncomeCyclepy; < 0

4: end for

5: for each basic block bb; in program topological order do
6: if bb; starts with region boundary then

7: accum_cycle < Cycleps,

8: else

9: accum_cycle <— Cycley; + IncomeCycley,
10: end if
11: while accum_cycle > thresholdiime do

12: place boundary and split bb; into bb;" and bb;
13: recalculate Cycle_oripy; and CkptCyclesyy,
14: accum_cycle <— Cycle_oriyw,+ CkptCyclesp,
15: end while

16: end for

a) Loops: To handle loops, our PFI compiler inserts a
region boundary in the loop header. The compiler splits the
loop body if its WCET is greater than SAT. Otherwise, the
compiler tries to extend such a short loop body since it can
cause more live-out registers and checkpoint stores across
the region boundary in the loop header. That is, to address
this issue, our compiler repeatedly unrolls such a loop as
long as the WCET of the loop body is smaller than SAT.
By maximizing the loop body in this way, the compiler can
minimize the number of live-out registers in the loop, thereby
reducing the number of checkpoint stores to be inserted.
Currently, for those loops whose iteration count is statically
unknown, the compiler just inserts a region boundary in the
loop header without performing the unrolling.

b) 10 Operation: Our PFI compiler treats an 10 opera-
tion as a separate region. Since ROCKCLIMB always secures
the full capacitance before starting a region, the IO becomes
failure-atomic operation. This is exactly what IO operations
pursue to ensure the freshness of the IO results. However, it is
the IO designer’s responsibility to ensure the operation can be
completed in one capacitor charge cycle, i.e., the fully charged
energy should afford to finish the IO operation.

Although individual IO operations are failure-atomic, their
combination can violate the PFI constraint (Eq.1), provided
they are performed in parallel. To address the issue, we

Authorized licensed use limited to: SUNY AT STONY BROOK. Downloaded on November 17,2022 at 18:01:05 UTC from IEEE Xplore. Restrictions apply.

should conservatively estimate the SAT by covering the
total current consumption of the IO operations. For this
purpose, our compiler updates the resistance (R) of Equa-
tion 4 with the sum of each I0O’s maximum current, i.e.,
R = Taico ¥Tro, +‘;Ioz+---+llon; this paper assumes that the
required values can be found from the IO manuals.

D. Discussion

As discussed in Section IV-B, to meet the PFI enforcement
constraint (Eq.1) for region formation, our compiler simply
adds up the worst-case instruction latencies and places a region
boundary at the point where the accumulated sum becomes
greater than the SAT—without considering the instruction
pipeline. Thus, such a conservative WCET analysis tends to
generate smaller regions than traditional WCET analysis. The
rationale behind is that the smaller region leaves residual
energy in the capacitor when the region ends. In particular, the
residual energy can serve as a safe margin® to guarantee the
soundness of PFI-enforcement even when the full capacitance
is not secured due to reliability issues. For example, even if a
capacitor malfunctions holding a smaller amount of energy
than normal due to its physical properties, e.g., abnormal
leakage or aging-induced damage, PFI-enforced regions do not
exceed the SAT.

V. OPTIMIZATION
A. Securing Full Capacitance for Rollback-Free Computation

At each region boundary of SAT-safe regions that satisfy the
PFI constraint Eq.1, our compiler enables ROCKCLIMB that
dynamically checks if the full capacitance is secured, which
would otherwise wait for the energy buffer to be fully charged,
before starting the next region. For this purpose, ROCKCLIMB
leverages a voltage emergency interrupt of commodity energy
harvesting systems, e,g., TI-MSP430 [68], which can compare
a current voltage level to a certain voltage threshold that can
be controllable by software. That is, at each region boundary,
ROCKCLIMB enables the voltage interrupt by controlling the
interrupt vector and immediately starts the next region unless
the interrupt is generated; otherwise, ROCKCLIMB puts the
microcontroller (MCU) to a power-down mode so that it can be
rebooted when the buffer is fully charged [69]. The implication
is two-fold. First, no-interruption here means that the MCU
is directly powered by the energy harvesting source with the
energy buffer fully charged, and therefore the next region is
guaranteed to finish without power failure. Second, the voltage
interrupt should be disabled before executing any instruction
of the next region. That is, at the beginning of a region, the
compiler inserts the code that disables the interrupt.

B. Compiler Optimization: Distributed Checkpointing

Unlike centralized checkpointing, our compiler does not
checkpoint all live-in registers at each region boundary. In-
stead, it spreads the checkpoints (store instructions saving

5The safe margin does not harm the performance because the residual
energy is going to be picked up by ROCKCLIMB, i.e., the charging time
before executing the next region becomes shorter.

47

registers in NVM) out where each register is defined; they are
often distributed to many regions, thus being called distributed
checkpointing. More precisely, the compiler checkpoints the
updated register of each region, which is used in following
regions and therefore called live-out [59], right after the
register update. In data flow terms, we define the output of
region r as the live-out registers defined in the region—the
values that are written and downward-exposed [59]: ckpt, =
Def, N LiveOut,, where Def, is the set of registers defined
in r and LiveOut, is the set of live-out registers of r. For each
region r, the compiler checkpoints only the registers belonging
to ckpt, as soon as they are defined in the region.

The distributed checkpointing has several implications.
First, if the register is defined multiple times in a region, the
compiler only checkpoints the last-updated value used by later
regions, i.e., the live-out value.

Second, since the compiler checkpoints such a live-out reg-
ister right after its update, each checkpoint shares the same reg-
ister and the value with the preceding instruction that updates
the register. Here, the benefit is two-fold: (1) minimal dynamic
switching activity in the circuit; in contrast, two consecutive
instructions with different operands/values increase the power
consumption by 20% due to the switching activity [77], and
(2) rare chance to increase the peak power consumption—
typically made by consecutive checkpoints (NVM stores)—
since no two checkpoints are consecutively placed in our
distributed checkpointing; even if registers are updated in a
row, their checkpoints are interleaved with the instructions that
update the registers, i.e., checkpoints are always separated.

Third, at the beginning of each region, all input registers to
the region are already sure to have been checkpointed; thus, no
action is required when each region entry is reached—unlike
traditional JIT checkpointing that must save all registers before
impending power failure [22], [51], [67], [78].

Fourth, once a register is checkpointed, no further check-
point is necessary across regions unless the register is rede-
fined and becomes live-out again. That is, unlike centralized
checkpointing, the live-in registers of each region which are
not written in the region, do not have to be checkpointed; again
they are known to have already been checkpointed somewhere
before the region entry. Finally, the compiler can minimize the
number of necessary checkpoints.

ri=3
ckpt rl

#of ckpt=5
[#ofchpt =5 [-3

T |

Live in: rl,ml

[] #of ckpt=1

Live in: rl,... Live in: rl,...

2=] [2=

Live in: rl,...

Live in: r1,...

ckpt ri,...]

a=rl
l Live in: ri,...
ckpt ri,...

ckptri,...
b=r1

(a)

ckptri,...
a=rl

Live in: r1,...

Fig. 5: Checkpoint reduction by distributed checkpointing: (a)
centralized checkpointing and (b) distributed checkpointing.
Each box represents a program region.

Figure 5 shows how the compiler removes a majority of

Authorized licensed use limited to: SUNY AT STONY BROOK. Downloaded on November 17,2022 at 18:01:05 UTC from IEEE Xplore. Restrictions apply.

the checkpoints introduced by the centralized checkpointing
of prior works [10]-[13]. Here, 1 is defined on the top region
(box) and used in other regions. In particular, r1 is live at the
entry of all regions except for the top one. In Figure 5(a),
the centralized checkpointing inserts five checkpoints, each of
which saves the live register 1 (and other live-ins if exist) at
the entry of the bottom five regions. Note that checkpointing
r1 at the entry of the 2nd region on the left branch is redundant
since the predecessor region has already checkpointed r1.
Even worse, in the 2nd region on the right branch, the
centralized checkpointing stores 71 though it is not even used
there. In contrast, our distributed checkpointing stores 1 only
once right after it is defined on the top region as shown in
Figure 5(b). Here, our SAT-driven region formation is aware
of the additional code for both voltage interrupt controlling
and distributed checking already. Thus, the compiler strictly
maintains the PFI-enforcement for all regions.

V1. EVALUATION
A. Experimental Setting

We implemented novel compiler techniques described in
Section IV in the LLVM compiler infrastructure [79] and con-
ducted experiments by running compute-intensive 11 bench-
marks that are used in prior works [66], [67], [80], [81];
sensing applications are ruled out on purpose, because they
mostly consist of I/O or sensor tasks that must be power-
failure-atomic. This implies that the tasks must be formed that
way by the system designer in the first place; once they are
formed, it is technically impossible to partition them [12].

To evaluate the effectiveness of PFI+ROCKCLIMB in pre-
venting stagnation, we conducted experiments using TI’s
MSP430FR5994 [29] evaluation board with Powercast P2110-
EVB RF energy harvester [82] as our energy harvesting
system testbed, following the same convention used by prior
works [10], [13], [17], [51], [83]-[85]; we equipped the
board with a 10uF capacitor which is used as energy storage
of commodity systems such as WISP [19]. To power the
energy harvesting system, we used Powercast TX91501-3W
transmitter emitting RF signal at 915 MHz center frequency to
the system supplying 6.1 dBi patch antenna. We placed the RF
transmitter as real energy source 50cm away from the energy
harvesting system by default; we also varied the harvesting
condition for sensitivity analysis (Section VI-C).

B. Stagnation Analysis

To analyze the stagnation problem, we conducted experi-
ments by running the benchmark applications with 4 different
schemes as shown in Figure 6: (1) Ratchet [11], (2) Chin-
chilla [13] the state-of-the-art software solution for stagnation
freedom, (3) PFI-only scheme that partitions program to SAT-
safe regions but leave memory logs and checkpoints therein
for recovery, and (4) PFI+ROCKCLIMB as shown in the figure.
Here, we assumed that the stagnation occurred if program
had not finished within an hour; all benchmarks should have
been finished within a couple of minutes. We avoid testing

48

auto-tuning [12] since it requires too much tuning cost in real
harvesting situation (Section II-E).

|- Ratchet [ZZ3 Chinchilla EE8 PFl-only [PFI+RockCIimb|
5 [ele)
Sosal.. Ko A
.“u’.ég;
=Zo3 K AN
o :
EU"(T)ZV rrrrrrrrrr] | -
o2 IRTRIE TR RN M s HI ¥
sao R IR IR IR ER R R
Y 0N A0HN ARAN GNNR GANN ARHA ANNY ANNN GNND AAN #A0N @
S geoNLEELSETR
g c 2 ¢y S 5 & 39
= o U v X " =
g 5 3 Pl c
© < c ©
a S = 9]
g 5

Fig. 6: Performance results in real energy harvesting sit-
uation. We compare PFI+ROCKCLIMB with Ratchet and
Chinchilla. Y-axis shows the normalized execution time to
PFI+ROCKCLIMB. oo represents the stagnation problem.

0)§ |- exec. [log. [3 ckpt.l
£3
2%
0P
o m =
£ e e 5 3
©] s =
g ¢ g 3 g
iy ©° [l g c
© < & ©
Q s £ 9]
3 §
Fig. 7: Performance Breakdown of PFI-only.
I Ratchet [ChinChilla 0 PFI
- (3 :
4;; DoS vulneriable size*
c ¢
€ 102 4 ¢ 0 ¢
[) ¢ [N 0 ¢
2o lf]g ?*?ﬁ TR LM ?
2 1014 T
=
-
o
H i» B
Q
o 10° 4
N L o
g 5 £ ¢ 3 & & ¢ = § %
E 5 £ &5 5 § D s 3
2 o > 5 I}
2 < g
e} ° =
@

Fig. 8: Region Size Comparison of Ratchet/Chinchilla/PFI.

Ratchet turned out to be the worst among the tested
schemes; there was one stagnating application, i.e., dhrys-
tone. Ratchet has many short idempotent regions generating
a number of checkpoint stores; the more regions, the more
their inputs in total. Thus, Ratchet causes relatively higher
execution time overhead than others; the region size analysis
is discussed in the next section.

On the other hand, Chinchilla, PFl-only, and
PFI+ROCKCLIMB completed all applications. However,
PFI-only and Chinchilla are 2x and 1.85x slower than
PFI+ROCKCLIMB on average, respectively; Ratchet is
2.2x slower than PFI+ROCKCLIMB on average. This is
mainly because they cause the overheads of re-execution,
logging, and checkpointing—though Chinchilla was faster
than PFI-only thanks to its adaptive execution that can

Authorized licensed use limited to: SUNY AT STONY BROOK. Downloaded on November 17,2022 at 18:01:05 UTC from IEEE Xplore. Restrictions apply.

skip checkpointing sometimes by considering energy source
condition. Overall, PFI+ROCKCLIMB outperforms Ratchet,
PFI-only, and Chinchilla thanks to the re-execution-free and
memory-log-free nature.

In particular, when ROCKCLIMB is enabled for PFI-only,
it becomes 2x faster. That is because ROCKCLIMB eliminates
the logging (and their restoration) overhead. To see the benefit
of ROCKCLIMB in more detail, we analyzed the performance
breakdown of PFI-only into three parts: execution, checkpoint-
ing, and logging. As shown in Figure 7, the logging overhead
is more than 40% on average, i.e., ROCKCLIMB can avoid the
expensive cost and make a further forward progress.

1) Region Size Characteristics: To figure out the reason
for the stagnation and characterize the regions of different
schemes, we measured the region size of each application for
Ratchet, Chinchilla, and PFI. Here, we counted the number
of instructions executed during the execution of each region.
As shown in Figure 8, there are two outliers, i.e., excessively
long regions, in dhrystone for Ratchet, leading to stagnation.
For other applications, Ratchet forms shorter regions than PFI
on average. This is because Ratchet requires each region to
be idempotent by cutting all antidependent store-load pairs,
which makes the region size small [65], [86].

Unlike Ratchet, two schemes Chinchilla and PFI do not
generate stagnating regions. In particular, PFI forms relatively
longer regions than others on average; this trend demonstrates
that PFI can aggressively increase the region size as long as
it does not violate the constraint Eq.1. On the other hand,
Chinchilla generates very short regions because it considers
each basic block as a region, the entry of which—if not
skipped by the adaptive execution—checkpoints all registers,
to address the stagnation problem. Although the region size is
short, Chinchilla outperforms Ratchet. That is because Chin-
chilla’s adaptive execution can skip the register checkpointing
according to the underlying power outage behavior.

2) Performance Modeling and Analysis: To analyze
the performance benefit of ROCKCLIMB, we set the
cost model of PFI+ROCKCLIMB and PFl-only schemes
as following: PFI_only orig.exec + checkpoint +
logging + reexecution + 26" Trecharging, Whereas PFIT +
RockClimb = orig.exec + checkpoint + Zg Twait- That
is, PFl-only execution time (PF'I_only) consists of original
execution time (orig.exec), checkpoint time (checkpoint),
logging time (logging), reexecution time (reexecution), and
the sum of recharging time across the m number of power out-
ages (3¢ Trecharging)- On the other hand, PFI+ROCKCLIMB
execution time (PFI + RockClimb) is comprised of original
execution time, checkpoint time, and the sum of waiting time
across the n number of waits at region boundaries (Zg Twait)-

This implies that PFI+ROCKCLIMB can be technically
slower than PFI-only when the total waiting time is higher
than the sum of logging, reexecution, and total recharging time
across the ”m” number of power outages, i.e., Zg Twait >
logging + reexecution + Zgl Trecharging. However, this is
not practically impossible to happen because each waiting time
is less than the recharging time, i.e., T\yait < Trecharging-

49

Moreover, even if the number of waits n could be greater
than the recharging count m (i.e., the number of power out-
ages), the total waiting time can be easily paid off by avoiding
logging and reexecution time overheads. This is confirmed by
our experiments; it turns out that PFI+ROCKCLIMB waited
10~15 times while PFI-only had 3~5 power outages on
average, but PFI+ROCKCLIMB is almost 1.7x faster than PFI-
only as shown in Figure 6. The results with various energy
harvesting settings show the same trend (Section VI-C).

3) Distributed Checkpointing: To analyze the impact of dis-
tributed checkpointing, we measured the number of checkpoint
stores of PFI at compile time and run time for both centralized
and distributed checkpointing schemes. Figure 9 shows that
when the distributed checkpointing is enabled, it can reduce
the number of checkpoint stores of the variant of PFI—which
uses centralized checkpointing on purpose— by 42% and 21%
on average at compile time and run time, respectively.

To see the correlation between the checkpoint reduction
and performance benefit, we also measured the performance
of PFI+ROCKCLIMB without enabling the distributed check-
pointing. When it is optimized with distributed checkpoint-
ing, PFI+ROCKCLIMB managed to improve the performance,
achieving 1.16x speedup on average and up to 1.92x for bitcnt.
Note that this paper refers to ROCKCLIMB as the optimized
version that enables the distributed checkpointing by default.

[mmm Static == Dynamic|

T T

R U~
‘5’2\, SOL - R R 1’88?_(’
o cC 1.6 © o
8o 60L /N e es
S0 408 o /RN R] 141457
B2 £
68 20 e S 125 a

&% =8 58 § I8

£ § B © § & g = o 5 ¢ =
8 £ § 9 9 & = s ¢ o 8
IS [< = it e v S © 0 °
S = & ¢ o X " o T k=
Y 3] > 0 z
7] = o
© £ ¢ ©
Qa T £]
2 £
o

Fig. 9: Checkpoint reduction by distributed checkpointing.

C. Sensitivity Analysis

1) Experimental Setting: Rather than placing the RF trans-
mitter in the same position (50cm away from the system),
which is conducted by prior works [10], [13], [17], [S1], [83]-
[85] but considered to be unrealistic, we performed additional
experiments to analyze the performance of PFI+ROCKCLIMB
compared to PFI-only and Chinchilla with the same 11 bench-
marks in various energy harvesting situations including an
outage-free case and many other unpredictable power failure
cases as shown in Table 10. Each power trace in the table
causes a different power outage pattern. We found that the
trace 10 caused only one power outage while the trace 12
incurred 12 power outages in one second as shown in Table III.
With these different power failure patterns, this paper will dis-
cuss how much performance improvement PFI+ROCKCLIMB
can achieve by comparing it to prior works for each pattern.

For realistic experiments, we developed a power generator
board with MSP430FR5969 to generate various power inputs

Authorized licensed use limited to: SUNY AT STONY BROOK. Downloaded on November 17,2022 at 18:01:05 UTC from IEEE Xplore. Restrictions apply.

Voltage (V)
o wonow s
Voltage (V)
e onw s
Voltage (V)
e Nw a
Voltage (V)
e nw a

e

5000 10000 15000 201
time (10us)

5000 10000 15000 201
time (10us)

8
8

5000 10000 15000 201
time (10us)

00

8
8

5000 10000 15000 201
time (10us)

—~

a) Power trace

—
~
=

3

~

) Power trace 2 (c) Power trace

—

d) Power trace

Voltage (V)
o oNw s
Voltage (V)
e onw s
Voltage (V)
e onow s
Voltage (V)
e onow s

5000 10000 15000 20¢
time (10us)

00 5000 10000 15000 20

time (10us)

00 5000 10000 15000 20

time (10us)

00 5000 10000 15000 20

time (10us)

00

(e) Power trace 5 (f) Power trace 6 (g) Power trace 7 (h) Power trace 8

H

0000 15000 20000
time (10us)

—~
]

Voltage (V)
e onow s
Voltage (V)
e onow s
Voltage (V)
e now s
Voltage (V)

o mw s

5000 10000 15000 20¢
time (10us)

00 5000 10000 15000 20

time (10us)

00 0 5000 10000 15000

time (10us)

0

8

(i) Power trace 9 (j) Power trace 10(k) Power trace 11(1) Power trace 12

Fig. 10: Energy harvesting trace; the plots in this table
show voltage input fluctuations to MCU during 12 different
movements from an RF energy harvesting reader [66], [87]

[Trace
[FofPF(||

2[3[4]
3[2]4]

TABLE III: The number of power failures per second in traces.

I 5T6J7[18T19
2| 5148473

with the power traces collected by prior works [66], [87] in
real energy harvesting settings; the power generator provides
supply voltage to our target energy harvesting system board
through GPIO pins according to the traces.

-r% |- Chinchilla @ PFl-only [PFI+RockCIimb|
Ly —
35 ¢ T
g)
=030
s -
Z'__ 1 i 1 ol ol B
9]
ﬂowﬁmm¢mwr\oomo-—cm*;,c
w 929 9 00 9 0o o0 o~ o B
S 0O 0O 0o VUV UYU U UVUUw o o ¥
S SEggEEgEEEE o0 Qg g
O &5 & &5 &5 £ £ $ & = © © © 2 (o)}
o L - - (e}
c [+
Fig. 11: Performance results in various situations; Y-axis

shows the normalized execution time to the baseline.

2) Overall Performance Trend: Figure 11 shows the per-
formance results on average in all different situations, e.g., no
power failure, and various power patterns from trace 1 to 12
shown in Table 10, including the Powercast RF transmitter
(discussed in Section VI-A). The Y-axis is the normalized ex-
ecution time to PFI+ROCKCLIMB as a baseline. In summary,
PFI+ROCKCLIMB is always faster than others, achieving 1.9x
and 2.7x average speedups over Chinchilla and PFI-only,
respectively. PFI-only shows the worst performance across
all traces. Due to the logging and reexecution overheads, it
ends up with lower performance compared to others. Overall,
Chinchilla shows relatively better performance overhead than

50

PFI-only, since Chinchilla can skip checkpointing at some
points depending on energy source condition.

a) No Power Failure: When there is no power failure,
Chinchilla and PFI-only cause about 1.5x and 1.9x slow-
downs, respectively, compared to PFI+ROCKCLIMB as shown
in Figure 11. Here, Chinchilla recognizes that energy source
condition is good, and thus it skips most of checkpoint stores.
Nevertheless, since it cannot avoid memory logging overhead,
it should check log entries at every memory update and flush
the logged data at some points, which causes a significant
performance overhead. This is why Chinchilla underperforms
PFI+ROCKCLIMB even in the power-failure-free case.

b) Various Power Failure Patterns: When there is fre-
quent power failure, both Chinchilla and PFl-only cause
memory logging and power-interrupted region reexecution
overheads unlike PFI+ROCKCLIMB. In particular, with trace
12, Chinchilla and PFI-only show 5.7x and 7.7x slowdowns,
respectively, compared to PFI+ROCKCLIMB. The reason is
that the trace causes the most frequent power outages among
all traces, i.e., generating 15x more outages than trace 10.
This implies that when there are frequent power outages, the
both prior schemes likely cause a much higher performance
overhead. Here, Chinchilla cannot skip register checkpointing
due to the frequent power outages—since it recognizes that
the harvesting condition is poor. On the other hand, for
trace 10, Chinchilla is comparable to PFI+ROCKCLIMB. That
is because the trace causes the smallest number of power
outages and happens to cause power failure at a right time,
i.e., right after register checkpointing, minimizing the waste
of Chinchilla’s rollback recovery, Thus, PFI+ROCKCLIMB is
only 5% faster than Chinchilla for trace 10.

VII. OTHER RELATED WORKS
A. Single In-Region Outage

While our compiler automatically ensures the single in-
region outage with PFI (Section III-A), a couple of HW/SW
co-design works manually achieve the similar concept based
on HW ([36] or compiler support [88]. First, a recent work
called HomeRun [36] integrates user-defined regions with HW
support for capacitor control. At a high level, if power failure
occurs during the execution of a certain region, the HW waits
until a sufficient amount of energy is charged for the region
to be completed in the wake of the power failure. In this way,
the interrupted region never encounters power failure again as
with PFI. However, HomeRun forces the users to form the
failure-atomic regions unlike our automated solution.

Second, another HW/SW co-design work leverages
compiler-assisted region formation with manual size control on
top of HW-based register checkpointing [88]. For crash con-
sistency, the compiler first forms idempotent regions (refer to
Section II-B) and splits those regions whose size is greater than
a user-provided threshold for failure atomicity. Finally, the
compiler inserts a trigger point [88] at each region boundary
on which the HW checkpoints registers for recovery. However,
the prior work still requires user-intervention, HW support, and
additional power consumption. In contrast, PFI+ROCKCLIMB

Authorized licensed use limited to: SUNY AT STONY BROOK. Downloaded on November 17,2022 at 18:01:05 UTC from IEEE Xplore. Restrictions apply.

is a software-only approach yet achieves high-performance
intermittent computation.

B. Stagnation

To address the stagnation problem, prior works leverage
static analysis [89], just-in-time (JIT) checkpointing [17], [51],
[67] or copy-on-write mechanism with timer based check-
pointing [15].

First, a prior work [89] relies on the worst-case energy
(WCE) analysis to address the stagnation. The WCE-based
approach estimates the energy consumption of each basic
block of given program to partition those basic blocks that
are vulnerable to the stagnation as with Chinchilla [13] but
through static analysis rather than dynamic testing [13]. How-
ever, the WCE-based approach [89] is not sound because
its energy cost model has no consideration on environment
change, e.g., temperature. According to MSP430 manual [68],
when temperature increases, the MCU consumes up to 6x
more energy than it operates under room temperature. The
implication is three-fold: (1) the WCE-based approach must
generate a new energy cost model on environmental change,
which requires time-consuming energy measurement; to the
best of our knowledge, all the models available in the liter-
ature assume a room temperature. (2) Without updating the
energy cost model on temperature change, the approach [89]
can generate vulnerable regions causing the stagnation and
wrong recovery. (3) Even if the temperature goes down, the
WCE-based approach still suffers correctness issue—because
some NVM locations might have already been corrupted by
antidependent stores.

In contrast to the prior work, our compiler achieves
stagnation-free region formation based on our time-based SAT
modeling, which is robust against temperature change. That
is, we calculate the SAT taking into account the highest
temperature, in which the MSP430 can operate correctly, by
referring to its manual that specifies the maximum current
on the highest temperature. To have the SAT cover the worst-
case scenario (under the highest temperature), we consider the
MCU as a resistance-capacitor (RC) circuit with the maximum
current in mind (Sec. IV-A). As a result, PFI+ROCKCLIMB
does not suffer the correctness issue.

Second, other prior works introduce the JIT mecha-
nism [17], [51], [67] that makes a checkpoint for all registers
when a system is about to die by monitoring energy availability
in the energy buffer. Since the mechanism allows energy
harvesting systems to resume an power-interrupted program
from the power failure point (after restoring the registers
from the NVM checkpoint storage), they can make a forward
progress across power failure without the stagnation problem.

Unfortunately, any prior work using JIT checkpointing
should pay a high energy/run-time cost. In particular, JIT
checkpointing comes with high register pressure—causing
significant slowdown due to the resulting NVM accesses—
because the register restoration is performed through with a
load instruction that uses 2 registers as operands. That is, the
prior works [17], [51], [67] must dedicate 3 registers so that

51

its recovery runtime can use them to restore other registers in
the wake of power failure.

More seriously, to recognize the impending power failure
and ensure failure-atomic JIT checkpointing, the prior works
require an additional energy budget by having a large size
capacitor or increasing nominal voltage. Unfortunately, such a
budget leads to performance degradation, since the additional
energy budget can only be used for checkpointing purpose
(not for computation at all). Also, it causes energy harvesting
systems to take a longer time than original design to secure the
high voltage enough to reboot (resuming the microcontroller)
across power failure. Unlike the prior works relying on JIT
checkpointing, our proposal does not require such additional
energy budget but can still eliminate the stagnation without
expensive hardware support.

Third, Choi et al introduces a stagnation-free real time
operating system scheme called Elastin [15]. It leverages a
watchdog timer based checkpoint mechanism which check-
points all registers when the timer is expired. While Elastin
also uses a capacitor leakage model as with PFI, the model is
used for a different purpose, i.e., Elastin compares the resulting
leakage time with the actual progress time to check if the
capacitor is not under a security/reliability attack.

During a checkpoint interval, however, Elastin tracks every
memory update on a per-page basis and logs the original page
as a copy-on-write mechanism to achieve crash consistency.
Since current energy harvesting devices do not support special
hardware components such as memory management unit for
copy-on-write, the scheme ends up inserting expensive code
for tracking memory writes into an original binary, causing
more than 2x slowdown. Furthermore, since Elastin must
roll back to the recent checkpoint point in the wake of
power outages, it also suffer a significant re-execution cost.
In contrast, PFI+ROCKCLIMB can achieve stagnation-free
intermittent computation without rollback or memory log.

VIII. SUMMARY

This paper introduces power failure immunity (PFI) that
ensures each code region can fail at most once, thus mini-
mizing the re-executions of power-interrupted regions. In the
virtue of PFI, this work presents ROCKCLIMB, a rollback-
free intermittent computation scheme, ensuring that PFI-
enforced regions never fail. To improve the performance
further, this work proposes distributed checkpointing, a new
compiler optimization that can eliminate unnecessary reg-
ister checkpoints without compromising the recoverability.
Consequently, PFI+ROCKCLIMB achieves high-performance
intermittent computation.

ACKNOWLEDGMENT

We thank the anonymous reviewers and our shepherd for
their valuable comments. At Purdue, this work was supported
by NSF grants 1750503 (CAREER) and 1814430.

Authorized licensed use limited to: SUNY AT STONY BROOK. Downloaded on November 17,2022 at 18:01:05 UTC from IEEE Xplore. Restrictions apply.

[1
[2]

[3]

[4

=

[5]

[6]

[7]

[8]

[9

—

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]
[20]

[21]

[22]

REFERENCES

P. Sparks, “White paper: The economics of a trillion connected devices,”
2017.

A. Dehghan-Manshadi, M. Bermingham, M. Dargusch, D. StJohn, and
M. Qian, “Metal injection moulding of titanium and titanium alloys:
Challenges and recent development,” Powder Technology, vol. 319,
pp. 289-301, 2017.

H. G. Lee and N. Chang, “Powering the iot: Storage-less and converter-
less energy harvesting,” in Proceedings of Asia and South Pacific Design
Automation and Conference (ASP-DAC), 2015.

J. Hester, K. Storer, L. Sitanayah, and J. Sorber, “Towards a language
and runtime for intermittently-powered devices,” sleep, vol. 9, p. 10,
2016.

W.-M. Chen, T.-W. Kuo, and P.-C. Hsiu, “Heterogeneity-aware multi-
core synchronization for intermittent systems,” ACM Transactions on
Embedded Computing Systems (TECS), vol. 20, no. Ss, pp. 1-22, 2021.
C.-K. Kang, H. R. Mendis, C.-H. Lin, M.-S. Chen, and P.-C. Hsiu,
“Everything leaves footprints: Hardware accelerated intermittent deep
inference,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 39, no. 11, pp. 3479-3491, 2020.

S. Lee, B. Islam, Y. Luo, and S. Nirjon, “Intermittent learning: On-device
machine learning on intermittently powered system,” Proceedings of the
ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies,
vol. 3, no. 4, pp. 1-30, 2019.

H. R. Mendis, C.-K. Kang, and P.-c. Hsiu, “Intermittent-aware neural ar-
chitecture search,” ACM Transactions on Embedded Computing Systems
(TECS), vol. 20, no. 5s, pp. 1-27, 2021.

B. Islam and S. Nirjon, “Zygarde: Time-sensitive on-device deep infer-
ence and adaptation on intermittently-powered systems,” arXiv preprint
arXiv:1905.03854, 2019.

A. C. Kiwan Maeng and B. Lucia, “Alpaca: intermittent execution
without checkpoints,” in Proc. ACM Program. Lang.1, OOPSLA, Article
96, October 2017.

J. V. D. Woude and M. Hicks, “Intermittent computation without hard-
ware support or programmer intervention,” in /2th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 16).

S. S. Baghsorkhi and C. Margiolas, “Automating efficient variable-
grained resiliency for low-power iot systems,” in Proceedings of the
2018 International Symposium on Code Generation and Optimization,
pp. 38-49, 2018.

K. Maeng and B. Lucia, “Adaptive dynamic checkpointing for safe
efficient intermittent computing,” in 13th USENIX Symposium on Oper-
ating Systems Design and Implementation (OSDI 18), (Carlsbad, CA),
pp. 129-144, USENIX Association, 2018.

J. Choi, Q. Liu, and C. Jung, “Cospec: Compiler directed speculative in-
termittent computation,” in Proceedings of the 52nd Annual IEEE/ACM
International Symposium on Microarchitecture, pp. 399—412, 2019.

J. Choi, H. Joe, Y. Kim, and C. Jung, “Achieving stagnation-free
intermittent computation with boundary-free adaptive execution,” in
2019 IEEE Real-Time and Embedded Technology and Applications
Symposium (RTAS), pp. 331-344, IEEE, 2019.

A. Colin and B. Lucia, “Termination checking and task decomposition
for task-based intermittent programs,” in Proceedings of the 27th Inter-
national Conference on Compiler Construction, 2018.

K. Maeng and B. Lucia, “Supporting peripherals in intermittent sys-
tems with just-in-time checkpoints,” in Proceedings of the 40th ACM
SIGPLAN Conference on Programming Language Design and Imple-
mentation, pp. 1101-1116, ACM, 2019.

A. Colin, G. Harvey, A. P. Sample, and B. Lucia, “An energy-aware
debugger for intermittently powered systems,” IEEE Micro, vol. 37,
no. 3, pp. 116-125, 2017.

J. R. Smith, Wirelessly Powered Sensor Networks and Computational
RFID. New York, NY, USA: Springer, 2013.

F. Nielson, H. R. Nielson, and C. Hankin, Principles of program
analysis. Springer Science & Business Media, 2004.

K. Ma, X. Li, S. Li, Y. Liu, J. J. Sampson, Y. Xie, and V. Narayanan,
“Nonvolatile processor architecture exploration for energy-harvesting
applications,” IEEE Micro, vol. 35, no. 5, pp. 3240, 2015.

K. Ma, X. Li, J. Li, Y. Liu, Y. Xie, J. Sampson, M. T. Kandemir, and
V. Narayanan, “Incidental computing on iot nonvolatile processors,” in
Proceedings of the 50th Annual IEEE/ACM International Symposium on
Microarchitecture, pp. 204-218, ACM, 2017.

(23]

[24]

[25]

[26]

(271

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

(38]

(39]

[40]

[41]

[42]

F. Su, Y. Liu, Y. Wang, and H. Yang, “A ferroelectric nonvolatile
processor with 46y s system-level wake-up time and 14u s sleep time
for energy harvesting applications,” IEEE Transactions on Circuits and
Systems I: Regular Papers, vol. 64, no. 3, pp. 596607, 2017.

Y. Wang, Y. Liu, S. Li, D. Zhang, B. Zhao, M.-F. Chiang, Y. Yan,
B. Sai, and H. Yang, “A 3us wake-up time nonvolatile processor
based on ferroelectric flip-flops,” in 2012 Proceedings of the ESSCIRC
(ESSCIRC), pp. 149-152, IEEE, 2012.

Y. Liu, Z. Li, H. Li, Y. Wang, X. Li, K. Ma, S. Li, M.-F. Chang, S. John,
Y. Xie, et al., “Ambient energy harvesting nonvolatile processors: from
circuit to system,” in Proceedings of the 52nd Annual Design Automation
Conference, p. 150, ACM, 2015.

A. Colin and B. Lucia, “Chain: tasks and channels for reliable intermit-
tent programs,” ACM SIGPLAN Notices, vol. 51, no. 10, pp. 514-530,
2016.

B. Lucia and B. Ransford, “A simpler, safer programming and ex-
ecution model for intermittent systems,” in Proceedings of the 36th
ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI *15, (New York, NY, USA), pp. 575-585, ACM,
2015.

A. Colin, G. Harvey, B. Lucia, and A. P. Sample, “An energy-
interference-free hardware-software debugger for intermittent energy-
harvesting systems,” ACM SIGOPS Operating Systems Review, vol. 50,
no. 2, pp. 577-589, 2016.

T. Instruments, “Msp430fr family of ultra low-power microcon-
trollers,” 2015. http://www.ti.com/lsds/ti/microcontrollers_16-bit_32-
bit/msp/ultra-low_power/msp430frxx_fram/what_is_fram.page.

M. Hicks, “Clank: Architectural support for intermittent computation,”
in In Proceedings of ISCA 17, ACM, 2017.

B. Islam and S. NIRJON, “Zygarde: Time-sensitive on-device deep infer-
ence and adaptation on intermiently-powered systems,” Proceedings of
the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies
(IMWUT/UBICOMP’20), vol. 4, no. 3, pp. 1-29, 2020.

B. Islam, S. Lee, and S. Nirjon, “Time-aware deep intelligence on
batteryless systems,” Brief Presentations Proceedings (RTAS 2019), p. 5,
2019.

Y. Luo and S. Nirjon, “Smarton: Just-in-time active event detection on
energy harvesting systems,” arXiv preprint arXiv:2103.00749, 2021.

B. Islam and S. Nirjon, “Scheduling computational and energy harvest-
ing tasks in deadline-aware intermittent systems,” in 2020 IEEE Real-
Time and Embedded Technology and Applications Symposium (RTAS),
pp. 95-109, IEEE, 2020.

Y.-C. Lin, P.-C. Hsiu, and T.-W. Kuo, “Autonomous i/o for intermittent
iot systems,” in 2019 IEEE/ACM International Symposium on Low
Power Electronics and Design (ISLPED), pp. 1-6, IEEE, 2019.

C.-K. Kang, C.-H. Lin, P.-C. Hsiu, and M.-S. Chen, “Homerun: Hw/sw
co-design for program atomicity on self-powered intermittent systems,”
in Proceedings of the International Symposium on Low Power Electron-
ics and Design, pp. 1-6, 2018.

W.-M. Chen, T.-S. Cheng, P.-C. Hsiu, and T.-W. Kuo, “Value-based task
scheduling for nonvolatile processor-based embedded devices,” in 2016
IEEE Real-Time Systems Symposium (RTSS), pp. 247-256, IEEE, 2016.
A. Rodriguez Arreola, D. Balsamo, A. K. Das, A. S. Weddell,
D. Brunelli, B. M. Al-Hashimi, and G. V. Merrett, “Approaches to
transient computing for energy harvesting systems: A quantitative eval-
uation,” in Proceedings of the 3rd International Workshop on Energy
Harvesting & Energy Neutral Sensing Systems, ENSsys *15, (New
York, NY, USA), pp. 3-8, ACM, 2015.

W. Zhang, S. Liu, M. Lv, Q. Chen, and N. Guan, “Intermittent computing
with efficient state backup by asynchronous dma,” in 2021 Design,
Automation & Test in Europe Conference & Exhibition (DATE), pp. 543—
548, 1IEEE, 2021.

J. Jeong and C. Jung, “Pmem-spec: persistent memory speculation
(strict persistency can trump relaxed persistency),” in Proceedings of
the 26th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems, pp. 517-529, 2021.
J. Jeong, J. Hong, S. Maeng, C. Jung, and Y. Kwon, “Unbounded
hardware transactional memory for a hybrid dram/nvm memory system,”
in 2020 53rd Annual IEEE/ACM International Symposium on Microar-
chitecture (MICRO), pp. 525-538, IEEE, 2020.

J. Zeng, H. Kim, J. Lee, and C. Jung, “Turnpike: Lightweight soft error
resilience for in-order cores,” in MICRO-54: 54th Annual IEEE/ACM
International Symposium on Microarchitecture, pp. 654—-666, 2021.

Authorized licensed use limited to: SUNY AT STONY BROOK. Downloaded on November 17,2022 at 18:01:05 UTC from IEEE Xplore. Restrictions apply.

[43]

[44]

[45]

[46]

[47]

(48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

S. Liu, W. Zhang, M. Lv, Q. Chen, and N. Guan, “Latics: A low-
overhead adaptive task-based intermittent computing system,” [EEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 39, no. 11, pp. 3711-3723, 2020.

Q. Liu, C. Jung, D. Lee, and D. Tiwari, “Compiler-directed soft
error detection and recovery to avoid due and sdc via tail-dmr,” ACM
Transactions on Embedded Computing Systems (TECS), vol. 16, no. 2,
pp- 1-26, 2016.

Q. Liu, C. Jung, D. Lee, and D. Tiwari, “Clover: Compiler directed
lightweight soft error resilience,” in Proceedings of the 16th ACM
SIGPLAN/SIGBED Conference on Languages, Compilers and Tools for
Embedded Systems 2015, LCTES’15, (New York, NY, USA), ACM,
2015.

Q. Liu, C. Jung, D. Lee, and D. Tiwari, “Compiler-directed lightweight
checkpointing for fine-grained guaranteed soft error recovery,” in SC’16:
Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, pp. 228-239, IEEE,
2016.

Q. Liu, C. Jung, D. Lee, and D. Tiwari, “Low-cost soft error resilience
with unified data verification and fine-grained recovery for acoustic
sensor based detection,” in 2016 49th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO), pp. 1-12, IEEE, 2016.

Q. Liu and C. Jung, “Lightweight hardware support for transparent
consistency-aware checkpointing in intermittent energy-harvesting sys-
tems,” in 2016 5th Non-Volatile Memory Systems and Applications
Symposium (NVMSA), pp. 1-6, IEEE, 2016.

J. Zeng, J. Choi, X. Fu, A. P. Shreepathi, D. Lee, C. Min, and C. Jung,
“Replaycache: Enabling volatile cachesfor energy harvesting systems,”
in MICRO-54: 54th Annual IEEE/ACM International Symposium on
Microarchitecture, pp. 170-182, 2021.

H. Kim, J. Zeng, Q. Liu, M. Abdel-Majeed, J. Lee, and C. Jung,
“Compiler-directed soft error resilience for lightweight gpu register file
protection,” in Proceedings of the 41st ACM SIGPLAN Conference on
Programming Language Design and Implementation, pp. 989—1004,
2020.

K. Maeng and B. Lucia, “Adaptive low-overhead scheduling for periodic
and reactive intermittent execution,” in Proceedings of the 41st ACM
SIGPLAN Conference on Programming Language Design and Imple-
mentation, pp. 1005-1021, 2020.

H. Song, S. Kim, J. H. Kim, E. J. Park, and S. H. Noh, “First responder:
Persistent memory simultaneously as high performance buffer cache
and storage,” in 2021 USENIX Annual Technical Conference (USENIX
ATC’21), pp. 839-853, 2021.

O. Kaiyrakhmet, S. Lee, B. Nam, S. H. Noh, and Y.-r. Choi, “Slm-db:
single-level key-value store with persistent memory,” in /7th USENIX
Conference on File and Storage Technologies FAST’19), pp. 191-205,
2019.

Q. Liu, J. Izraelevitz, S. K. Lee, M. L. Scott, S. H. Noh, and C. Jung,
“ido: Compiler-directed failure atomicity for nonvolatile memory,” in
2018 51st Annual IEEE/ACM International Symposium on Microarchi-
tecture (MICRO), pp. 258-270, IEEE, 2018.

E. Lee, H. Bahn, and S. H. Noh, “Unioning of the buffer cache
and journaling layers with non-volatile memory,” in //th USENIX
Conference on File and Storage Technologies (FASTI3), pp. 73-80,
2013.

Y. Oh, J. Choi, D. Lee, and S. H. Noh, “Caching less for better
performance: balancing cache size and update cost of flash memory
cache in hybrid storage systems.,” in FAST, vol. 12, 2012.

J. Seo, W.-H. Kim, W. Baek, B. Nam, and S. H. Noh, “Failure-
atomic slotted paging for persistent memory,” ACM SIGARCH Computer
Architecture News, vol. 45, no. 1, pp. 91-104, 2017.

E. Lee, J. Kim, H. Bahn, S. Lee, and S. H. Noh, “Reducing write
amplification of flash storage through cooperative data management with
nvm,” ACM Transactions on Storage (TOS), vol. 13, no. 2, pp. 1-13,
2017.

S. Muchnick, Advanced Compiler Design Implementation.
Kaufmann Publishers, 1997.

X. Zhang, C. Patterson, Y. Liu, C. Yang, C. J. Xue, and J. Hu, “Low
overhead online checkpoint for intermittently powered non-volatile
fpgas,” in 2018 IEEE Computer Society Annual Symposium on VLSI
(ISVLSI), pp. 238-244, 1EEE, 2018.

S. Ahmed, N. A. Bhatti, M. H. Alizai, J. H. Siddiqui, and L. Mottola,
“Fast and energy-efficient state checkpointing for intermittent com-

Morgan

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]
(771

[78]

(791

[80]

[81]

[82]

puting,” ACM Transactions on Embedded Computing Systems (TECS),
vol. 19, no. 6, pp. 1-27, 2020.

W.-M. Chen, T.-W. Kuo, and P.-C. Hsiu, “Enabling failure-resilient
intermittent systems without runtime checkpointing,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, vol. 39,
no. 12, pp. 4399-4412, 2020.

W.-M. Chen, P-C. Hsiu, and T.-W. Kuo, “Enabling failure-resilient
intermittently-powered systems without runtime checkpointing,” in 2079
56th ACM/IEEE Design Automation Conference (DAC), pp. 1-6, IEEE,
2019.

W.-M. Chen, Y.-T. Chen, P.-C. Hsiu, and T.-W. Kuo, “Multiversion
concurrency control on intermittent systems.,” in ICCAD, pp. 1-8, 2019.
M. de Kruijf and K. Sankaralingam, “Idempotent code generation:
Implementation, analysis, and evaluation,” in Code Generation and
Optimization (CGO), 2013 IEEE/ACM International Symposium on,
pp. 1-12, IEEE, 2013.

Y. Gu, Y. Liu, Y. Wang, H. Li, and H. Yang, “Nvpsim: A simulator for
architecture explorations of nonvolatile processors,” in 2016 21st Asia
and South Pacific Design Automation Conference (ASP-DAC), pp. 147—
152, IEEE, 2016.

H. Jayakumar, A. Raha, and V. Raghunathan, “Quickrecall: A low
overhead hw/sw approach for enabling computations across power cycles
in transiently powered computers,” in VLSI Design and 2014 13th
International Conference on Embedded Systems, 2014 27th International
Conference on, pp. 330-335, IEEE, 2014.

“Msp430fr5994launchpad development kit (mspexp430fr5994),” Mar
2016.

M. Karimi, H. Choi, Y. Wang, Y. Xiang, and H. Kim, ‘“Real-time task
scheduling on intermittently-powered batteryless devices,” IEEE Internet
of Things Journal, 2021.

A. Sinha and A. P. Chandrakasan, “Jouletrack-a web based tool for
software energy profiling,” in In Proceedings of the 38nd Annual Design
Automation Conference, DAC °01, 2001.

J. San Miguel et al., “The eh model: Analytical exploration of energy-
harvesting architectures,” IEEE Computer Architecture Letters, 2018.
S. Chattopadhyay, L. K. Chong, A. Roychoudhury, T. Kelter, P. Mar-
wedel, and H. Falk, “A unified wcet analysis framework for multi-
core platforms,” ACM Transactions on Embedded Computing Systems
(TECS), vol. 13, no. 4s, p. 124, 2014.

A. Banerjee, S. Chattopadhyay, and A. Roychoudhury, “Precise micro-
architectural modeling for wcet analysis via ai+ sat,” in 2013 IEEE
19th Real-Time and Embedded Technology and Applications Symposium
(RTAS), pp. 87-96, IEEE, 2013.

B. Blackham, Y. Shi, S. Chattopadhyay, A. Roychoudhury, and
G. Heiser, “Timing analysis of a protected operating system kernel,”
in 2011 IEEE 32nd Real-Time Systems Symposium, pp. 339-348, IEEE,
2011.

R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. Thesing, D. Whal-
ley, G. Bernat, C. Ferdinand, R. Heckmann, T. Mitra, et al., “The
worst-case execution-time problem—overview of methods and survey
of tools,” ACM Transactions on Embedded Computing Systems (TECS),
vol. 7, no. 3, p. 36, 2008.

“Msp430 family instruction set summary,” 2006.

J.-M. Chang and M. Pedram, “Register allocation and binding for
low power,” in Proceedings of the 32nd annual ACM/IEEE Design
Automation Conference, pp. 29-35, ACM, 1995.

K. Ma, Y. Zheng, S. Li, K. Swaminathan, X. Li, Y. Liu, J. Sampson,
Y. Xie, and V. Narayanan, “Architecture exploration for ambient energy
harvesting nonvolatile processors,” in Proceedings of 2015 IEEE 21st
International Symposium on High Performance Computer Architecture
(HPCA), HPCA ’15, (Piscataway, NJ, USA), pp. 526-537, IEEE Press,
2015.

C. Lattner et al., “Llvm: A compilation framework for lifelong program
analysis & transformation,” in Proceedings of the International Sympo-
sium on Code Generation and Optimization, CGO ’04, 2004.

M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge, and
R. B. Brown, “Mibench: A free, commercially representative embedded
benchmark suite,” in Workload Characterization, 2001. WWC-4. 2001
IEEE International Workshop on, pp. 3—14, IEEE, 2001.

Q. Liu, X. Wu, L. Kittinger, M. Levy, and C. Jung, “Benchprime:
Effective building of a hybrid benchmark suite,” ACM Transactions on
Embedded Computing Systems (TECS), vol. 16, no. 5s, p. 179, 2017.
“Evaluation board for p2110 powerharvester.”

Authorized licensed use limited to: SUNY AT STONY BROOK. Downloaded on November 17,2022 at 18:01:05 UTC from IEEE Xplore. Restrictions apply.

[83]

[84]

[85]

[86]

K. S. Yildirim, A. Y. Majid, D. Patoukas, K. Schaper, P. Pawelczak,
and J. Hester, “Ink: Reactive kernel for tiny batteryless sensors,” in
Proceedings of the 16th ACM Conference on Embedded Networked
Sensor Systems, pp. 41-53, 2018.

J. de Winkel, C. Delle Donne, K. S. Yildirim, P. Pawelczak, and J. Hes-
ter, “Reliable timekeeping for intermittent computing,” in Proceedings
of the Twenty-Fifth International Conference on Architectural Support
for Programming Languages and Operating Systems, pp. 53-67, 2020.
V. Kortbeek, K. S. Yildirim, A. Bakar, J. Sorber, J. Hester, and
P. Pawelczak, “Time-sensitive intermittent computing meets legacy
software,” in Proceedings of the Twenty-Fifth International Conference
on Architectural Support for Programming Languages and Operating
Systems, pp. 85-99, 2020.

M. de Kruijf and K. Sankaralingam, “Idempotent processor architecture,”

54

[87]

[88]

[89]

in Proceedings of the 44th Annual IEEE/ACM International Symposium
on Microarchitecture, pp. 140-151, ACM, 2011.

B. Ransford, J. Sorber, and K. Fu, “Mementos: System support for
long-running computation on rfid-scale devices,” Acm Sigplan Notices,
vol. 47, no. 4, pp. 159-170, 2012.

M. Xie, C. Pan, M. Zhao, Y. Liu, C. J. Xue, and J. Hu, “Avoiding data
inconsistency in energy harvesting powered embedded systems,” ACM
Transactions on Design Automation of Electronic Systems (TODAES),
vol. 23, no. 3, pp. 1-25, 2018.

B. Yarahmadi and E. Rohou, “Compiler optimizations for safe insertion
of checkpoints in intermittently powered systems,” in International
Conference on Embedded Computer Systems, pp. 169-185, Springer,
2020.

Authorized licensed use limited to: SUNY AT STONY BROOK. Downloaded on November 17,2022 at 18:01:05 UTC from IEEE Xplore. Restrictions apply.

