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Abstract—Ensemble learning, the machine learning paradigm where multiple models are combined, has exhibited promising

perfomance in a variety of tasks. The present work focuses on unsupervised ensemble classification. The term unsupervised refers to

the ensemble combiner who has no knowledge of the ground-truth labels that each classifier has been trained on. While most prior

works on unsupervised ensemble classification are designed for independent and identically distributed (i.i.d.) data, the present work

introduces an unsupervised scheme for learning from ensembles of classifiers in the presence of data dependencies. Two types of data

dependencies are considered: sequential data and networked data whose dependencies are captured by a graph. For both, novel

moment matching and Expectation-Maximization algorithms are developed. Performance of these algorithms is evaluated on synthetic

and real datasets, which indicate that knowledge of data dependencies in the meta-learner is beneficial for the unsupervised ensemble

classification task.

Index Terms—Ensemble learning, unsupervised, sequential classification, crowdsourcing, dependent data

Ç

1 INTRODUCTION

AS social networks, connected “smart” devices and
highly accurate scientific instruments have permeated

society, multiple machine learning, signal processing and
data mining algorithms have been developed to process the
generated data and draw inferences from them. With most
of these algorithms typically designed to operate under dif-
ferent assumptions, combining them can be beneficial
because different algorithms can complement each others
strengths.

Ensemble learning refers to the task of combiningmultiple,
possibly heterogeneous, machine learning models or learn-
ers [1], [2].1 In particular, ensemble classification refers to
combining different classifiers [3], [4].Most popular ensemble
approaches, such as boosting, bagging and stacking, have
been developed for the supervised setup. Boosting methods
improve an ensemble of weak learners by iteratively retrain-
ing them and properly weighting their outputs [5]. Bagging
algorithms train an ensemble of base classifiers on bootstrap
samples of a dataset, and combine their results usingmajority
voting. Stacking approaches train ameta-learner using the out-
puts of base learners as features [6], [7].

In many cases however, labeled data may not be avail-
able, and/or one may only have access to pre-trained

classifiers or human annotators, justifying the need for unsu-
pervised ensemble learning methods. Such a setup emerges
in diverse disciplines including medicine [8], biology [9],
team decision making, distributed detection, and econom-
ics [10], and has recently gained attention with the advent
of crowdsourcing [11], as well as services such as Amazon’s
Mechanical Turk [12], and Figure 8 [13], to name a few. Par-
ticularly in crowdsourcing, human annotators play the role
of base classifiers of an ensemble learning model. Unsuper-
vised ensemble classification is similar to stacking: a meta-
learner has to learn how to combine the outputs of multiple
base learners, in the absence of labeled data.

Multiple algorithms attempt to address the unsupervised
ensemble classification problem, and a common assumption
is that the data are independent and identically distributed (
i.i.d.) from an unknown distribution [14], [15], [16], [17],
[18], [19], [20]. In several cases however, additional domain
knowledge may be available to the meta-learner. This
domain knowledge provides information regarding the
data distribution, as well as data dependencies. In this
paper, two types of data dependence are considered:
sequential and networked data. Classification of sequential
data arises in many natural language processing tasks such
as part-of-speech tagging, named-entity recognition, and
information extraction, to name a few [21]. Examples of net-
worked data, where data correlations or dependencies are
captured in a known graph, include citation, social, commu-
nication and brain networks among others. If data do not
exhibit network structure, the proposed networked data
models can accommodate side information in the form of a
graph to enhance the label fusion process.

A novel unified framework for unsupervised ensemble clas-
sification with data dependencies is proposed. The presented
methods and algorithms are built upon simple concepts
from probability, as well as recent advances in tensor
decompositions [22] and optimization theory, that enable
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assessing the reliability of multiple learners, and combining
their answers. Similar to prior works for i.i.d. data, in our
proposed model each learner has a fixed probability of
deciding that a datum belongs to class k, given that the true
class of the datum is k0. These probabilities parametrize the
learners. Data dependencies are then encoded in the mar-
ginal probability mass function (pmf) of the data labels. For
sequential data, the pmf of data labels is assumed to be a
Markov chain, while for networked data the pmf of data
labels is assumed to be a Markov Random Field (MRF.) As
we are operating in an unsupervised regime, it is required
to assume that learners make decisions independent of each
other. This assumption provides analytical and computa-
tional tractability. Under this assumption, the proposed
methods are able to extract the probabilities that parame-
trize learner performance from their responses. As an initial
step of the proposed framework, the moment-matching
method we introduced in [18] for ensemble classification of
i.i.d. data, is adopted to provide rough estimates for learner
parameters. At the second step, our newly developed expec-
tation maximization (EM) algorithms are employed to refine
the parameters obtained from the initial moment matching
step. These EM algorithms are tailored for the dependencies
present in the data and produce the final label estimates.

The rest of the paper is organized as follows. Section 2
states the problem, and provides preliminaries along with a
brief description of the prior art in unsupervised ensemble
classification for i.i.d. data. Section 3 provides an outline of
moment matching and EM methods for i.i.d. data; Section 4
introduces the proposed approach to unsupervised ensem-
ble classification for sequential data; while Section 5 deals
with its counterpart for networked data. Section 6 presents
numerical tests to evaluate our methods. Finally, conclud-
ing remarks and future research directions are given in
Section 7.

Notation. Unless otherwise noted, lowercase bold letters,
xx, denote vectors, uppercase bold letters, X, represent matri-
ces, and calligraphic uppercase letters, X , stand for sets. The
ði; jÞth entry of matrix X is denoted by ½X�ij; X> denotes the
tranpose of matrix X; RD stands for the D-dimensional real
euclidean space, Rþ for the set of positive real numbers, E½��
for expectation, and k � k for the ‘2-norm. Underlined capital
letters X denote tensors; while ½½A;B;C��K is used to denote
compactly aK parallel factor (PARAFAC) analysis tensor [22]
with factor matrices A :¼ ½aa1; . . . ; aaK �;B :¼ ½bb1; . . . ; bbK �; C :¼
½cc1; . . . ; ccK �, that is ½½A;B;C��K ¼

PK
k¼1 aak � bbk � cck. Finally,

IðAÞ denotes the indicator function of event A, i.e., IðAÞ ¼ 1
ifA occurs and is 0 otherwise.

2 PROBLEM STATEMENT AND PRELIMINARIES

Consider a dataset consisting of N data (possibly vectors)
fxngNn¼1 each belonging to one of K possible classes with
corresponding labels fyngNn¼1, e.g., yn ¼ k if xn belongs to
class k. The pairs ðxn; ynÞf gNn¼1 are drawn from an unknown
joint distribution D, and X and Y denote random variables
such that ðX;Y Þ � D. Consider now M pre-trained learners
that observe fxngNn¼1, and provide estimates of labels. Let
fmðxnÞ 2 f1; . . . ; Kg denote the label assigned to datum xn

by the mth learner. All learner responses are then collected
at a meta-learner. Collect all learner responses in the M �N

matrix F, that has entries ½F�mn ¼ fmðxnÞ, and all ground-
truth labels in the N � 1 vector yy ¼ ½y1; . . . ; yN �>. The task of
unsupervised ensemble classification is: Given only the learner
responses ffmðxnÞ;m ¼ 1; . . . ;MgNn¼1, we wish to estimate
the ground-truth labels of the data fyng; see Fig. 1. In con-
trast to supervised ensemble classification, here the com-
bined models (learners) have been trained beforehand. In
addition, the meta-learner does not have access to any
ground-truth data to learn a combining function. Thus, the
focus of this work is on judiciously combining learner
responses. This setup is similar to crowdsourced classifica-
tion, which also has the additional challenge that human
annotators (corresponding to the learners in the unsuper-
vised ensemble model) may not provide responses for all N
data.

Consider that each learner has a fixed probability of
deciding that a datum belongs to class k0, when presented
with a datum of class k; and all classifiers behavior is pre-
sumed invariant throughout the dataset. Clearly, the perfor-
mance of each learner m is then characterized by the so-
called confusionmatrix Gm, whose ðk0; kÞth entry is

½Gm�k0k :¼ Gmðk0; kÞ ¼ Pr fmðXÞ ¼ k0jY ¼ kð Þ: (1)

TheK �K matrix Gm has non-negative entries that obey the
simplex constraint, since

PK
k0¼1 Pr fmðXÞ ¼ k0jY ¼ kð Þ ¼ 1,

for k ¼ 1; . . . ; K; hence, entries of each Gm column sum up
to 1, that is, G>m11 ¼ 11 and Gm � 00. The confusion matrix
showcases the statistical behavior of a learner, as each col-
umn provides the learners’s probability of deciding the cor-
rect class, when presented with a datum from each class.

Before proceeding, we adopt the following assumptions.

As1 Responses of different learners per datum are condi-
tionally independent, given the ground-truth label Y
of the same datumX; that is

Pr f1ðXÞ ¼ k1; . . . ; fMðXÞ ¼ kM jY ¼ kð Þ

¼
YM
m¼1

Pr fmðXÞ ¼ kmjY ¼ kð Þ ¼
YM
m¼1

Gmðkm; kÞ:

As2 Most learners are better than random.
As1 is satisfied by learners making decisions indepen-

dently, which is a rather standard assumption [14], [16],
[17]. As1 can be thought of as the manifestation of diversity,
which is sought after in ensemble learning systems [2].
Graphically, this model is depicted in Fig. 2. Under As2, the
largest entry per Gm column is the one on the diagonal

Fig. 1. Unsupervised ensemble classification setup, where the outputs of
learners are combined in parallel.
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½Gm�kk � ½Gm�k0k; for k0; k ¼ 1; . . . ; K:

As2 is another standard assumption, used to alleviate the
inherent permutation ambiguity in estimating Gm.

Based on the aforementioned model, knowledge of the
structure of the joint pdf of learner responses and labels is
critical. When data ðxn; ynÞf gNn¼1 are i.i.d. the joint pdf can
be expressed as a product, that is

PrðF; yyÞ ¼
YN
n¼1

Prðfn; ynÞ; (2)

where fn :¼ ½f1ðxnÞ; . . . ; fMðxnÞ�>:
Consider now that data ðxn; ynÞf gNn¼1 belong to a sequence,

i.e., the nth datumdepends on the ðn	 1Þst one. Pertinent set-
tings emerge with speech and natural language processing
tasks such as word identification, part-of-speech tagging,
named-entity recognition, and information extraction [21].

In order to take advantage of this dependence, we will
encode it in the marginal pmf PrðyyÞ of the labels. Specifi-
cally, we postulate that the sequence of labels fyngNn¼1 forms
a one-step time-homogeneous Markov chain; that is, vari-
able yn depends only on its immediate predecessor yn	1.
This Markov chain is characterized by a K �K transition
matrix T, whose ðk; k0Þth entry is given by

½T�kk0 ¼ T ðk; k0Þ ¼ Prðyn ¼ kjyn	1 ¼ k0Þ:

Matrix T has non-negative entries that satisfy the simplex
constraint. The marginal probability of fyngNn¼1 can be
expressed using successive conditioning, as

Pr yy ¼ kkð Þ ¼ Prðy1 ¼ k1Þ
YN
n¼2

T ðkn; kn	1Þ; (3)

where kk :¼ ½k1; . . . ; kN �>. Accordingly, the data fxngNn¼1
depend only on their corresponding yn, and can be drawn
from an unknown conditional pdf as xn � Prðxnjyn ¼ knÞ.
The data pairs fðxn; ynÞgNn¼1 form a hidden Markov model
(HMM), where the labels fyngNn¼1 correspond to the hidden
variables of the HMM, while fxngNn¼1 correspond to the

observed variables of the HMM. As with the i.i.d. case, M
learners observe fxngNn¼1, and provide estimates of their
labels fmðxnÞ. Under As1, the responses of different learners
per datum are conditionally independent, given the
ground-truth label yn of the same datum xn. A graphical
representation of this HMM is provided in Fig. 3.

Another type of data dependency considered in this
work, is the dependency between networked data. In many
cases, additional information pertaining to the data is avail-
able in the form of an undirected graph GðV; EÞ, where V
and E denote the vertex (or node) and edge sets of G, respec-
tively. Examples of such networked data include social and
citation networks [23], [24]. Each node of this graph corre-
sponds to a data point, thus jVj ¼ N , while the edges cap-
ture pairwise relationships between the data.

For networked data, we will take a similar approach to
sequential data and encode data dependence, meaning the
pairwise relationships provided by the graph G, in the mar-
ginal pmf PrðyyÞ. Specifically, we model the labels fyngNn¼1 as
being drawn from an MRF. Due to the MRF structure of
PrðyyÞ, the conditional pmf of yn, for all n ¼ 1; . . . ; N , satisfies
the local Markov property

Prðynjyy	nÞ ¼ PrðynjyyN n
Þ; (4)

where yy	n is a vector containing all labels except yn and yyN n

is a vector containing the labels of node n neighbors. Then,
the joint pmf of all labels is

PrðyyÞ ¼ 1

Z
expð	UðyyÞÞ; (5)

where Z :¼Pyy expð	UðyyÞÞ is the normalization constant,
and UðyyÞ is the so-called energy function. Computing the
normalization constant Z involves all possible configura-
tions of yy; hence, it is intractable for datasets with moderate
to large size N . By the Hammersley-Clifford theorem the
energy function can be written as [25]

UðyyÞ ¼ 1

2

X
ðn;n0Þ2E

V ðyn; yn0 Þ; (6)

where V ðyn; yn0 Þ denotes the clique potential of the ðn; n0Þth
edge, which will be defined in the following sections.

Similar to the i.i.d. and sequential cases, data vectors
fxngNn¼1 are generated from an unknown conditional pdf
xn � Prðxnjyn ¼ kÞ that depends only on their correspond-
ing label yn. M learners observe fxngNn¼1 and provide esti-
mates of their labels fmðxnÞ. With As1 still in effect, learner
responses are conditionally independent given Y .

Fig. 2. Graphical depiction of the Dawid-Skene model for i.i.d. data.
Shaded ellipses are observed variables (here classifier responses).

Fig. 3. Graphical representation of the proposed model for sequential data. Shaded ellipses indicate observed variables (here learner responses).
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2.1 Prior Work

Most prior works on unsupervised ensemble classification
focus on the i.i.d. data case. Possibly the simplest scheme is
majority voting, where the estimated label of a datum is the
one that most learners agree upon. Majority voting pre-
sumes that all learners are equally “reliable,” which is rather
unrealistic, both in crowdsourcing as well as in ensemble
learning setups. Other unsupervised ensemble methods
aim to estimate the parameters that characterize the
learners’ performance, namely the learner confusion matri-
ces. A popular approach is joint maximum likelihood (ML)
estimation of the unknown labels and the aforementioned
confusion matrices using the expectation-maximization
(EM) algorithm [14]. As EM iterations do not guarantee con-
vergence to the ML solution, recent works pursue alterna-
tive estimation methods. For binary classification, [15], [26]
describe each learner with one parameter, its probability of
providing a correct response, and attempts to learn this
parameter. Recently, for binary classification, [17] used the
eigendecomposition of the learner crosscovariance matrix,
to estimate the entries of the 2� 2 confusion matrices of
learners, while [27] introduced a minimax optimal algo-
rithm that can infer learner reliabilities.. In the multiclass
setting, spectral methods such as [16], [18] utilize third-
order moments and tensor decompositions to estimate the
unknown reliability parameters. These estimates can then
initialize the EM algorithm of [14].

Recentworks advocate unsupervised ensemble approaches
for sequential data. A method to aggregate learner labels for
sequential data relies on conditional random fields (CRFs)
[28]. However, this method operates under strong and possi-
bly less realistic assumptions requiring e.g., that only one
learner provides the correct label for each datum. To relax the
assumptions of [28], extensions of the standard Hidden Mar-
kovModel (HMM) to incorporate learner responses have been
reported along with a variational EM [29] algorithm to aggre-
gate them [30]. As both aforementioned methods require tun-
ing of hyperparameters, a training step is necessary, which can
be unrealistic in unsupervised settings.

When features fxngNn¼1 are available at the meta-learner,
approaches based on Gaussian Processes can be used to
classify the data based on learner responses [31], [32], [33].
These approaches can take advantage of some data depen-
dencies, as they rely on linear or nonlinear similarities
between data; however, in addition to requiring the data
features at the meta-learner, these methods have only been
developed for binary classification.

The present work puts forth a novel scheme for unsuper-
vised ensemble classification in the presence of data dependencies.
Our approach builds upon our previous work on unsuper-
vised ensemble classification of i.i.d. data [18], [19], and
markedly extends its scope to handle sequential as well as
networked data, without requiring training or access to
data features. For sequentially dependent data case we pres-
ent a moment matching algorithm that is able to estimate
learner confusion matrices as well as the parameters charac-
terizing the Markov chain of the labels. These confusion
matrices and parameters are then refined using EM itera-
tions tailored for the sequential data classification task. For
the network dependencies, the moment matching method
for i.i.d. data is used to initialize an EM algorithm designed

for networked data. To our knowledge, no existing work
tackles the ensemble classification task under the networked
data regime. Compared to our conference precursor in [34],
here we have included extensive numerical tests as well as
a new EM algorithm for sequential data along with algo-
rithms that tackle networked data.

3 UNSUPERVISED ENSEMBLE CLASSIFICATION

OF I.I.D. DATA

Before introducing algorithms for sequential and networked
data, we first outline moment matching and EM approaches
for i.i.d. data. If all learner confusion matrices were ideally
known, the label of xn could be estimated using a maximum
a posteriori (MAP) classifier. The latter finds the label k that
maximizes the joint probability of yn and observed learner
responses ffmðxnÞ ¼ kmgMm¼1

ŷn ¼ argmax
k2f1;...;Kg

LðxnjkÞPrðyn ¼ kÞ

¼ argmax
k2f1;...;Kg

logpk þ
XM
m¼1

log ðGmðkm; kÞÞ;
(7)

where pk :¼ Prðyn ¼ kÞ ¼ PrðY ¼ kÞ and LðxnjkÞ :¼
Pr f1ðxnÞ ¼ k1; . . . ; fMðxnÞ ¼ kM jY ¼ kð Þ, and the second
equality of (7) follows from As1 and properties of the loga-
rithm. In addition, if all classes are assumed equiprobable,
(7) reduces to the maximum likelihood (ML) classifier.

But even for non-equiprobable classes, unsupervised
ensemble classification requires estimates of the class priors
pp :¼ ½p1; . . . ;pK �> as well as all the learner performance
parameters fGmgMm¼1.

3.1 EM Algorithm for i.i.d. Data

Here we outline how the EM algorithm can be employed to
estimate the wanted learner performance parameters by
iteratively maximizing the log-likelihood of the observed
learner responses; that is, log PrðF; uuÞ, where uu collects all
the learner confusion matrices (prior probabilities are
assumed equal and are dropped for simplicity). Each EM
iteration includes the expectation (E-)step and the maximi-
zation (M-)step.

At the E-step of the ðiþ 1Þst iteration, the estimate uuðiÞ is
given, and the so-termed Q-function is obtained as

Qðuu; uuðiÞÞ ¼ EyyjF;uuðiÞ ½log Prðyy;F; uuÞ�
¼ EyyjF;uuðiÞ ½log PrðFjyy; uuÞ� þ EyyjF;uuðiÞ ½log Prðyy; uuÞ�: (8)

Since the data are i.i.d., we have under As1 that

EyyjF;uuðiÞ ½log PrðFjyy; uuÞ� ¼
XN
n¼1

XK
k¼1

XM
m¼1

logGmðfmðxnÞ; kÞqnk;

where qnk :¼ Prðyn ¼ kjffmðxnÞgMm¼1; uuðiÞÞ is the posterior of
label yn given the observed data and current parameters,
and

EyyjF;uuðiÞ ½log Prðyy; uuÞ� ¼
XN
n¼1

XK
k¼1

log Prðyn ¼ k; uuÞqnk:
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Under this model, it can be shown that [14], [16]

q
ðiþ1Þ
nk ¼ 1

Z
exp

XM
m¼1

XK
k0¼1
IðfmðxnÞ ¼ k0Þlog ðGðiÞm ðk0; kÞÞ

 !
;

(9)

where Z is the normalization constant.
At the M-step, learner confusion matrices are updated by

maximizing the Q-function to obtain

uuðiþ1Þ ¼ argmax
uu

Qðuu; uuðiÞÞ: (10)

It can be shown per learnerm that (10) boils down to

½Gðiþ1Þm �k0k ¼
PN

n¼1 q
ðiþ1Þ
nk IðfmðxnÞ ¼ k0ÞPK

k
00 ¼1
PN

n¼1 q
ðiþ1Þ
nk IðfmðxnÞ ¼ k00 Þ

: (11)

The E- and M-steps are repeated until convergence, and ML
estimates of the labels are subsequently found as

ŷðxnÞ ¼ argmax
k2f1;...;Kg

PrðffmðxnÞgMm¼1; yn ¼ kÞ

¼ argmax
k2f1;...;Kg

qnk:

3.2 Moment-Matching for i.i.d. Data

As an alternative to EM, the annonator performance param-
eters can be estimated using the moment-matching method
we introduced for i.i.d. data in [18], which we outline here
before extending it to dependent data in the ensuing
sections.

Consider representing label k using the canonical K � 1
vector eek, namely the kth column of theK �K identitymatrix
I. Let fmðXÞ denote the mth learner’s response in vector for-
mat. Since fmðXÞ is just a vector representation of fmðXÞ, it
holds that Pr fmðXÞ ¼ k0jY ¼ kð Þ 
 Pr fmðXÞ ¼ eek0 jY ¼ kð Þ.
With ggm;k denoting the kth column ofGm, it thus holds that

ggm;k :¼ E½fmðXÞjY ¼ k� ¼
XK
k0¼1

eek0 Pr fmðXÞ ¼ k0jY ¼ kð Þ;

(12)

where we used the definition of conditional expectation.
Using (12) and the law of total probability, the mean vector
of responses from learnerm, is hence

E½fmðXÞ� ¼
XK
k¼1

E½fmðXÞjY ¼ k�Pr Y ¼ kð Þ ¼ Gmpp: (13)

Upon defining the diagonal matrix P :¼ diagðppÞ, the K �K
cross-correlation matrix between the responses of learners
m andm0 6¼ m, can be expressed as

Rmm0 :¼ E½fmðXÞf>m0 ðXÞ�

¼
XK
k¼1

E½fmðXÞjY ¼ k�E½f>m0 ðXÞjY ¼ k�Pr Y ¼ kð Þ

¼ GmdiagðppÞG>m0 ¼ GmPG>m0
(14)

where we successively relied on the law of total probability,
As1, and (12). Consider now the K �K �K cross-correla-
tion tensor between the responses of learners m, m0 6¼ m
andm00 6¼ m0;m, namely

Cmm0m00 ¼ E½fmðXÞ � fm0 ðXÞ � fm00 ðXÞ�: (15)

It can be shown that Cmm0m00 obeys a PARAFAC model with
factor matrices Gm;Gm0 and Gm00 [18]; that is

Cmm0m00 ¼
XK
k¼1

pkggm;k � ggm0;k � ggm00;k

¼ ½½GmP;Gm0 ;Gm00 ��K:
(16)

Note here that the diagonal matrix P can multiply any of
the factor matrices Gm;Gm0 , or, Gm00 .

Having available the sample average counterparts of
(13), (14) and (15), correspondingly fmmmgMm¼1, fSmm0 gMm;m0¼1,
and fTmm0m00 gMm;m0;m00 ¼1, estimates of fGmgMm¼1 and pp can be
readily obtained. This approach is an instantiation of the
method of moments estimation method, see e.g., [35], and
can be cast as the following constrained optimization task

min
pp2Cp ;fGm2CgMm¼1

gðfGmgMm¼1;ppÞ; (17)

where

gðfGmg;ppÞ :¼
XM
m¼1
kmmm 	 Gmppk22

þ
XM

m ¼ 1
m0 >m

kSmm0 	 GmPG>m0 k2F

þ
XM

m ¼ 1
m0 >m;m00 >m0

kTmm0m00 	 ½½GmP;Gm0 ;Gm00 ��Kk2F ;

C :¼ fG 2 RK�K : G � 00;G>11 ¼ 11g, is the convex set of
matrices whose columns lie on a probability simplex, and
Cp :¼ fuu 2 RK : uu � 00; uu>11 ¼ 1g denotes the simplex con-
straint for a K � 1 vector. The non-convex optimization in
(17) can be solved using the alternating optimization
method described in [18], which is guaranteed to converge
to a stationary point of g [36]. As2 is used here to address
the permutation ambiguity that is induced by the tensor
decomposition of (17). Interested readers are referred to [18]
for implementation details, and theoretical guarantees.

Upon obtaining fĜmgMm¼1 and p̂p, a MAP classifier can be
subsequently employed to estimate the label for each
datum; that is, for n ¼ 1; . . . ; N , we obtain

ŷðxnÞ ¼ argmax
k2f1;...;Kg

log p̂k þ
XM
m¼1

log ĜmðfmðxnÞ; kÞ; (18)

where Ĝmðk0; kÞ ¼ ½Ĝm�k0k, and p̂k ¼ ½p̂p�k. The estimates
fĜmgMm¼1; p̂p; fŷng; can be improved using the EM iterations
in Section 3.1. Such a refinement is desirable when N is rela-
tively small, and thus moment estimates are not as reliable.

Next, we will introduce our novel approaches for ensem-
ble classification with sequential and networked data.
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4 SEQUENTIALLY DEPENDENT DATA

Having recapped moment matching and EM approaches for
i.i.d. data, we now turn our attention to the sequential data
case. Recall from Section 2 that we postulate labels yy form-
ing a one-step time-homogeneous Markov chain, character-
ized by the transition matrix T 2 C, and that learner
responses obey As1. The labels yy along with learner
responses F, form an HMM. As with the i.i.d. case, here we
develop both moment-matching and EM algorithms tai-
lored for sequential data.

4.1 Label Estimation for Sequential Data

Given only learner responses for all data in a sequence, an
approach to estimating the labels of each datum, meaning
the hidden variables of the HMM, is to find the sequence kk
that maximizes the joint probability of the labels yy and the
learner responses F, namely

Pr yy ¼ kk; Fð Þ

¼ Prðy1 ¼ k1Þ
YN
n¼2

T ðkn; kn	1Þ
YM
m¼1

GmðfmðxnÞ; knÞ;
(19)

where the equality is due to (3) and As1. This can be done
efficiently using the Viterbi algorithm [37], [38]. In order to
obtain estimates of the labels, fGmgMm¼1 and T must be avail-
able. The next subsections will show that fGmgMm¼1 and T
can be recovered by the learner responses, using moment
matching and/or EM approaches.

4.2 Moment Matching for Sequential Data

Under the sequential data model outlined earlier, we
require an additional assumption before presenting our
moment matching algorithm.

As3 The Markov chain formed by the labels fyng has a
unique stationary distribution pp :¼ ½p1; . . . ;pK �> ¼
½PrðY ¼ 1Þ; . . . ;PrðY ¼ KÞ�>, and is also irreducible.

Similar to [39], this assumption enables decoupling the
problem of learning the parameters of interest in two steps.
First, estimates of the confusion matrices fĜmgMm¼1 and sta-
tionary priors p̂p are obtained; and subsequently, the transi-
tion matrix is estimated as T̂ before obtaining an estimate of
the labels fŷngNn¼1.

Under As3, the HMM is mixing and assuming that y0 is
drawn from the stationary distribution pp, the responses of a
learner m can be considered to be generated from a mixture
model, see e.g., [39]

fmðXÞ �
XK
k¼1

pk PrðfmðXÞjY ¼ kÞ : (20)

Based on the latter, the remainder of this subsection will
treat labels fyngNn¼1, as if they had been drawn i.i.d. from the
stationary distribution pp, that is yn � pp for n ¼ 1; . . . ; N .
Then, the procedure outlined in Section 3.2 can be readily
adopted to obtain estimates of the stationary distribution p̂p

and the confusion matrices fĜmgMm¼1.
With estimates of learner confusion matrices fĜmg and

stationary probabilities p̂p at hand, we turn our attention to
the estimation of the transition matrix T. To this end,

consider the cross-correlation matrix of consecutive vector-
ized observations between learners m and m0, namely
~Rmm0 ¼ E½fmðxnÞf>m0 ðxn	1Þ�. Under the HMM of Section 4,
the latter is given by

~Rmm0 ¼ GmTdiagðppÞG>m0 ¼ GmAG>m0 (21)

where A :¼ TdiagðppÞ. Letting ~Smm0 denote the sample coun-
terpart of (21), and with fĜmgMm¼1 available, we can recover
T as follows. First, we solve the convex moment-matching
optimization problem

min
A2CS

XM
m ¼ 1
m0 >m

k~Smm0 	 ĜmAĜ>m0 k2F ; (22)

where CS is the set of matrices whose entries are positive
and sum to 1, namely CS :¼ fX 2 RK�K : X � 00; 11>X11 ¼ 1g.
The constraint is due to the fact that 11>T ¼ 11>, diagðppÞ11 ¼
pp, and pp>11 ¼ 1. Note that (22) is a standard constrained con-
vex optimization problem that can be solved with off-the-
shelf tools, such as CVX [40]. Having obtained Â from (22),
we can then estimate the transition matrix as

T̂ ¼ Âðdiagðp̂pÞÞ	1: (23)

Note here that explicit knowledge of pp is not required, as its
estimate can be recovered from Â as

p̂p> ¼ 11>Â ¼ 11>T̂diagðp̂pÞ ¼ 11>diagðp̂pÞ:
The following proposition argues the consistency of the
transition matrix estimates T̂.

Proposition 1. Given accurate estimates of fGmg and pp, the
estimate T̂ given by (22) and (23) approaches T asN !1.

Proof. By the law of large numbers, ~Smm0 ! ~Rmm0 as N !
1 for all m;m0. Since the objective in (22) is convex, from
[41], we have that Â will converge to A ¼ TdiagðppÞ as
N !1. Finally, as T̂ can be recovered from Â in closed
form [cf. (23)], the proof is complete. tu
With estimates of fĜmg; p̂p and T̂ at hand, estimates of the

labels fyngNn¼1 can be obtained using the method described
in Section 4.1. Futhermore, the estimates of fĜmg; p̂p and T̂
can be used to initialize an EM algorithm (a.k.a. Baum-
Welch), whose details are provided in the next subsection.

Remark 1. While here we employed the algorithm of [18] to esti-
mate fGmg, any other unsupervised ensemble classification
algorithm, such as [14], [16], can be utilized too. In addition,
methods that jointly estimate confusion matrices and Markov
chain parameters such as [42], can also be appropriately modi-
fied for the ensemble classification task.

4.3 EM Algorithm for Sequential Data

As with the i.i.d. case of Section 3, the EM algorithm devel-
oped here iteratively maximizes the log-likelihood of the
observed learner responses. In order to update the parame-
ters of interest uu :¼ vecð½T;G1; . . . ;GM �Þ per iteration, the fol-
lowing two quantities have to be found

qnk ¼ Prðyn ¼ kjF; uuÞ; (24)
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and

�nðk; k0Þ ¼ Prðyn ¼ k; ynþ1 ¼ k0jF; uuÞ : (25)

Luckily, due to the causal structure of PrðyyÞ, the aforemen-
tioned quantities can be estimated efficiently using the for-
ward-backward algorithm [37], whose details can be found
in Appendix A of the supplementary material, which can be
found on the Computer Society Digital Library at http://
doi.ieeecomputersociety.org/10.1109/TKDE.2020.3046645.

Algorithm 1. EM Algorithm for Sequential Data

Input: Learner responses ffmðxnÞgM;N
m¼1;n¼1, initial estimates

Tð0Þ; fGð0Þm gMm¼1.
Output: Estimates T̂; fĜmgMm¼1.
1: while not converged do
2: Estimate q̂

ðiþ1Þ
nk and �̂ðiþ1Þn ðk; k0Þ using the forward-backward

algorithm (Appendix A).
3: Estimate fĜðiþ1Þm gMm¼1 via (27).
4: Estimate T̂ðiþ1Þ via (26).
5: i iþ 1
6: end while

Algorithm 2. Unsupervised Ensemble Classifier for
Sequential Data

Input: Learner responses ffmðxnÞgM;N
m¼1;n¼1:

Output: Estimates of data labels fŷngNn¼1.
1: Estimate pp; fGmgMm¼1 via (17).
2: Estimate T̂ via (22) and (23).
3: Estimate ŷn using the Viterbi algorithm [cf. Section 4.1].
4: If needed refine estimates of T̂; fĜmg and fŷng using

Algorithm 1.

At iteration i, after obtaining q
ðiþ1Þ
nk ; �ðiþ1Þn ðk; k0Þ for k; k0 ¼

1; . . . ; K and n ¼ 1; . . . ; N , via the forward-backward algo-
rithm, the transition and confusion matrix estimates can be
updated as

½T̂ðiþ1Þ�k0k ¼
PN	1

n¼1 �ðiþ1Þn ðk0; kÞPN	1
n¼1 q

ðiþ1Þ
nk0

(26)

½Ĝðiþ1Þm �k0k ¼
PN

n¼1 q
ðiþ1Þ
nk IðfmðxnÞ ¼ k0ÞPK

k
00 ¼1
PN

n¼1 q
ðiþ1Þ
nk IðfmðxnÞ ¼ k00 Þ

: (27)

The EM iterations for sequential datawith dependent labels is
summarized in Algorithm 1, while the overall ensemble clas-
sifier for sequential data is tabulated inAlgorithm 2. Note that
the EM algorithmof this subsection does not rely onAs3.

5 NETWORK DEPENDENT DATA

To tackle the networked data case, this section will intro-
duce our novel approach to unsupervised ensemble classifi-
cation of networked data. Given a graph G encoding data
dependencies, recall from Section 2 that the joint pmf of all
labels follows an MRF; thus, PrðyyÞ ¼ 1

Z expð	UðyyÞÞwith

UðyyÞ ¼ 1

2

X
ðn;n0Þ2E

V ðyn; yn0 Þ;

where V ðyn; yn0 Þ is the clique potential of the ðn; n0Þth edge.
Here, we select the clique potential as

V ðyn; yn0 Þ :¼ 0 if yn ¼ yn0
dnn0 if yn 6¼ yn0

�
; (28)

where dnn0 > 0 is some predefined scalar, which controls
how much we trust the given graph G. The local energy at
node (datum) n of the graph is then defined as

UnðynÞ ¼ 1

2

X
n02N n

V ðyn; yn0 Þ: (29)

This particular choice of clique potentials forces neighbor-
ing nodes (data) of the graph to have similar labels, and has
been successfully used in image segmentation [43], [44].
Under As1 and the aforementioned model, the joint pmf of
label yn and corresponding learner responses ffmðxnÞgMm¼1
given the neighborhood yyN n

of node n, can be expressed as

Pr ffmðxnÞgMm¼1; yn ¼ kjyyN n
¼ kkN n

� �

¼
YM
m¼1

GmðfmðxnÞ; kÞPrðyn ¼ kjyyN n
¼ kkN nÞ;

(30)

and accordingly the posterior probability of label yn as

Pr yn ¼ kjffmðxnÞgMm¼1; yyN n
¼ kkN n

� �

/
YM
m¼1

GmðfmðxnÞ; kÞPrðyn ¼ kjyyN n
¼ kkN n

Þ

¼ exp 	UnðkÞ þ
XM
m¼1

logGmðfmðxnÞ; kÞ
 !

:

(31)

5.1 Label Estimation for Networked Data

Finding ML estimates of the labels ŷy, under the aforemen-
tioned model, involves the following optimization problem:

ŷy ¼ argmax
yy

PrðF; yyÞ ¼ argmax
yy

PrðFjyyÞPrðyyÞ

¼ argmax
yy

1

Z
expð	UðyyÞÞPrðFjyyÞ:

(32)

Unfortunately, (32) is intractable even for relatively smallN ,
due to the structure of (5). This motivates well approxima-
tion techniques to obtain estimates of the labels.

Popular approximation methods include Gibbs sam-
pling [45] and mean-field approximations [43]. Here, we
opted for an iterative method called iterated conditional
modes (ICM), which has been used successfully in image
segmentation [44]. Per ICM iteration, we are given estimates
fĜmgMm¼1, and update the label of datum n by finding the k
maximizing its local posterior probability; that is

~yðtÞn ¼ argmax
k2f1;...;Kg

Pr yn ¼ kjffmðxnÞgMm¼1; ~yyðt	1ÞN n

� �

¼ argmin
k2f1;...;Kg

UnðkÞ 	
XM
m¼1

log ĜmðfmðxnÞ; kÞ
� �

;

(33)
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where the superscript denotes the iteration index, ~yyN n

denotes the label estimates provided by the previous ICM
iteration, and the second equality is due to (31). The optimi-
zation in (33) is carried out for n ¼ 1; . . . ; N until the values
of ~yy have converged or until a maximum number of itera-
tions Tmax has been reached.

The next subsection puts forth an EM algorithm for esti-
mating fŷngNn¼1 and fĜmgMm¼1.

5.2 EM Algorithm for Networked Data

As with the i.i.d. case in Section 3 and the sequential case in
Section 4, the EM algorithm of this section seeks to iteratively
maximize the marginal log-likelihood of observed learner
responses. However, the Q-function [cf. Section 3.1] is now
cumbersome to compute under theMRF constraint on yy.

For this reason, we resort to the approximation technique
of the previous subsection to compute estimates of qnk ¼
Prðyn ¼ kjffmðxnÞgMm¼1; uuÞ. Specifically, per EM iteration i,

we let ŷyðiÞ :¼ ½ŷðiÞ1 ; . . . ; ŷ
ðiÞ
N � denote the estimates obtained by

the iterative procedure of Section 5.1. Then, estimates q̂
ðiþ1Þ
nk

are obtained as [cf. 31]

q̂
ðiþ1Þ
nk ¼ 1

Z0
exp 	U ðiþ1Þn ðkÞ þ

XM
m¼1

log ĜðiÞm ðfmðxnÞ; kÞ
� � !

;

(34)

where

Z0 ¼
X
k

exp 	U ðiþ1Þn ðkÞ þ
XM
m¼1

log ĜðiÞm ðfmðxnÞ; kÞ
� � !

;

is the normalization constant, and U ðiþ1Þn ðkÞ is given by

Uðiþ1Þn ðkÞ ¼ 1

2

X
n02N n

V ðk; ŷðiþ1Þ
n0 Þ: (35)

Finally, the M-step that involves finding estimates of
fGmgMm¼1 is identical to the M-step of the EM algorithm of
Section 3.1 for i.i.d. data; that is

½Ĝðiþ1Þm �k0k ¼
PN

n¼1 q̂
ðiþ1Þ
nk IðfmðxnÞ ¼ k0ÞPK

k
00 ¼1
PN

n¼1 q̂
ðiþ1Þ
nk IðfmðxnÞ ¼ k00 Þ

: (36)

Algorithm 3. EM Algorithm for Networked Data

Input: Learner responses ffmðxnÞgM;N
m¼1;n¼1, initial yy

ð0Þ; fGð0Þm gMm¼1,
Data graph GðV; EÞ:
Output: Estimates of data labels fŷngNn¼1:
1: while not converged do
2: while not converged AND t < Tmax do
3: for n ¼ 1; . . . ; N do
4: Update ~yðtÞn using (33).
5: end for
6: t tþ 1
7: end while
8: Compute q̂

ðiþ1Þ
nk using (34).

9: Compute fĜðiþ1Þm gMm¼1 using (36).
10: i iþ 1
11: end while

Similar to the i.i.d. case, the aforementioned EM solver
deals with a non-convex problem. In addition, the ICM
method outlined in Section 5.1 is a deterministic approach
that performs greedy optimization. Therefore, proper ini-
tialization is crucial for obtaining accurate estimates of the
labels and learner confusion matrices.

As with the decoupling approach of Section 4, here we first
obtain estimates of learner confusion matrices fĜmgMm¼1 and
labels ŷy, using the moment-matching algorithm of Section 3.2.
These values are then provided as initialization toAlgorithm3.
In cases where N is small to have accurate moment estimates,
majority voting can be used instead to initialize Algorithm 3.
The entire procedure for unsupervised ensemble classification
with networked data is tabulated inAlgorithm 4.

The next section will evaluate the performance of our
proposed schemes.

Algorithm 4. Unsupervised Ensemble Classifier for
Networked Data

Input: Learner responses ffmðxnÞgM;N
m¼1;n¼1, Data graph GðV; EÞ

Output: Estimates of data labels fŷngNn¼1
1: Estimate initial values of fGmgMm¼1 via (17).
2: Estimate initial values of fŷngNn¼1 using (18).

3: Refine estimates of fŷngNn¼1 and fĜmgMm¼1 using Algorithm 3.

Remark 2. Contemporary Bayesian inference tools, such as vari-
ational inference [29], can also be appropriately modified to esti-
mate labels of networked data that are expected to increase
classification performance.

6 NUMERICAL TESTS

The performance of the novel algorithms for both sequential
and networked data is evaluated in this section using syn-
thetic and real datasets. To showcase the importance of
accounting for data dependencies in the unsupervised
ensemble task, the proposed algorithms are compared to
their counterparts designed for i.i.d. data. Since most of the
numerical tests involve data with multiple, and potentially
imbalanced classes, unless otherwise noted, the metrics
evaluated are the per-class precision, per-class recall and
the overall F-score [46]. F-score is the harmonic mean of pre-
cision and recall, that is

F-score ¼ 2

K

XK
k¼1

Precisionk � Recallk
Precisionk þRecallk

; (37)

where Precisionk;Recallk denote the per-class precision and
recall, respectively. Precisionk for a class k measures the
proportion of the data predicted to be in class k that are
actually from this class. Recallk for a class k on the other
hand measures the proportion of data that were actually in
class k and were predicted to be in class k. To assess how
accurately the algorithms can recover learner parameters,
the average confusion matrix estimation error is also evalu-
ated on synthetic data, as

�"CM :¼ 1

M

XM
m¼1

kGm 	 Ĝmk1
kGmk1

¼ 1

M

XM
m¼1
kGm 	 Ĝmk1: (38)
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All results represent averages over 10 independent Monte
Carlo runs, using MATLAB [47]. Vertical lines in some fig-
ures indicate standard deviation.

6.1 Sequential Data

For sequential data, Algorithm 2 with and without EM
refinement (denoted as Alg. 2 + Alg. 1 and Alg. 2, respec-
tively) is compared to the single best classifier, with respect
to F-score, of the ensemble (denoted as Single best); majority
voting (denoted as MV); the moment-matching method of
[18] described in Section 3.2 (denoted as MM); Algorithm 1
initialized with majority voting (denoted as MV + Alg. 1);
and, ”oracle” classifiers. “Oracle” classifiers solve (19) using
Viterbi’s algorithm [38], and have access to ground-truth
learner confusion matrices fGmgMm¼1 and the ground-truth
Markov chain transition matrix T. These “oracle” classifiers
are used as an ideal benchmark for all other methods. The
transition matrix estimation error kT	 T̂k1 is also evaluated
using synthetic data. For real data tests, instead of MM the
EM algorithm of [14] initialized with MM is evaluated
(denoted as DS.)

All datasets in this subsection are split into sequences.
Here, we assume that per dataset these sequences are
drawn from the same ensemble HMM [cf. Section 4]. The
reported F-score represents the averaged F-score from all
sequences.

6.1.1 Synthetic Data

For synthetic tests, S sequences of Ns; s ¼ 1; . . .S, ground-
truth labels each, were generated from a Markov chain,
whose transition matrix was drawn at random such that T 2
C. Each of the N ¼Ps Ns ground-truth labels fyngNn¼1 corre-
sponds to one out of K possible classes. Afterwards,
fGmgMm¼1 were generated at random, such that Gm 2 C, for
all m ¼ 1; . . . ;M, and bM=2c þ 1 learners are better than
random, as per As2. Then learners’ responses were gener-
ated as follows: if yn ¼ k, then the response of learnermwill
be generated randomly according to the kth column of its
confusion matrix, ggm;k [cf. Section 2], that is fmðxnÞ � ggm;k.

Fig. 4 shows the average F-score for a synthetic dataset
with K ¼ 4, M ¼ 10 learners and a variable number of data
N and Ns ¼ 40 for all s ¼ 1; . . . ; S. Fig. 5 shows the average
confusion and transition matrix estimation errors for vary-
ing N . As the number of data N increases the performance
of the proposed methods approaches the performance of

the “oracle” one. Accordingly, the confusion and transition
matrix estimates are approaching the true ones as N
increases. This is to be expected, as noted in [18], since the
estimated moments are more accurate for large N . Interest-
ingly, Algorithm 1 performs well when initialized with
majority voting, even though it reaches a performance pla-
teau as N increases. For small N however, it outperforms
the other proposed methods. This suggests that initializing
Algorithm 1 with majority voting is preferable when N is
not large enough to obtain accurate moment estimation.

The next experiment evaluates the influence of the num-
ber of learnersM for the sequential classification task. Figs. 6
and 7 showcase results for an experiment with K ¼ 4, fixed
number of data N ¼ 103; Ns ¼ 40 and a varying number of
learnersM. Clearly, the presence of multiple learners is ben-
eficial, as the F-score increases for all algorithms, while the
confusion and transition matrix errors decrease. As with the
previous experiment, the performance of Alg. 1 + Alg. 2
improves in terms of F-score, asM increases.

6.1.2 Real Data

Further tests were conducted on three real datasets, the
part-of-speech (POS) tagging dataset, the named entity rec-
ognition (NER) dataset, and the biomedical information
extraction (IE) [30] dataset.

For the POS datasetM ¼ 10 classifiers were trained using
NLTK [48] on subsets of the Brown coprus [49] to provide

Fig. 4. Average F-score for a synthetic sequential dataset with K ¼ 4
andM ¼ 10 learners.

Fig. 5. Average estimation errors of confusion matrices and prior proba-
bilities for a synthetic sequential dataset with K ¼ 4 and M ¼ 10
learners.
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part-of-speech (POS) tags of text. The number of tags isK ¼
12. Then the classifiers provided POS tags for all words in
the Penn Treebank corpus [50], which contains N ¼ 100; 676
words.

The NER dataset consists of 5,916 crowd annotated sen-
tences from the CoNLL database [28], [51]. The dataset con-
tains N ¼ 78; 107 words belonging to K ¼ 9 distinct classes,
each describing a different named-entity such as person,
location, and organization. Corresponding to learners in
our models, M ¼ 47 human annotators provided labels for
the words in the dataset.

The Biomedical IE dataset consists of 5,000 medical paper
Abstracts, on which M ¼ 312 human annotators, were
tasked with marking all text spans in a given Abstract that
identify the population of a randomized controlled trial.
The dataset consists of N ¼ 7; 880; 254 words belonging into
K ¼ 2 classes: in a span identifying the population or out-
side. For this particular dataset we evaluate Precision and
Recall per sequence in the following way, which was sug-
gested in [30]

Precision ¼ # true positive words

# words in a predicted span

Recall ¼ # words in a predicted span

# words in ground-truth span
:

These new definitions of precision and recall, allow us to
credit partial matches. The justification for using these alter-
native definitions is that the previous ones are too strict for
this task, where annotated sequences are especially long.
We used the M ¼ 120 annotators that had provided the

largest number of responses to mantain reasonable compu-
tational complexity. Results for all datasets are listed in
Table 1. For the POS dataset, it can be seen that Alg. 1 +
Alg. 2 performs best in all metrics. Similar results are show-
cased for the NER dataset, with majority voting achieving
the best precision, and Alg. 1 + Alg. 2 exhibiting the best
recall and overall F-score. For the Biomedical IE dataset,
while majority voting achieves the best precision of all algo-
rithms, due to its low recall, the overall F-score is low. How-
ever, Alg. 1 + Alg. 2 outperforms competing alternatives
with regards to F-score, while MV + Alg. 1 exhibits the best
recall. Note that the single best learners for the NER and
Biomedical IE datasets are evaluated only on the subsets of
data for which they have provided responses; the best
learner for the NER dataset annotated approximately 12,500

Fig. 6. Average F-score for a synthetic sequential dataset with K ¼ 4
andN ¼ 103 data.

Fig. 7. Average estimation errors of confusion matrices and prior proba-
bilities for a synthetic sequential dataset with K ¼ 2 and M ¼ 10
learners.

TABLE 1
Results for Real Data Experiments With Sequential Data

The asterisk � indicates that results are from a subset of available data.
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words, whereas the best learner for the Biomedical IE data-
set annotated approximately 14,300 words. The perfor-
mance of the proposed label aggregation methods relies on
multiple parameters such as the number and ability of
learners, and how well the proposed model approximates
the learner behavior and data. The modest performance
gains of Algorithms 2, 1 and MV + 1 compared to the single
best learner may be attributed to such issues.

6.2 Networked Data

For networked data, Algorithm 4 (denoted as Alg. 4) is com-
pared to the single best classifier, with respect to F-score, of
the ensemble (denoted as Single best), majority voting
(denoted as MV), the moment-matching method of [18]
described in Section 3.2 (denoted as MM) and Algorithm 3
initialized with majority voting (denoted as MV + Alg. 3).
For real data tests, instead of MM the EM algorithm of [14]
initialized with MM is evaluated (denoted as DS.) The aver-
age degree �d of the network is used to quantify the degree
of data dependency (�d is the number of connections aver-
aged across nodes).

6.2.1 Synthetic Data

For the synthetic data tests, anN-node,K community graph
is generated using a stochastic block model [52]. Each com-
munity corresponds to a class, and the labels fyngNn¼1 indi-
cate the community each node belongs to, i.e., yn ¼ k if
node n belongs to the kth community. Afterwards, fGmgMm¼1
were generated at random, such that Gm 2 C, for all m ¼
1; . . . ;M, and learners are better than random, as per As2.
Then learners’ responses were generated as follows: if yn ¼
k, then the response of learner m will be generated ran-
domly according to the kth column of its confusion matrix,
ggm;k [cf. Section 2], that is fmðxnÞ � ggm;k. For the synthetic
data tests, we set dnn0 ¼M. Fig. 8 shows the average F-score
for a synthetic dataset with K ¼ 4 and M ¼ 10 learners for
varying number of data N . Here the average degree is
�d ¼ 0:5. Fig. 9 shows the average confusion estimation error
as N increases. As with sequential data, the F-score of the
proposed algorithms increases with N growing, and confu-
sion matrix estimation error decreases. MV+ Alg. 3 quickly
reaches a plateau of performance as MV also does not
improve with increasing N . At the same time Alg. 4 capital-
izes on the initialization provided by MM. Fig. 10 shows the

F-score for a similar experiment, but with network average
degree �d ¼ 5, i.e., higher graph connectivity. Here, we
observe algorithmic behavior similar to that of the previous
experiment; however, due to the higher connectivity of the
graph Alg. 4 has a greater F-score gap to MM. This indicates
that networked data with higher connectivity benefit more
from Alg. 4 andMV+ Alg. 3.

6.2.2 Real Data

Further tests were conducted on six real datasets. For the
Cora, Citeseer [23] and Pubmed [24] datasets the graph G and
data features fxng are provided with the dataset. In these
cases, M ¼ 10 classification algorithms from MATLAB’s
machine learning toolboxwere trained on different randomly
selected subsets of the datasets. Afterwards, these algorithms
provided labels for all data in the dataset. BostonUniversity’s
biomedical image library (BU-BIL) [53] magnetic resonance
imaging (MRI) dataset contains 35 images of rabbit aortas
with size 25� 24. Learner responses per pixel are gathered
through Amazon’s mechanical turk. Here, the per-image
graph G is the grid graph defined by the pixels of each
image, that is each pixel is connected to its adjacent 8 pixels.
For these datasets, we set dnn0 ¼M. TheMusic genre and Sen-
tence Polarity datasets [33] are crowdsourcing datasets,
where the features fxng are provided and learner responses
F are gathered through crowdsourcing platforms. In these
cases, the graphswere generated from the data features using
k-nearest neighbors. Since the graphs are generated from

Fig. 8. Average F-score for a synthetic networked dataset with K ¼ 4,
M ¼ 10 learners and average degree �d ¼ 0:5. Fig. 9. Average estimation errors of confusion matrices for a synthetic

networked dataset withK ¼ 4 andM ¼ 10 learners.

Fig. 10. Average F-score for a synthetic networked dataset with K ¼ 4,
M ¼ 10 learners and average degree �d ¼ 5.
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the data features, here we set dnn0 ¼Mn=2, where Mn is
the number of learners that have provided a response for the
nth datum.

The Cora, CiteSeer and Pubmed datasets are citation net-
works and the versions used here are preprocessed by [54].
The Cora dataset consists of N ¼ 2; 708 scientific publica-
tions classified into K ¼ 7 classes. The features fxng of this
dataset are sparse 1,433-dimensional vectors and for this
dataset each classification algorithm was trained on a ran-
dom subset of 150 instances. The CiteSeer dataset consists
of N ¼ 3; 312 scientific publications classified into one of
K ¼ 6 classes. The features fxng of this dataset are sparse
3,703-dimensional vectors, and each classification algorithm
was trained on a subset of 100 instances. The Pubmed data-
set is a citation network that consists of N ¼ 19; 717 scien-
tific publications from the Pubmed database pertaining to
diabetes, classified into one of K ¼ 3 classes. The features
fxng of this dataset are 500-dimensional vectors, and each
classification algorithm was trained on a subset of 300
instances. Targeting segmentation, pixels of each image in
the BU-BIL are classified in K ¼ 2 classes, indicating
whether they belong to a biological structure or not, byM ¼
7 human annotators. The total number of pixels from the 35
images is N ¼ 28; 181. The Music genre dataset contains
N ¼ 700 song samples (each of duration 30secs), belonging
into K ¼ 10 music categories, annotated by M ¼ 44 human
annotators. The sentence polarity dataset contains N ¼
5; 000 sentences from movie reviews, classified into K ¼ 2
categories (positive or negative), annotated by M ¼ 203
human annotators.

The results for these datasets are listed in Table 2. In most
datasets Alg. 4 exhibits the best performance in terms of F-
score followed closely by MV+Alg. 3. For the Music Genre
and BU-BIL MRI datasets however, MV+Alg. 3 outperforms
Alg. 4. This is to be expected for the Music Genre dataset, as
N is relatively small for this dataset and as such the esti-
mated learner moments are not very accurate. This can also
be seen from the fact that MV outperforms DS. Similarly, for
the BU-BIL MRI dataset MV outperforms DS, explaining the
better performance of MV+Alg. 3. For all datasets, Alg. 4 and
MV+Alg. 3 consistently outperform the single best classifier.
Also, note that the single best learners for the Music genre
and sentence polarity datasets are evaluated only on the sub-
sets of data for which they have provided responses. In par-
ticular, the best learner for the Music-genre has annotated 10
data, while the best learner for the Sentence-polarity has
annotated only 6 data. Another interesting observation is
that for most datasets having a relatively large average
degree �d, Alg. 4 and MV+Alg. 3 have a greater performance

gap to their counterparts that do not account for the struc-
ture of networked data. Similar to synthetic data, this sug-
gests that well connected datasets can benefit more from
these types of approaches. Similarly to the sequential case,
the modest performance gains of Algorithms 3, and MV + 3
compared to the single best learner in the BU-BIL MRI data-
set may be attributed to modeling discrepancies or signifi-
cantly different ability levels between the learners. All in all,
these results show that inclusion of graph information can
be beneficial for the unsupervised ensemble or crowd-
sourced classification task, even when the graph is noisy (as
with Sentence Polarity or the Music genre datasets.)

7 CONCLUSIONS AND FUTURE DIRECTIONS

This paper introduced two novel approaches to unsuper-
vised ensemble and crowdsourced classification in the pres-
ence of data dependencies. Two types of data dependencies
were investigated: i) Sequential data; and ii) Networked
data, where the dependencies are captured by a known
graph. The performance of our novel schemes was evalu-
ated on real and synthetic data.

Several interesting research avenues open up: i) Distrib-
uted and online implementations of the proposed algo-
rithms; ii) use of contemporary tools such as variational
inference to boost performance of the novel approaches; iii)
ensemble classification with dependent classifiers and
dependent data; iv) development of more realistic learner
models for dependent data; v) extension of the proposed
methods to semi-supervised ensemble learning; vi) rigorous
performance analysis of the proposed models.
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