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Abstract—This paper presents Flame, a hardware/software
co-designed resilience scheme for protecting GPUs against soft
errors. For low-cost yet high-performance resilience, Flame
uses acoustic sensors and idempotent processing for error
detection and recovery, respectively. That is, Flame seeks
to correct any sensor-detected errors by re-executing the
idempotent region where they occurred. To achieve this, it is
essential for each idempotent region to ensure the absence of
errors before moving on to the next region. This is so-called
soft error verification that takes sensors’ worst-case detection
latency (WCDL) to verify each region finished. Rather than
waiting for WCDL at each region end, which incurs too
much performance overhead, Flame proposes WCDL-aware
warp scheduling that can hide the error verification delay (i.e.,
WCDL) with GPU’s inherent massive warp-level parallelism.
When a warp hits each idempotent region boundary, Flame
deschedules the warp and switches to one of the other ready
warps—as if the region boundary were a regular long-latency
operation triggering the warp switching. By leveraging GPU’s
inherent ability for the latency hiding, Flame can completely
eliminate the verification delay without significant hardware
modification. The experimental results demonstrate that the
performance overhead of Flame is near zero, i.e., 0.6% on
average for 34 GPU benchmark applications.

I. INTRODUCTION

Resilience against soft errors is as important as perfor-
mance and energy efficiency for any computer system due
to their direct impact on correctness [1], [2], [3]. One of
the major sources of soft errors is the striking of energetic
particles, e.g., cosmic rays and alpha particles, on the circuit.
The resulting bit flips may lead to program crashes or silent
data corruption (SDC) where the errors are not detected
during program execution but end up with wrong output
at program termination [4], [5], [6], [7], [8]. Unfortunately,
with technology scaling, electronic circuits are becoming
more vulnerable to such radiation-induced soft errors1 [5],
[8], [9], [10], [11].

Given that GPUs are used everywhere from embedded
systems (e.g., drones and self-driving cars) to HPC systems
(e.g., data centers and supercomputers) [12], [13], [14],
[15], it is now more critical than ever to protect GPUs
against soft errors without sacrificing GPU’s benefits of high
performance and energy efficiency. Hence, starting from
Fermi, Nvidia GPUs are equipped with error correction code

1For simplicity, we refer to the radiation-induced soft errors, i.e., those
caused by mainly cosmic rays and alpha particles, as soft errors hereafter.

(ECC) to protect their memory hierarchy, i.e., a register
file (RF), caches, DRAM [16]. Nevertheless, since ECC
protects only the data array, the entire GPU pipelines remain
vulnerable to soft errors.

One easy way to detect soft errors during the pipeline
execution is running each instruction twice and comparing
the outputs of the original instruction and its replica. How-
ever, when such instruction duplication is naively performed
for GPUs, the resulting performance overhead is too signif-
icant (≈ 50% slowdown) [1], [17]—though it outperforms
compiler-managed GPU redundant multithreading [12]. This
motivates researchers to focus on optimizing instruction
duplication based error detection. For example, Mahmoud
et al propose GPU-specific optimizations, that trade off
fine-grained recoverability for performance, reducing the
error detection overhead to 36% on average [1]. Later on,
SwapCodes [17] proposes to pair the original instruction
output with the ECC code of the replica instruction output.
That way if the outputs mismatch, it can be detected by
ECC’s error checking logic without explicitly comparing
the outputs. While SwapCodes further reduces the average
overhead to 15-21%, it is still costly on a large scale as in
data centers and supercomputers. Thus, there is a compelling
demand for lightweight GPU soft error resilience.

Interestingly, CPU architects have found a way to achieve
SDC-free soft error resilience on the cheap, using acoustic
sensors that detect errors with sensing the sound wave
caused by particle strikes [8], [18], [19], [20], [21], [22].
Since they always result in such sound wave [23], any
radiation-induced soft error can be detected within the worst-
case detection latency (WCDL)2 of the sensors. The upshot
is that they enable so-called soft error verification; program
execution till any time point will be verified to be error-
free WCDL cycles later after the point, provided no error
is detected during the WCDL cycles—that is referred to as
verification delay. Moreover, the sensors are cost-effective,
e.g., 30 cycles of WCDL for a 2GHz out-of-order CPU can
be made with only 300 sensors causing less than 1% area
overhead [19], [20], [21], [22].

With that in mind, this paper presents Flame, the
first lightweight soft error resilience scheme for GPUs

2WCDL is determined at design time by the number of sensors deployed
and their network topology.
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that achieves near-zero performance overhead. Unlike
duplication-based prior resilience studies [1], [12], [17],
Flame leverages acoustic sensors to detect soft errors at a
low cost. For recovery, Flame partitions the program into a
series of idempotent regions that can be re-executed multiple
times and still result in the same correct output—as long as
the input is preserved [24]. That is, Flame seeks to correct
any sensor-detected errors by re-executing the idempotent
region where they occurred. To achieve this, it is essential
for each idempotent region to verify the absence of errors at
the end of the region by waiting for WCDL before moving
on to the next region; otherwise, errors may escape to the
next region and corrupt its inputs, thereby making it non-
idempotent. By verifying all regions one by one, Flame can
achieve correct idempotent recovery; if an error is detected,
Flame can roll back to the most recently verified idempotent
region boundary and resume from the region boundary to
recover from the error.

Unfortunately, the soft error verification delay (i.e.,
WCDL) between the regions—simply region verification
delay— incurs a significant performance overhead on GPUs.
To address the problem, Flame proposes WCDL-aware
warp3 scheduling that can hide the region verification delay
with GPU’s inherent massive warp-level parallelism. When a
warp hits each idempotent region boundary, Flame desched-
ules the warp and switches to one of the other ready warps—
as if the boundary were a regular long-latency operation
triggering the warp switching. By leveraging the GPU’s
inherent latency hiding capability, Flame can completely
eliminate the region verification delay without significant
hardware modification.

However, this presents a new challenge for soft error
recovery. Although an error is detected during the execution
of an active warp, the error might be caused by some other
warp that has already been descheduled—for verification—
by the WCDL-aware warp scheduling, in which case re-
executing the active warp cannot recover from the error. To
ensure correct error recovery for such a problematic case,
Flame devises simple hardware support that re-executes all
unverified warps, whether or not they are active, upon error
detection by resetting the PCs to their most recent region
boundaries respectively. In this way, Flame can correctly
recover from soft errors even if the active warp when they
are detected is not the one where they occurred.

The experimental results demonstrate that the perfor-
mance overhead of Flame is near zero, i.e., 0.6% on average
for 34 GPU benchmark applications. Our contributions can
be summarized as follows:

• Flame is the first lightweight GPU resilience scheme
that can protect the entire GPU pipeline—based on
acoustic sensor based error detection and idempotent
processing based error recovery.

3Group of threads in Nvidia’s GPU.

• Flame identifies a certain pattern in GPU program that
degrades performance with the acoustic sensor based
error detection and presents an optimization technique
to resolve the performance problem.

• Flame incurs a near-zero performance overhead while
its hardware complexity is minimal, on top of the area
overhead (< 1%) of the acoustic sensors deployed.

II. BACKGROUND

A. Acoustic Sensor Based Soft Error Detection

Soft errors, also known as transient faults, are often the
cause of failures in today’s computing systems. Given that
a major source of soft errors is the cosmic neutron or alpha
particle strikes in the circuits [11], [25], [26], the acoustic
sensor based detection focuses on the physical characteristic
of a particle strike. When a particle strikes the silicon, it
produces a large amount of electron-hole pairs that generate
phonons and photons in sequence. The resulting phonons
and photons spreading out of the striking site make an
intense sound wave traveling over the silicon at the speed
of l0km/s [27]. In light of this, the particle strike, (the cause
of a soft error), can be detected by measuring the change
of capacitance of a cantilever beam structure. Such a single
acoustic sensor can detect a strike 5mm away within 500ns,
and each sensor roughly takes an area of one square micron
[28]. Upasani et al [28] show that the entire pipeline can be
protected by covering the out-of-order core with a mesh of
acoustic sensors, causing only less than 1% area overhead
without increasing the number of metal layers during the
manufacturing process.

B. Region-Level Soft Error Verification

濈濝濡濙R1

WCDL

R1

Unverified Verified

After Reaching boundary
WCDL timeout

Start
Error detected, Restart

R2

WCDL

R2

R3

濆濙濗濣濪濙濦濭澔濄濕濨濜
澹濦濦濣濦澔澸濙濨濙濗濨濙濘

Figure 1. Region verification and recovery timeline (top) and the state
change of a region under the verification (bottom)

The beauty of acoustic sensors is that they can verify
the absence of soft errors. Given that an error must be
detected within WCDL, program execution till any time
point will turn out to be error-free WCDL cycles later after
that point, unless any error is detected during the WCDL
cycles. With that in mind, a couple of prior works, i.e.,
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Turnstile [29] and Turnpike [30], realize so-called region-
level error verification for out-of-order and in-order CPUs,
respectively. During program execution, each region has two
states: verified and unverified; see the bottom of Figure 1.
Each region starts running in an unverified state. Due to
the detection latency of acoustic sensors, the region remains
unverified until the WCDL time is passed after the region
end (boundary); see the top of Figure 1. Finally, the finished
region is to be verified, provided no errors are detected while
it waits for the WCDL.

To hide the verification delay of WCDL between regions,
the prior works, Turnstile [29] and Turnpike [30], rely on a
gated store buffer [31], [32], [33]. They both (1) partition
program into a series of regions so that the store buffer never
overflows in each region and (2) hold all its committed stores
in the buffer until the region is verified. As shown in the top
of Figure 1, upon the termination of a region, the following
region can be immediately executed without waiting for the
verification of the prior region—since the stores of both
regions are buffered anyway until they are verified. The
store buffer also plays a critical role in recovery; if an
error is detected, all the unverified stores in the buffer are
discarded, and program control is redirected to the most
recently verified region boundary to recover from the error.

Flame adopts the region-level soft error verification on top
of acoustic sensors as with Turnstile [29] and Turnpike [30].
However, unlike the CPUs, the target of the prior works,
GPUs lack a store buffer, which makes both Turnstile and
Turnpike unusable for GPU soft error resilience. The impli-
cation is that Flame should look for a different recoverable
region formation and find a new way to hide the verification
delay (i.e., WCDL).

C. Idempotent Recovery and the Region Formation
To resolve this issue, Flame opts for idempotent process-

ing as an alternative region formation. Idempotent process-
ing is a lightweight region-based recovery scheme that has
been used on GPUs for various purposes including register
file protection, speculative execution, and exception support
[24], [34], [35], [36], [37], [38], [39]. A region of code
is idempotent if it can be re-executed multiple times and
maintain the same correct output [40]. Thus, it is possible
to correct any soft error occurred in an idempotent region
by simply restarting the faulty region from the beginning.

The idempotent recovery requires program to be par-
titioned into a sequence of idempotent regions. To
achieve idempotence, a region cannot contain any anti-
dependence [41]—also known as Write-After-Read (WAR)
dependence—on register/memory variables, which would
otherwise cause the input read to be changed in the region
making its re-execution non-idempotent [40]. The only ex-
ception is when the anti-dependence is preceded by another
write to the same variable, forming a Write-After-Read-
After-Write (WARAW) dependence that can be included in a

region without breaking idempotence. That is because what
is overwritten by WARAW dependences is not the input of
the region, i.e., they never lead to the input change that is
the fundamental reason for non-idempotence.

1. r3 = 1
2. ld r5, [r6]

3. st r4, [r6]
4. ld r7, [r2]
5. r1 = r3 + 1
6. r3 = r5 + 1

7. st r1, [r2]
8. st r7, [r1]

1. r3 = 1
2. ld r5, [r6]

3. st r4, [r6]
4. ld r7, [r2]
5. r1 = r3 + 1
6. r3 = r5 + 1

7. st r1, [r2]
8. st r7, [r1]

濥濄

濥濅

澻濴澼 澻濵澼
濆濙濛濝濣濢澔澶濣濩濢濘濕濦濭澔澔澔澔澔澔澔澔澔澔澔澔澔澔澔澔澔澔澔澔澔澔澔澔澔澔澔澔澔澵濢濨濝澡濘濙濤濙濢濘濙濢濗濙

濥濆

Figure 2. (a) Memory anti-dependence; (b) Initial region partitioning
example and the resulting register anti-dependence

1) Memory Anti-dependence: For example, in Figure 2
(a), two instructions pairs 2-3 and 4-7 have anti-dependences
on the memory locations addressed by r6 and r2 respectively,
and thus the code is not idempotent. To eliminate such mem-
ory anti-dependences, region boundaries should be placed to
break them, e.g., one before instruction 3 and another before
7. Figure 2 (b) shows the initial region partitioning result
where no region has a memory anti-dependence therein.

2) Register Anti-dependence: Besides memory anti-
dependences, register anti-dependences also break idempo-
tence and thus need to be eliminated as well. For example,
in Figure 2 (b), an instruction pair 5-6 has a register anti-
dependence on register r3. Note that this anti-dependence
is brought by the region boundary between the first two
regions, i.e., R1 and R2; if the instructions 1, 5, and 6
were all in the same region forming a WARAW dependence,
the r3’s anti-dependence (i.e., WAR dependence) between
5 and 6 would be clobbered by the preceding write of
the instruction 1 which prevents the anti-dependence from
breaking idempotence.

In general, there are two different techniques for address-
ing register anti-dependence, i.e., anti-dependent register
renaming and live-out register checkpointing. The former
eliminates register anti-dependence, and the latter circum-
vents it—while they both require memory structures to be
protected via ECC.

Anti-dependent register renaming renames every anti-
dependent register [39] to get rid of the dependence. At
instruction 6 of Figure 3 (a), an anti-dependent register r3
is renamed to r8—with renaming the following uses (if
exist) as well—to prevent r3’s original value from being
overwritten. Thus, the register renaming ensures that none
of register inputs (e.g., r3 in the figure) is updated, making
the resulting region idempotent; all the inputs of the region
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1. r3 = 1
2. ld r5, [r6]
2c.ckpt r3; ckpt r5

3. st r4, [r6]
4. ld r7, [r2]
5. r1 = r3 + 1
6. r3 = r5 + 1
6c.ckpt r1; ckpt r7

7. st r1, [r2]
8. st r7, [r1]

濥濄

濥濆

濥濅

1. r3 = 1
2. ld r5, [r6]

3. st r4, [r6]
4. ld r7, [r2]
5. r1 = r3 + 1
6. r3r8 = r5 + 1

7. st r1, [r2]
8. st r7, [r1]

濥濄

濥濆

濥濅

ld r3, …
ld r5, …

……

濆濙濛濝濣濢澔澶濣濩濢濘濕濦濭澔澔澔澔澔澔澔澔澔澔澔澔澔澔澔澔澔澔澔澔澔澔澔澔澔澔澔濆濙濗濣濪濙濦濭澔濄濕濨濜澔澔澔澔澔澔澔澔澔澔澔澔澔澔澔澔澔澔澔澔澔澔澔澔澔澔澔澔澔澹濦濦濣濦澔澸濙濨濙濗濨濙濘

澻濴澼 澻濵澼

Figure 3. (a) Anti-dependent register renaming; (b) Live-out register
checkpointing

R2 can maintain their original values, when it restarts upon
error detection, and generate the same designated outputs.

One issue with register renaming is the potential for
increasing register pressure, which can lead to more register
spills. Nevertheless, our empirical investigation shows that
register renaming does not cause a significant execution time
overhead (Section VI).

Live-out register checkpointing is another technique for
addressing register anti-dependence to achieve idempotent
recovery. The state-of-the-art technique [34] inserts a check-
point (essentially store instruction) to save the value of any
updated register in memory, provided it is live-out [41]. For
example, in Figure 3 (b), region R1 has two checkpoint
instructions at 2c for live-out registers r3 and r5 while
region R2 has another two at 6c to save the values of
live-out registers r1 and r7. When an error is detected in
region R2, its inputs (e.g., r3 and r5) are first restored using
the checkpointed values from memory; then, the recovery
runtime redirects program control to the beginning of R2 as
shown in Figure 3 (b). In this way, R2 can restart with its
original inputs and correctly recover from the error4.

In theory, the live-out register checkpointing can be used
as an alternative to the anti-dependent register renaming—
if it causes too many register spills thereby degrading
the performance. While the register checkpointing does
not cause additional register spills unlike the renaming,
the checkpoint store often causes significant performance
degradation due to the lack of a store buffer in GPUs and
requires dedicated memory space for the checkpoint storage.
Our choice between the register renaming and the register
checkpointing is deferred to Section III-A.

4Even if the value being checkpointed is already corrupted by errors (e.g.,
in pipeline’s ALU logic blocks), it is to be used for the re-execution of some
later region(s), not the current faulty region where the error occurred. Here,
the inputs of the faulty region, which are necessary for its re-execution, are
sure to have been checkpointed by some prior region(s) verified to be error-
free because of region-level soft error verification (Section II-B).

D. Challenge of Sensing-Based Error Detection Latency
Conceptually, combining acoustic sensor based detection

and idempotent recovery can achieve region-level soft error
verification in that the sensors can detect all the errors and
idempotent recovery can correct all of them. Although the
concept is easy, there is a challenge that must be addressed
for Flame to realize the region-level verification. For correct
recovery, each idempotent region must ensure the absence of
errors before moving on to the next region. Otherwise, errors
may be propagated to the next region, corrupt its inputs,
and eventually render its re-execution non-idempotent. That
is why prior idempotent processing techniques require so-
called in-region error detection [24], [34], [35], [36], [37],
[38], [39].

濈濝濡濙R1
WCDL

R1

R2

WCDL

R2

Idle

Figure 4. Timeline of region-level verification with idempotent regions
and the detection latency of acoustic sensors in consideration; shaded and
white circles state unverified and verified respectively as in Figure 1

However, for an error occurred in each region, acoustic
sensors could fail to achieve the in-region error detection
due to their sensing delay. Thus, it is critical to verify each
finished region by waiting for the WCDL at the region end,
but this effectively delays the execution of the next region
thereby causing a significant performance overhead as shown
in Figure 4. To overcome this region verification delay,
Flame exploits GPU’s characteristics and proposes WCDL-
aware warp scheduling, which can effectively hide the delay
and reduce the performance overhead down to almost zero.

III. FLAME APPROACH

The goal of Flame is to achieve lightweight soft error
resilience for GPUs so that their entire pipeline can be
protected with minimal hardware change. To this end, Flame
leverages acoustic sensors and idempotent recovery for
soft error detection and recovery, respectively. The Flame
compiler partitions the entire GPU program into a series
of idempotent regions (with register renaming), while the
Flame architecture (1) runs the regions with the region-level
verification enforced between them and (2) orchestrates the
warp executions to recover from an error upon the detection.
In particular, to address the performance issue of waiting
for the WCDL verification delay at each region end (i.e.,
boundary), Flame proposes WCDL-aware warp scheduling
for overlapping the delay with other warp’s execution (Sec-
tion III-C) and GPU-specific optimization for extending the
idempotent region size and thus requiring fewer verifications
(Section III-E). Figure 5 shows this workflow of Flame at a
high level.
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Flame 
Compiler

Idempotent Region 
Partitioning

GPU 
Program

Binary 
Divided into 
Idempotent 

Regions

Flame 
GPU

+ OptimizationRegister 
Renaming +

o 

濋澷澸激
濊濙濦濝濚濝濙濘

Figure 5. The high level view of Flame

A. Idempotent Region Formation with Register Renaming

Flame leverages idempotent recovery to realize region-
level soft error verification and needs to choose an efficient
approach to resolving register anti-dependences in the re-
gions where all memory anti-dependences are cut by region
boundaries. As discussed in Section II-C2, both register
renaming and register checkpointing approaches have their
own advantages and limitations. Thus, we conducted an
empirical evaluation to evaluate the performance of both
approaches and found out that the register renaming would
be the more efficient scheme—in spite of the potential
performance issue with additional register spills.

Fortunately, GPU’s huge register file is very much capable
to handle a few additional registers introduced to break
the anti-dependences, thereby relieving the register spilling
problem. It turns out that register renaming incurs almost
negligible performance impact for 34 GPU benchmark ap-
plications tested. That is, all of them yield virtually the same
occupancy as the baseline that has no soft error resilience
support (Section VI). Given all this, Flame chooses register
renaming to resolve register anti-dependences.

B. Fault Model and Sensor Deployment

Flame targets radiation-induced soft errors—caused by
the strikes of cosmic rays and alpha particles—in order to
protect the GPUs from the resulting bit flip errors. Since
acoustic sensors detect all particle strikes, Flame can afford
to correct both single-bit and multiple-bit upsets without
increasing the detection cost determined by the number of
sensors being deployed and their network topology. Given
that caches and register files on modern GPUs (from Fermi
onwards) are already protected by ECC [16], Flame only
needs to protect the vulnerable pipeline logic to realize
full soft error resilience for GPUs. Consequently, Flame
applies the meshes of acoustic sensors to cover the pipeline
logic that takes less than half of the total GPU die area.
In particular, with 200 sensors per SM, Flame can achieve
20 cycles WCDL with less than 0.1% area overhead on

Nvidia’s GTX480. Section VI shows different configurations
of sensor deployment and their corresponding WCDL.

C. WCDL-Aware Warp Scheduling

For correct idempotent recovery, it is essential to verify
that each region is error-free before starting the next region.
As shown in Figure 4, the region-level verification demands
the worst-case detection latency (WCDL) delay at each
region end (i.e., boundary). Since program is split into many
short regions, the verification delay increases the execution
time to a large extent. While prior work for CPUs [29],
[30] can immediately start regions by holding their stores
in a store buffer until they are verified (Section II-B), it
is not applicable to GPUs due to their absence of a store
buffer. Thus, Flame would suffer a significant performance
overhead by waiting for WCDL cycles at every region
boundary, unless the verification delay is tackled efficiently.

To solve the problem, Flame makes a couple of key
observations: (1) The verification delay makes hitting the
region boundary no different from a long latency instruction
such as load. (2) GPUs can hide such a long latency with
their massive warp-level parallelism, e.g., if a warp stalls
due to a load miss, the scheduler takes the warp out from
the streaming multiprocessor (SM) and schedules one of
the other warps there—that are ready to proceed. In light
of this, Flame proposes WCDL-aware warp scheduling that
lets the scheduler treat idempotent region boundaries as
a regular long latency instruction for them to trigger the
warp switching—naturally hiding the verification delay pig-
gybacking on GPU’s original scheduling mechanism. Note
that the scheduling turn-around time of a warp is usually
much longer than the verification delay (e.g., 20 cycles of
WCDL). Therefore, with the help of the WCDL-aware warp
scheduling, Flame can perfectly hide the verification delay—
provided there are enough warps to schedule.

D. Hardware Support for Idempotent Recovery and WCDL-
Aware Warp Scheduling

Traditional GPU architecture does not have any support
for idempotent recovery or WCDL-aware warp scheduling.
To facilitate idempotent recovery, Flame devises a recovery
PC table (RPT) to hold the recovery PC for each warp.
For the WCDL-aware warp scheduling, Flame introduces a
region boundary queue (RBQ) in the existing warp scheduler
so that it can track all warps’ verification and scheduling sta-
tus. Figure 6 sketches the architecture diagram of the Flame
GPU with its newly added microarchitecural components
shown in black boxes.

1) Recovery PC Table for Correct Recovery: Acoustic
sensors cannot tell exactly which one of the warps running
on the SM encounters a soft error or which instruction
is corrupted. To ensure that errors are correctly recovered,
Flame should perform error recovery for every warp in the
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Global Scheduler

SM SM 瀖 SM

ALUL2 Cache ALU

L1 Cache/
Shared Memory

Register File

Warp Scheduler

RBQ RPTFlame 
GPU

LDST瀖瀖 SFU

Figure 6. Overview of Flame GPU architecture; RBQ and RPT are the newly added components.

SM upon their error detection. With the help of the region-
level verification, warps can recover from a soft error by
resuming the execution following their most recently verified
region boundary. For this purpose, Flame needs to record
the region boundary information for every warp to ensure
correct recovery.

濆濙濛濝濣濢澔濆澥
濆濙濛濝濣濢澔濆澦
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Time T1 T2
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W2 R1 R1
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Figure 7. Example of recovery (re-execution) with RPT

To achieve this, Flame adds a recovery PC table (RPT)
to the original warp scheduler. For each warp, RPT stores
the recovery PC—that is initialized to the beginning of the
corresponding warp in the first place. Then, whenever a
new region is verified, the recovery PC is updated with
the instruction next to the verified region boundary, i.e., the
beginning of the youngest region that is yet to be verified. If
an error is detected, Flame sets the PC of all warps to their
recovery PC stored in the corresponding RPT entry, which
effectively starts the re-execution recovery for all warps.

Figure 7 shows an example of the recovery protocol. Here,
two warps (W1 and W2) are assumed to run their first two
regions R1 and R2 in the SM. At time T2, W1’s first region
R1 is verified (while the other warp W2 is in the middle
of its first region), and RPT sets W1’s recovery PC to the
beginning of the second region R2. When a soft error is
detected at time T3, W1’s PC is overwritten with R2—since
R1 has already been verified since T2—whereas W2’s PC
is updated with R1. Consequently, W1 starts R2—following
the end of the most recently verified region R1—but W2
restarts the interrupted region R1. Note that RPT should
be able to accommodate the number of maximum possible
warps (typically 32) because each entry of the table should
maintain the recovery PC for each of the warps.

2) Region Verification Conveyor: To achieve WCDL-
aware warp scheduling, Flame needs to switch out warps that
hit the region boundary and make those warps, that are done
with waiting for verification delay, ready to be scheduled
back again. Therefore, Flame must (1) track the amount of
time each warp has waited for its region to be verified and
(2) check the time is greater than the cycles of WCDL, the
verification delay. A simple way to track the waiting time
would be employing a cycle counter. However, there are
many warps in an SM and every warp needs one counter. If
Flame used such a naive approach, it would require too many
counters causing a significant logic area overhead. With that
in mind, Flame proposes the idea of verification conveyor
that can precisely track all the warps’ verification status with
minimal overhead. To shed light on the idea, the following
uses a simple analogy.

濢瀉濸瀁 濊濙濦濝濚濝濙濘濉濢濪濙濦濝濚濝濙濘

Figure 8. An illustrative example of verification conveyor

The verification conveyor is like the conveyor oven used
in pizza stores and a warp is like a pizza dough. In this
analogy, a warp that is waiting for verification delay is
analogous to a pizza dough that is being baked. A single
conveyor oven can bake as many pizzas as possible, and
similarly, one verification conveyor can track as many warps
in the SM. When a warp hits the region boundary, it is put
into the verification conveyor. Like the conveyor oven, the
verification conveyor will move continuously at the pace of
one unit per cycle. By setting the conveyor’s length to the
cycles of WCDL, the warp once placed at the conveyor
will come out of its belt as verified—just like a piece
of fully baked pizza that is ready to be packaged. Thus,
with only one verification conveyor, Flame can ensure that
every warp waits for exactly WCDL cycles; and of course
the verification order is guaranteed. Figure 8 shows an
illustrative example of the verification conveyor.

To implement verification conveyor, Flame adds a region
boundary queue (RBQ) structure to the original warp sched-
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Figure 9. An illustrative example of Flame’s hardware support and recovery upon error

uler. RBQ has the length of WCDL and the width of 6 bits
(5 bits for 32 warps and 1 bit for validity; see Section VI
for more details). Each RBQ entry contains a warp ID and
a valid bit. When the warp scheduler encounters a region
boundary for each warp, it enqueues a new entry for the
warp with the ID into RBQ and sets the valid bit of the
entry to 1. The warp is then taken out of the active warps
pool and thus becomes ineligible for execution until it is
verified (i.e., popped out of the RBQ). At every cycle, the
warp scheduler dequeues an entry from RBQ. If the entry
is valid, the warp scheduler puts the warp back to the active
warps pool, and the RPT entry corresponding to the warp
is updated—since it is just verified—with the beginning of
its next region. When an error is detected, all entries in the
RBQ are discarded. That is because every warp is to be
re-executed for recovery by referring to its RPT entry and
jumping back to the recovery PC therein.

3) Examples: To show how Flame updates RBQ and RPT
over time, Figure 9 provides two illustrative examples: (1)
an error-free case and (2) an error case with recovery. For
simplicity, we assume only one warp can run at each cycle.
The entries in RPT represent the beginning address of region
x (Rx) for the corresponding warp, and each warp has two
regions R1 and R2. Solid lines represent region execution
for a warp while dotted lines represent verification delay
(WCDL).

Example A shows the error-free execution with 2 warps
W1 and W1. Here, RBQ only shows meaningful entries. In
the beginning, RPT has all recovery PC of the warps set to
the beginning of their first region R1, and RBQ has no valid
entry.

• At T1, W1 starts executing.
• At T2, W1 hits the region boundary, so the scheduler

puts W1 into RBQ for verification and schedules W2
to execute.

• At T3, W2 also hits the region boundary, and W2 is
put into RBQ for verification. At the moment, W1 is
somewhere middle of RBQ. Between T3 and T4, the
GPU is idling, since all 2 warps are in the RBQ.

• At T4, W1’s entry pops from the RBQ, completing the
verification of the warp. The scheduler then updates
W1’s recovery PC in RPT to the beginning of W1’s
R2. Since W1 is now verified, the scheduler schedules
W1 again to execute its second region R2.

• At T5, W2 becomes verified, and the scheduler updates
its RPT entry.

• At T6, W1 ends. The scheduler immediately schedules
W2 since W2 has already been verified.

Example B shows the execution with an error detected
and the recovery process for 3 warps W1, W2, and W3. In
the PC table in Figure 9, RxB means the beginning of region
x, and similarly RxM means the middle of region x. In the
table, any PC updates due to region execution progress are
highlighted in blue while the updates made for recovery are
highlighted in red.

• At T1, W1 hits the region boundary, and its entry is
put into RBQ for verification.

• At T2, W1 finishes the verification of its first region
R1 with its entry popped from RBQ (not shown in the
figure), and the scheduler updates its recovery PC in the
corresponding RPT entry with R2’s beginning—since
R1 is just verified. At the moment, W2 is executing
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R1, and W3 is waiting for the verification of its already
finished region R1.

• At T3, an error is detected while W2 is running in
the middle of R1, and W3 is still waiting for the
verification. The scheduler starts the re-execution of
all warps by resetting their PCs. Since W1 finished
verification for its R1, its PC must be reset to R2’s
beginning, which is already the case since the prior
region R1 has been verified since T2. At the moment,
due to the error detected, W2’s execution is interrupted
while W3’s verification is invalidated. For both warps,
their first region R1 have not been verified yet, and thus
their PCs are reset to R1’s beginning. After resetting
PCs of the warps, the scheduler chooses W2 to execute
it; W2 re-executes its interrupted R1.

• At T4, W2 reaches the region boundary of the region
R1, and this time W3 is picked by the scheduler to run;
W3 re-executes its R1 that was finished once but unable
to be verified, and this still ensures correct execution
thanks to the beauty of idempotence. After that, Flame
follows the error-free execution workflow.

E. Optimization for Extending Idempotent Region Size
In the original idempotent region formation algorithm,

all synchronization primitives, e.g., barriers and atomic
instructions, are treated as region boundaries in addition to
each function call boundary [29], [30], [34], [35]. Along
with the region-level soft error verification, this prevents
errors occurred in a warp from escaping into other warps
across such a synchronization primitive; this is so-called
synchronization-level error containment.

However, we observe that such synchronization region
boundaries sometimes prevent the compiler from identifying
WARAW dependence and result in many small idempotent
regions. The implication is that the smaller the regions are
the more frequent region boundaries encounter waiting for
the region verification. This could put significant pressure on
the WCDL-aware warp scheduling, which can lead to notice-
able performance overhead, e.g., more than 10% for LUD
(see Section VI-B2). Across all benchmark applications
tested, we find out that synchronization region boundaries
for barriers5 could be safely removed to enlarge the region
size, thereby improving the performance due to the less fre-
quent region verification. Since this optimization relaxes the
synchronization-level error containment, we conservatively
apply it only to the certain code pattern exemplified below
for correct idempotent recovery.

1) Background: Barriers in GPU program work within
one thread block. Each barrier blocks any warps in a block
until all the warps in the block reach the barrier [42], [43].
Therefore, barriers are often used to order the load and store
operations from different warps.

5We keep boundaries for both other synchronization primitives and those
barriers that do not comply with the optimization code patterns.

1. id = threadId

2. A[id] = mem[threadId]

3. barrier

4. temp = A[id]

5. temp += A[id+1]

6. A[id] = temp

……

7. barrier

8. mem[threadId] = A[id]

濆濙濛濝濣濢澔澶濣濩濢濘濕濦濭
濆濙濡濣濪濙濘澔澶濣濩濢濘濕濦濭

Usually line 3-6 resides in a 
loop and is the main 
computation in a kernel

Figure 10. Barrier usage example

Figure 10 shows a general and simplified example of the
barrier usage in a GPU kernel. Every warp first initializes
shared memory (i.e., A[id]) with some value. After the
barrier, every warp performs calculations that depend on
other warps’ data and store the data back to the shared
memory. Here, the barrier is used to prevent the warps from
accessing uninitialized data and outputting incorrect value.

2) Optimization Method: In the code pattern shown in
Figure 10, the original region formation algorithm considers
the barrier as a region boundary [29], [30], [34], [35].
However, it is clear that the references to the memory
location A[id] form WARAW dependence, and therefore
the instruction sequence 1-6 can be considered idempo-
tent. Because of the barrier-induced synchronization region
boundary inserted after instruction 3, the original idempotent
processing compiler is unable to identify such WARAW
dependence and ends up inserting another region boundary
before instruction 6 due to the anti-dependence (i.e., WAR)
on A[id] between instructions 4 and 6. By ignoring this
barrier-induced region boundary, both region boundaries can
be removed.

As a result, soft errors could be propagated across the
barrier due to lack of its corresponding region boundary
and the region verification. To correctly recover from such
errors, Flame takes a conservative optimization policy for
bounding the error propagation to the warps in the same
block. That is, Flame’s compiler only identifies a code
section with the following particular pattern: 1) A piece of
shared memory is initialized, and all the following memory
anti-dependences in the code section result from the piece
of shared memory; 2) There must be no memory write to
other memory locations within the entire code section. If
Flame’s compiler finds such a target section, it removes
all the barrier-induced synchronization region boundaries in
the section and restarts the anti-dependence analysis therein.
With this optimization, Flame can let the target code section
form a single extended idempotent region and improve the
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performance thanks to the less frequent region verification.
3) Correct Recovery: By the aforementioned conserva-

tive policy, the target code section chosen for the optimiza-
tion never writes any other locations except the shared mem-
ory initialized at the beginning of the section. Since shared
memory data can only be shared by the warps of the same
block [43], soft errors cannot escape the block boundary
thanks to the above code pattern. In other words, the only
possible error propagation case is that data corrupted in a
warp end up being read by other warps in the same block.
Flame can always handle this case correctly with the help of
its recovery protocol that restarts all the unverified regions of
the warps in the same block— as one block is only assigned
to one SM and Flame performs error recovery for all warps
in the SM (Section III-D1) [43].

IV. DISCUSSION

Additional Protection Requirement: For Flame to
achieve correct soft error recovery, it is required that the
RBQ, the RPT, and the warp scheduler logic blocks should
be protected against soft errors. As with prior work [22],
[29], [30], [37], [44] and Intel’s commodity RAS (relia-
bility/availability/serviceability) processors, Flame assumes
that address generation units (AGUs) are hardened against
soft errors to avoid misaddressing loads and stores [45].
Finally, Flame also requires register file (RF) controller logic
to be hardened so that registers are correctly addressed all
the time. We believe that similar technology of the AGU
protection can be applied to the RF controller protection.

False Positive Rate: With proper calibration, acoustic
sensors can avoid the detection of those particle strikes
that do not cause bit flips, thus being able to reduce the
chance of reporting such weak strikes to zero [19]. Despite
the calibration, the sensors could yield false positives, since
not all particle strikes lead to user-visible output errors
because of the so-called bit-masking effect. If the sensors
never respond to weak particle strikes, the false positive
rate should be the same as the bit-masking rate; Li and
Pattabiraman show that typical GPU applications have a
63.5% masking rate [46]—that is a lot smaller than that
of CPU applications (≈90%) [4], [47], [48]. According to
Tiwari et el’s field study for analyzing the resilience of GPUs
used in a supercomputer [49], the frequency of GPU (post-
masking) failure is 0.5 errors per day. Taking into account
the frequency along with the bit-masking rate, we expect that
a GPU generates 0.5

1−0.685 ≈ 1.37 errors per day. As such, the
acoustic sensors are expected to report 1.37×0.685 ≈ 0.93
false positives per day. The implication is that the execution
time overhead of the false error recovery is not significant at
all considering the small idempotent region size, i.e., 50.23
instructions on average for 34 GPU benchmark applications
we tested.

Error Containment With the help of idempotent regions,
Flame can safely commit stores without any delay—unlike

prior CPU resilience works where stores are not allowed
to be merged into the L1 cache for their verification [29],
[30]. The rationale is that even if corrupted data stored in an
unverified region could be written into cache hierarchy, they
will never be read because (1) an idempotent region has no
anti-dependence and (2) their causative errors are guaranteed
to be detected—before the next region starts—and corrected
with the idempotent recovery.

Furthermore, given that Flame targets data-race-free pro-
gram as with prior (idempotent) recovery works [24], [34],
[35], [36], [38], [39], [50], [51], [52], [53], corrupted data
can never be read by other threads and peer-GPU/CPU. It
is important to note that in data-race-free program, cross-
thread dependencies or cross-GPU/CPU dependencies must
be ordered with explicit synchronization primitives. As
idempotent processing basically treats all synchronization
primitives as region boundaries [24], [34], [35], [39], [50],
Flame ensures that all data written before the region bound-
ary of such a primitive (e.g., barrier) can only be read after
the synchronization region is verified due to the region-
level soft error verification. In this way, Flame prevents data
corruptions by soft errors from being propagated to other
threads and peer-GPU/CPU—as long as necessary synchro-
nization primitives are correctly used for data-race-freedom.
The only exception occurs when Flame leverages its region
size extension optimization, i.e., errors can propagate across
a barrier synchronization primitive. However, as discussed
in Section III-E3, this turns out to be harmless for the
correctness of the program, and Flame still guarantees the
safe idempotent recovery of the errors.

V. EVALUATION ENVIRONMENT

This section presents our experimental settings for the
evaluation of Flame and introduces the state-of-the-art re-
silience schemes tested for comparison with Flame. Our
evaluation focuses on Nvidia’s GTX480, one of the most
simulated GPUs in the literature. GTX480 is based on Fermi
architecture and equipped with ECC to protect the memory
hierarchy, i.e., the register file, caches, and memory. By
default, Flame uses 20 cycles of WCDL and the GTO
(Greedy Then Oldest) warp scheduler, i.e. the default model
of GPGPU-Sim v4.0 [54]. Section VI-B3 offers sensitivity
analysis results for various GPU architectures, WCDL set-
tings, and warp scheduler models.

A. Simulation Methodology
While implementing anti-dependent register renaming and

live-out register checkpointing requires the register informa-
tion, Nvidia’s PTX assembly uses virtual registers and there
is no open-source back-end compiler toolchain that can mod-
ify register-allocated assembly; this is why simulators take
PTX as a proxy for program binary, and prior work [34], [55]
instead performs register allocation on PTX for simulation.
Flame’s compiler takes the same approach with hacking the
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PTX-level register allocation to implement both the register
renaming and the register checkpointing.

Table I
BENCHMARKS USED FOR SIMULATION

Suite Application Abbr.

rodinia
3.1

back propgation BP
breadth-first search BFS
gaussian elimination Gaussian
hotspot Hotspot

lava Moleculer Dynamics LavaMD

LU Decomposition LUD
Needleman-Wunsch NW
pathfinder PF
SRAD_v2 SRAD
streamcluster SC
CFD solver CFD
kmeans Kmeans
k-Nearest Neighbors KNN

parboil
3-D Stencil Operation Stencil
Two Point Angular 
Correlation Function TPACF

SHOC STREAM triad Triad

ALTIS Giga UPdates per Second GUPS

Suite Application Abbr.

parboil

Single precision Matrix 
Multiply SGEMM

Lattice-Boltzmann 
Method Fluid Dynamics LBM

GPGPUs
im bench

Neural network NN
Laplace transform LPS
AES entryption AES

Cuda
toolkit 
Sample

binomialOptions BO
convolutionSeparable CS
scalarProd SP
BlackScholes BS
SobolQRNG SQ
fastWalshTransform WT
transpose Transpose
Discrete Haar wavelet 
decomposition DWT

sortingNetworks SN
histogram Histogram

NPB Integer Sort IS
Conjugate Gradient CG

All our simulations were conducted on top of GPGPU-
Sim v4.0 [54]. We modified the warp scheduler model
in the GPGPU-Sim to correctly reflect Flame’s hardware
modification (Section III-D) and ran the compiled PTX code
on the modified GPGPU-Sim. Our GPU applications were
collected from Rodiania v3.1 [56], Parboil [57], benchmarks
from GPGPU-Sim [58], NPB [59], ALTIS [60], SHOC [61],
and samples from CUDA toolkit. Table I shows all 34
benchmark applications tested. Note that the reason why
we were not able to test all the applications from each
benchmark suite is because some of them use those APIs that
the GPGPU-Sim cannot handle or some new CUDA APIs
that are not currently supported by our register allocation.

B. Competing Schemes

To evaluate Flame in comparison with the state-of-the-
art works, we categorized the soft error resilience schemes
based on their detection and recovery schemes and test
various combinations of the schemes. For the recovery
scheme, we tested idempotent recovery with 2 register anti-
dependence handling techniques, i.e., the register renaming
and the register checkpointing; to fairly evaluate their per-
formance difference (Section VI-B), we used Penny [34],
the state-of-the-art register checkpointing based recovery
scheme, with its proposed compiler optimization enabled,
e.g., optimal checkpoint pruning, checkpoint coloring and
scheduling, and automatic checkpoint storage assignment
[34]. For the detection scheme, in addition to acoustic sensor
based detection, we tested 1) instruction duplication based
detection and 2) hybrid detection combining the other two.

1) Instruction Duplication Based Detection: We used
SwapCodes [17] as a reference implementation of instruction

duplication based detection. Unlike prior instruction dupli-
cation schemes [1], [44], [62], SwapCodes does not have to
explicitly compare the outputs of the original instruction and
its replica, thus being able to outperform the prior schemes
significantly. To detect soft errors without comparing the
outputs, SwapCodes pairs the original instruction output
register with the ECC code of the replica instruction output
register. In this way, if the output registers mismatch, it
can be detected by ECC’s error checking logic without
using explicit compare instructions for checking the outputs.
While SwapCodes proposes additional optimizations such as
move propagation to eliminate unnecessary duplication, the
register file requires another hardware complexity in addition
to the swap ECC logic. Thus, we used the plain SwapCodes
without such optimizations for instruction duplication based
detection throughout our evaluation.

濈濝濡濙

濧濄 濧濆濧濅

Sensor DMR Sensor

WCDLR1 R2

Figure 11. Illustration of tail-DMR

2) Hybrid Detection: Tail-DMR (dual modular redun-
dancy, i.e., instruction duplication) is a hybrid detection
technique that opportunistically uses acoustic sensors and
instruction duplication with idempotent recovery in mind.
[35], [63]. It leverages a different way to hide the verification
delay (WCDL) caused by the detection latency of acoustic
sensors. Rather than waiting for WCDL at the end of each
idempotent region for verification, Tail-DMR includes the
delay as a part of the region execution time for the next
region to start with no delay. For this purpose, Tail-DMR
divides each region into head and tail and duplicates the
instructions of tail so that the post-DMR execution time of
the tail is as long as WCDL.

Figure 11 shows the illustration of tail-DMR. The ex-
ecution of region R1 spans from T1 to T3 while its tail
executes between T2 and T3 covering WCDL. To detect
soft errors in each region, Tail-DMR uses acoustic sensors
in the head (i.e., from T1 to T2) whereas it uses instruction
duplication in the tail (i.e., from T2 to T3), thus being called
tail-DMR. If errors occur in the head of each region, they are
guaranteed to be detected by the sensors before the region
ends at T3. On the other hand, if errors happen within
the tail of the region, which is protected by DMR, then
it can immediately detect the errors. Either way, all errors
are guaranteed to be detected within the region where they
occurred, which eliminates the verification delay between
regions.

However, tail-DMR incurs a significant performance over-
head due to the DMR (i.e., instruction duplication) overhead
at the tail of each idempotent region. To this end, we
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implemented the DMR using SwapCodes-based instruction
duplication and integrate the hybrid detection (i.e., Sensors
+ instruction duplication) with both idempotent recovery
schemes (i.e., the register renaming and the register check-
pointing).

VI. EXPERIMENTAL RESULTS

A. Hardware Cost
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Figure 12. WCDLs when varying the number of sensors per SM

1) Acoustic Sensors: GTX480 runs at 700Mhz and has
the die size of 512mm2. By measuring the die shot, all 16
SMs, except the register file and caches, take about 55%
of the die area, and each SM takes 17.5mm2 [16]. Taking
the same estimation as prior work [22], we find that 50-
300 deployed acoustic sensors can achieve 50-15 cycles of
WCDL and, by default, use 200 sensors to achieve 20 cycles
of WCDL. Every acoustic sensor costs around 1µm2 area,
and a mesh of 200 sensors with the interconnection network
takes much less than 0.01mm2 [23]. This implies that the
total area overhead of deploying the acoustic sensor mesh
to every SM is less than 0.1%. Figure 12 shows how the
WCDL (Y-axis) varies depending on the number of sensors
per SM (X-axis) for 4 different GPU architectures.

2) Warp Scheduler Modification: In GTX480, each SM
can hold a maximum of 64 active warps. The SM has two
warp schedulers, each of which manages 32 warps [43].
Therefore, one entry of RBQ occupies 5+1= 6 bits, and the
size of the entire RBQ becomes 20×6 = 120 bits. Finally,
the size of RBT should be 32× 32 = 1024 bits. Thus, the
total cost of Flame’s hardware modifications is trivial, and
it is important to note that all of them are off the critical
path of the GPU.

B. Performance Evaluation
1) Overall Performance Overhead: This section analyzes

the execution time overhead for Flame and combinations
of different detection/recovery schemes in comparison to
the baseline that does not have any resilience support; we
tested the following schemes with our default settings, i.e.,
20 cycles of WCDL, GTO, and GTX480.

• Sensor+Renaming is our full resilience solution (sup-
porting both detection and recovery) using Flame with
its idempotent region optimization enabled.

• Sensor+Checkpointing is a full resilience scheme that
uses the sensor based detection and idempotent recov-
ery with register checkpointing.

• Renaming is a recovery-only solution based on idem-
potent recovery with register renaming.

• Checkpointing is another recovery-only solution based
on idempotent recovery with register checkpointing.

• Duplication+Renaming is a full resilience scheme that
detects errors using SwapCodes’ instruction duplication
and recovers with register renaming based idempotent
processing.

• Duplication+Checkpointing is a similar full resilience
scheme based on SwapCodes error detection and reg-
ister checkpointing based idempotent recovery.

• Hybrid+Renaming is another full resilience scheme
comprised of (1) hybrid detection of acoustic sensors
and SwapCodes’ instruction duplication for tail-DMR
and (2) idempotent recovery with register renaming.

• Hybrid+Checkpointing is a similar full resilience
scheme based on the same hybrid detection and idem-
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Figure 13. Performance overhead of Flame and other schemes with 20 cycles of WCDL and the GTO scheduler on GTX480
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Figure 14. Performance overhead of Flame and other schemes with 20 cycles of WCDL and the GTO scheduler on GTX480 (cont.)
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Figure 15. Average performance overhead of Flame and other schemes
with 20 cycles of WCDL and the GTO scheduler on GTX480 (geomean)

potent recovery with register checkpointing.
For the above schemes, Figure 13 and 14 both show their
execution times normalized to the original applications with-
out soft error resilience. Figure 15 presents the geometric
mean of the normalized execution times of all 34 benchmark
applications tested. We only showed fault-free execution
time overheads because the soft error rate is typically very
low, i.e., 1.37 errors per day (Section IV). As a result, the
fault-free execution overhead is a more important metric for
evaluating soft error resilience schemes. It is worth noting
that the average region size for all the benchmarks is 50.23
instructions, and thus the recovery overhead for re-executing
50 instructions within 24 hours is negligible.

As shown in Figure 15 Renaming incurs only 0.04%
overhead on average and up to 3.5% for LPS (Figure 14).
The impact of register renaming turns out to be trivial due
to rare register anti-dependences found in GPU applications;
for most applications, the performance of Renaming is
almost the same as the baseline. In contrast, Checkpointing
incurs 5.9% execution time overhead on average and up
to 40.8% for Stencil (Figure 13); the slowdown is mainly
caused by checkpoints (i.e., essentially store instructions)
inserted in innermost loops, due to the lack of a store buffer.

Meanwhile, the execution time overheads of Dupli-
cation+Renaming and Duplication+Checkpointing are
34.38% and 45.34%, respectively. Despite the compare-free
nature of SwapCodes, its instruction duplication still incurs
a significant performance overhead. On the contrary, an
acoustic sensor based detection scheme as in Flame and Sen-
sor+Checkpointing, incurs little to negligible overhead. The
execution time overhead of Sensor+Checkpointing is 6.9%
on average, and it is only a little higher than Checkpointing.
Similarly, Tail-DMR also benefits from the efficiency of
acoustic sensor based detection. Hybrid+Renaming and
Hybrid+Checkpointing cause 13.48% and 19% average
overhead, respectively. While the execution times are much
better than those of Duplication+Renaming and Duplica-
tion+Checkpointing, the DMR part still incurs a consider-
able overhead compared to acoustic sensor only detection.

Finally, Flame outperforms all other schemes significantly
and only causes 0.6% execution time overhead on average
and up to 6.4% for LUD (Figure 13). The slowdown
originates from region boundaries inside a loop of a small
but frequently executed kernel. In Figure 14, two interesting
results are found in (1) Histogram where Flame achieves
8.3% performance improvement over the baseline and (2)
SP where it does 2.3% performance improvement. We
suspected that the improvements result from the different
warp scheduling behavior caused by Flame’s modification
(Section III-D). In particular, Histogram shows much fewer
memory bank conflicts (15% reduction compared to the
baseline) while SP generates fewer L1 cache misses.

2) Impact of the Idempotent Region Optimization: Figure
16 shows the performance improvement achieved by Flame’s
idempotent region optimization III-E. We found that due
to the conservative optimization policy, only 7 benchmark
applications can benefit from the extension of idempotent
regions. Most notably, for LUD, the execution time overhead
is reduced from 15% to 6.4%. Similarly, the execution time
overhead of CG is reduced from 9.7% to 1.7%. Overall,
with the help of the region size extension optimization,
Flame reduces the performance overhead of the 7 benchmark
applications from 4.8% to 1.7% on average.
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Figure 16. Impact of idempotent region optimization with 20 cycles of
WCDL and the GTO scheduler on GTX480

3) Sensitivity Analysis: This section evaluates Flame’s
performance sensitivity to different WCDL settings, sched-
uler models, and GPU microarchitectures.

Sensitivity to different cycles of WCDL: We tested
different configurations of WCDL ranging from 10 cycles to
50 cycles. Figure 17 describes the results for each WCDL.
The overall trend is that the smaller the WCDL is, the lower
the overhead of Flame is. When WCDL varies between 10
and 50 cycles, Flame’s average execution time overheads
ranged from 0.13% to 2.1%. Although the best performance
is achieved with 10 cycles of WCDL, this configuration
requires 5 times more sensors for each SM than what is
required with 20 cycles of WCDL. That is why Flame picks
the 20 cycles as its default WCDL, and we believe that it is
the more cost-effective choice.

Sensitivity to different scheduler models: We tested
three more different warp scheduler models provided by
GPGPU-Sim 4.0, i.e., OLD, LRR, and 2-Level, in addition
to Flame’s default scheduler GTO. Figure 18 shows their
performance overhead results with 4 different baselines of
each scheduler model with no resilience support. GTO runs
a single warp until it stalls, and then picks the oldest
ready warp to run [64]. While OLD simply picks the oldest
ready warp to run at every cycle, LRR (Loose Round-
Robin) schedules warps in a round-robin order at each
cycle and skips any stalled warps. Finally, 2-Level divides
warps into two groups and applies LRR on one of the

groups until all warps in the group stall. Overall, Flame
achieves near-zero performance overheads for all 4 scheduler
models tested. Although 2-Level shows the highest average
overhead, it is only 1.58% on average. Similarly, the average
performance overheads of LRR and OLD are also negligible,
i.e., 0.76% and 1.18%, respectively. Note that GTO turns out
to outperform other schedulers in our evaluation, and again
Flame’s overhead for GTO is only 0.6% on average.

Sensitivity to different architectures: We also tested
three more recent GPU architectures on GPGPU-Sim 4.0.
RTX2060 is the latest architecture that is currently sup-
ported by the GPGPU-Sim. Figure 19 depicts the normalized
execution times of the same benchmark applications when
they execute on TITAN X, GV100, RTX2060, and GTX480
in comparison to the 4 baselines of running the original
applications on top of each GPU architecture; here, all
architecture configurations use 20 cycles of WCDL. Overall,
for the 3 new GPU types, we observed the same performance
trend shown in the old architecture GTX480. The average
performance overheads of the new GPU types all stay less
than 1% (geometric mean) while the highest overhead is
found for TITAN X, i.e., only 0.97% overhead.

Table II
THE NUMBER OF SENSORS REQUIRED TO ACHIEVE 20 CYCLES OF

WCDL FOR DIFFERENT GPU ARCHITECTURES

Core SM Sensors Area
Frequency Counts per SM Overhead

GTX 480 700 16 200 < 0.1%
RTX 2060 1365 30 248 < 0.1%
GV 100 1136 80 128 < 0.1%
TITAN X 1000 24 260 < 0.1%

Newer GPUs typically feature a larger die size and higher
core clock frequency, thereby impacting the overhead of
acoustic sensors deployed on the GPUs. Table II shows the
specification of the four GPU architectures and the number
of sensors per SM required to achieve 20 cycles of WCDL.
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Figure 17. Performance overhead of Flame when WCDL varies from 10 to 50 with the GTO scheduler on GTX480
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Figure 18. Performance overhead of Flame for different scheduler models with 20 cycles of WCDL on GTX480
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Figure 19. Performance overhead of Flame for different GPU architectures with 20 cycles of WCDL and the GTO scheduler

VII. RELATED WORK

A. Software Approaches for Soft Error Protection

To achieve soft error resilience, many software based
approaches take advantage of redundant execution [44], [48].
In general, they duplicate the instruction stream of program
and schedule the replicas—on the same core—along with
the originals to detect any instruction output mismatch. In
this line of research, SWIFT, the seminal error detection
work, selectively replicates instructions excluding loads and
stores with ECC memory assumed and executes them with
unused instruction-level resources of the processor core
pipeline [44]. The following variants of SWIFT all take
the same instruction duplication approach—though they are
different in terms of the sphere of replication (SoR) pro-
vided. For example, nZDC [62] increases the error detection
coverage by extending the SoR to virtually all kinds of
instructions including load, store, branch, and call instruc-
tions. Later, the authors of nZDC propose NEMESIS [65]
to extend the fault coverage of the existing error correction
scheme that relies on majority voting to correct SWIFT-
detected errors. While NEMESIS can recover from 97% of
detected errors, it comes with a 3X slowdown on average.

The major problem of these approaches is that they incur
a significant performance overhead due to the dynamic
instruction count increase for satisfying required fault cover-

age. In contrast, Flame achieves a near-zero overhead. That
is because its error detection relies on acoustic sensors that
are off the critical path of the instruction pipeline. Also,
Flame’s idempotence-based recovery is very lightweight on
GPUs. Furthermore, Flame can effectively hide the region-
level verification delay with its WCDL-aware warp schedul-
ing leveraging GPU’s massive warp-level parallelism.

B. Hardware Approaches for Soft Error Protection

Considering the performance overhead of the software ap-
proaches, researchers exploit hardware resources for redun-
dant multi-threading for fast and comprehensive soft error
resilience. Ainsworth and Jones show how heterogeneous
computer architecture—comprised of a high-performance
out-of-order core and multiple low-power in-order cores—
can be used to offer parallel error detection without signif-
icant performance overheads [66]. The same authors later
extend their work to provide parallel error correction on top
of the heterogeneous computer architecture [67]. In case
the error occurred in a core is propagated to other cores
damaging them, the authors leverage logging-based rollback
recovery for the cores to recover from the error.

Other researchers come up with the idea of selectively
protecting only a subset of values, e.g., highly susceptible
data [68], [69]. Kim and Somani observe that a cache line in
the MFU (most frequently used) or the MRU (most recently
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used) position is more susceptible to soft errors than those
in other positions. With that in mind, the authors propose to
replicate such cache lines through the cache hierarchy [68].
The selective protection idea is further explored by Zhang’s
replication cache [69]. It also duplicates the cache line in
the MRU position but saves it into a small additional cache.
Compared to aforementioned hardware approaches, Flame
requires minimal hardware modification by piggybacking
on the existing warp scheduler of GPUs and does not
compromise the error protection capability since the acoustic
sensors offer complete soft error detection.

C. Hybrid Approaches for Soft Error Protection

For cost-effective soft error resilience, there are hard-
ware/software co-designed proposals. Shoestring is one of
the most popular co-designed schemes which combines
compiler analysis and symptom-based fault detection hard-
ware to reduce the number of instructions to be dupli-
cated [48]. The key insight is that there is no need to
duplicate those instructions whose fault can be detected
anyway by the symptom-based detection hardware. Thus, the
Shoestring compiler duplicates only statistically-vulnerable
instructions—that tend to manifest as user-visible errors
without leading to fault symptoms such as exceptions, page
faults, overflows [48]. Once such vulnerable instructions
are duplicated, they are validated by comparing the re-
sults of the original instruction and the replica as with
traditional instruction duplication approaches. Nonetheless,
Shoestring duplicates still a large number of such vulnerable
instructions, which is the main reason for its significant
performance overhead. Moreover, Shoestring is a detection-
only scheme thus not being able to correct detected errors.
In contrast, Flame replicates no instruction since the error
detection is made possible with acoustic sensors. The only
instruction overhead of Flame is loads/stores for stack-
spilled variables caused by the register renaming—though
they are rarely found in our experimentation.

D. Task-Level Idempotency Based Resilience

Recent works adopt task-level idempotency to achieve
soft error resilience for GPUs or accelerators. SPITS is
a programming model for computing partially idempotent
tasks [70]. It provides a set of APIs and a runtime system
that allow programmers to generate, commit, and man-
age idempotent tasks on a large number of computing
nodes. Likewise, Asymmetric Resilience is another task-
level idempotency approach that attempts to achieve soft
error resilience for heterogeneous systems [71]. Basically,
task-level idempotency allows each idempotent task to be re-
executed—when an error is detected therein—for recovery.

The key advantage of the task-level idempotency is that
it is applicable to various architectures, e.g., non-Von Neu-
mann architecture accelerators [71]. However, the problem
of the above approaches is that not all applications are

written with the task-level idempotency in mind. Whenever
encountering non-idempotent tasks, Asymmetric Resilience
requires heavyweight checkpoints, that save the entire mem-
ory space used by the task for backup/recovery, thereby
causing a significant performance overhead [71]. Similarly,
SPITS needs other fault-tolerant mechanisms to protect non-
idempotent tasks [70]. In contrast, Flame’s compiler can
enable idempotent recovery for any GPU applications.

Finally, slow recovery is another problem of task-level
idempotency approaches whereas Flame’s recovery is fast
due to the small region size (Section IV). Unfortunately,
the recovery overhead of re-executing the entire task is very
significant, which makes it unrealistic to combine acoustic
sensors and task-level idempotency. Although acoustic sen-
sors can detect all radiation-induced soft errors, they may
yield some amount of false positives unless the sensors are
appropriately calibrated. Even in such a case, Flame can still
perform well because of its negligible recovery overhead
whereas the task-level idempotency approaches can suffer a
significant overhead due to the large task execution size or
even stagnation [72], [73], [74], [75].

VIII. CONCLUSION

This paper presents Flame, a hardware/software co-design
scheme that can achieve featherweight soft error resilience
for GPUs. Flame uses acoustic sensor based detection
for 100% coverage of radiation-induced soft errors along
with idempotent processing for their fine-grained recovery.
Across idempotent regions, Flame exploits so-called soft
error verification, that waits for worst-case detection latency
(WCDL) of the sensors at each region end, to verify the
absence of errors during the region execution before starting
the next region. In particular, to hide the WCDL verification
delay, Flame piggybacks on GPU’s inherent warp-level
parallelism, i.e., descheduling any warps that hit a region
boundary—as if it were a regular long-latency operation—
and switching to another ready warp. Since the verification
delay is generally shorter than the warp’s scheduling turn-
around time, Flame can effectively hide the verification
delay of each region. To track the verification timing and
recovery information of warps, Flame devises a region
boundary queue and a recovery PC table that can be realized
without significant hardware cost. The experimental results
demonstrate that Flame incurs negligible average perfor-
mance overheads for 4 different warp schedulers, outper-
forming the state-of-the-art resilience schemes. The upshot is
that Flame can fully protect GPUs against radiation-induced
soft errors without significantly increasing the execution
time or the hardware complexity.
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of Caches by Exploiting Acoustic Wave Detectors for Error
Recovery,” in 2013 IEEE 19th International On-Line Testing
Symposium (IOLTS). IEEE, 2013, pp. 85–91.

[21] C. Chen, G. Eisenhauer, S. Pande, and Q. Guan, “CARE:
Compiler-Assisted Recovery from Soft Failures,” in Proceed-
ings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, 2019, pp. 1–
23.

[22] G. R. Upasani, “Soft Error Mitigation Techniques for Fu-
ture Chip Multiprocessors,” Ph.D. dissertation, Universitat
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