

1 Contemporary and future dust sources and emission fluxes
2 from gypsum- and quartz-dominated eolian systems, New
3 Mexico and Texas, USA

4 **Mark R. Sweeney¹, Steven L. Forman², and Eric V. McDonald³**

5 *¹Department of Sustainability & Environment, University of South Dakota, 414 E. Clark
6 Street, Vermillion, South Dakota 57069, USA*

7 *²Department of Geosciences, Baylor University, One Bear Place #97354, Waco, Texas
8 76798, USA*

9 *³Division of Earth & Ecosystem Sciences, Desert Research Institute, 2215 Raggio
10 Parkway, Reno, Nevada 89512, USA*

11 **ABSTRACT**

12 Recent research on dust emissions from eolian dunes seeks to improve regional
13 and global emissions estimates and knowledge of dust sources, particularly with a
14 changing climate. Dust emissions from dune fields can be more accurately estimated
15 when considering the whole eolian system composed of active to stabilized dunes,
16 interdunes, sand sheets, and playas. Each landform can emit different concentrations of
17 dust depending on the supply of silt and clay, soil surface characteristics, and the degree
18 to which the landforms are dynamic and interact. We used the Portable In Situ Wind
19 Erosion Laboratory (PI-SWERL) to measure PM10 (particulate matter $<10 \mu\text{m}$) dust
20 emission potential from landforms in two end-member eolian systems: the White Sands
21 dune field in New Mexico ([USA](#)), composed of gypsum, and the Monahans dune field in
22 west Texas, composed of quartz. White Sands is a hotspot of dust emissions where dunes

23 and the adjacent playa yield high dust fluxes up to $8.3 \text{ mg/m}^2/\text{s}$. In contrast, the active
24 Monahans dunes contain 100% sand and produce low dust fluxes up to $0.5 \text{ mg/m}^2/\text{s}$,
25 whereas adjacent stabilized sand sheets and dunes that contain silt and clay could produce
26 up to $17.7 \text{ mg/m}^2/\text{s}$ if reactivated by climate change or anthropogenic disturbance. These
27 findings have implications for present and future dust emission potential of eolian
28 systems from the Great Plains to the southwestern United States, with unrealized
29 emissions of $>300 \text{ t/km}^2/\text{yr}$.

30 INTRODUCTION

31 Field measurements and model-based estimates of dust emissions from dune
32 systems are difficult to characterize (Amit et al., 2014; Adams and Soreghan, 2020; Swet
33 et al., 2020), confounding present and future contributions to atmospheric dust loading
34 (Bullard et al., 2011; Crouvi et al., 2012). This is important to resolve because estimates
35 of total atmospheric dust loading are wide-ranging and contain uncertainties associated
36 with source areas and the processes driving dust emissions, limiting our understanding of
37 the impacts of atmospheric dust on radiative forcing, biogeochemical cycles, extreme
38 climate variability (Kok et al., 2021), and human health (Crooks et al., 2016). Sand dunes
39 and sand sheets, though spatially extensive, have been largely ignored as significant dust
40 sources because eolian sands typically contain $<5\%$ silt and clay that could become
41 entrained as dust (Prospero et al., 2002). Laboratory and wind tunnel research on
42 abrasion, the process of chipping, spalling, and grain coating removal of quartz sand,
43 suggests that quartz-rich sand dunes are not major dust sources (Bullard et al., 2004;
44 Adams and Soreghan, 2020; Swet et al., 2020), while other field research (Sweeney et al.,
45 2011; Bolles et al., 2019) and remote-sensing **measurements** (Bullard et al., 2008; Lee et

46 al., 2012) suggest that dunes and sand sheets containing even a few percent silt and clay
47 can potentially produce dust over large areas and wide ranges of concentrations. This
48 may be especially true in eolian systems with diverse landforms where saltation
49 bombardment of sand on finer-grained soils, such as playas, results in high dust
50 emissions (Bullard et al., 2011). Such is the case for the Bodélé Depression in Chad,
51 where saltation bombardment and the disintegration of sand-sized aggregates composed
52 of silt and clay result in one of the largest global sources of dust today (Bristow and
53 Moller, 2018). Ongoing field characterizations of dust sources and emission potential are
54 critical to enhance our understanding of the spatial and temporal variability in
55 atmospheric dust loads (Bullard et al., 2011), which will lead to increased accuracy of
56 dust models (Kok et al., 2021).

57 Our study provides insight on dust sources and ranges of dust emissivity for two
58 end-member eolian systems: (1) White Sands dune field in New Mexico (USA),
59 composed of gypsum sand (Mohs hardness = 2), and (2) Monahans dune field in west
60 Texas, composed of mature quartz sand (Mohs hardness = 7; Fig. 1). These dune fields
61 produce a range of dust emission potentials from active dunes and other associated
62 landforms including vegetated dunes, sand sheets, interdunes, and playas. The White
63 Sands area is considered to be a dust emission hotspot (Baddock et al., 2016). Hotspots
64 dominate atmospheric dust loading in many arid environments because they are relatively
65 flat and free of vegetation and rock cover, they lack surface crusting, and they have
66 ample sediment supply—key properties that facilitate wind erosion (Gillette, 1999).
67 Hotspots are typically located in topographic depressions, commonly associated with
68 ephemeral or dry lakes and river valleys where sediment can be periodically replenished

69 (Prospero et al., 2002). The active Monahans dunes, on the other hand, emit low levels of
70 dust; however, the stabilized dunes and sand sheets that surround the active dunes store
71 silt and clay and could become dust sources if reactivated. Better knowledge of dust
72 emission sources, variability, and fluxes at a landform scale may help to predict future
73 dust emissions, **particularly** with the increased drought forecasted for the twenty-first
74 century (Cook et al., 2020).

75 SETTING AND METHODS

76 White Sands eolian sand, composed of 95%–99% gypsum (Fenton et al., 2017), is
77 derived from the deflation of beds of the former Pleistocene Lake Otero and ephemeral
78 Lake Lucero, driven predominantly by southwesterly winds, generating eolian sand
79 patches, sand sheets, protodunes, and dunes (Ewing, 2020). Dust storms are common
80 from March to May (White et al., 2015), and daily eolian activity requires low humidity
81 and extreme temperature changes that create atmospheric turbulence, resulting in winds
82 that drive saltation and dust generation (Gunn et al., 2021). The Monahans dune sand is
83 composed of 90%–95% quartz derived primarily from the Pecos River, with some input
84 from the Blackwater Draw Formation, but with an ultimate source from the Triassic
85 **Chine** Formation [\[\[Should this be the Chinle Formation?\]\]](#) (Muhs, 2004). Seasonal
86 winds from multiple directions result in dune activity but minimal net migration (Muhs
87 and Holliday, 2001). The areas of active dunes are surrounded by stabilized parabolic
88 dunes, blowouts, and sand sheets.

89 Dust emission potential was measured in the field using the Portable In Situ Wind
90 Erosion Laboratory (PI-SWERL [\[\[cite Etyemezian et al., 2007 here?\]\]](#)), a circular wind-
91 erosion device that measures concentrations of particulate matter <10 μm (PM10) in

92 diameter at different friction velocities (u^*) from soil surfaces (Etyemezian et al., 2007;
93 see the [Supplemental Material](#)¹). Concentrations of PM10 can be measured up to 400
94 mg/m³, limiting both the size and maximum dust concentrations that can be measured by
95 the PI-SWERL. The friction velocities simulated in this study equate to dust-producing
96 winds, and dust concentrations measured by PI-SWERL were used to calculate dust
97 fluxes (mg/m²/s) to compare [emissions from](#) different landforms. Tests occurred on bare
98 surfaces composed of loose sediment or crusts or on bare spaces between shrubs and
99 grasses. Thus, the PI-SWERL measured dust emission potential of surfaces without
100 vegetation. To assess if soils contained silt and clay that could be entrained as dust,
101 sediments collected at each testing site were analyzed by a laser diffraction method that
102 dispersed samples in water or air to determine percentages of sand, silt, and clay (see the
103 [Supplemental Material](#)).

104 RESULTS

105 PI-SWERL measurements revealed considerable variation in the dust emission
106 potential of both eolian systems. Active dunes, sand sheets, and interdunes at White
107 Sands generated similarly high dust fluxes (up to 6.9 mg/m²/s) yet contained no particles
108 <10 µm (Figs. 2A and 2C; Table 1). The playa had the widest range of fluxes (0.00–8.3
109 mg/m²/s), with the lowest fluxes on moist or hard surface crusts and high fluxes where
110 loose sand and aggregates were at the surface. Comparison of grain-size distributions of
111 playa samples dispersed in water versus air revealed differences in sand, silt, and clay
112 (Table 1). Dispersion in water yielded higher proportions of silt (>32%) and lower
113 proportions of sand (<80%) compared to dispersion in air (2% and 94%, respectively).
114 These results support observations that playa sediments contain sand-sized aggregates.

115 In contrast, the Monahans active quartz dunes generated low dust fluxes (up to 0.5
116 mg/m²/s) yet contained 100% sand (Table 1; Figs. 2B and 2C). Interdunes were typically
117 crusted or had high soil moisture and were low dust emitters; however, higher fluxes
118 occurred on dry crusted interdunes with loose sand at the surface. While vegetation
119 density on stabilized dunes and sand sheets precludes these landforms as major
120 contemporary dust sources, PI-SWERL tests on interspaces between vegetation and on an
121 artificially disturbed sand sheet resulted in much higher dust emission potential (up to 17
122 mg/m²/s). Vegetated, stabilized dunes and sand sheets contained 0 to >18% silt and clay
123 (Table 1).

124 Dust emissions increase exponentially with rising friction velocities (Figs. 2A and
125 2B). At White Sands, winds >18 m/s ($u^* >> 0.8$ m/s) have produced large dust storms
126 (Fig. 2D). Similar wind speeds replicated by the PI-SWERL on dune sand and playa
127 material produced a dust flux up to 4.8 mg/m²/s (Fig. 2C). These dust fluxes are similar
128 to other highly emissive playa-dune systems, including Owens Lake (Gillette et al.,
129 2004), and other desert landforms (Sweeney et al., 2011). In contrast, the low fluxes from
130 Monahans active dunes were similar to dunes in China that lack silt and clay and were
131 consistent in magnitude to crusted, low-emission playas (Sweeney et al., 2016).

132 **DISCUSSION AND CONCLUSIONS**

133 Our study reveals intra- and extra-landform variability in dust fluxes from eolian
134 systems now and in the future. Most variability can be attributed to the degree of surface
135 crusting or soil moisture (Gillette, 1999). PI-SWERL tests revealed that higher dust
136 emissions occur on surfaces with loose sand or aggregates where saltation bombardment
137 could erode finer-grained playas or where interdunes and aggregates could break apart to

138 generate dust. High dust emissions from stabilized sand sheets and dunes were associated
139 with abrasion or saltation and the release of silt and clay likely derived from pedogenesis
140 or dust deposition in those deposits. Wide ranges in dust emissions from sand sheets and
141 playas may be related to fine to very coarse sand **sizes, which** influence the friction
142 velocity **required** for entrainment. Surface crusting also reduced dust emissions on playas
143 and interdunes.

144 Sand abrasion is the likely dominant dust-production process for active dune
145 fields that contain no measurable silt and clay, based on a combination of PI-SWERL and
146 grain-size data. PI-SWERL tests from both active dune fields produced PM10 particles
147 (Fig. 2) and coarse silt sizes (0.015–0.035 mm) by sand abrasion that were not originally
148 present in the dune sand (Fig. 3). At White Sands, the assumption has been that most dust
149 is sourced from the playa (Gunn et al., 2021). A potentially surprising result of this study
150 is the high magnitudes of dust emission from both the abrasion of dune sand and erosion
151 of playa sediments at White Sands, which indicate both landforms are particulate sources
152 during dust storms. In contrast, the Monahans eolian system produced low quantities of
153 dust due to low rates of abrasion in active dunes and vegetative cover, which protects the
154 surface from wind erosion. The results for the Monahans active dunes are consistent with
155 other studies that produced low dust fluxes from quartz sand abrasion (Bullard et al.,
156 2004; Huang et al., 2018; Adams and Soreghan, 2020; Swet et al., 2020).

157 Jerolmack et al. (2011) studied abrasion at the White Sands dunes and concluded
158 that gypsum grains easily shatter upon impact to produce dust. Our data support this
159 claim (Fig. 3A), where abrasion contributes to the elevated and sustained dust emissions
160 from White Sands dunes. Conversely, the mineralogical maturity and well-rounded

161 nature of the Monahans quartz dune sand **are** likely due to a history of abrasion that
162 released finer particles (Muhs, 2004). A significant portion of the dust generated from
163 these dunes was also likely deposited and stored in the surrounding vegetated dunes and
164 sand sheets. Dust flux from the active Monahans dunes has likely decreased over time as
165 the rate of particle production with abrasion has decreased with an increase in grain
166 rounding and a decrease in feldspar content (*sensu* Muhs, 2004). The dust fluxes from
167 quartz dunes, albeit comparatively low, can be appreciable over multidecadal time scales
168 when evaluating global dust loads (Bullard et al., 2004).

169 Annual magnitudes of dust emissions in metric tons (**t**; **Table S3**) from
170 hypothetical 1 km² parcels of landforms reveal large differences in average emission
171 potential, with the White Sands dunes emitting 83 t/yr and Lake Lucero emitting 10 t/yr.
172 Maximum emissions occur at higher wind speeds (up to 18 m/s) and on surfaces with
173 weak to limited surface crusting, with 271 t/yr emitted from active dunes and 183 t/yr
174 emitted from Lake Lucero. Mean and maximum fluxes from sand sheets, dunes, and
175 interdunes are similar (Fig. 2C), potentially indicating that abrasion is equally effective in
176 gypsum eolian sand deposits that do not contain silt and clay. Monahans active dunes
177 produce 15–69 t/yr, but high magnitudes of dust emission from this system would require
178 vegetation reduction **on** sand sheets and dunes. In that case, emissions from sand sheets
179 become the highest at 344 t/yr average, versus 2171 t/yr maximum. Potentially high
180 fluxes from the Monahans system indicate the importance of stored silt and clay in eolian
181 deposits as potential sources of dust.

182 The key difference between the White Sands and Monahans eolian systems as
183 long-term dust sources is related to differences in sediment supply. The White Sands area

184 is a prolific dust source due to seasonal wetting and drying of the playa and
185 recrystallization of gypsum crystals, with winds eroding flat, unvegetated playa
186 sediments that replenish the supply of sand-sized particles to the dunes (Ewing, 2020).
187 This gypsum factory has been operating since at least the early Holocene: Its age and the
188 documented major deflational episodes at 7 ka and 4 ka (Langford, 2003) suggest the
189 White Sands eolian system has been a dust-emission hotspot for thousands of years.
190 Increases in dust emissions from the area may be linked to drought, for example, during
191 the 1930s Dust Bowl (Choun, 1936), as well as during more recent short-term droughts
192 (Fig. 2D). Comparatively, dust from the Monahans eolian system will eventually become
193 exhausted as the sand sheet (0–10 m thick) erodes away on 10^4 to 10^5 time scales. Sand
194 sheets are extensive on the southern High Plains (Fig. 1), and due to increased sediment
195 availability, primarily by agricultural disturbance, they are presently (Lee et al., 2012)
196 significant dust sources in the region. These sand sheets are composed of loamy sands to
197 sandy loams with >10%–15% silt and clay, they have high potential emissivity (Bolles et
198 al., 2019), and they are similar to other sand sheets documented to be dust sources in
199 other countries (Lee et al., 2012, and references therein). Reactivation of vegetated dunes
200 and sand sheets could occur in the southern High Plains with a 10%–15% decrease in
201 precipitation (Muhs and Holliday, 2001). Climate models need to consider the likely
202 increase in dust emissivity from eolian systems **during** megadrought conditions in the
203 southern Great Plains and elsewhere (Pu and Ginoux, 2017; Bolles et al., 2019).

204 Landform-based assessments are critical in identification of dust sources and
205 emission potentials (Bullard et al., 2011). Our study is applicable to other drought-
206 sensitive eolian systems where stabilized dunes and sand sheets may become reactivated,

207 or where adjacent playas may bolster emissions, such as Africa (Bhattachan et al., 2013;
208 Bristow and Moller, 2018), Australia (Bullard et al., 2008; Strong et al., 2010), and Asia
209 (Amit et al., 2014). A clear outcome is that multi-magnitude differences in potential
210 atmospheric dust loading can occur from diverse landforms in active and presently
211 stabilized eolian systems. This analysis underscores the possibility [[or likelihood?]] that
212 eolian systems, especially those with stored silt and clay, can yield extremely high dust
213 emissions, particularly with projected drying in the midlatitudes for the 21st century
214 (Cook et al., 2020).

215 ACKNOWLEDGMENTS

216 We thank D. Bustos, P. Martinez, and C. Connelly at White Sands National Park
217 for their assistance. This research was funded by the National Science Foundation (grant
218 GSS-1660230), the National Geographic Society (grant 9990–16), and Atlas Sand LLC
219 (Austin, Texas). We appreciate constructive feedback from R. Ewing, L. Soreghan, and
220 an anonymous reviewer. L. Marin, C. Mayhack, Z. Wu, and K. Befus assisted with grain
221 size, grain imaging, and mineralogy analyses. Discussions with K. Bolles, L. Peng, and
222 G. Kocurek helped vet our ideas.

223 REFERENCES CITED

224 Adams, S.M., and Soreghan, G.S., 2020, A test of the efficacy of sand saltation for silt
225 production: Implications for the interpretation of loess: Geology, v. 48, p. 1105–
226 1109, <https://doi.org/10.1130/G47282.1>.

227 Amit, R., Enzel, Y., Mushkin, A., Gillespie, A., Batbaatar, J., Crouvi, O., Vandenbergh, J.,
228 and An, Z., 2014, Linking coarse silt production in Asian sand deserts and

229 Quaternary accretion of the Chinese Loess Plateau: Geology, v. 42, p. 23–26,
230 <https://doi.org/10.1130/G34857.1>.

231 Baddock, M.C., Ginoux, P., Bullard, J.E., and Gill, T.E., 2016, Do MODIS-defined dust
232 sources have a geomorphological signature?: Geophysical Research Letters, v. 43,
233 p. 2606–2613, <https://doi.org/10.1002/2015GL067327>.

234 Bhattachan, A., D'Odorico, P., Okin, G., and Dintwe, K., 2013, Potential dust emissions
235 from the southern Kalahari's dunelands: Journal of Geophysical Research: Earth
236 Surface, v. 118, p. 307–314, <https://doi.org/10.1002/jgrf.20043>.

237 Bolles, K., Sweeney, M., and Forman, S., 2019, Meteorological catalysts of dust events
238 and particle source dynamics of affected soils during the 1930s Dust Bowl drought,
239 southern High Plains, USA: Anthropocene, v. 27, p. 100216,
240 <https://doi.org/10.1016/j.ancene.2019.100216>.

241 Bristow, C.S., and Moller, T.H., 2018, Testing the auto-abrasion hypothesis for dust
242 production using diatomite dune sediments from the Bodélé Depression in Chad:
243 Sedimentology, v. 65, p. 1322–1330, <https://doi.org/10.1111/sed.12423>.

244 Bullard, J.E., McTainsh, G.H., and Pudmenzky, C., 2004, Aeolian abrasion and modes of
245 fine particle production from natural red dune sands: An experimental study:
246 Sedimentology, v. 51, p. 1103–1125, <https://doi.org/10.1111/j.1365-3091.2004.00662.x>.

248 Bullard, J.E., Baddock, M., McTainsh, G., and Leys, J., 2008, Sub-basin scale dust
249 source geomorphology detected using MODIS: Geophysical Research Letters, v. 35,
250 L15404, <https://doi.org/10.1029/2008GL033928>.

251 Bullard, J.E., Harrison, S.P., Baddock, M.C., Drake, N., Gill, T.E., McTainsh, G., and
252 Sun, Y., 2011, Preferential dust sources: A geomorphological classification designed
253 for use in global dust-cycle models: *Journal of Geophysical Research*, v. 116,
254 F04034, <https://doi.org/10.1029/2011JF002061>.

255 Choun, H.F., 1936, Duststorms in the southwestern plains area: *Monthly Weather
256 Review*, v. 64, p. 195–199, [https://doi.org/10.1175/1520-0493\(1936\)64<195:DITSPA>2.0.CO;2](https://doi.org/10.1175/1520-0493(1936)64<195:DITSPA>2.0.CO;2).

258 Cook, B.I., Mankin, J.S., Marvel, K., Williams, A.P., Smerdon, J.E., and Anchukaitis,
259 K.J., 2020, Twenty-first century drought projections in the CMIP6 forcing scenarios:
260 *Earth's Future*, v. 8, e2019EF001461, <https://doi.org/10.1029/2019EF001461>.

261 Crooks, J.L., Cascio, W.E., Percy, M.S., Reyes, J., Neas, L.M., and Hilborn, E.D., 2016,
262 The association between dust storms and daily non-accidental mortality in the United
263 States, 1993–2005: *Environmental Health Perspectives*, v. 124, p. 1735–1743,
264 <https://doi.org/10.1289/EHP216>.

265 Crouvi, O., Schepanski, K., Amit, R., Gillespie, A.R., and Enzel, Y., 2012, Multiple dust
266 sources in the Sahara Desert: The importance of sand dunes: *Geophysical Research
267 Letters*, v. 39, L13401, <https://doi.org/10.1029/2012GL052145>.

268 Etyemezian, V., Nikolich, G., Ahonen, S., Pitchford, M., Sweeney, M., Gillies, J., and
269 Kuhns, H., 2007, The Portable In-Situ Wind Erosion Laboratory (PI-SWERL): A
270 new method to measure windblown dust properties and potential for emissions:
271 *Atmospheric Environment*, v. 41, p. 3789–3796,
272 <https://doi.org/10.1016/j.atmosenv.2007.01.018>.

273 Ewing, R.C., 2020, White Sands, *in* Lancaster, N., and Hesp, P.A., eds., Inland Dunes of
274 North America: **Cham**, Switzerland, Springer Nature, p. 207–237,
275 <https://doi.org/10.1007/978-3-030-40498-7>.

276 Fenton, L.K., Bishop, J.L., King, S., Lafuente, B., Horgan, B., Bustos, D., and Sarrazin,
277 P., 2017, Sedimentary differentiation of aeolian grains at the White Sands National
278 Monument, New Mexico, USA: Aeolian Research, v. 26, p. 117–136,
279 <https://doi.org/10.1016/j.aeolia.2016.05.001>.

280 Gillette, D., 1999, A qualitative geophysical explanation for “hot spot” dust emitting
281 source regions: Contributions to Atmospheric Physics, v. 72, p. 67–77.

282 Gillette, D., Ono, D., and Richmond, K., 2004, A combined modeling and measurement
283 technique for estimating windblown dust emissions at Owens (dry) Lake, California:
284 Journal of Geophysical Research, v. 109, F01003,
285 <https://doi.org/10.1029/2003JF000025>.

286 Gunn, A., Wanker, M., Lancaster, N., Edmonds, D.A., Ewing, R.C., and Jerolmack, D.J.,
287 2021, Circadian rhythm of dune-field activity: Geophysical Research Letters, v. 48,
288 e2020GL090924, <https://doi.org/10.1029/2020GL090924>.

289 Huang, Y., Kok, J.F., Martin, R.L., Swet, N., Katra, I., Gill, T.E., Reynolds, R.L., and
290 Freire, L.S., 2018, Fine dust emissions from active sands at coastal Oceano Dunes,
291 California: Atmospheric Chemistry and Physics, v. 19, p. 2947–2964,
292 <https://doi.org/10.5194/acp-19-2947-2019>.

293 Jerolmack, D.J., Reitz, M.D., and Martin, R.L., 2011, Sorting out abrasion in a gypsum
294 dune field: Journal of Geophysical Research, v. 116, p. 1–15,
295 <https://doi.org/10.1029/2010JF001821>.

296 Kok, J.F., et al., 2021, Contribution of the world's main dust source regions to the global
297 cycle of desert dust: *Atmospheric Chemistry and Physics*, v. 21, p. 8169–8193,
298 <https://doi.org/10.5194/acp-21-8169-2021>.

299 Langford, R.P., 2003, The Holocene history of the White Sands dune field and influences
300 on eolian deflation and playa lakes: *Quaternary International*, v. 104, p. 31–39,
301 [https://doi.org/10.1016/S1040-6182\(02\)00133-7](https://doi.org/10.1016/S1040-6182(02)00133-7).

302 Lee, J.A., Baddock, M.C., Mbuh, M.J., and Gill, T.E., 2012, Geomorphic and land cover
303 characteristics of aeolian dust sources in west Texas and eastern New Mexico:
304 *Aeolian Research*, v. 3, p. 459–466, <https://doi.org/10.1016/j.aeolia.2011.08.001>.

305 Muhs, D.R., 2004, Mineralogical maturity in dunefields of North America, Africa and
306 Australia: *Geomorphology*, v. 59, p. 247–269,
307 <https://doi.org/10.1016/j.geomorph.2003.07.020>.

308 Muhs, D.R., and Holliday, V.T., 2001, Origin of late Quaternary dune fields on the
309 southern High Plains of Texas and New Mexico: *Geological Society of America
310 Bulletin*, v. 113, p. 75–87, [https://doi.org/10.1130/0016-7606\(2001\)113<0075:OOLQDF>2.0.CO;2](https://doi.org/10.1130/0016-7606(2001)113<0075:OOLQDF>2.0.CO;2).

312 Prospero, J.M., Ginoux, P., Torres, O., Nicholson, S.E., and Gill, T.E., 2002,
313 Environmental characterization of global sources of atmospheric soil dust identified
314 with the Nimbus 7 Total Ozone Mapping Spectrometer (TOMS) Absorbing Aerosol
315 Product: *Reviews of Geophysics*, v. 40, p. 2-1–2-31,
316 <https://doi.org/10.1029/2000RG000095>.

317 Pu, B., and Ginoux, P., 2017, Projection of American dustiness in the late 21st century
318 due to climate change: *Scientific Reports*, v. 7, p. 5553,
319 <https://doi.org/10.1038/s41598-017-05431-9>.

320 Strong, C.L., Bullard, J.E., Dubois, C., McTainsh, G.H., and Baddock, M.C., 2010,
321 Impact of wildfire on interdune ecology and sediments: An example from the
322 Simpson Desert, Australia: *Journal of Arid Environments*, v. 74, p. 1577–1581,
323 <https://doi.org/10.1016/j.jaridenv.2010.05.032>.

324 Sweeney, M.R., McDonald, E.V., and Etyemezian, V., 2011, Quantifying dust emissions
325 from desert landforms, eastern Mojave Desert, USA: *Geomorphology*, v. 135, p. 21–
326 34, <https://doi.org/10.1016/j.geomorph.2011.07.022>.

327 Sweeney, M.R., Lu, H., Cui, M., Mason, J.A., Feng, H., and Xu, Z., 2016, Sand dunes as
328 potential sources of dust in northern China: *Science China—Earth Sciences*, v. 59,
329 p. 760–769, <https://doi.org/10.1007/s11430-015-5246-8>.

330 Swet, N., Kok, J.F., Huang, Y., Yizhaqm H., and Katra, I., 2020, Low dust generation
331 potential from active sand grains by wind abrasion: *Journal of Geophysical
332 Research: Earth Surface*, v. 125, e2020JF005545,
333 <https://doi.org/10.1029/2020JF005545>.

334 White, W.H., Hyslop, N.P., Trzepla, K., Yatkin, S., Rarig, R.S., Jr., Gill, T.E., and Jin, L.,
335 2015, Regional transport of a chemically distinctive dust: Gypsum from White
336 Sands, New Mexico (USA): *Aeolian Research*, v. 16, p. 1–10,
337 <https://doi.org/10.1016/j.aeolia.2014.10.001>.

338 **FIGURE CAPTIONS**

339 Figure 1. (A–B) **Maps of the** Monahans dune field (A) and White Sands dune field (B),
340 **USA**, with Portable In Situ Wind Erosion Laboratory (PI-SWERL[[**cite Etyemezian et**
341 **al., 2007 here?]**]) testing sites indicated by white circles (see Table S1 [see footnote 1]).
342 Inset shows locations (black circles) of the White Sands (W) and Monahans (M) dune
343 fields; gray areas indicate the approximate extent of eolian sand deposits. Base maps are
344 from World Imagery (www.arcgis.com).

345 **[[Figure edits needed: Add N and W to at least one lat and long designation each (in**
346 **each panel) and delete minus signs from longitude values.]]**

347

348 Figure 2. (A,B) Average dust fluxes of particulate matter $<10 \mu\text{m}$ (PM10) as a function of
349 friction velocity from different dune field environments and source areas for: (A) White
350 Sands and (B) Monahans **dune fields (USA)**. (C) Box plot of dust fluxes at friction
351 velocity $u^* = 0.8 \text{ m/s}$, roughly equivalent to wind speeds of 19 m/s. Boxes represent the
352 25th to 75th percentiles, with the horizontal line marking the median value; whiskers
353 represent the 10th and 90th percentiles. Dots represent maximum and minimum values.
354 (D) NASA astronaut photograph ISS030-E174652 of a dust storm originating over the
355 White Sands playa and dune field on 28 February 2012
356 (<https://eol.jsc.nasa.gov/Collections/EarthFromSpace/printinfo.pl?PHOTO=ISS030-E-174652>). Sustained winds at nearby Holloman **Air Force Base (New Mexico)** reached
358 17.8 m/s, with gusts of 21.5 m/s. Black box outlines area of field study in Figure 1B.

359 **[[Figure edits: Put units in parentheses in axis labels in A, B, and C. Specify lat and**
360 **long for part D.]]**

361

362 Figure 3. Dune sand and abrasion products produced during Portable In Situ Wind
 363 Erosion Laboratory (PI-SWERL [[\[cite Etyemezian et al., 2007 here?\]](#)]) tests. (A) Silt-
 364 sized gypsum produced from abrasion of sand (inset photo) from the White Sands ([New](#)
 365 [Mexico, USA](#)) dunes, location [WS16](#) [[\[Do you mean site W16-18 from Figure 1?\]](#)]. (B)
 366 Silt-sized quartz produced by abrasion of sand (inset photo) from Monahans dunes,
 367 location M1 ([see Figure 1](#)).
 368
 369 ¹Supplemental Material. [[\[Please provide a brief caption here.\]](#)]. Please visit
 370 <https://doi.org/10.1130/XXXXXX> to access the supplemental material, and contact
 371 editing@geosociety.org with any questions.
 372

TABLE 1. DUST EMISSION FLUXES AND GRAIN-SIZE DATA FROM DUNE FIELDS IN NEW MEXICO AND TEXAS, USA

Landform	<i>n</i>	Dust emission (mg/m ² /s)				Grain size [#]				
		Geomean* <i>u</i> = 0.4 m/s	CI low [†]	CI high [§]	Maximum <i>u</i> = 0.9 m/s	Minimum <i>u</i> = 0.4 m/s	% sand (st. dev.)	% silt (st. dev.)	% clay (st. dev.)	% PM10** (st. dev.)
White Sands										
Active dune	15	0.038	0.037	0.039	6.20	0.01	99.6 (0.2)	0.4 (0.2)	0	0
Sand sheet	13	0.038	0.036	0.039	6.91	0.01	99.6 (0.2)	0.3 (0.2)	0	0
Interdune	14	0.018	0.017	0.019	5.16	0.003	99.8 (0)	0.2 (0)	0	0
Playa (water)	43	0.007	0.007	0.008	8.29	0.000	80.8 (36.6)	15.1 (26.6)	10.5 (12.9)	32.0 (29.2)
Playa (air)							93.7 (9.7)	5.9 (8.6)	0.4 (1.2)	2.2 (5.3)
Monahans										
Active dune	28	0.012	0.011	0.012	0.52	0.003	100 (0)	0	0	0
Vegetated dune	9	0.070	0.069	0.070	2.14	0.04	96.1 (1.9)	3.5 (1.6)	0.4 (0.3)	1.3 (0.8)
Sand sheet	16	0.224	0.217	0.230	17.68	0.01	86.1 (5.1)	12.2 (4.2)	1.7 (0.9)	3.9 (1.8)
Interdune	16	0.006	0.005	0.006	1.42	0.001	93.0 (17.0)	5.9 (13.8)	1.1 (3.2)	2.5 (7.2)

*Most common friction velocity (*u*) above threshold for entrainment ([Pedersen et al., 2015](#) [[\[Not in the Reference list.\]](#)]).

[†]95% confidence interval (CI) below the mean.

[§]95% confidence interval (CI) above the mean.

[#]All White Sands (New Mexico) grain sizes [were](#) determined by dispersion in air; all Monahans (Texas) samples were dispersed in water. White Sands playa [material was](#) dispersed in water for comparison. St. dev.—standard deviation.

^{**}PM10—particulate matter <10 μ m.