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Abstract: This paper outlines a suite of energy-management problems for inverter-based
power networks from the vantage point of optimal control and (non)linear optimization. The
problems are categorized based on timescales dictated by the network dynamics, and organized
methodologically based on the problem complexity. A growing body of literature has addressed
problems in this domain, albeit, with poorly motivated assumptions and behavioral models that
obscure precise device behavior. With a combination of circuit- and control-theoretic lenses,
we establish appropriate dynamic models for the networked resources, illustrate how common
engineering assumptions arise, uncover how problems are linked, and postulate open challenges.
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1. INTRODUCTION

Power networks all over the world are experiencing dra-
matic upheaval in compositional form and anticipated
functionality. With retirement of fossil-fuel-driven syn-
chronous generators, integration of renewable energy, and
adoption of electrified transportation, there is a pro-
nounced change in the types and numbers of energy-
conversion interfaces that form the backbone of the
grid [Taylor et al. (2016)], [Kroposki et al. (2017)]. Partic-
ularly, energy processing in future grids will be dominantly
handled by semiconductor-based power-electronics circuits
termed inverter-based resources (IBRs).

In power networks, the nodal power/current injections,
voltages, and edge power/current flows abide by Ohm’s
and Kirchoff’s laws. Generally stated, energy-management
tasks aspire to optimally control a subset of these network
quantities such that the remaining resultant quantities are
within desired limits; optimality is quantified based on
cost of resources, or network attributes such as losses and
voltage deviations. Managing energy in electric networks
with IBRs is a challenging undertaking [Milano et al.
(2018)]. This has to be accomplished while acknowledging
dynamics cutting across multiple timescales, in the face of
uncertainty, and potentially with competing interests from
operators and owners. Literature in energy management
for synchronous-generator-based resources is a mature
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topic; that devoted to IBRs is growing, albeit scattered.
Particularly lacking are rigorous attempts to tie together
problem formulations across timescales and complexity.
These are the precise gaps that our work addresses.

We present a suite of energy-management problems tai-
lored to IBRs of two types: grid-following (GFL) and
grid-forming (GFM). GFL IBRs are the de facto technol-
ogy today; they involve phase-locked loops to synchronize
with grids and follow the sensed terminal voltage. On
the other hand, GFM resources can form voltages in the
absence of other resources; they can offer improved stabil-
ity margins, and therefore, are anticipated to dominate
in number and capacity in future grids [Milano et al.
(2018); Venkatramanan et al. (2022)]. Our examination of
energy-management problems in networks involving both
technologies is motivated by the projection of their co-
existence in the near term. We classify problems based
on timescales and complexity into four broad categories
ranging from infinite-dimensional optimal-control prob-
lems to stochastic linear programs (see Fig. 1). For each,
we outline companion models for the network and re-
sources. Traversal across formulations is undertaken from
methodological and analytical view points with control-
and circuit-theoretic frameworks. Central to our effort is
a controlled voltage-source model for GFM & GFL IBRs;
appropriate instances of which feature across all problem
formulations.

The paper begins with a high-level network model in
Section 2; this facilitates the presentation of the suite of
problems in Section 3. Detailed companion dynamic and
steady-state models for IBRs compatible with the problem
settings and corresponding linearizations are given in
Section 4. (Material in Sections 2-3 is presented in a self-
contained manner to preserve generality.) A discussion of
open challenges in Section 5 rounds off the paper.
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Fig. 1. llustrating the suite of energy-management problems discussed in Section 3. Assumptions and simplifications
that facilitate traversing across the problems are also listed alongside. Problem (P1) pertains to dynamic operating
conditions, while (P2)—(P4) apply to steady-state operation.

2. POWER NETWORK MODEL

To capture the dynamic and steady-state characteristics of
a network hosting IBRs, this section develops appropriate
models. We consider a three-phase balanced RL network
with N nodes and E edges. The network is modeled as a
directed graph G = (N, €) with node set N' = {1,...,N}
and edge set £. Arbitrarily assigning the directions for
edges e € &£, the topology of G is captured by the incidence
matrix B € {0, +1}¥*F with entries By, = 1(-1) if
k =m(n) when 3e = (m,n) € &; and By, = 0, otherwise.
The IBRs are assumed to be voltage-source inverters with
output RL filters. (Details can be found in [Yazdani and
Travani (2010)]; they are not essential to appreciate the
system-theoretic constructs introduced in the remainder.)

Construct E x E diagonal matrices (R, L") with the
diagonal entries representing the line resistances and in-
ductances, respectively. Similarly, the N x N diagonal ma-
trices (R%,L%) collect the resistances and inductances of
the inverter-network interconnections. Three-phase signals
are projected on to a reference frame rotating at electrical-
radian synchronous frequency, ws (260 or 2750 Hz) via
the Park’s transformation [Yazdani and Iravani (2010)].
Collect the ensuing complex-valued node voltages, current
injections, and inverter terminal voltages in N-length vec-
tors, V, I, E; and line currents in the E-length vector, F.
The RL dynamics for the network dictates

dF
LNE =B'"V-RVF — juw,LVF. (1)

Current injections and flows are related via Kirchoff’s
current law (KCL), compactly captured by

I=BF. (2)
The RL dynamics of the inverter output-filter intercon-
nections can be expressed as:
I
dt
The active and reactive power injected by the inverters at
their terminals are captured in real-valued vectors (P, Q),
and we express S = P + 7Q. It follows:

S:gEoI*, (4)

L’— =E-V — R’I — jw, L1 (3)

where o represents element-wise vector products, and (-)*
denotes the complex conjugate. Focusing on the IBR
dynamics, E is a controlled voltage source representing the
terminal behavior of the IBR. It derives from complex-
valued vector E’, entries of which are synthesized by
individual inverters and transformed to sinusoids rotating

at frequencies w:
/

de
E7 (5)

where ¢’ is a controller state variable with initial condition
wy = ¢'(t = 0). Vectors E and E’ are related via®

E =E oe/# ~¢0). (6)
The control laws that dictate the synthesis of E’ and the
dynamics of ¢’ depend on IBR type (i.e., GFM or GFL),
and are detailed in Section 4.1. In particular, we will see
that dynamics for inverter at node n € A can be expressed
in the general form
dx,
dt

w = lws +

= f7l(Xn7PT:7Q:L7V7;7I7IL)a (78“)

0= g7L(X71,7P’;7Q:L7I;L)’ (7b)

where vector x,, collects internal states for inverter dy-
namics (including E/, ¢} as entries); I/ is the inverter
current; power setpoints are denoted as (Pr, Q). Equa-
tions (1)—(7) adequately model the dynamics of an RL
network hosting inverters. Figure 2(a) illustrates the con-
structs introduced thusfar. Next, we will obtain a corre-

sponding steady-state model.

Steady-state model: In (1)—(7), all grid variables are time-
varying signals. We next delve into the scenario, wherein,
given some initial operating conditions and references
(P*,Q*), the inverter and network dynamics evolve to a
steady state. Pertinent fundamental questions include: ¢1)

1 Frequently in the literature, complex-valued quantities obtained
from applying Park’s transformation at ws are referred as global DQ
variables, while those obtained via Park’s transformation at local
frequencies in w are referred as local dgq variables. Typically, the
global D@ frame is used to express network-related quantities, while
local dq frames are used for resource-specific quantities. All quantities
marked (-)’ in the remainder are expressed in local dgq frames, and
thus are associated with transformations resembling (6).
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Whether a stable steady-state operating point exists; and
¢2) Given an initial operating condition, will the system
dynamics attain steady-state operation. While address-
ing ¢q1)-q2) is beyond the scope of this work, existing
literature provides relevant findings and open problems
based on analytical and empirical studies [Barklund et al.
(2008)], [Dorfler et al. (2016)], [Xin et al. (2011)]. As-
suming affirmative answers to ¢1)-¢2), steady-state op-
eration dictates that signals V,E I, and F correspond
to constant-magnitude phasors at a common steady-state
frequency, wss. Analysis of such operation is facilitated by
defining static complex vectors (V, E, I, F) by multiplying
(V,E,IF) with ¢/(“s==9)t The aforementioned defini-
tions allow writing (1)—(3) as algebraic relations:

E-V = (RI + ijSLZ) 1, (8a)
1= BF, (8b)
B'V = (RY + wLV)F. (8¢)

To obtain a steady-state model for inverters, one could set
X, = 01in (7). However, in steady state, network operators
may not be concerned with the internal states x,,’s and
signals (E’,T’). Thus, a simpler model may be obtained to
replace (5)—(7) with the form

?n(ETHTTHP;) :uwss) = 07 (9)

where the function f,, is parametrized by a set of known
parameters of the inverter at node n; see Section 4.2.
Figure 2(b) illustrates the steady-state model.

Collectively, (4), (8)-(9) are nonlinear. To formulate com-
putationally tractable energy-management problems, a
linear counterpart is desirable. We develop the sought
linear model in Section 4.3. It eliminates variables (V,I),
substituting (4), (8)-(9) by a compact form 2

H [E;P*; Q% ws] +h=0, (10)
where matrix H and vector h depend on network and
inverter parameters. An affine relation between actual

steady-state power injections S and references S* = P* +
JQ* will also be derived from (9), that takes the form

H [g; S*: E; wss} +h= 0, (11)

where (H, h) depend on inverter parameters.

3. SUITE OF ENERGY-MANAGEMENT PROBLEMS

In this section, we outline a suite of energy-management
problems, abstractions of which are illustrated in Fig. 1.
For the exposition to follow, we consider that the setpoints
(Pr,Qr) for IBRs at nodes n € N C N are given;
and the setpoints for the remaining nodes n € Ng =
N\ N are controllable. Thus, set N7, represents inelas-
tic/uncontrollable resources, while the nodes in Mg host
the resources to be dispatched while ensuring acceptable
network operation. By acceptable operation, we seek that
voltages V and frequencies w are within stipulated limits.

3.1 Finite-horizon Optimal-control Problem

Under the described setup, one could ideally aspire to
optimize over trajectories of reference setpoints for a
finite time horizon ¢ € [0,7] while constrained by model

2 For vectors x and y, [x;y] denotes the concatenation [x T yT]T.

dynamics. The ensuing optimal control problem can be
posed in the so-called Bolza form:

min Z Cn(Po(T), Qn(T))

nGNc

T
[ el Qu) e (P1)
t=0
over {P*(t),Q;( )}HENG7 [O’T
given {P;(t), Q5 (t )}neNL’ elo,T
sto (1) —(7), a
oJmm]- S (t) < Wma,x]-7 te [OvT] (12&)
Viin < V()| < Vinax, t€[0,7] (12b)

where, the first and second terms in the objective function
represent the terminal and running payoffs, respectively.
Setting ¢, (-) = 0 yields the Lagrange form, while ¢,,(-) = 0
brings (P1) to Mayer form. The formulation (P1) (partic-
ularly, the Lagrange form) is pertinent to high-volatility
settings where the node power references are functions
of time, and the network is modeled via the DAE (1)-
(7). For such settings, the frequency and voltage limits
are enforced at all times; see (12a)-(12b). Problem (P1)
optimizing over functionals (P}(t), Q% (t)) for n € Ng is
infinite dimensional, and hence challenging to solve. To ob-
tain a finite-dimension approximation to (P1), two popular
approaches include time discretization [Gan et al. (2000)],
and limiting the feasible function space to one spanned by
a finite polynomial basis [Khatami et al. (2020)].

In some settings, a network operator may seek to dispatch
inverters in N with references (P, Q}) that are constant
for t € [0,T], given time-invariant (P, Q%) for n € N.
Once an optimal setpoint is determined, dispatched, and
set, the network would evolve per the dynamic models.
In such cases, the dimensionality of (P1) reduces while
retaining the dynamics in constraints, yielding a finite-
dimensional optimal-control problem.

8.2 Non-convex Optimization with Steady-state Models
We now separate the time scales of network-IBR dynamics
and the intervals at which IBRs are dispatched. A common
assumption in so doing is that once optimal setpoints
are implemented, say at time ¢ = 0, the network-IBR
system attains a steady state at a time ¢ = tg. The
system stays at this steady-state operating point, before
being re-dispatched at time t = T. If tsx < T, one may
simplify (P1) to an algebraic optimization problem by
replacing the DAE-constraint set (1)-(7) with the steady-
state counterpart (4), (8)-(9); and enforcing the voltage-
magnitude and frequency limits (12a)-(12b) under steady-
state conditions. The ensuing formulation follows:

min Z cn(Pn,Q,,)
nENG
over {Pga QT*L}”ENG)
given {P;7 QT*L}TLENL?
s.to (4),(8) —(9), and

Wmin < Wss S Wmax

(P2)

< (13a)

Vmin S |V‘ S Vmax- (13b)

Familiar instances of (P2) include economic dispatch, or
more generally, AC Optimal Power Flow (AC-OPF). Thus,

(P2) generalizes the classical AC-OPF formulations to in-
clude inverter models. Furthermore, it innovatively models
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the grid to exhibit an unknown steady-state frequency
rather than invoking the popular fixed nominal frequency
assumption. It is worth pointing that the past decades
witnessed tremendous advancements towards obtaining
convex relaxations and distributed algorithms for AC-OPF
formulations that emerge as simplifications of (P2) (with
fixed frequency); see, e.g., [Molzahn et al. (2017)].

3.8 Linearized Optimization with Steady-state Models
The nonlinear equality constraints (4), (8)-(9) render (P2)
nonconvex. Linear approximations to the classical AC-
OPF problems, viz. DC-OPF in transmission systems and
LinDistFlow model of [Baran and Wu (1989)] in distribu-
tion systems, are frequently leveraged for computational
ease. Along similar lines, one may set up the following
linear approximation of (P2):

Z cfﬁn + cff@n
nENG
{Prtv Q:L}TLENca
{Pr, Qntnenss
(10) — (11), and
Wmin < Wes < Wmaxs (14a)
Emin S |E| S Ema)h (14b)

where (¢, Q) are the linear (re)active power cost coeffi-
cients for injection at node n. The linearization adopted
in (P3), and detailed in Section 4.3, eliminates the vari-
ables (V,I); and thus the voltage-magnitude limits (14b)
are enforced on the inverter terminal voltages E. If needed,
one can obtain linearizations to include (V, I) in modeling,
and subsequently enforce limits on those. Optimal inverter
dispatch formulations widely reported in the literature
incorporate the LinDistFlow with limited regard offered
to modeling resource behavior and frequency variability.
The linearization in (P3) overcomes such modeling deficits,
while preserving the linear program (LP) problem class.

min (P3)
over
given
s.to

Problem (P3), being an LP, serves as a gateway to sev-
eral practical and tractable stochastic energy-management
problems. Specifically, network operators may have access
to uncertain predictions (P}, Q) for uncontrollable nodes
n € Np. A generic stochastic-optimization problem dis-
patching the inverters n € Ng takes the form:

min Z F(cf?n +C§@n) (P4)
neNg

over {P:;a Q;}HENCV

given {ﬁ;a é;}nENLv

s.to (10) — (11), and
Pr(wmin S Wsg S wmax) Z 1 — €w, (153)
Pr(Emin S |E| S Emax) Z 1- €E, (15b)
[Py Qi) =[Py Qi+ I n3], VneNL (15c)

where, the deviations (n?,7Q) in the power references
at uncontrolled nodes follow a probability distribution
p. If the distribution p has unbounded support (e.g.,
Gaussian uncertainty), one cannot enforce deterministic
voltage-magnitude and frequency limits, thus necessitating
chance constraints as in (15a)-(15b). See [Jabr (2019)],
[Dall’Anese et al. (2015)], [Kekatos et al. (2015)]. Two

prominent off-shoots of (P4) include:
1) Robust optimization. Assuming p has a bounded sup-
port with uniform probability (e.g., polytopic uncer-
tainty), constraint (15d) simplifies to {(n2, n%9) }nen,, €U,
where U is the support of p. Constraints (15a)-(15b) can
be made deterministic by setting €, = eg = 0. Finally, the
objective function can be defined as the worst-case cost

]F(Csﬁn + Cg@n) ‘= max (Cﬁﬁn + Cg@n)

{nf

2) Chance-constrained optimization. For distribution p
with unbounded support, one can pick 0 < €,,eg < 1
based on the constraint-violation risk appetite. Under such
settings, a prevalent choice for the objective function is
the expected cost F(-) := E,(-). For tractability, one
may need to resort to suitable restrictions/relaxations that
enforce the probability of satisfaction in (15a)-(15b) per
constraint, instead of constraint groups.

4. MODEL SPECIFICS

The dynamic and steady-state IBR-network models devel-
oped in Section 2 are schematically represented in Fig. 2.
These high-level models conveniently represent IBRs as
controlled voltage sources [Venkatramanan et al. (2022)].
This section provides detailed GFM and GFL models
adhering to form (7) under dynamic conditions; and to
form (9) in steady state. (These models are ubiquitously
referenced in the IBR literature. That said, the previous
sections can be read independently of the content fur-
nished here.) Linearizations of form (10) are also made
explicit.

4.1 Dynamic Models

Grid-forming Inverter ~The model discussed below ad-
mits (under certain parametric assumptions) three popular
GFM-IBR control dynamics: droop, virtual synchronous
machine, and dispatchable virtual oscillator control [Ajala
et al. (2021); Johnson et al. (2022)]. The model includes
dynamics of voltage E/, frequency w,,, and a power filter:

dE’;L / * o~/ af *
Te dt = (fC(Eru |En|) - HCJ(Sn - Sn)) ) (16)
dy! dwn,
o8 — i, 4 KeR(S] - S), (17)
f
o di" =8 -8/ (18)

where, 7, 7r, and 7, denote the time constants for the
voltage, frequency, and power-control loops, respectively.
Variable |E*| denotes the voltage-magnitude setpoint,
and S} denotes low-pass-filtered measurements of active
and reactive powers, k. and k¢ capture the voltage- and
frequency-droop coefficients of the primary controller; and

function f.(-,-) is a difference metric.

Grid-following inverter ~ The GFL inverter employs a
synchronous-reference-frame phase-locked loop (PLL) for
grid synchronization and a PI current controller for refer-
ence tracking [Yazdani and Iravani (2010)]. The inverter
terminal voltage, £/, and dynamics of ¢/, are given by:

dr ;
E, = (K? T +K}F}) :

3 Apparent power is invariant to reference-frame transformations,

i.e., 8 = S. This can readily be verified: S’ = %E’ o (I)* =
%B*J(#’/*‘P{)) oEo [efa(np’ﬂp{)) o I] Y

(19)
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Fig. 2. (a) Dynamic & (b) steady-state network circuit model with IBRs represented as controlled voltage sources.

dy;, dey, i
ET KszLﬁ + Kprp 0 (20)

The PI control loops in (19) and (20) are closed around
the measured inverter current, I}, and grid voltage, V. :

déh _ ooy
o~ —R(V), (21)

dry Se\"
— I/* _ I/ —  n _ I/

where, current reference, I'*, is derived from S*.

(22)

Remark 1. Mapping the inverter dynamic models to (7),
the dynamic state variables x, for GFM and GFL
are [E!; ¢! wn; ST and [[Y;¢l; ¢)], respectively. The
DAE (7) for GFM comprises of (16)-(18) and (4); and
for GFL it is formed by (19)-(22). In (16)-(22), some
inverter parameters have not been indexed by n to keep
the notation uncluttered. These, however may vary per
inverter.

4.2 Steady-state Models

Grid-forming Inverter  The algebraic relationships cap-
turing the steady-state operation of a GFM at node n are:

Q, ~ Qr — Mg (|Ea| - |E;)), (23)

P, =P} — Mp"'(wes — ws), (24)
where, (Mg, Mp) are droop coefficients inferred from the
dynamic model. We obtain (23) by linearizing (16) in
steady-state, where, @; = Q!, = Qn, and recognizing that
|E,| = |E}|. Similarly (24) is obtained from (17) with
?;L = P! = P, and setting ¢}, = wss — ws (see (5)).
Grid-following inverter — Algebraic expressions pertinent
to steady-state operation follow from (22) as:

[Pn @] = [P} Q. (25)
The steady-state models (23)-(24), and (25), alongside (4),
comply with the general form (9). Moreover, (23)-(25)
relate the reference and steady-state injected powers as
per the desired linear form of (11).

4.3 Linearized Steady-state Network Model
In steady state, one can substitute V from (8a) in (8c) and
solve for F. Subsequently, using (8b) provides

I=BRY + jws V) 'BT[E — (R + jwe L],

Y (wss)

where the matrix Y (wy) is the admittance matrix for the
network G. Solving further for current I yields
I=[I+Y (wss)RT 4w LT)] 'Y E,
Y (wss)
where I is the identity matrix of suitable dimension.

Equation (26) relating I and E is the reduced system
description with the equivalent admittance matrix Y (wgs).

(26)

To obtain a linear model for the IBR-network system, at
the outset, one notes that the steady-state behavior of
IBRs modeled via (23)-(25) are linear in the variables

(P,Q,E,ws). The nonlinearity stems from the network
governing equation (26) and the definition of injected
power (4). Assuming |wss —ws| < ws, one can set Y (wgs) ~
Y (ws), thus eliminating the nonlinearity from (26). Hence-
forth, matrix Y (ws) will simply be denoted as Y. Finally,
we shall linearize the quadratic dependence of apparent
power on the voltages E given by P + 7Q ~ diag(E)Y*E*.
To that end, we fix a nominal voltage e, 1, that allows us
to express E = e,1 + AE, where e, is a real scalar, and
it is assumed that |AE,| < e, V n € N. Following the
steps of [Dhople et al. (2015)], yields

Pl _ [ R(Y) -S(Y)]||E]

Q| ~ “[-S(Y) —R(Y)| |£E|"
Equation (27) serves as a linear power-flow model for
the network. Substituting (P, Q) from (27) in the linear
inverter steady-state models (23)-(25) yields (10).

5. OPEN PROBLEMS & CLOSING REMARKS
Described below—in no particular order—are open prob-
lems implicit in the formulations (P1)—(P4):

1) Choice of cost functions. Cost functions in classical
OPF problems for synchronous generators are typically
derived from fuel cost. For IBRs driven by renewables,
defining cost functions in this vein is not readily possible
since sources such as wind and solar have no fuel costs.
Some approaches have suggested tying cost(s) to consumer
utility /comfort; yet others have demonstrated how specific
choices tied to available capacity can ensure a desired
power-provisioning profile. Another option is to recognize
capital and O&M costs, and derive cost functions that
amortize these across expected life. In general, the limited
(to no) participation of IBRs as price makers and lack

(27)
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of universally accepted pricing mechanisms for ancillary
services in markets have delayed reaching consensus.

2) Models € parameterization. Decades of sustained effort
from industry and academia has ensured wide acceptance
of standardized synchronous-generator models. However,
IBR models for different operational tasks are not stan-
dardized. This is primarily because IBR-model response
characteristics are dictated by (implementation-specific)
control algorithms and set points. Since the same level
of standardization of these response characteristics has
been lacking, models are not as well defined. With growing
numbers, models will have to be cast in forms that permit
integration in control and optimization frameworks and
parameters will have to be sourced from hardware proto-
types and translated across power levels.

3) Network complexity. Our modeling framework is pre-
sented for a balanced three-phase network. In practice,
IBRs of varying power ratings are installed and operated
by a wide variety of owners and operators (end customers,
utilities, developers), and dispersed across transmission
and distribution networks. Reduced-order models and ag-
gregations at suitable abstraction levels will be necessary
to counter the curses of dimensionality and heterogeneity.
4) Computational complexity. Tremendous efforts have
been made towards achieving scalability in solving classical
renditions of (P1)—(P4) including distributed and decen-
tralized control and optimization, convex relaxations, and
tractable stochastic frameworks. Inclusion of IBR models
and allowing frequency variation in (P1)—(P4) challenge
the direct applicability of the existing approaches, and
call for meticulous retrofitting. Development of novel com-
putational approaches is needed to tractably solve future
energy-management problems.

5) Secondary control. Grid operations include secondary
control mechanisms for restoring frequency to a steady-
state synchronous value. The typical approach is to or-
ganize cohorts of resources into balancing / control areas
and restore frequency and flows across these to nominal
and scheduled values, respectively, via distributed integral
control. While the motivation of including frequency is well
intentioned in (P1)—(P4), there is a need to align energy-
management problems with prevailing and up-and-coming
architectures for secondary control.

6) Stability. The implicit assumption behind time-scale
separation imposed between dispatch and real-time control
in bulk grids is that underlying dynamics are stable and
actuation will not trigger unstable or undesirable behavior.
For problems that involve dynamic models (such as (P1)),
stability guarantees (or proxies thereof) would appear
necessary to guarantee performance. While recognized in
passing in the literature, this requires more investigation.
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