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Abstract

Conditional gradient, aka Frank Wolfe (FW) algorithms, have well-documented merits in machine learning
and signal processing applications. Unlike projection-based methods, momentum cannot improve the convergence
rate of FW, in general. This limitation motivates the present work, which deals with heavy ball momentum, and its
impact to FW. Specifically, it is established that heavy ball offers a unifying perspective on the primal-dual (PD)
convergence, and enjoys a tighter per iteration PD error rate, for multiple choices of step sizes, where PD error can
serve as the stopping criterion in practice. In addition, it is asserted that restart, a scheme typically employed jointly
with Nesterov’s momentum, can further tighten this PD error bound. Numerical results demonstrate the usefulness
of heavy ball momentum in FW iterations.

1 Introduction
This work studies momentum in Frank Wolfe (FW) methods [9}[10}/16L20]] for solving

min f(x). (1)

xXeEX

Here, f is a convex function with Lipschitz continuous gradients, and the constraint set X' C R? is assumed
convex and compact, where d is the dimension of variable x. Throughout, we let x* € X denote a minimizer
of (I). FW and its variants are prevalent in various machine learning and signal processing applications, such as
traffic assignment [|12], non-negative matrix factorization [30], video colocation [[17]], image reconstruction [[15]],
particle filtering [|19], electronic vehicle charging [36]], recommender systems [ 11]], optimal transport [26], and neural
network pruning [34]]. The popularity of FW is partially due to the elimination of projection compared with projected
gradient descent (GD) [29], leading to computational efficiency especially when d is large. In particular, FW solves
a subproblem with a linear loss, i.e., Vi1 € arg min, ¢ (V f(xx), v) at kth iteration, and then updates x5 as a
convex combination of xj, and v 1. When dealing with a structured &, a closed-form or efficient solution for vy 1
is available [|13l|16], which is preferable over projection.

Unlike projection based algorithms [[14}32]] though, momentum does not perform well with FW. Indeed, the lower
bound in [16120] demonstrates that at least O(1) linear subproblems are required to ensure f(x;) — f(x*) < e,
which does not guarantee that momentum is beneficial for FW, because even vanilla FW achieves this lower bound.
In this work, we contend that momentum is evidently useful for FW. Specifically, we prove that the heavy ball
momentum leads to tightened and efficiently computed primal-dual error bound, as well as numerical improvement.
To this end, we outline first the primal convergence.

Primal convergence. The primal error refers to f(xj) — f(x*). It is guaranteed for FW that f(xj) — f(x*) =
O(l / k) ,Vk > 1 [|16,22]]. This rate is tight in general since it matches to the lower bound [[16,20]]. Other FW variants
also ensure the same order of primal error; see e.g., [20,21].

Primal-dual convergence. The primal-dual (PD) error quantifies the difference between both the primal and the
‘dual’ functions from the optimal objective, hence it is an upper bound on the primal error. When the PD error is
shown to converge, it can be safely used as the stopping criterion: whenever the PD error is less than some prescribed
€ >0, f(xr) — f(x*) < eis ensured automatically. The PD error of FW is convenient to compute, hence FW is



Table 1: A comparison of HFW with relevant works. The “computation” in the third column is short for “the number
of required FW subproblems to calculate the PD error per iteration.”

reference | computation [ PD conv. type | PD conv. rate
[1e] 1 subproblem Type I 42(7;512)
(18] 2 subproblems Type 11 \2/%, Vk
[28] 2 subproblems Type 11 4kL _ﬂz ,Vk
This work (Alg. 2) | 1 subproblem Type 11 %, vk
This work (Alg. 3) | 2 subproblems Type 11 fffi ,Vk withe >0

suitable for the requirement of “solving problems to some desirable accuracy;” see e.g., [33]]. For pruning (two-layer)
neural networks [34], the extra training loss incurred by removing neurons can be estimated via the PD error. However,
due to technical difficulties, existing analyses on PD error are not satisfactory enough and lack of unification. It is
established in [6}10,16] that the minimum PD error is sufficiently small, namely minge(y, .. xy PDError, = O(4),
where K is the total number of iterations. We term such a bound for the minimum PD error as Type I guarantee.
Another stronger guarantee, which directly implies Type I bound, emphasizes the per iteration convergence, e.g.,
PDErrory, < O(%), Vk. We term such guarantees as Type II bound. A Type II bound is reported in [18, Theorem 2],
but with an unsatisfactory k£ dependence. This is improved by [7,]28]] with the price of extra computational burden
since it involves solving two FW subproblems per iteration for computing this PD error. Several related works such
as [10] provide a weaker PD error compared with [28]]; see a summary in Tablem

In this work, we show that a computationally affordable Type II bound can be obtained by simply relying on
heavy ball momentum. Interestingly, FW based on heavy ball momentum (HFW) also maintains FW’s neat geometric
interpretation. Through unified analysis, the resultant type II PD error improves over existing bounds; see Table
1. This PD error of HFW is further tightened using restart. Although restart is more popular in projection based
methods together with Nesterov’s momentum [31[], we show that restart for FW is natural to adopt jointly with heavy
ball. In succinct form, our contributions can be summarized as follows.

* We show through unified analysis that HFW enables a tighter type II guarantee for PD error for multiple choices
of the step size. When used as stopping criterion, no extra subproblem is needed.

* The Type II bound can be further tightened by restart triggered through a comparison between two PD-error-
related quantities.

* Numerical tests on benchmark datasets support the effectiveness of heavy ball momentum. As a byproduct, a
simple yet efficient means of computing local Lipschitz constants becomes available to improve the numerical
efficiency of smooth step sizes [|13,22].

Notation. Bold lowercase (capital) letters denote column vectors (matrices); ||x|| stands for a norm of a vector x,
whose dual norm is denoted by ||x||.; and (x,y) is the inner product of x and y.

2 Preliminaries

This section outlines FW, starting with standard assumptions that will be taken to hold true throughout.

Assumption 1. (Lipschitz continuous gradient.) The objective function f : X — R has L-Lipchitz continuous
gradients; i.e., |[Vf(x) = Vf(y)|« <L|lx—yl|,Vx,y € X.

Assumption 2. (Convexity.) The objective function f : X — R is convex; that is, f(y) — f(x) > (Vf(x),y —
x),Vx,y € X.

Assumption 3. (Convex and compact constraint set.) The constraint set X C R? is convex and compact with
diameter D, that is, ||x — y|| < D,Vx,y € X.




FW for solving () under Assumptions 1 -3 islisted Algorithm 1 FW [9]
in Alg. [T} The subproblem in Line 3 can be visualized . Tnitialize: x, € X
geometrically as minimizing a supporting hyperplane

: 2. fork=0,1,..., K —1do
of f(x) at xg, i.e., 3 Vi1 = argming ¢y (V f(xy), v)
. B 4 X1 = (L — )Xk + Nk Vit
Vil € ar§€r21n fxe) + (Vfxe),v—xk). () 5. end for
6: Return: xg

For many constraint sets, efficient implementation or
a closed-form solution is available for v 1; see e.g., [16] for a comprehensive summary. Upon minimizing the
supporting hyperplane in (2), x4 1 is updated as a convex combination of v 1 and xj, in Line 4 so that no projection
is required. The choices on the step size n;, € [0, 1] will be discussed shortly.

The PD error of Alg. [I]is captured by the so-termed FW gap, formally defined as

G = (V£ Go)o k= Viea) = f00) ~ FO<) + FO<) = min [ £Ga) + (VI v )| )
vex
primal error dual error

where the second equation is because of (2). It can be verified that both primal and dual errors marked in (3] are
no less than 0 by appealing to the convexity of f. If G;, converges, one can deduce that the primal error converges.
For this reason, Gy, is typically used as a stopping criterion for Alg. l 1| Next, we focus on the step sizes that ensure
convergence.

Parameter-free step size. This type of step sizes does not rely on any problem dependent parameters such
as L and D, and hence it is extremely simple to implement. The most commonly adopted step size is 7, =

2LD?
)< R

minge(i,... K} Gr = 27LD [16]. A variant of PD convergence has been established recently based on a modified
FW gap [28]]. Although Type II convergence is observed, the modified FW gap therein is inefficient to serve as
stopping criterion because an additional FW subproblem has to be solved per iteration to compute its value.

Smooth step size. When the (estimate of) Lipschitz constant L is available, one can adopt the following step
sizes in Alg. [[][22]

2
k+2°
Vk > 1, and a weaker claim on the PD error,

which ensures a converging primal error f(xj) — f(x

nk:min{<vf(x’“)’x’“_v""‘“>,1}. 4)

Ll Vi1 —xx]?

Despite the estimated L is typically too pessimistic to capture the local Lipschitz continuity, such a step size ensures
f(xg+1) < f(xg); see derivations in Appendix The PD convergence is studied in [11], where the result is
slightly weaker than that of [28]].

3 FW with heavy ball momentum

After a brief recap of vanilla FW, we focus on the benefits of heavy ball momentum for FW under multiple step size
choices, with special emphasis on PD errors.

3.1 Prelude

HFW is summarized in Alg. [2] Similar to GD with heavy ball momentum [[14]32], Alg. [JJupdates decision variables
using a weighted average of gradients gj1. In addition, the update direction of Alg. [2]is no longer guaranteed to be
a descent one. This is because in HFW, (V f(xy),xx — Vg+1) can be negative. Although a stochastic version of
heavy ball momentum was adopted in [27] and its variants, e.g., [37], to reduce the mean square error of the gradient
estimate, heavy ball is introduced here for a totally different purpose, that is, to improve the PD error. The most
significant difference comes at technical perspectives, which is discussed in Sec. 3.4. Next, we gain some intuition
on why heavy ball can be beneficial.

Consider X as an ¢3-norm ball, that is, X = {x|||x||2 < R}. In this case, we have vj11 = —mgkﬂ in

Alg. 2 The momentum gy, 1 can smooth out the changes of {V f(xx)}, resulting in a more concentrated sequence



{Vk+1}- Recall that the PD error is closely related to Algorithm 2 FW with heavy ball momentum
Vi1 [cf. equation (3)]. We hope the “concentration”

of {vi41} to be helpful in reducing the changes of PD ; :.:;t;:llzg' i( 0 € ?;g_o 1_ dzf (xo)
error among consecutive iterations so that a Type II PD 3' - ’: ’(1_’ 5k)&n + 0k £ (x5)
error bound is attainable. N v + — arg min & V)

A few concepts are necessary to obtain a tight- 5' ka — (1 )"XEX+ k+$’
ened PD error of HFW. First, we introduce the gen- 6 end ff):fl T )Xk T Mk Vet 1
eralized FW gap associated with Alg. that cap- 7. Return: xx

tures the PD error. Write g1 explicitly as gr41 =
ZT o WiV f(x-), where wj, = 6, H] (1 =05) >0, V7 > 1, and wy, = H?Zl(l —§;) > 0. Then, define a
sequence of linear functions {®(x)} as

Dppq(x Zwk +(Vf(xs),x —x,)], Vk > 0. (5)

It is clear that @ 1 (x) is a weighted average of the supporting hyperplanes of f(x) at {x,}*_,. The properties of
®41(x), and how they relate to Alg. 2|are summarized in the next lemma.

Lemma 1. For the linear function ®j.11(x) in @), it holds that: i) Vi1 minimizes ®j11(x) over X; and, ii)
f(x) > ®py1(x),Vk > 0,Vx € X.

From the last lemma, one can see that vy, is obtained by minimizing @ (x), which is an affine lower bound on
f(x). Hence, HFW admits a geometric interpretation similar to that of FW. In addition, based on ®;(x) we can
define the generalized FW gap.

Definition 1. (Generalized FW gap.) The generalized FW gap w.r.t. ®p(x) is
G = f(xx) — min @x(x) = f(xx) — Pu(Vi). (©)

In words, the generalized FW gap is defined as the difference between f(xy) and the minimal value of @ (x)
over X. The newly defined Gy, also illustrates the PD error

Gr = f(xk) — Pp(vi) = fxx) — f(X") + f(X") — Pp(vi) . @)

primal error dual error

For the dual error, we have f(x*) — @ (vy) > @p(x*) — ®x(vg) > 0, where both inequalities follow from Lemma
E} Hence, G, > 0 automatically serves as an overestimate of both primal and dual errors. When establishing the
convergence of Gy, it can be adopted as the stopping criterion for Alg. [2] Related claims have been made for the
generalized FW gap [20,23}28]]. Lack of heavy ball momentum leads to inefficiency, because an additional FW
subproblem is needed to compute this gap [28]]. Works [20L[23[] focus on Nesterov’s momentum for FW, that incurs
additional memory relative to HFW; see also Sec. [3.4]for additional elaboration. Having defined the generalized FW
gap, we next pursue parameter choices that establish Type II convergence guarantees.

3.2 Parameter-free step size
We first consider a parameter-free choice for HFW to demonstrate the usefulness of heavy ball

2
5k:77k:m7 Vk > 0. ®)

Such a choice on ¢, puts more weight on recent gradients when calculating g1 1, since wj, = O(7z ). The following
theorem specifies the convergence of Gy.

Theorem 1. If Assumptions|l{[3|hold, then choosing o), and ny, as in (B), Alg. 2] guarantees that

2LD?

Gr = f(xx) — Pp(vi) < I

vk > 1.



Theorem [I] provides a much stronger PD guarantee for all k& than vanilla FW [16 Theorem 2]. In addition to a
readily computable generalized FW gap, our rate is tighter than [28]], where the provided bound is 4,5 flz . In fact,
the constants in our PD bound even match to the best known primal error of vanilla FW. A direct consequence of

Theorem I]is the convergence of both primal and dual errors.

Corollary 1. Choosing the parameters as in Theorem|[I} then Yk > 1, Alg[2| guarantees that

, o _ 2LD? ; 2LD?
primal conv.: f(xy) — f(x*) < 1 ;5 dual comv.: f(x*) — Op(vy) < g
Proof. Combine Theorem [I]with f(x;) — f(x*) < Gy and f(x*) — ®x(vi) < G [cf. @)]. O

3.3 Smooth step size

Next, we focus on HFW with a variant of the smooth step size

Ok ©))

_ _ AV (X)X — V1)
~ %12 and nk—maX{O,mln{ ,1} .

Ll vitr — k]2

Comparing with the smooth step size for vanilla FW in (@), it can be deduced that the choice on 7y, in (9) has to
be trimmed to [0, 1] manually. This is because (V f (X)), Xr — Vi41) is no longer guaranteed to be positive. The
smooth step size enables an adaptive means of adjusting the weight for V f(xy,). To see this, note that when 7, = 0,
we have xg 1 = xg. Asaresult, gx10 = (1 — dky1)8k+1 + Okt1 VS (Xk+1) = (1 — Sk11)8k+1 + Skt1 V f (Xk),
that is, the weight on V f(xy,) is adaptively increased to 85 (1 — 0x11) + g1 if one further unpacks g 1. Another
analytical benefit of the step size in (J) is that it guarantees a non-increasing objective value; see Appendix [A.2]for
derivations. Convergence of the generalized FW gap is established next.

Theorem 2. If Assumptions[I{3| hold, while ny, and 6y, are chosen as in (9), Alg. [2| guarantees that

2LD?
G = f(xx) — Pp(vi) < k—i—l’VkZl'

The proof of Theorem 2] follows from that of Theorem [I] after modifying just one inequality. This considerably
simplifies the analysis on the (modified) FW gap compared to vanilla FW with smooth step size [[11]. The PD
convergence clearly implies the convergence of both primal and dual errors. A similar result to Corollary [T|can be
obtained, but we omit it for brevity. We further extend Theorem [2]in Appendix by showing that if a slightly
more difficult subproblem can be solved, it is possible to ensure per step descent on the PD error; i.e., Gp11 < Gp.

Line search. When choosing d;, = %JFQ and 7y, via line search, HFW can guarantee a Type II PD error of 2,5 flz ;
please refer to Appendix [B.5]due to space limitation. For completeness, an iterative manner to update Gy, for using as
stopping criterion is also described in Appendix [C]

3.4 Further considerations

There are more choices of dj, and 7, leading to (primal) convergence. For example, one can choose §;, = 6 € (0, 1)
and n, = (’)(%) as an extension of [27] A proof is provided in Appendix for completeness. This analysis
framework in [27]), however, has two shortcomings: i) the convergence can be only established using ¢5-norm (recall
that in Assumption[I} we do not pose any requirement on the norm); and, ii) the final primal error (hence PD error)
can only be worse than vanilla FW because their analysis treats g1 as V f(xj) with errors but not momentum,
therefore, it is difficult to obtain the same tight PD bound as in Theorem[I] Our analytical techniques avoid these
limitations.

When choosing §;, = n, = we can recover Algorithm 3 in [1]. Notice that such a choice on J;, makes g1

1
k+1°
a uniform average of all gradients. A slower convergence rate f(xj) — f(x*) = O(%) was established in [/1]
through a sophisticated derivation using no-regret online learning. Through our simpler analytical framework, we

can attain the same rate while providing more options for the step size.

'We are unable to derive even a primal error bound using the same analysis framework in [27]] for step sizes listed in Theorem 1.



Theorem 3. Let Assumptionshold, and select 6y, = 1= +1 with 0y, using one of the following options: i) n;, =
ii) as in O); or iii) line search as in R6b). The generalized FW gap of Alg. 2| then converges with rate

1 .
k+1°

LD*In(k + 1)

Gr = f(xx) — Pr(vi) < o

, VE > 1.

The rate in Theorem [3] has worse dependence on k relative to Theorems [T]and [2] partially because too much
weight is put on past gradients in g1, suggesting that large momentum may not be helpful.

Heavy ball versus Nesterov’s momentum. A simple rule to compare these two momentums is whether gradient
is calculated at the converging sequence {xy }. Heavy ball momentum follows this rule, while Nesterov’s momentum
computes the gradient at some extrapolation points that are not used in Alg. [2] It is unclear how the original
Nesterov’s momentum benefits the PD error, but the co-memory variant of Nesterov’s momentum [20,23]24], which
can be viewed as a combination of heavy ball and Nesterov’s momentum, yields a Type II PD error. However,
compared with HFW, additional memory should be allocated. In sum, these observations suggest that heavy ball
momentum is essentially critical to improve the PD performance of FW. Nesterov’s momentum, on the other hand,
does not influence PD error when used alone; however, it gives rise to faster (local) primal rates under additional
assumptions [20L23]].

3.5 A sside result: Directional smooth step sizes

Common to both FW and HFW is that the globally estimated L might be too pessimistic for a local update. In this
subsection, a local Lipschitz constant is investigated to further improve the numerical efficiency of smooth step sizes
in (9). This easily computed local Lipschitz constant is another merit of (H)FW over projection based approaches.

Definition 2. (Directional Lipschitz continuous.) For two points X,y € X, the directional Lipschitz constant L(x,y)
ensures ||Vf(x) = VI(¥)« < Lx,y)||x = ¥| forany x = (1 — a)x + ay,y = (1 — 8)x + By with some
a € [0,1] and B € [0,1].

In other words, the directional Lipschitz continuity depicts the local property on the segment between points
x and y. It is clear that L(x, y) < L. Using logistic loss for binary classification as an example, we have

L(x,y) < g N Zz 1 ﬁ‘;’xyu’? , where NN is the number of data, and a; is the feature of the ith datum. As a

comparison, the global Lipschitz constant is L < & Ef\il |la;||3. We show in Appendix@that at least for a class
of functions, including widely used logistic loss and quadratic loss, L(x, y) has an analytical form.
Simply replacing L in () with L(x, vi11), i.e.,

(Vf(xk), Xk — Vir1) 1}} (10)

N, =max <0 min{
{ 7 L%k, Vier1) || Vi1 — xi?

we can obtain what we term directionally smooth step size. Upon exploring the collinearity of xy, X541 and vy, a
simple modification of Theorem 2]ensures the PD convergence.

Corollary 2. Choosing 6y, = ki+2’ and ny, via (10), Alg. ensures

2LD?
= - <— Vk>1
Gk = f(xk) — r(vi) < 1 k2
The directional Lipschitz constant can also replace the global one in other FW variants, such as [13}[22], with
theories therein still holding. As we shall see in numerical tests, directional smooth step sizes outperform the vanilla
one by an order of magnitude.

4 Restart further tightens the PD error

Up till now it is established that the heavy ball momentum enables a unified analysis for tighter Type II PD bounds.
In this section, we show that if the computational resources are sufficient for solving two FW subproblems per
iteration, the PD error can be further improved by restart when the standard FW gap is smaller than generalized



Algorithm 3 FW with heavy ball momentum and restart
1: Initialize: x € X, g) = Vf(x9),s+ 0,C°=0,G) =G
2: while [not terminated] do
3: k+«+0,g5=Vf(xp)

4 while [G] < G} or k = 0] and [not terminated] do > Check whether restart is needed
5: 5,‘2 = 16-&-272-&-6“

6: 8ip1 = (1 —6)gp + 0pVf(x)

7. Vi1 = arg minx€X<gz+17 X)

8 X1 = (L= mp)X3 + MV

o: ‘72+1 = arg minx6X<Vf(XZ+1), X)

10: Grer = F (1) = 21 (Vi) > Generalized FW gap
1 Gipr = (VF(x5), x5 — Vig) > Vanilla FW gap
12: k+—k+1

13: end while

14: Ks<—k:,xg+1:x%s,05+1:%,ses+l

15: end while

FW gap. Restart is typically employed by Nesterov’s momentum in projection based methods [31] to cope with
the robustness to parameter estimates, and to capture the local geometry of problem (T)). However, it is natural to
integrate restart with heavy ball momentum in FW regime. In addition, restart provides an answer to the following
question: which is smaller, the generalized FW gap or the vanilla one? Previous works using the generalized FW
gap have not addressed this question [20L23}28]].

FW with heavy ball momentum and restart is summarized under Alg. |3} For exposition clarity, when updating
the counters such as k and s, we use notation ‘<. Alg. [3|contains two loops. The inner loop is the same as Alg.
[2] except for computing a standard FW gap (Line 11) in addition to the generalized one (Line 10). The variable
K, depicting the iteration number of inner loop s, is of analysis purpose. Alg. [3]can be terminated immediately
whenever min{G;, g 2} < e for a desirable € > 0. The restart happens when the standard FW gap is smaller than
generalized FW gap. And after restart, g7 | will be reset. For Alg. @ the linear functions used for generalized FW
gap are defined stage-wisely

P5(x) = f(x5) + (VF(x5),x —x5) (11a)
P (x) = (1= 00)®p(x) + 67 [f(x3) + (Vf(x}),x —x})], Yk > 0. (11b)

It can be verified that v;_ ; minimizes ®F  , (x) over & for any k& > 0. In addition, we also have f(x3) — ®§(v§) =
_C';f{: where v{ = arg min, ¢ » ®§(x).

There are two tunable parameters 77 and 6;,. The choice on 6}, has been provided directly in Line 5, where it is
adaptively decided using a variable C* relating to the generalized FW gap. Three choices are readily available for
ny: 1) g = 0 ii) smooth step size:

\V4 s , ERN—
0t = max{07min{< floci) xi :’“2+1>,1}}; (12)
L||Vk+1 — x|l
and, iii) line search
n, = argmin f((1 — n)xg +17vii). (13)

n€(0,1]

Note that the directionally smooth step size, i.e., replacing L with L(x}, vi, ;) in (I2) is also valid for convergence.
We omit it to reduce repetition. Next we show how restart improves the PD error.

Theorem 4. Choose 1}, via one of the three manners: i) n; = 63 ii) as in (12)); or iii) as in (I13). If there is no
restart (e.g., s = 0 when terminating), then Alg. B|guarantees that
2LD?
<
“k+1

Gp = f(x}) — Pr(vy) VE > 1. (14a)
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Figure 1: Performance of FW variants for binary classification with the constraint being an /5-norm ball (first row),
an /1-norm ball (second row), and an n-support norm ball (third row).

If restart happens, in additional to (14a), we have

s s s 2LD2 1 s S
G = fxi) = Pu(Vi) < e Vh 2 L Vs 2 1, with O = 1 +;KJ—- (14b)

Besides the convergence of both primal and dual errors of Alg. [3] Theorem [ implies that when no restart
happens, the generalized FW gap is smaller than the standard one, demonstrating that the former is more suitable for
the purpose of “stopping criterion”. When restarted, Theorem [ provides a strictly improved bound compared with
Theorems(T] 2] and[6] since the denominator of the RHS in (I4b) is no smaller than the total iteration number. An
additional comparison with [28]], where two subproblems are also required, once again confirms the power of heavy
ball momentum to improve the constants in the PD error rate, especially with the aid of restart. The restart scheme
(with slight modification) can also be employed in to tighten their PD error.

5 Numerical tests

This section presents numerical tests to showcase the effectiveness of HFW on different machine learning problems.
Since there are two parameters’ choices for HFW in Theorems [T]and [3] we term them as weighted FW (WFW) and
uniform FW (UFW), respectively, depending on the weight of {V f(x)} in gx+1. When using smooth step size, the
corresponding algorithms are marked as WFW-s and UFW-s. For comparison, the benchmark algorithms include:
FW with n;, = ,%2 (FW); and, FW with smooth step size (FW-s) in (@).
5.1 Binary classification

We first test the performance of Alg. [2]on binary classification using logistic regression

N
£ = 5 Do (1 + exp(~bida, x))). (1)
i=1
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Figure 2: Performance of directionally smooth step sizes. (a) and (c) are tested on mushroom; and (b) and (d) use
ijennl.

Here (a;, b;) is the (feature, label) pair of datum ¢, and NV is the number of data. Datasets from LIBSV are used
in the numerical tests, where details of the datasets are deferred to Appendix [F]due to space limitation.

{5-norm ball constraint. We start with X = {x]||x||2 < R}. The primal errors are plotted in the first row
of Fig. We use primal error here for a fair comparison. It can be seen that the parameter-free step sizes
achieve better performance compared with the smooth step sizes mainly because the quality of L estimate. Such
a problem can be relived through directional smooth step sizes as we shall shortly. Among parameter-free step
sizes, it can be seen that WFW consistently outperforms both UFW and FW on all tested datasets, while UFW
converges faster than FW only on datasets realsim and mushroom. For smooth step sizes, the per-step-descent
property is validated. The excellent performance of HFW can be partially explained by the similarity of its

update, namely xx 1 = (1 — ng)x% + leR”gg:ﬁ, with normalized gradient descent (NGD) one, that is given

by Xp11 = Projy (x5 — mi ”gg:ﬁ). However, there is also a subtle difference between HFW and NGD updates.
Indeed, when projection is in effect, xj1 in NGD will lie on the boundary of the ¢5-norm ball. Due to the convex
combination nature of the update in HFW, it is unlikely to have X1 on the boundary, though it can come arbitrarily
close.

£1-norm ball constraint. Here X = {x|||x||; < R} denotes the constraint set that promotes sparse solutions.
In the simulation, R is tuned for a solution with similar sparsity as the dataset itself. The results are showcased in the
second row of Fig. E} For smooth step sizes, FW-s, UFW-s, and WFW-s exhibit similar performances, and their
curves are smooth. On the other hand, parameter-free step sizes eventually outperform smooth step sizes though the
curves zig-zag. (The curves on realsim are smoothed to improve figure quality.) UFW has similar performance on
w7a and mushroom with FW and faster convergence on other datasets. Once again, WFW consistently outperforms
FW and UFW.

n-support norm ball constraint. The n-support norm ball is a tighter relaxation of a sparsity enforcing £y-norm
ball combined with an ¢5-norm penalty compared with ElasticNet [38]]. It gives rise to X = conv{x|||x||p <
n, ||x||2 < R}, where conv{-} denotes the convex hull [3]]. The closed-form solution of v is given in [25]]. In the
simulation, we choose n = 2 and tune R for a solution whose sparsity is similar to the adopted dataset. The results
are showcased in the third row of Fig. Il For smooth step sizes, FW-s and WFW-s exhibit similar performance,
while UFW-s converges slightly slower on ijcnnl. Regarding parameter-free step sizes, UFW does not offer faster
convergence compared with FW on the tested datasets, but WFW again has numerical merits.

Directionally smooth step sizes. The results in Fig. [2] validate the effectiveness of directionally smooth (-ds)
step sizes. For all datasets tested, the benefit of adopt-
ing L(xy, vi4+1) is evident, as it improves the perfor-
mance of smooth step sizes by an order of magnitude. _»
In addition, it is also observed that UFW-ds performs f
worse than WFW-ds, which suggests that putting too :
much weight on past gradients could be less attractive
in practice. R O W0 a0 e @0 100

Additional comparisons. We also compare HFW
with a generalized version of [27]], where we set §, =
d € (0,1),VEk in Alg. [21 Two specific choices, i.e., Figure 3: Comparison of HFW with other algorithms on
0 = 0.6, and § = 0.8, are plotted in Fig. [3| where the muchroom.

(a) £5 norm ball (b) n-supp norm ball

Zhttps://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html,


https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html

180

150 1

120 1

~
l ~
< x
-1 | <z 90
g 10 E
X
e 60 1
1074
30 1
1071 : ; : ; : 04 ; . . . .
0 200 400 600 800 1000 0 200 400 600 800 1000
k Kk
(a) objective (b) rank

Figure 4: Performance of FW variants for matrix completion on MovieLensI00K.

{5-norm ball and n-support norm ball are adopted as constraints. In both cases, WFW converges faster than the
algorithm adapted from [27]]. In addition, the choice of § has major impact on convergence behavior, while WFW
avoids this need for manual tuning of 4. The performance of WFW with restart, i.e., Alg. [3] is also shown in Fig.
Although it slightly outperforms WFW, restart also doubles the computational burden due to the need of solving two
FW subproblems. From this point of view, WFW with restart is more of theoretical rather than practical interest. In
addition, it is observed that Alg. [3is not restarted after the first few iterations, which suggests that the generalized
FW gap is smaller than the vanilla one, at least in the early stage of convergence. Thus, the generalized FW gap is
attractive as a stopping criterion when a solution with moderate accuracy is desirable.

In a nutshell, the numerical experiments suggest that heavy ball momentum performs best with parameter-free
step sizes with the momentum weight carefully adjusted. WFW is mainly recommended because it achieves improved
empirical performance compared to UFW and FW, regardless of the constraint sets. The smooth step sizes on
the other hand, eliminate the zig-zag behavior at the price of convergence slowdown due to the need of L, while
directionally smooth step sizes can be helpful to alleviate this convergence slowdown.

5.2 Matrix completion

This subsection focuses on matrix completion problems for recommender systems. Consider a matrix A € R™*"
with partially observed entries, i.e., entries A;; for (i,j) € K are known, where £ C {1,...,m} x {1,...,n}.
Based on the observed entries that can be contaminated by noise, the goal is to predict the missing entries. Within
the scope of recommender systems, a commonly adopted empirical observation is that A is low rank [4}[5[8]], leading
to the following problem formulation.

o1
min 2 Z (Xij_Aij)Q st || X ue < R. (16)

X
(i.j)eK

Problem (16) is difficult to solve using GD because projection onto a nuclear norm ball requires a full SVD, which
has complexity O (mn(m A n)) with (m A n) := min{m, n}. In contrast, FW and its variants are more suitable for
(T6) since the FW subproblem has complexity less than O(mn) [2].

Heavy ball based FW are tested using dataset MovieLensI OOKEI Following the initialization of [11f], the numerical
results can be found in Fig. E} Subfigures (a) and (b) depict the optimality error and rank versus k for R = 3. For
parameter-free step sizes, WFW converges faster than FW while finding solutions with lower rank. The low rank
solution of UFW is partially because it does not converge sufficiently. For smooth step sizes, UFW-s finds a solution
with slightly larger objective value but much lower rank compared with WFW-s and FW-s. Overall, when a small
optimality error is the priority, WFW is more attractive; while UFW-s is useful for finding low rank solutions.

3https://grouplens.org/datasets/movielens/100k/
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6 Conclusions and future directions

This work demonstrated the merits of heavy ball momentum for FW. Multiple choices of the step size ensured a
tighter Type II primal-dual error bound that can be efficiently computed when adopted as stopping criterion. An
even tighter PD error bound can be achieved by relying jointly on heavy ball momentum and restart. A novel and
general approach was developed to compute local Lipschitz constants in FW type algorithms. Numerical tests in the
paradigms of logistic regression and matrix completion demonstrated the effectiveness of heavy ball momentum in
FW. Our future research agenda includes performance evaluation of heavy ball momentum for various learning tasks.
For example, HFW holds great potential when fairness is to be accounted for [35].
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Supplementary Document for
“Heavy Ball Momentum for Conditional Gradient”

A Preludes

A1 f(xp41) < f(x4) for the smooth step sizes in Alg.

When using the step size (@) in Alg. |1} f(xx+1) < f(xx) is ensured automatically. To see this, we have from
Assumption I] that

FOots) = F05) < (VF000), ka1 = 38) + 5 ks — (1)

2
(@) L @
2 eV (Xk), Vi1 — Xp) + nkTHVkJrl —xx]? <0

where (a) uses X;4+1 = (1 — %)Xk + Nk Ve+1; and (b) is because 7, minimizes the RHS of over [0, 1].
A2 f(xky1) < f(xg) for the smooth step sizes in Alg.

When using the step size (I0) in Alg. 2} f(xr+1) < f(xx) is ensured.

2
L
FOxen) = F ) < mi(VFOxk), Vicwn = Xe) + 752 [Vicgr = x> <0

7]

where the last ineqaulity is because 7, minimizes 7(V f (X1 ), Vi1 — X&) + LZ|| Vi1 — xz||? over [0, 1].

B Missing proofs in Section 3.

B.1 Proof of Lemmal]]
Proof. Using g1 = ZT _o WiV f(x;), we have

arg min 41 (x) = argmln<Zkaf X:), > = argmin (gr41,X).
XEX xeX xeX

By comparing with Line 4 of Alg. [2| one can see that v is a minimizer of ®j1(x) over X'. To prove that
¥y 1(x) is a lower bound of f(x), we appeal to convexity to write

D1 (x Zwk +(Vf(x:),x — X;)] Zwkf (x)
where the last equation is because Zi:o wj, = 1 holds for any k. The proof is thus complete. O

B.2 Proof of Theorem[I|
Proof. Using Assumption [T} we have

f(xpg1) — f(xx) (18)

L
<AV f(Xk), X1 — Xp) + §||Xk+1 — xi|?

T)I%L 2
= eV f(Xk), Vir1 — Xk) + 5 Vi = xl”.
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Inequality (T8) is standard in the analysis of FW and its variants. Letting ®((x) = 0, and v be any point in X, it
can be verified that @41 (x) = (1 — 8;)®p(x) + 0k [f (xx) + (Vf(xk),x — X} )], from which we have

@py1(Viyr) (19)

= (1= 01) Pk (Vit1) + Ok {f(xk) + (V%K) Vi1 — Xk>]

(g (1= 0x)Pr(Vi) + 0k [f(xk) + (Vf (%), Vi1 — xk>]

where (a) is because 1 — 3, > 0 and v, minimizes P (x) over X (hence P (vy) < Pg(vgy1)). Now subtracting
®j11(Vi+1) on both sides of (I8), we have

F(Xry1) = Prr1(Virr) (20)
S L Vi1 — xi|?
2
2LD?
2

% (1= 6k) [ f(xk) — Pr(vi)] +

2 (1= 80 [fx) — Br(vi)] +

—~
=

—

where (b) uses 7, = dj and (T9); and (c) relies on Assumption For convenience, let A(z, j) := i:i(l —07),
and unroll (20) to arrive at

J(Xg1) = Prg1 (V1)
k

< A(0,F)[f(x0) = o(vo)] + )

7=0

LD2%§?
2

(T4 1,k).
Plugging in the values of §; completes the proof. O

B.3 Proof of Theorem

Proof. The first a few steps are the same as the proof of Theorem 1; i.e., we have (I8) and (T9). Combining (T8) and
(T9), we arrive at

F(Xry1) = Prr1(Virr) (1)

< (1= 00) [f(xk) = (V)] + (k= 0k)(V F (xk), Vi1 — Xi) + n'%L”VH; =Xl

It can be verified that the specific choice of 7, minimizes the RHS of ZI)) over [0, 1]. Hence we have
Fk41) = Pry1(Vasr) (22)

MLl Vi1 — xx[?
< (L= 6k) [f(xk) — Pr(vi)] + > + (k= 0k )V f(Xk), Vis1 — Xi)
(%) (1 B 5k) [f(xk) _ q)k(vk)} + O‘iL”ngl - Xk”2

S L Vi1 — xi?

+ (ak — (5k)<Vf(Xk),Vk+1 — Xk>

—~
=

= (1= 6)[f(xn) — ®x(vi)] +

2
k k 9c0 k
o) — wo(vo)] [T (1 -0+ S 229 T 1-4))
j=7+1

<
7=0 7=0
2LD?
T k+2
where in (a) « can be chosen as any number in [0, 1]; in (b) we set o, = dj. This completes the proof. O

15



B.4 An extension of Theorem [2|for per step descent of G

In this section, we show that it is possible to ensure per step descent on generalized FW gap when a more difficult
subproblem can be solved. In particular, we will replace Line 4 of Alg. [2|and choose parameters as

SL|lv — xp|?

(6, Vip1) = argmin (1 —08)[f(xk) — Prlvi)] + 5 (23a)
6€[0,1],vex
Nk = Ok- (23b)

It is clear that (23a) is harder to solve compared with a FW subproblem. The choice of d;, enables an adaptive
weights for V f(xy) in gx+1. Next we present the main result for such a parameter choice.

Theorem 5. When Assumptions and [3| are satisfied, choosing Vi1, ny and 0y according to (23), Alg.
guarantees that: i) Gi11 < Gy, and ii)

2LD?
G, = f(xk) - (I)k(vk) < m, Vk > 1.

Proof. Tt can be seen that (2T)) still holds, from which we have
fXii1) = Prra(Vesn) (24)

< (1= 8 [f(xe) — Bulw)] + TEVeet =3KlE S0 pse) v — )

2
2 |2
@ (1= 6 [ (x) — Be(va)] + 6’“L”V’<+21 Xl

where (a) is because 7, = . Then by the manner ¢y, is chosen, we have

f(Xkt1) — Pr1 (V1) 05
— (1= 30 0) — ()] + SV el
< (1= 50 [Fx) = 0ulvi)] + 513LHW+21 — 2

where in (b) Sk € [0,1]. Choosing Sk = 0, we obtain G +1 < Gj. Choosing Sk = %ﬁ, we obtain the convergence
rate. L]

B.5 Line search for Alg. 2|

We can also choose the step size 7, via line search, although this might be more computationally costly in practice
because it requires computing the function value. The parameters are selected as

2

= — > 2
O k+2,Vk_0 (26a)
N, = arg minf((l —n)xk + 77Vk+1)- (26b)
n€lo,1]

Such a parameter choice also ensures per step objective descent since

f(Xe41) = min f((1 —n)xk +nVit1)
n€(0,1]

(%) F((1=0)xp 4+ Oviyq) @ f(xx)

where in (a) we have 6 € [0, 1]; and in (b) we set § = 0. Primal-dual convergence is established as follows.
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Theorem 6. If Assumptions I3 hold, while 6), and ny, are chosen via 28), Alg. 2| guarantees that

Gr = f(xx) — Pr(vy) < %, vk > 1.
Proof. Letn, = k—iz, Vk. By the choice of 7, we have
f(Xpt1) = ,,21[311] S =m)xpe +0virr) < F((1 = T6)Xk 4 Tk Vigr)- (27)
Then using smoothness, we arrive at
J(&rr1) — f(xx) (28)
< (1= 7k)xp + MeVigr) — f(xk)

~2
5 L
<V f(Xk), Vi1 — Xi) + L; Vi1 — %

Then combining (28) and (19), and following the same steps in (20), we can prove this theorem. O

Through Theorem f]it is straightforward to derive the primal and dual convergence, respectively, following the
same argument of Corollary [T} For this reason, it is omitted here.

B.6 Proof of Theorem

Proof. It can be seen that (21)) still holds.

Parameter-free step size. Plugging in §, = n;, = I%‘,—l into (21)), we arrive at

SR Ll[ Vi1 — x|
Fhg1) = P (Vigr) < (1= 0) [f(xk) — Pr(vi)] +

2
k 252
< A0, k) [ f(x0) — Po(vo)] + Z LD2 o (t+1,k)
7=0
2

where A(i, ) := i:i(l —4,), o(x) =0, and v is any point in X.

Smooth step size. Notice that the choice of 7 minimizes the RHS of (ZI)) when dy, is fixed, then we have

S (Xe41) = Prpr(Vitr) (30)
2L\ Visr — Xkl
< (1 ) [FOxe) — Bulvi)] + (e~ 04) (V). Vi — i) + BHVER =]
(@) N N2L||viy1 — Xg?
< (1 =61) [f(xk) = Pr(vi)] + (T — k) (Vf (Xk), Vir1 — Xi) + niL k+21 el
() 2L Vi1 — x|
< (1 80 [ o) - ()] + SV ]
LD?In(k + 2)
N O( k+1 )
where in (a) 7, € [0, 1]; and in (b) we set 7, = 0.
Line search. When 7, is chosen via line search, we have for any 7, € [0, 1]
frr1) = min f((1=n)xp +nves1) < F(( = T)Xk + T6Viy)- (€1

n€l0,1]
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Then by smoothness, we have

S xra1) = Fxr) < F((L = Tk)xk + Trvis1) — f(xk) (32)
~2L
< eV f(Xk), Vi1 — Xi) + nkTHVkH — x|
Then using the same argument as the derivation of (ZI)), we can obtain

f(xpt1) = Prg1(Vir1) (33)

< (1= 80 6xx) ~ ()] + i — 51T G, vic — ) + BV L =l

Simply setting 7y, = k%rl, and using the same derivation as in (30), the proof can be completed. O

B.7 Proof for choosing 6, = ¢

When Assumptions (1] is satisfied w.r.t. fs-norm, we show the following parameter choice in Alg. [2|leads to
convergence as well.

c

k> 34
PEETERAE (34

0 =0, N =

where 0 € (0,1), and ¢ and k( are constants to be specified later. Due to the choice of 6, = J, gi+1 is an
exponentially moving average of previous gradients. Note that the moving average was adopted in [27] for stochastic
FW to reduce the mean square error of the noisy gradient. However, we use it in a totally different purpose.

Lemma 2. Choose parameters as in (34). Suppose there exist a constant ¢, that satisfies

ko +1)2
A<1-(1- 5)% 6t (35)
0
then it is guaranteed that
c2L?D?
-V 2 0 —
ks = V0013 <
Proof.
g1 — VI x5 (36)

= (1-0)*llgr — V£ (xx)l3
=(1-6)%lgr — Vf(xp-1) + Vf(x6-1) — Vf(xx)[|3

<1020+ )llge — V)3 (L= 020+ D)V F ) — Y xu)

(b) 1
< (=021 +0)llgr — VI Gr—)ll3 + (1= 0)* (14 2) L2 [lxk—1 — vill3

0
(c) 1
< (=021 +0)gr — VS(xr—1)[3 + (1 —8)*(1 + 5)L2D2ni71

(d) 1
< (1=9)llgr — VFf(xe-1)ll3 + (1= )*(1 + g)LzDQW?H

() i
< (1= 0)llgr — VS (er) |3 + L2D? 2

where (a) is by Young’s inequality with 8 > 0 to be specified later; (b) follows from Assumption |I|; (c) is because

Assumption in (d) we choose # = § < 1 and use the fact that (1 — §)2(1 +§) < (1 — J); and (e) uses § < 1 so
that (1 —6)*(1+3) =4 —1+6%—26 < 5.
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We proof this lemma by induction. Given the choice of gy = V f(x¢), we must have g; = V f(x(), which
implies ||g; — Vf(x0)||3 =0 < coLng directly. Next we assume that ||gx — V f(xx_1)||3 < % holds for

some k > 1. Using (36), we have

2
Mhe—
lgnst — VIGR)|2 < (1—6)|lgs — VF(xp_1)|2 + L2D? ké 1
C2L2D2 772
<(1=¢8—N0"~ L 12p2lk-1
S0 e 5
c2L*D? 2
<(1_&_ Y L rep2 G
_( )(k+k0—1)2+ §(k+k0)2
2L2D? 2 2
_ (1 . (S) CO (k + ]4)0) + L2D2C71
(k + ko)? (k + ko — 1)? 50k 1 ko)?
RL2D? (ko + 1)? 2
<(1-=96 0 L2D271
By T
g .
= (k4 ko)?
where the last inequality comes from the choice of ¢;. The proof is thus completed. 0

To avoid the complexity of choosing constants, we consider an instance where kg = 2, 6 = 0.8, ¢; = 2, and
co ~ 3.05. It can be verified that (33) is satisfied. Then applying Lemma [2] the convergence of Alg[Z]can be
obtained.

Theorem 7. Let gy = V f(x0), i = 1%5—3 and 0 = 0.8. Then for Yk > 1, the convergence rate of Alg. with B4)
is

LD?
Foa) = flx) = 0( =),
Proof. Using Assumption|[I} we have
Fhpr) = FOX) < flxi) = FOF) + (VF (%K), X1 — xi) + §||Xk+1 — xx|3 (38)
2
= 700) — )+ (V00 vierr — k) + o v —

2 2
< F00) = F07) (VT G0),vis — ) + T

Next we have
(VI(xk), Virr = xk) = (VF(xk), X" = %) + (VF(xk), Vis1 — x5)

< ") = ) + (VI8 Vi — )
= f(x") = f(x0) + (@t 1, Vir1r = X7) + (VI (Xn) = s, Vir1 — X7)

(b)
< f(x") = flxu) + (V%K) = 8rt1, Vi — X7)
< F(XT) = f(xk) + DIV (xk) = grtall2 (39)

where (a) is by the convexity of f(x); (b) is because Vi1 minimizes (gj+1,X) over X’; and the last inequality relies
on Cauchy-Schwarz inequality and Assumption[3} Plugging (39) into (38), we have

2 2
FOua) = 1) < (1= m) [F60) = S6)] +meDIVIGa) — gl + B2 o
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2LD2
Let &, = mecoLD? | >—, then we have

k+ko
2LD2
Flxarn) = F(x7) < (L =me) [ (xp) = FO)] +me DIV S (xk) = grallz + =
< (1 —m) [f(xi) = f(x)] + &
k
= [f(xo Hl—nf+2@ H (L= n,)
=0 7=0 j=7+1
2

- O(Lf ) (41)

The proof is thus completed. O

B.8 Additional discussions

Many of existing works, e.g., [[14]], study (projected) heavy ball momentum by introducing auxiliary variables zj
such that the update on variable x; can be viewed as a “gradient update” on zg, i.e., Zg+1 = Zx — NV f(xx). By
constructing the {z} sequence, it is possible to view heavy ball momentum approximately as GD. Though this trick
is smart and analytically convenient, it does not give too much insight for the heavy ball momentum itself.

By comparing the use of heavy ball momentum in FW and GD, it may suggest new perspectives. For example,
one can view Alg.2 as the dual-averaging version of FW as well. This suggests that it is intriguing to study (projected)
heavy ball momentum from dual-averaging point of view. This is slightly off the main theme of this work, and we
leave it for future research.

C Stopping criterion

Recall that for a prescribed € > 0, having f(xx) — ®x(v) < e directly implies f(xx) — f(x*) < e. Next, we show
how to update ® (v} ) iteratively in order to obtain a stopping criterion. Let us note that

(I)k+1 Zwk vf(XT) —X.,->]

= Zwk —(Vf(x:), ‘r>] + (8k+1,%)
= Ck+1 + (8k+1,%), VE > 0.

Hence, to compute @11 (Vgy1), we only need to update Cl iteratively. A simple derivation leads to

G = (1=00)Ch + 0k [ £(x) = (V f301). 1),
Wlth Cl = f(Xo) — <Vf(X0),X0>. (42)
In sum, one can efficiently obtain @1 (Vg41) as
Q1 (Vig1) = Crgr + (841, Vit1) 43)

with C41 recursively updated via (42)).
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D Missing proofs in Section 4

D.1 Proof of Theorem 4

Proof. Consider the case where 77 = d;. Using Assumption T} we have

L
FXin) = FOR) < (VFOR) Xhar — x0) + S lIxkyn — xi]1” (44)

S S S S (ns)zL S S
=n(VIf(x}), Vigl — x5) + k2 Vi1 — x;|%.

Then we have
i (vVigr) = (1= G)@E(VE) + 01 [FOe) + (VFC). vi gy — x| 45)
> (1= 6@} (Vi) + 07 | F(ch) + (VS Ok, Vi — X0

Now subtracting ®;_ , (v} ;) on both sides of (@4), we have

F(Xhi1) = P41 (Vigr) (46)
. s o s oo PLIvE, == 1P
< f(xp) + 77k<vf(xk)> Vit — Xk> o k;l A Q71 (Vigr)
(a) 0)2L||ve,, — x5|?
(- [soe) - aq(vp)] + ol g
(b) (63)2LD?

< (1= 0 [f(ch) — L (vi)] + 5

where (a) uses 7 = &5 and @3); and (b) relies on Assumption [3| For convenience, let us define A*(i,j) =
7_.(1 — 6%). Then unrolling (#6), we get

T=1
f(XZH) - ‘bzﬂ(VZﬂ)
k

< A%(0,k)[£(x5) — By(ve)] + D

=0

[f(x5) — ®5(vE)] +

LD2 s\2
LD o1
< C*(C* +1)
T (k+14+0%)(k+2+C%)
When s = 0, plugging C° = 0, we have

2(k + 1)LD?
(k+1+C%)(k+2+Cs)’

2L D?
(A TR 0 )< )
f(Xk-H) k+1(Vk+1) = k1o

Hence in TheoremE|is proved. Next consider s > 1. Using the observation that f(x§) — ®§(vg) = G5!, <
g;;il, we then have

(47)

Or = f(%5q1) = Phya(Viga) (48)
- C*(C* +1) o1 4 2(k + 1)LD?
(k+1+4C5)(k+24C5) %t " (k+14C%)(k+2+C%)

(©) 2LD%*(C* + 1) 2(k +1)LD? _ 2LD?
(k140 (k+2+C%)  (k+14+0C5)(k+24+Cs) k+1+0Cs
where (c) uses the definition of C'*. Hence (T4b)) in Theorem []is proved.

Finally, we only need to show that C* > 1 + Zj;é K by induction. First by definition of C' = 2LD?/(G% ).
with G§ < E(Loﬁi, it is clear that C' > 1 4 K. Then suppose C° > 1 + Zj
that C**1 > 1+ 37" K;.

Using [@8), we have C*t! = 2LD?/(G}, ) > C* + K, > 1+ Z;;é K; + K. Hence (T4b) is proved.

For the smooth step size (I2)) and line search (13), the same bound can be obtained by using the same arguments
as in Theorems [2]and [6] Hence they are omitted here. O

'K ; hold for some s, we will show
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E Directionally smooth step size

E.1 Proof of Corollary 2]

Proof. Using Definition [2]and following the standard derivation of descent lemma [29, Lemma 1.2.3], we can show
that

f(Xk41) — f(xx) (49)
2L(xp, X
< (7 FGau). Vi — i)+ XD e
2L(xp, v
<V FGau). Vi — i)+ BN e

The reason for L(xy, Vit+1) > L(Xg, X41) is that x5 lives in between xj, and vy 41. Although L(xy,Xk4+1) can
provide a tighter bound, it is not tractable.
Combining @9) and (19), we have

J(Xnt1) = Pry1 (Vi) (50)

< (1= ) [Fxw) — By (v)] + (e — (T F k), viewn — )+ L Ve Vs = el

2
It can be verified that the specific choice of 7, in (T0) minimizes the RHS of (50) over [0, 1]. Hence we have
f(xnt1) = Prg1 (Vi) C}))
2L(Xp, V v —xi|?
< (1= ) [xy) — )] + BECRTERER I 4 5, (9 )i )
(a) a2 L(xp, v Vig1 — Xkl
2 (1 00 [Fe) — puvy)] + RNV 2T 0,509 100, vie - )
02 L(xp, v Vgl — Xk
© (1= 50 [ 0ck) — uwi)] - BV Vs =0
c 2L Vi1 — x|
© (1= 0p) [f(xk) = Prlvi)] + - ” k+21 d
2LD?
<
~k+2
where in (a) ay; can be chosen as any number in [0, 1]; in (b) we set ay, = dy; and (c) uses L(xg, Vi4+1) < L. This
completes the proof. O

E.2 Computing directionally smooth constant

Define a one dimensional function g(n) := f(x; + n(vi4+1 — Xx)), where dom 7 = [0, 1]. Then it is clear that
V() = (Vi1 — Xk, V.f (% + n(Vie1 — xi))). Therefore, it is easy to see that g(n) is smooth, i.c.,
(Va(m) — Vgn)| = [(Visr — Xk, V(% + m (Vi1 — xx)) — V. (xk + 12(Vie1 — xz)))|
< Vi1 = xe |||V f (ke + (Vi — xi)) = Vi (35 + m2(Vigr — xi)) ||,
< L(xk, Vi) Vi1 — i1 2m = n2] (52)

On the other hand, one can also analytically find L, by definition; i.e., |Vg(n) — Vg(n2)| < Lg‘m - n2|.
Comparing L, with RHS of (32), we can obtain L (X}, vi41). This method can be applied when f is e.g., quadratic
loss and logistic loss.

F More on numerical tests

All numerical experiments are performed using Python 3.7 on an Intel i17-4790CPU @3.60 GHz (32 GB RAM)
desktop.
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F.1 Binary classification

Table 2: A summary of datasets used in numerical tests
Dataset d N (train) | nonzeros
w7a 300 24,692 3.89%
realsim 20,958 | 50,617 0.24%
mushromm 122 8,124 18.75%
ijennl 22 49,990 40.91%

Sparsity promoting property of FW variants for ¢, -norm ball constraint. FW in Alg. |I{directly promotes
sparsity on the solution if it is initialized at xo, = 0. To see this, suppose that the i-th entry of V f(x;) has the
largest absolute value, then we have vy, 1 = [0, ..., —sgn([V f(xz)];) R, ...,0] " with the i-th entry being non-zero.
Hence, x;; has at most k£ non-zero entries given k£ — 1 entries are non-zero in xj_1. This sparsity promoting property
also holds for Alg. [2|for the same reason.

F.2 Matrix completion

The dataset used for the test is MovieLens100K, where 1682 movies are rated by 943 users with 6.30% ratings
observed. The initialization and data processing are the same as those used in [[1 1.

Besides the projection-free property, FW and its variants are more suitable for problem (I6) compared to GD
because they also guarantee rank(Xy) < k + 1 [[11,/15]]. Take FW in Alg. [I| for example. First it is clear that
Vf(Xk) = (Xr — A)x. Suppose that the SVD of V f(X},) is given by Vf(X;) = P;X;Q, . Then the FW
subproblem can be solved easily by

Vii1 = —Rpra, (53)

where py, and qi, denote the left and right singular vectors corresponding to the largest singular value of V f(X},),
respectively. Clearly V11 in (53) has rank at most 1. Hence it is easy to see X1 = (1 — 9) Xy + 9k Vi1 has
rank at most k + 2 if X}, is a rank-(k + 1) matrix (i.e., X has rank 1). Using similar arguments, Alg. also ensures
rank(Xy) < k + 1. Therefore, the low rank structure is directly promoted by FW variants.
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