On Coded Caching Systems with Offline Users

Yinbin Ma and Daniela Tuninetti
University of Illinois Chicago, Chicago, IL 60607, USA
Email:{yma52, danielat} @uic.edu

Abstract—Coded caching is a technique that leverages locally
cached contents at the users to reduce the network’s peak-
time communication load. Coded caching achieves significant
performance gains compared to uncoded caching schemes and
is thus a promising technique to boost performance in future
networks. In the original model introduced by Maddah-Ali and
Niesen (MAN), a server stores multiple files and is connected
to multiple cache-aided users through an error-free shared link;
once the local caches have been filled and al/l users have sent
their demand to the server, the server can start sending coded
multicast messages to satisfy all users’ demands. A practical
limitation of the original MAN model is that it halts if the server
does not receive all users’ demands, which is the limiting case
of asynchronous coded caching when the requests of some users
arrive with infinite delay. This paper formally defines a coded
caching system where some users are offline. Achievable and
converse bounds are proposed for this novel setting and shown
to meet under certain conditions; otherwise, they are within a
constant multiplicative gap of two. Interestingly, when optimality
can be be shown, the optimal load-memory tradeoff only depends
on the number active users, and not on the total (active plus
offline) number of users.

Index Terms—Coded caching with offline users; Achievablity;
Optimality for small memory size; Multiplicative constant gap.

I. INTRODUCTION

Coded caching, first introduced by Maddah-Ali and Niesen
(MAN) in [1], leverages locally cached contents at the users
to reduce the communication load during peak-traffic times.
A coded caching system has two phases. During the cache
placement phase, the server populates the users’ local caches,
without knowing the users’ future demands. During the deliv-
ery phase, the server broadcasts coded multicast messages to
satisfy the users’ demands. The achievable scheme proposed
in [1] (referred to as MAN in the following) has a combina-
torial uncoded cache placement phase' and a network coded
delivery phase. In [2], an improved delivery was proposed
(referred to as YMA in the following), which improves on the
MAN delivery by removing those linearly dependent multicast
messages that may occur when a file is requested by multiple
users. The MAN placement with the YMA delivery match the
converse bound derived in [3] under the constraint of uncoded
placement; otherwise it is optimal within a factor of two [4].

Coded placement strictly improves performance compared
to uncoded placement, and can be exactly optimal. A non-
exhaustive list of related works is as follows: [5] showed
how to achieve the cut-set bound in the small memory regime
when there are more users than files; [6] shows an improved

'Uncoded cache placement means that bits of the files are directly copied
into the caches without coding.

performance compared to [5] in the same regime; [7] derived
the optimal performance for the case of two users (and any
number of files), and a partial characterization for the case of
two files (and any number of users).

A limitation of the classical coded caching setting [1] is that
all users present during the placement phase must be active and
synchronously send their demand before the delivery phase
starts. The “asynchronous demands” setting, already discussed
in [1], allows the server to start transmission as soon as the
first demand arrives; known schemes (as in [8], and references
therein) however assume that all demands eventually arrive in
finite time, otherwise the system fails to complete the delivery
or the delivery time is infinite.

The case of coded caching with offline users is the focus
of this paper. Performance with offline users was investigated
in [9] for the shared-link model (where a scheme is proposed
under the assumption that the number of active users is
fixed), and in [10] for the Device-to-Device model (which
allows for an “outage event” when too many users are active).
Here we assume that the demands of the offline users never
arrive (or arrive with infinite delay) and the demands of the
remaining users arrive synchronously. We refer to this set-
ting as “hotplug” coded caching®. The “decentralized” coded
caching setting, already discussed in [1], allows each user
to cache from the server at random and independently of
the other users. This type of placement gives an achievable
load for our hotplug setting because the decentralized scheme
works for any number of user demands. In addition, the
performance of the decentralized setting is useful to derive
constant multiplicative gap results [2], [11].

Contributions: We first formalize the hotplug coded
caching problem. We propose two schemes that allow the
demands of the active users to be satisfied regardless of the
set of offline users, where the number (but not the identity) of
the offline users is assumed known at the time of placement,
similarly to [9]>. Our schemes use coded cache placement.

1) Our first new achievable scheme exploits Maximum Dis-

tance Separable (MDS) codes in the placement phase,
where coding is done within each file but not across
files. We show that such a strategy reduces the load
significantly in the small cache size regime compared to
a centralized baseline schemes. Furthermore, it achieves
the optimal performance when the memory is small and

2Hotplug is a computer system term that refers to a device that can be added
or removed from the running system without having to restart the system.

3The server can serve users in multiple rounds if the actual number of
active users is greater than what the server assumed in the placement.

the number of files is large. The matching converse is
obtained from [4].

2) Our second new achievable scheme applies MDS-like
coding to the coded placement of [5]. This scheme
achieves the optimal performance when the memory is
small and there are less files than users. The matching
converse is obtained from the cut-set bound in [1].

Paper Outline: The rest of the paper is organized as
follows. Section II states the problem formulation and sum-
marizes related known results. Section III summarizes our
main results. Section IV shows the optimal scheme when there
are two files and two active users. Section V provides some
numerical examples. Section VI concludes the paper. Some
proofs can be found in the longer version of this paper [12].

II. PROBLEM FORMULATION AND KNOWN RESULTS
A. Notation Convention

We adopt the following notation convention.

o Calligraphic symbols denote sets, bold lowercase symbols
vectors, bold uppercase symbols matrices, and sans-serif
symbols system parameters.

o MJ[Q] denotes the submatrix of M obtained by selecting
the rows indexed by Q. Similarly, d[Z] is the subvector
of d obtained by selecting the elements indexed by Z.

o For an integer b, we let [b] := {1,...,b}.

e Forsets Sand Q, welet S\ Q:={k: k€S, k¢ O}.

o For a vector d, rank(d) returns the number of distinct
elements in d. For example, rank([1,5,5,1]) = 2.

o For a ground set G and an integer ¢, we let Q*g ={T C
G:|T| =t}

e For T € QL, we let 7, be the i-th subset in Qg in
lexicographical order. For example, the sets in 9%1,2,3}
are indexed as 7; = {1,2}, 72 = {1,3}, T3 = {2,3}.

o For integers a and b, () is the binomial coefficient, or
zero if @ > b > 0 does not hold.

B. Problem Formulation

In a (K, K’,N) hotplug coded caching system:

o A central server stores N files, denoted as Fi,- - -

o Each file has B i.i.d. uniformly distributed bits.

o The server communicates with K users through a error-
free shared link.

o Each user has a local memory that can contain up to MB
bits, where M € [0,N]. We refer to M as the memory
size. Caches are denoted as 71, ..., Zk.

o The server sends the signal X to the users through the
shared link, where X has no more than RB bits, with
R > 0. We refer to R as the load.

o The system has a placement phase and a delivery phase.
The placement phase occurs at a time when the server is
still unaware of which users will be offline, and which
files the active users will request. We assume that the
server knows that K’ users will be active, with K’ < K.
The delivery phase occurs after the active users have sent
their demands to the server.

In particular:

 Fi.

Placement Phase: The server populates the local caches
as a function of the files it stores, i.e.,

H(Zy|Fy,...FN) =0, Vke K] (1)

Delivery Phase: Once the set of active users becomes
known to the server, denoted by Z € Q'[‘K,], as well as the
demand dj, € [N] of user k € Z, the server starts sending. We
denote the demands of all users by the vector d = [dy, ... dk],
thereby also including the demands of the offline users; the
server is thus aware of the pair (Z,d[Z]). The message X
sent by the sever must guarantee that each active user, with
the help of its locally cached content, can revere its desired
file, i.e., for every Z € Qﬁ(/] and d[Z] € [N]¥’, we must have

H(X|Z,d[Z],Fy,...Fy) =0,)
H(Fy,|Z,, X) =0, VkeT. 3)

Performance: For M € [0,N], we denote by R*(M) the
minimum worst-case load, defined as

R*(M) = lim sup
B—oo

conditions in (1)-(3) are satisfied with memory size M}. 4)

min _ max{R:
X,Z1,..Zx T,d[T)

C. Known Results for K' = K

When K’ = K, the hotplug model is equivalent to the
classical setting in [1] for which the following is known.
MAN Placement Phase: Fix t € [0 : K] and partition

each file into (¥) equal-size subfiles as

Fy=(Fiw: W e Qy), VielN]. 6)
For each user k € [K], the cache content Z, is
Zy = (Fow i€ INJWe Qi keW), VkelK]. (6)

The memory size is M = N(?:ll)/(f) = N¢t/K. The MAN
placement is referred to a centralized as it requires coordina-
tion among users during the placement phase.

MAN Multicast Messages: For the demand vector d €
[N]X, the server constructs the multicast messages

Xs=> Fi sk, VYSE€ Qg (7)
keS

Notice that user ¥ € S can recover the missing subfile
Fy,.s\{r} from X in (7) by “caching out” Zues\{k} Fy, 8\u
which can be computed from Zj, in (6).

YMA Delivery Phase: Some multicast messages in (7)
may be linearly dependent on the others when a file is
requested by multiple users [2]. By not sending the redun-
dant multicast messages, the lower convex envelope of the
following points for all ¢ € [0 : K] is achievable

(N (i) (tL)—(ﬁf))
(%) (%)
Remark 1 (Centralized vs. Decentralized). Decentralized

placement [2], [11] refers to the case where users cache
each bit of the library i.i.d. at random with probability p :=

(Mg, RE™) = ()

r=min{N,K}

M/N € [0, 1]. An achievable memory-load tradeoff with such
a decentralized placement is R%°" given by

- 5E(-0-)

Rde—cen N Z Rcen’ (9)
=

r:=min{N,K}

where R*" is the lower convex envelop of (8) and the
inequality in (9) is from [4, eq(20)]. For fixed u, R°" depends
on both K and r = min{N, K}, while R%**" only on r. [
IIT. MAIN RESULTS
In this section we summarize our main results, which will
be proved in the following sections.
A. Achievability

Theorem 1 (Achievability). Let r' := min{N,K’}. For a
(K,K',N) hotplug system, the lower convex envelope of the
following point is achievable

() G5 = (5

DG

)),Vt e [0:K],
(10)

K—1 K'Yy (K'—r
(Mrtlewl’ Rlzewl) _ (N (tlzll)7 (t-l—l) K,(t+1)>,Vt c [0 . K/]
(%) (V)
1D

When K > K’ > N, the following is achievable

1 1
new2 pnew2

Few comments are in order.

Baseline Scheme: The performance of the baseline
scheme in (10) is that of a classical coded caching system
with K users and N files but with a restricted set of demand
vectors d : rank(d) € [min{N, K'}], that is, the largest number
of distinct files that can be requested is r' = min{N, K’} (i.e.,
the minimum between the number of files and the number
of active users) rather than min{N, K} (as in (8)). Here the
server “fills in” the demand of the offline users by repeating in
a predefined order the demands of the active users* and uses
the YMA delivery for the “filled in” demand vector; with this,
the number of distinct files that must be delivered by the server
is not increased compared to that in the hotplug system.

New Schemes: Our first novel scheme attains the load
in (11)-the proof can be found in [12, Appendix B]. At a
high level, we split each file into (Kt’) equal-length subfiles

and then code the subfiles with an MDS code of rate (¥')/(¥).
The placement of the MDS-coded symbols follows the MAN
spirit and the delivery the YMA spirit.

Our second novel scheme attains the load in (12)-the proof
can be found in [12, Appendix C]. In this scheme, we first
code the files together, and then we apply another level of

MDS coding before the placement. The general delivery has

(M, Rie) — (N

12)

4For example, the server does the YMA delivery as if the demand of each
offline users is the same as the demand of the online user with the smallest
index.

two steps: first we ‘decode’ the cache contents of the active
users as in [5], and then we perform a sequence of YMA-
same-file-deliveries to subsets of active users.
Comparisons: In general Rbase < Rnewl < Rdecen (g

evaluated for r = r’), with RP° = RVl = Reen jf K = K.

By comparing the YMA load for a classical coded caching
system with K’ users and » = r = min{N, K’} in (8), with
the load of our first new proposed scheme in (11), we notice
they have the exact same expression; the difference is in the
memory requirement, which is M/N = ¢/K’ for the YMA
scheme with K’ users and M/N = ¢/K - (tf)/(Kt/) for our first
scheme with K’ active users out of K total users. In other
words, we need more cache space (quantified by the inverse
of the MDS code rate) in order to serve K’ online users and
tolerate K — K’ offline users, compared to the classical YMA
coded caching scheme for K’ users. Note that the two schemes
have the same memory requirement for ¢ = 1.

Consider the following corner points

(MrOISWl7 RBeWI) = (MOa Rgase) = (07 rI)|r’::min{N,K’}7 (13)
N (41 I
(Mnewl Rnewl) _ K" r 2K) K r= 2
oo - N K-—1 r_ ‘
N K K —v €{0,1}
(14)

The segment connecting the points (13) and (14) (achievable
by memory sharing) outperforms the baseline scheme in the
small memory regime and is optimal when the number of files
is large enough; that connecting the points (13) and (12) is
optimal in the small memory regime when the number of files
is less than the number of users as stated in the next theorem.

B. Optimality Guarantees

As a converse bound, we can use any converse result for the
classical coded caching system with K’ users and N files; this
is so because the performance of our hotplug system cannot
be better than that of a system in which the server knows
a priori which set of K’ users will be active, and does the
optimal placement and delivery for those users. With this type
of converse bounds, we can show the following optimality
result, whose proof can be found in [12, Appendix A].

Theorem 2 (Optimality Guarantees). For a (K, K’',N) hotplug
system. We have the following optimality guarantees.
1) When r' = min{N, K’} = 1, R®*® is optimal.
2) When K > K’ =2 and N = 2, the optimal scheme has
two non-trivial corner points: (MiV! Riewl) = (1,1/2)
and (M"%2 RM%2) = (1/2,1).
3) When K > K' = 2 and N > 3, the only non-trivial
optimal corner point is (MI¥! RIVD) = (N/2,1/2).
4) When N < K’ and M < N/K', the corner point
(Mew2 Ruew2) — (1/K’ N(1 — 1/K’)) is optimal.
5) When N > K/'(K' +1)/2 and M < N/K’, the corner
point (M1 RIWHY — (N /2,1/2) is optimal.
6) When M > N(1 — 1/K), RY® is optimal.
7) R s at most a factor 2 from optimal.

Few remarks are in order.

Item 5 with K’ = 2 only covers the first half of the memory
range of Item 3; the second half is not covered by Item 6 as
the memory regime in Item 6 depends on K (which can be
any value no smaller than K’ = 2 in Item 3).

Theorem 2 does not provide a tight characterization for r' =
min{N, K’} = 2 as the classical coded caching setting for two
files is only partially solved [7] (only up to three users).

The proof for Item 1 and Item 6 is as for the classical
coded caching system, with converse given by the cut-set
bound [1, Theorem 2]; for Item 2 is given in Section IV and
the converse is from [1]; for Item 3 the converse is [7, Theorem
3]; for Item 4 the converse is the cut-set bound [1, Theorem
2] for Item 5 the converse is [4, Theorem 2]; for Item 7
uses [4, Lemma 1] (where one upper bounds the performance
of the proposed centralized scheme by that of the decentralized
one—see also Remark 1; this is possible because the load of
the classical coded caching model is bounded/finite when the
number of users grows to infinity).

It is interesting to note that the exact optimality results in
Theorem 2 (except Item 6) do not depend on K (the total
number of users) but only on K’ (the total number of active
users). It is not obvious that this should be the case in general.

IV. OPTIMALITY FORK > K' =N =2

We consider the hotplug system with K > 3 users, N = 2
files, and K’ = 2 active users, i.e., K — K/ = 1 offline user.

In this section we go into the proof details for K = 3 users
only, which is the simplest case that highlights the novelty of
our new schemes. The general case K > 3 follows from the
proofs in [12, Appendix B and Appendix C].

Next, we aim to show the achievability of the two non-trivial
corner points of the optimal region for the classical coded
caching setting with two users and two files [1], which is a
converse bound for any hotplug system with K > K' = N =
2. To prove the achievability of the non-trivial corner points
(1,1/2) and (1/2,1) (in addition to the trivial points (2, 0) and
(0,2)) we proceed as follows. We first derive the performance
of our first new scheme, which achieves the point (1,1/2)
by using MDS coded placement (where coding is only within
each file). We then combine the coded placement idea of [1]
with our MDS coded placement of our first new proposed
scheme to show the achievability of the point (1/2,1).

Case K = 3 and M = 1: First new scheme: In Fig. 1
we consider memory size M = 1 and K = 3 users. The files
are partitioned into two equal-size subfiles as F; = (Aq, As)
and Fy = (Bj, Bs). The subfiles of each file are coded with
an MDS code of rate 2/3. The cache contents are

Zy = (A1, B1), Zy = (A2, By), Z3 = (A1 + A, B1 + Bs),

as shown in Fig. 1a. The third user caches the parity bits.

Regardless of which user is active and what the other two
demand, each active user must receive the missing half of
the demanded file. Fig. 1b gives the signals sent by the server
according to Theorem 1, for two different demand vectors as a
function of which user is offline; all the other demand vectors
can be dealt similarly. The load is R} = 1/2.

Il
[N}

server _ N
B,.B,

shared link

[]

A +A, B +B,

(a) Cache contents for our first new scheme for memory
size M = 1. The third user caches the two parity bits.

User 1 User 2 User 3

offline offline offline
d=(1,1,1) Ay Ao Al + Ay
d=(1,2,1) | Ay + B1 + Bs Ay Ay + By

(b) The delivery for our first new scheme for memory
size M = 1, for two different demand vectors as a
function of which user is offline.

2001 & ®- Hotplug
. X
©- Baseline
1754
\\\ ——=- Converse
& 1.50 4 e Decentralized
kel S
@ AN
2 1.25 S
Q N N
@ \
$ 1.004 ws
o ~
4 S
g 075 NN
w X
£ 0501 NN
e
0.25 1 S
0.00 1 T~

T T T T T T T T T
0.00 025 0.50 0.75 1.00 125 150 1.75 2.00
memory size M

(c) Memory-load tradeoffs.

Fig. 1: Memory-load tradeoffs for the hotplug system with K =3
users, N = 2 files, and K’ = 2 active users. The converse is
achievable for any K > 3. The performance of our new schemes
does not depend on K.

Fig. 1c shows the memory-load tradeoff attained by our first
new scheme by the red dashed line, which is the lower convex
envelope of the corner point (1,1/2) achieved by the novel
scheme with the trivial corner points (0,2) and (2,0). The
blue dashed line represents the memory-load tradeoff when
all three users are active. The gray dashed line is the optimal
memory-load for a classical coded caching system with two
users and two files [1], which is achievable for any K > 3. For
comparison, we also added to the figure the performance of a
decentralized coded caching scheme in magenta dashed line,
given by (9) with » = r' = min{N, K’} = 2; the decentralized
performance does not depend on K and is an upper bound for
the centralized performance for any K.

This example shows that load savings are possible when the
system is aware that only two users out of three can be active.

51 Q\ &- Hotplug
Y ©®- Baseline (K=20)
. S ©- Baseline (K=6)
o« s —=-- Converse
o V
3 \
v 3 \8
I \
g
@ w
52 Y
2 N N
2 Moo te
= N ,s,$ -
RN 5%
TN--Pee
eeels
0 =s-o

T T T
7.5 10.0 125
memory size M

T T T
0.0 2.5 5.0

Fig. 2: Memory-load tradeoffs for the hotplug system for with
(K’,N) = (5,20) and various values of K.

Case K = 3 and M = 1/2: Second new scheme: Our
first new scheme with MDS-coded placement attains only
one corner point on the converse bound from [1]. In [1]
it was shown that the point (1/2,1) can be achieved by
coded placement in the classical setting with two files and
two users. We next combine the idea of [1] with our MDS
coded placement idea to show that (1/2,1) is achievable for
K=3>K =N=2

Consider memory size M = 1/2 and K = 3 users. The files
are partitioned as before but the cache contents are

A =[Ay; As], B =[By; B2, (files seen as column vectors),
Zy = A1+ B =gi(A+B), g1:=[1,0],
Zy=As+ By = g2(A+B), g2:=[0,1],
Z3 = A1 +A2 —|—Bl +B2 = gg(A+ B), g3 = [1, 1]
When the pair of active users requests the same file, the server
transmits the requested file.

For the pair of active users (,j) with d; = 1,d; = 2 the
signal sent is X = (g, A, g;B). User ¢ requesting file A does

S

[gi
8
——
2 X 2 full rank matrix
and similarly for user j requesting file B. Thus we can serve
any pair of users, regardless of the demand, by R™"? = 1.
Case K > 3: We showed that we can achieve all the
corner points of the converse bound in [1] (which does not
depends on K), thus we have the optimal coded caching
strategy for the case (K, K’,N) = (3,2, 2). The same approach
extends to any K > 3, K = N = 2 by using the general
achievable schemes in [12, Appendix B and Appendix C].

A

9

V. NUMERICAL EVALUATIONS

We conclude with some examples, to illustrate the perfor-
mance of our new schemes.

Case (K’,N) (5,20): Fig. 2 shows the memory-load
tradeoffs for the case (K’,N) = (5,20) and various K. The
performance of the first new scheme and of the converse bound

does not depend on the value of K, while that of the baseline
scheme worsen as K increases.

w
&

\ @ - Hotplug
\ @ - Baseline
—-- Converse

~N w S
) 1

¥

[

the worst-case load R

-
'
/

/

o
!

T T T T T T
0.0 2.5 5.0 7.5 10.0 125
memory size M

(a) Case (K,K',N) = (10,5, 20).

-
N
n

@ - Hotplug
&- Baseline
—--- Converse

the worst-case load R
=
N S o © (=}
| | | !
,
14
’

o
L

——————— o -

T T T T T T
7.5 10.0 125 150 175 20.0

memory size M

(b) Case (K,K’,N) = (15,12, 20).

T T T
0.0 2.5 5.0

Fig. 3: Memory-load tradeoffs for the hotplug system with
(K,N) = (15,20) and different values of K'.

Case (K,N) = (15,20): Fig. 3 shows the memory-load
tradeoffs for two different values of K’ for fixed (K,N) =
(15,20). For M € [0,N/K’] in Fig. 3a, the first new scheme
with MDS coded placement in Theorem 1 outperforms the
baseline scheme in the small memory regime, and it is exactly
optimal in the small memory regime.

VI. CONCLUSION

In this paper, we introduced the novel hotplug coded caching
model to address a practical limitation of the original coded
caching system, namely, to allow the server to start the delivery
phase for a subset of active users, while the reaming users
are offline. We proposed new coded caching schemes with
MDS coded placement that are optimal in the small memory
regime when some conditions hold. In general, our scheme is
optimal to within a factor of 2. This shows that load savings
are possible when the system is aware that only a subset of
users will be active. Interestingly, when optimality can be be
shown, the optimal performance only depends on the number
active users and not on the total number of users; we are
tempted to conjecture that this is true in general. Current work
includes further extending optimality results and to consider
other statistical models for the users’ activity.

ACKNOWLEDGEMNT
This work was supported in part by NSF Award 1910309.

[1]

[2]

[3]

[7]

[8]

[9]

[10]

(1]

[12]

REFERENCES

M. A. Maddah-Ali and U. Niesen, “Fundamental limits of caching,”
IEEE Transactions on Information Theory, vol. 60, no. 5, pp. 2856—
2867, 2014.

Q. Yu, M. A. Maddah-Ali, and A. S. Avestimehr, “The exact rate-
memory tradeoff for caching with uncoded prefetching,” IEEE Transac-
tions on Information Theory, vol. 64, no. 2, pp. 1281-1296, 2017.

K. Wan, D. Tuninetti, and P. Piantanida, “An index coding approach
to caching with uncoded cache placement,” IEEE Transactions on
Information Theory, vol. 66, no. 3, pp. 1318-1332, 2020.

Q. Yu, M. A. Maddah-Ali, and A. S. Avestimehr, “Characterizing the
rate-memory tradeoff in cache networks within a factor of 2,” IEEE
Transactions on Information Theory, vol. 65, no. 1, pp. 647-663, 2018.
Z. Chen, P. Fan, and K. B. Letaief, “Fundamental limits of caching:
Improved bounds for users with small buffers,” IET Communications,
vol. 10, no. 17, pp. 2315-2318, 2016.

J. Gémez-Vilardebd, “Fundamental limits of caching: Improved rate-
memory tradeoff with coded prefetching,” IEEE Transactions on Com-
munications, vol. 66, no. 10, pp. 4488-4497, 2018.

C. Tian, “Symmetry, outer bounds, and code constructions: A computer-
aided investigation on the fundamental limits of caching,” Entropy,
vol. 20, no. 8, p. 603, 2018.

H. Ghasemi and A. Ramamoorthy, “Asynchronous coded caching with
uncoded prefetching,” IEEE/ACM Transactions on Networking, vol. 28,
no. 5, pp. 2146-2159, 2020.

J. Liao and O. Tirkkonen, “Fundamental rate-memory tradeoff for coded
caching in presence of user inactivity,” arXiv preprint arXiv:2109.14680,
2021.

C. Yapar, K. Wan, R. F. Schaefer, and G. Caire, “On the optimality
of d2d coded caching with uncoded cache placement and one-shot
delivery,” IEEE Transactions on Communications, vol. 67, no. 12,
pp. 8179-8192, 2019.

M. A. Maddah-Ali and U. Niesen, “Decentralized coded caching at-
tains order-optimal memory-rate tradeoff,” IEEE/ACM Transactions On
Networking, vol. 23, no. 4, pp. 1029-1040, 2014.

Y. Ma and D. Tuninetti, “On coded caching systems with offline users,”
arXiv preprint arXiv:2202.01299, 2022.

	Introduction
	Problem Formulation and Known Results
	Notation Convention
	Problem Formulation
	Known Results for K= K

	Main Results
	Achievability
	Optimality Guarantees

	Optimality for KK= N= 2
	Numerical Evaluations
	Conclusion
	References

