
1

On the Fundamental Limits of Device-to-Device
Private Caching under Uncoded Cache Placement

and User Collusion
Kai Wan, Member, IEEE, Hua Sun, Member, IEEE, Mingyue Ji, Member, IEEE, Daniela Tuninetti, Fellow, IEEE,

and Giuseppe Caire, Fellow, IEEE

Abstract—In the coded caching problem, as originally formu-
lated by Maddah-Ali and Niesen, a server communicates via a
noiseless shared broadcast link to multiple users that have local
storage capability. In order for a user to decode its demanded
file from the coded multicast transmission, the demands of all
the users must be globally known, which may violate the privacy
of the users. To overcome this privacy problem, Wan and Caire
recently proposed several schemes that attain coded multicasting
gain while simultaneously guarantee information theoretic pri-
vacy of the users’ demands. In Device-to-Device (D2D) networks,
the demand privacy problem is further exacerbated by the fact
that each user is also a transmitter, which appears to be needing
the knowledge of the files demanded by the remaining users
in order to form its coded multicast transmission. This paper
shows how to solve this seemingly infeasible problem. The main
contribution of this paper is the development of new achievable
and converse bounds for D2D coded caching that are to within
a constant factor of one another when privacy of the users’
demands must be guaranteed even in the presence of colluding
users (i.e., when some users share cached contents and demanded
file indices). First, a D2D private caching scheme is proposed,
whose key feature is the addition of virtual users in the system
in order to “hide” the demands of the real users. By comparing
the achievable D2D private load with an existing converse bound
for the shared-link model without demand privacy constraint,
the proposed scheme is shown to be order optimal, except for
the very low memory size regime with more files than users.
Second, in order to shed light into the open parameter regime,
a new achievable scheme and a new converse bound under the
constraint of uncoded cache placement (i.e., when each user stores
directly a subset of the bits of the library) are developed for the
case of two users, and shown to be to within a constant factor
of one another for all system parameters. Finally, the two-user
converse bound is extended to any number of users by a cut-

The results of this paper were presented in parts at the 2020 IEEE
International Conference on Communications, Dublin, Ireland, [1], and the
2020 IEEE International Symposium on Information Theory, Los Angeles,
California, USA, [2].

K. Wan and G. Caire are with the Electrical Engineering and Computer
Science Department, Technische Universität Berlin, 10587 Berlin, Germany
(e-mail: kai.wan@tu-berlin.de; caire@tu-berlin.de). The work of K. Wan and
G. Caire was partially funded by the European Research Council under the
ERC Advanced Grant N. 789190, CARENET.

H. Sun is with the Department of Electrical Engineering, University of
North Texas, Denton, TX 76203 (email: hua.sun@unt.edu). The work of
H. Sun is supported in part by funding from NSF grants CCF-2007108 and
CCF-2045656.

M. Ji is with the Electrical and Computer Engineering Department, Univer-
sity of Utah, Salt Lake City, UT 84112, USA (e-mail: mingyue.ji@utah.edu).
The work of M. Ji was supported in part by NSF Awards 1817154 and
1824558.

D. Tuninetti is with the Electrical and Computer Engineering Depart-
ment, University of Illinois Chicago, Chicago, IL 60607, USA (e-mail:
danielat@uic.edu). The work of D. Tuninetti was supported in part by NSF
Award 1910309.

set type argument. With this new converse bound, the virtual
users scheme is shown to be order optimal in all parameter
regimes under the constraint of uncoded cache placement and
user collusion.

I. INTRODUCTION

Internet data traffic has grown dramatically in the last
decade because of on-demand video streaming. The users’
demands concentrate on a relatively limited number of files
(e.g., latest films and shows) and that the price of memory
components in the devices is usually significantly less than
the price of bandwidth. On the above observation, caching
becomes an efficient and promising technique for future com-
munication systems [3], which leverages the device memory
to store data so that future demands can be served faster.

Coded caching was originally proposed by Maddah-Ali and
Niesen (MAN) for shared-link networks [4]. In the MAN
model, a server has access to a library of N equal-length files
and is connected to K users through an error-free broadcast
link. Each user can store up to M files in its cache. A caching
scheme includes placement and delivery phases that are de-
signed so as to minimize the load (i.e., the number of files
sent on the shared link that suffices to satisfy every possible
demand vector). In the original MAN model, no constraint
is imposed in order to limit the amount of information that
the delivery phase leaks to a user about the demands of the
remaining users. Such a privacy constraint is critical in modern
broadcast services, such as peer-to-peer networks, and is the
focus of this paper.

In order to appreciate the main contributions of our work,
in the next sub-section we briefly review the various models
of coded caching studied in the literature, which will lead to
the new problem formulation in this paper.

A. Brief review of coded caching models

Table I shows relevant known results and new results for
various coded caching models. The complete memory-load
tradeoff is obtained as the lower convex envelope of the listed
points. These results are valid for any system parameters
(N,K); other results that may lead to better tradeoffs but only
apply to limited parameter regimes are not reported for sake
of space.

2

TABLE I: Achievable loads for various coded caching models. Notation: d\{k} denotes the vector obtained from the demand
vector d by removing the k-th element, and Ne

(
d\{k}

)
gives the number of distinct elements in d\{k}.

(M,R) No Privacy With Privacy

Shared-link

(
tN
K
,

(
K

t+1

)
−
(
K−min(N,K)

t+1

)
(
K
t

)
) (

t 1
K
,

(
KN
t+1

)
−
(
KN−N
t+1

)
(
KN
t

)
)

t ∈ [0 : K], from [5] t ∈ [KN], from [6], [7]

D2D

tN
K
, max
d∈[N]K

(
K−1
t

)
− 1

K

∑
k∈[K]

(
K−1−Ne

(
d\{k}

)
t

)
(
K−1
t−1

)
 (

N+t−1
K

,

(
N(K−1)

t

)
−
(
N(K−1)−N

t

)
(
N(K−1)

t−1

)
)

t ∈ [K], from [8] t ∈ [N(K− 1) + 1], Scheme A in this paper

1) Shared-link networks without privacy constraints: In
the MAN placement phase, letting t = KM/N ∈ [0 : K]
represent the number of times a file can be copied in the
network’s aggregate memory (excluding the server), each file
is partitioned into

(
K
t

)
equal-length subfiles, each of which is

cached by a different t-subset of users. In the MAN delivery
phase, each user demands one file. According to the users’
demands, the server sends

(
K
t+1

)
MAN multicast messages,

each of which has the size of a subfile and is useful to t+ 1
users simultaneously. The load of the MAN coded caching

scheme is thus R =
(K
t+1)
(Kt)

= K−t
t+1 .1 The MAN scheme is said

to achieve a global coded caching gain, also referred to as
multicasting gain, equal to t+1 because the load with uncoded
caching Runcoded = K − t = K(1 − M/N) is reduced by a
factor t+1. This gain scales linearly with network’s aggregate
memory size. Yu, Maddah-Ali, and Avestimehr (YMA) in [5]
proved that

(
K−Ne(d)
t+1

)
of the MAN multicast messages are

redundant when a file is requested simultaneously by multiple
users, where Ne(d) ∈ [min(N,K)] is the number of distinct
file requests in the demand vector d ∈ [N]K. The YMA scheme
is known to be exactly optimal under the constraint of uncoded
cache placement [5], and order optimal to within a factor of
2 otherwise [9], for both worst-case load and average load
when files are requested independently and equally likely.
The converse bound under the constraint of uncoded cache
placement for the worst-case load was first derived by a subset
of the authors in [10], [11] by exploiting the index coding
acyclic converse bound in [12]. For the case N ≥ K = 2, the
exact optimality without constraints on the type of placement
was characterized in [13] by a non-trivial converse bound
leveraging the symmetries in the coded caching problem.

2) Shared-link networks with privacy constraints: For the
successful decoding of an MAN multicast message, the users
need to know the composition of this message (i.e., which
subfiles are coded together). As a consequence, users are
aware of the demands of other users. In practice, schemes
that leak information on the demand of a user to other users
are highly undesirable. For example, this may reveal critical

1In the MAN caching scheme, in order to allow each user to decode its
demanded file, the composition of each coded multicast message sent by the
server must be broadcasted along with the multicast message itself. This is
akin to the “header” in linear network coding, that defines the structure of the
linear combination of the files to enable decoding. Such composition requires
to broadcast metadata along the coded multicast messages. Since the size of
the metadata does not scale with the file size, the metadata overhead does not
contribute to the load in the limit of large file size.

information on user behavior, and allow user profiling by
discovering what types of content the users’ request. Shared-
link coded caching with private demands, which aims to
preserve the privacy of the users’ demands from other users,
was originally discussed in [14] and formally analyzed in an
information-theoretical framework by Wan and Caire in [6].
In the private coded caching model, the information about the
cached content of each user is unknown to the other users
and the composition of each coded multicast message sent
by the server must be broadcasted along with the multicast
message itself. Following the private coded caching model
in [6], various private schemes were proposed in [6], [7],
[15]–[18]. Relevant to this paper is the private coded caching
scheme based on virtual user proposed in [6], which operates
a MAN scheme as if there were KN users in total, i.e., NK−K
virtual users in addition to the K real users, and the demands of
the virtual users as set such that each of the N files is demanded
exactly K times. This choice of demands for the virtual users
is such that any real user “appears” to have requested equally
likely any of the files from the viewpoint of any other user,
which guarantees the privacy of the demands. An improved
private caching scheme based on virtual user strategy was
proposed in [7], which used the YMA delivery instead of the
MAN delivery. Compared to converse bounds for the shared-
link model without privacy constraint, it can be shown that this
scheme based on virtual users is order optimal in all regimes,
except for K < N and M < N

K [6].2

To the best of our knowledge, the only converse bound that
truly accounts for privacy constraints in the system model
of [6] was proposed in [19] for the case K = N = 2. By
combining the novel converse bound in [19] with existing
bounds without privacy constraint, the exact optimality was
fully characterized in [19] for K = N = 2.

3) D2D networks without privacy constraints: In practice,
the content of the library may have been already distributed
across the users’ local memories and thus can be delivered
through peer-to-peer or Device-to-Device (D2D) communica-
tions. The shared-link coded caching model was extended to
D2D networks in [20]. In the D2D delivery phase, each user
broadcasts packets to all other users as functions of its cached
content and the users’ demands. The D2D load is the sum of
the bits sent by all users normalized by the file length.

2The problem in this regime can be intuitively understood as follows:
for M = 0 the achievable load in [6] is N while the converse bound is
min(K,N) = K; the ratio of this two numbers can be unbounded.

3

With the MAN cache placement where each file can be
copied t ∈ [0 : K] times in the aggregate network memory,
the D2D coded caching scheme in [20] further partitions each
MAN subfile into t equal-length sub-subfiles. Each user then
acts as a shared-link server to convey its assigned sub-subfiles
to the remaining users either with the MAN delivery [20] or
the YMA delivery [8]. This scheme effectively splits the D2D
network into K parallel shared-link models, each having N
files and serving K − 1 users with memory parameter t − 1.
Yapar et al. in [8] proved that this scheme is order optimal to
within a factor of 4, and exactly optimal under the constraint
of uncoded cache placement and one-shot delivery (i.e., in a
one-shot delivery, any user can recover any requested bit from
the content of its own cache and the transmitted messages by
at most one other user).

B. New D2D networks with privacy constraints

In D2D networks, the demand privacy problem is further
exacerbated by the fact that each user is also a transmitter,
which broadcasts coded multicast transmissions based on
its cached content. Based on the intuition developed from
the shared-link model, one is tempted to conclude that it
is impossible to guarantee privacy in D2D networks as the
demand vector knowledge appears to be necessary to design
the coded multicast messages. Rather surprisingly, in this
paper we show that it is possible to guarantee privacy of the
users’ demands against the other users also in a D2D setting.
In our new D2D private caching model, the placement phase
is similar to the shared-link private coded caching model.
The delivery phase contains two steps. In the first step, each
user broadcasts a query to the other users based on its local
cached content and its demand; since the query size does
not scale with the file size, this step does not contribute to
the load in the limit for large file size. In the second step,
after collecting all the queries from all the users, each user
broadcasts coded multicast messages as a function of the
queries and its cached content. In the large file size regime,
the load of the system is defined as the load in the second
step of D2D communication. The objective of this paper is to
design a D2D private coded caching scheme for K users, N
files and memory size M ≥ N/K (so that the aggregate cache
in the entire network suffices to store the entire library) with
minimum transmitted load by all users in the delivery phase,
while preserving the privacy of the users’ demands against the
other users.

In the Private Information Retrieval (PIR) problem [21] the
privacy of the user’s demand against the servers has been
considered. In the PIR setting, a user wants to retrieve a desired
file from some distributed non-colluding databases (servers),
and the objective is to prevent any server from retrieving
any information about the index of the user’s demanded file.
Recently, the authors in [22] characterized the information-
theoretic capacity of the PIR problem by proposing a novel
converse bound and a coded PIR scheme based on interference
alignment. The T -privacy PIR problem with colluding servers
were originally considered in [23], where it is imposed that
any T -subset of queries sent from the user cannot reveal any

information about the demand. The T -privacy PIR problem
with at most T colluding servers where each server has
a local coded storage was considered in [24], [25]. Since
D2D communications have not been considered in the PIR
literature, the D2D caching problem with private demands
treated in this paper is not a special case of any existing PIR
problem.

C. Contributions
We start by giving the first known information-theoretic

formulation of the D2D coded caching problem with demand
privacy. Then we organize the main contributions of this paper
as follows.

a) Results for general (N,K) from non-trivial extensions
of past works: we prove a constant gap result for all
parameter regimes except for N > K and M < 2N/K (i.e.,
the small memory regime with more files than users).
More precisely, we propose:

(a.1) Coded Scheme A (Theorem 1): This scheme carefully
combines the idea of introducing virtual users [7] with
that of splitting the D2D network into multiple parallel
shared links [8].

(a.2) Optimality (Theorem 2): By comparing Scheme A with
a converse bound for the shared-link model without the
privacy constraint in [9], we prove that Scheme A is
order optimal to within a factor of 6 when N ≥ K and
MK/N ≥ 2, and of 12 when N < K and MK/N ≥ 1.

b) Results specifically for the case K = 2 under uncoded
cache placement: at this point the regime N > K and
MK/N ∈ [1, 2) is open, which motivates the in-depth
study of the simplest open case, namely the two-user
case. We prove the first known general converse bound
under uncoded cache placement that accounts for privacy
constraints and leads to a constant gap result for any
number of files and any memory regime. In particular,
we propose:

(b.1) Coded Scheme B (Theorem 3): This scheme outper-
forms Scheme A for the two-user case.

(b.2) New Converse (Theorem 4): Inspired by the converse
bounds for non-private shared-link caching models
under uncoded cache placement from [11] and for PIR
systems from [22], we propose a new converse bound
under uncoded cache placement for the two-user case
by fully considering the privacy constraint.3

(b.3) Optimality (Theorem 5): With the new converse bound,
under the constraint of uncoded cache placement and
N ≥ K = 2, we show that Scheme B is exactly optimal
when M ∈ [N/2, (N + 1)/2] or M ∈

[
N(3N−5)
2(2N−3) ,N

]
,

and is order optimal to within a factor of 3 (numerical
simulations suggest 4/3) for the remaining memory
size regime.

c) Results for general (N,K) under uncoded cache place-
ment and user collusion: we leverage the new converse

3Our bound is not a generalization of the one for the shared-link private
caching model with N = K = 2 in [19], because the proposed converse
bound heavily depends on the fact that the transmission of each user is a
function of the queries and cached content of this user.

4

bound for the two-user case in a cut-set type bound and
prove a constant gap result for all parameter regime, while
at the same time considering a stronger notion of privacy
that allows for colluding users. We propose:

(c.1) New Converse (Theorem 6): We extend the proposed
two-user converse bound to the K-user system by
dividing the K users into two groups, and derive a
converse bound under uncoded cache placement and
user collusion.

(c.2) Optimality (Theorem 7): Under the constraint of un-
coded cache placement and user collusion, Scheme A
is shown to be order optimal to within a factor of 18
(numerical simulations suggest 27/2) when N > K
and MK/N ∈ [1, 2). This proves that Scheme A is
order optimal in all memory regimes (that is, also in
the regime that was open under the converse bound for
the non-private shared-link model) and it is robust to
colluding users.

Remark 1 (The powerfulness of the two-user converse bound).
It is rather surprising and quite remarkable to see that, in the
considered D2D private coded caching problem, the converse
for the case of K = 2 users combined with a cut-set extension
yields the order optimality for any system parameters under
the constraint of uncoded cache placement and user collusion.
This is in stark contrast to plenty of well-known multiuser
information theory problems where the optimality results for
the K = 2 case do not generalize, and give in fact little or
no hint to the K > 2 case. Paramount examples include the
general broadcast channel with degraded message sets [26],
[27], the K-user Gaussian interference channel [28], [29], and
the non-private shared-link coded caching [13]. �

Remark 2 (Cost of D2D). By using the result in [30], one can
immediately infer that, under the constraint of uncoded cache
placement and without privacy constraint, the gap between
the achieved loads in the shared-link and D2D scenarios
is at most 2. This is no longer the case when privacy is
introduced, where the gap between the loads in private shared-
link and private D2D scenarios can be arbitrarily large
(i.e., the gap is larger than N/min(N,K) when M = N/K,
which can be unbounded). Similar observations were made in
the context of secure shared-link pliable index coding [31],
where the authors showed that problems that are feasible
without security constraints became infeasible when security
is considered (i.e., there is no constant gap factor independent
of the system parameters). �

D. Paper organization

The rest of this paper is organized as follows. Section II
formulates the D2D private caching model. Section III pro-
vides an overview of all our technical results, and provides
some numerical evaluations. Sections IV and V provide proofs
of the proposed achievable schemes and converse bounds,
respectively. Section VI concludes the paper. Some proofs (i.e.,
more technical lemmas and tedious gap derivations) may be
found in the Appendices.

E. Notation convention

Calligraphic symbols denote sets, bold symbols denote
vectors, and sans-serif symbols denote system parameters.
We use | · | to represent the cardinality of a set or the
length of a vector. Sets of consecutive integers are denoted
as [a : b] := {a, a+ 1, . . . , b} and [n] := [1 : n]. The symbol
⊕ represents bit-wise XOR. a! = a×(a−1)×· · ·×1 represents
the factorial of a. We use the convention

(
x
y

)
= 0 if x < 0 or

y < 0 or x < y.

II. SYSTEM MODEL

A (K,N) D2D private caching system comprises the fol-
lowing elements.
• A library with N independently generated files, where

each file is composed of B i.i.d. bits. The files are denoted
by (F1, F2, . . . , FN).

• K users, each equipped with a local cache.
• An error-free broadcast link from each user to all other

users (e.g., a shared medium).4

The system operates in two phases.
• Placement Phase. Note that the placement phase is done

without knowledge of later demand. Each user k ∈ [K]
first generates some local randomness Pk, which is inde-
pendent of the library F1, . . . , FN and independent across
users, and is only known at user k ∈ [K]. Then user k
stores Zk in its cache, where

H
(
Zk|Pk, F1, . . . , FN

)
= 0 (placement constraint),

(1)

The vector of all caches is Z := (Z1, Z2, . . . , ZK).
• Delivery Phase. User k ∈ [K] demands the file indexed

by dk ∈ [N]. The demand vector is d := (d1, d2, . . . , dK).
The delivery phase contains the following two steps.
– Step 1: user k ∈ [K], given its randomness Pk, cached

content Zk and demand dk, broadcasts the query `k to
the other users.

– Step 2: after having received all the queries, user k ∈
[K] broadcasts the signal Xk to the other users, where

H
(
Xk|Zk, Pk, `1, . . . , `K

)
= 0, (encoding constraint).

(2)

Note that, the queries `1, . . . , `K act as the metadata
explained in Footnote 1, implying the composition of
each coded multicast message.

Successful decoding is guaranteed if

H
(
Fdk |Zk, Pk, dk, `1, . . . , `K, X1, . . . , XK

)
= 0,

∀k ∈ [K], (decoding constraint). (3)

4D2D networks may be implemented at the physical/MAC layer, such that
the nodes are physical devices sharing a common transmission medium, or
at the logical or “application” layer, as for example in current peer-to-peer
file sharing systems such as BitTorrent, Gnutella, Kazaa and several others.
We do not make such distinction here and just compute the load as the sum
of all nodes (or “peers”) transmissions expressed in bits, necessary to satisfy
the users demands. This load notion is compliant with the previously defined
coded caching models for D2D and shared link systems.

5

Demand privacy5 is guaranteed if

I
(
d[K]\{k};Zk, Pk, dk, `1, . . . , `K, X1, . . . , XK

)
= 0,

(privacy constraint), (4)

where dS denotes the vector obtained from d by retaining
only the elements indexed by S .

Assume that the length of (Pk, `k), k ∈ [K], does not
scale with B. By the constraint of privacy, the number of
transmissions in Step 2 of the delivery for different demand
vectors should be the same. Thus a pair (M,R) is said to be
achievable if all the above constraints are satisfied with

lim sup
B→∞

H(Zk)

B
≤ M, ∀k ∈ [K], (cache size), (5a)

lim sup
B→∞

∑
k∈[K]H(Xk)

B
≤ R, (load). (5b)

Our objective is to determine

R?(M) := inf{R : (M,R) is achievable as in (5)}. (6)

We only consider the case min(K,N) ≥ 2, since the case
K = 1, a single node network, does not make sense in a D2D
network and when N = 1 each user knows the demand of the
other users. In addition, we only need to consider M ∈

[
N
K ,N

]
,

since for M ≥ N each user can cache the whole library, thus no
delivery is needed; and for KM < N there is not enough space
in the overall network memory to store the whole library, thus
the problem is not feasible.

Uncoded Cache Placement. If each user k ∈ [K] directly
copies some bits of the files into Zk, the cache placement
is said to be uncoded. The optimal load under the constraint
of uncoded cache placement is denoted by R?u(M), which is
defined as in (5b) but with the additional constraints that the
cache placement phase is uncoded. Clearly, R?(M) ≤ R?u(M).

Colluding Users. We say that the users in the system collude
if they exchange the index of their demanded file and their
cached content. Collusion is a natural consideration to increase
the privacy level and is one of the most widely studied variants
in the PIR problem [23], [32]–[34]. Privacy constraint against
colluding users is a stronger notion than (4) and is defined as
follows

I
(
d[K]\S ; (Zk, Pk : k ∈ S),dS , `1, . . . , `K, X1, . . . , XK

)
= 0,

∀S ⊆ [K],S 6= ∅. (7)

The optimal load under uncoded cache placement and the
privacy constraint in (7) is denoted by R?u,c(M). Clearly,
R?u,c(M) ≥ R?u(M) ≥ R?(M).

Remark 3. For K = 2, the privacy constraints in (4) and (7)
are equivalent, and thus we have R?u,c(M) = R?u(M) ≥ R?(M).

�

III. MAIN RESULTS

In this section, we summarize all the new results in this
paper and provide the main ingredients on how the bounds
are derived.

5The privacy constraint in (4) corresponds to perfect secrecy in an infor-
mation theoretic sense (see [27, Chapter 22]).

A. Results for general (N,K) by non-trivial extensions of
known schemes

Inspired by the virtual-user strategy in [7], we propose a
private coded caching scheme (referred to as Scheme A in
the following) with a cache placement inspired by the D2D
strategy [20]. More precisely, our scheme effectively divides
the D2D network into K independent shared-link models, each
of which serves U := (K − 1)N effective users, where (K −
1)(N − 1) users are virtual. The achieved load is given in
the following theorem; an example that highlights the main
ingredients in Scheme A can be found in Section IV-A and
the detailed general description on Scheme A can be found in
Section IV-B.

Theorem 1 (Scheme A). For the (K,N) D2D private caching
system, R?u,c is upper bounded by the lower convex envelope
of the following points

(M,RA) =

(
N+ t− 1

K
,

(
U
t

)
−
(
U−N
t

)(
U
t−1
))

, ∀t ∈ [U+ 1]. (8)

�

Note that Scheme A satisfies the robust privacy constraint
in (7) against colluding users. By comparing Scheme A
in Theorem 1 and the converse bound for the shared-link
caching problem without privacy constraint in [9], we have the
following order optimality results, whose proof can be found
in Appendix D.

Theorem 2 (Order optimality of Scheme A). For the (K,N)
D2D private caching system, Scheme A in Theorem 1 is order
optimal to within a factor of 6 if N ≥ K and M ≥ 2N/K, and
12 if N ≤ K. �

Remark 4 (Reduction of Subpacketization for Scheme A).
Scheme A in Theorem 1 divides each file into K

(
U
t−1
)

equal-length subfiles, thus the subpacketization is K
(

U
t−1
)
≈

K2UH(
t−1
U), where H(p) = −p log2(p) − (1 − p) log2(1 − p)

is the binary entropy function. Hence, the maximal subpack-
etization of the virtual-user scheme (when t−1

U = 1
2) is

exponential in U, which is much higher than the maximal
subpacketization of the K-user MAN coded caching scheme
(which is exponential in K). Very recently, after the original
submission of this paper, the authors in [16] proposed a
shared-link private coded caching scheme based on the cache-
aided linear function retrieval [35], which can significantly
reduce the subpacketization of the shared-link virtual-user
private caching schemes in [6], [7]. In addition to the cached
content by the MAN placement, the authors let each user
privately cache some linear combinations of uncached subfiles
in the MAN placement which are regarded as keys. In such
way, the effective demand of each user in the delivery phase
becomes the sum of these linear combinations and the subfiles
of its desired file, such that the real remand is concealed.
We can directly use the extension strategy in [20] to extend
this shared-link private caching scheme to our D2D setting to

6

obtain Scheme C, which achieves the lower convex envelope
of
(
K
N ,N

)
and the following points

(M,RC) =

(
t(N− 1)

K
+ 1,

(
K−1
t

)
−
(
K−1−N

t

)(
K−1
t−1
))

, ∀t ∈ [K].

(9)

The subpacketization of the scheme in (9) is K
(
K
t

)
≈

K2KH(t/K), which is the same as the K-user non-private D2D
coded caching scheme in [20]. As the shared-link private
caching scheme in [16], Scheme C also satisfies the robust
privacy constraint in (7) against colluding users. �

B. Results for K = 2: new converse bound to truly account
for privacy constraints

The order optimality results in Theorem 2 is derived from an
existing converse bound without privacy constraint and does
not cover the regime N > K and M ∈ [N/K, 2N/K). Hence,
we are motivated to derive a new converse bound by fully
incorporating the privacy constraint for the simplest open case,
that is, for a two-user system.

When K = 2, we observe that in Scheme A some cached
content is redundant. By removing those redundancies we de-
rive a new scheme (referred to as Scheme B in the following)
whose achieved load is given in the following theorem; an
example that highlights the main ingredients in Scheme B can
be found in Section IV-C and the detailed general description
on Scheme B can be found in Section IV-D.

Theorem 3 (Scheme B). For the (K,N) = (2,N) D2D private
caching system, R?u = R?u,c is upper bounded by the lower
convex envelope of (M,RB) = (N, 0) and the following points

(M,RB) =

(
N

2
+

Nt′

2(N+ t′ − 1)
,

N(N− 1)

(t′ + 1)(N+ t′ − 1)

)
,

∀t′ ∈ [0 : N− 1]. (10)

�

In Appendix F we prove the following corollary.

Corollary 1. By comparing Scheme A in Theorem 1 for K = 2
and Scheme B in Theorem 3, we find RB ≤ RA. �

Next we turn our attention to converse bounds that truly
incorporate the privacy constraint. The following converse
bound is one of the key novelties of this paper. It truly accounts
for the privacy constraint in the general setting N ≥ 2. The
main idea is to derive several bounds that contain a “tricky”
entropy term that needs to be bounded in a non-trivial way;
in some bounds this entropy term appears with a positive sign
and in others with a negative sign; by linearly combining the
bounds, the “tricky” entropy term cancels out. Different from
the converse bound in [19] for the shared-link caching with
private demands for N = K = 2, our converse bound focuses
on uncoded cache placement and works for any N ≥ K = 2.
Theorem 4 is proved in full generality in Section V-B. For the
sake of clarity, an example of the key steps in the proof is
provided Section V-A for the case of N = 2 files.

Theorem 4 (New converse bound for the two-user system).
For the (K,N) = (2,N) D2D private caching system where
N ≥ K = 2, assuming M = N

2 + y where y ∈
[
0, N2

]
, we have

the following bounds

R?u ≥ N− 2y − 4y + (N− K/2)h

h+ 2

+
h2(N− K/2)− N(2N/K− 3) + h(N+ K/2)

(h+ 1)(h+ 2)

2y

N
,

∀h ∈ [0 : N− 3], only active for N ≥ 3, (11)

R?u ≥ K

(
1− 3y

N

)
, (12)

R?u ≥ K

(
1

2
− y

N

)
. (13)

�

By comparing the new converse bound in Theorem 4 and
Scheme B in Theorem 3, we have the following optimality
result under the constraint of uncoded cache placement (the
proof can be found in Appendix G).

Theorem 5 (Optimality for the two-user system). For the
(K,N) = (2,N) D2D private caching system where N ≥
K = 2, Scheme B in Theorem 3 is exactly optimal under the
constraint of uncoded cache placement when N

2 ≤ M ≤ N+1
2

or N(3N−5)
2(2N−3) ≤ M ≤ N. Otherwise, Scheme B is order optimal

to within a factor of 3 (numerical simulations suggest 4/3).
�

From Theorem 5, we can directly derive the following
corollary.

Corollary 2. For the (K,N) = (2,N) D2D private caching
system Scheme B in Theorem 3 is exactly optimal under the
constraint of uncoded cache placement in all memory regimes
when N ∈ {2, 3}. �

C. Order optimality results for any system parameter when
users may collude

In Section V-C we extend Theorem 4 to any K ≥ 2 with the
consideration of the privacy constraint against colluding users
in (7). The main idea is to divide the users into two groups
in a cut-set-like fashion and generate a powerful aggregate
user whose cache contains the caches of all users in each
group (implying collusion). The derived converse bound is as
follows.

Theorem 6 (New converse bound for the K-user system). For
the (K,N) D2D private caching system where N ≥ K ≥ 3,
assuming M = N

K + 2y
K where y ∈

[
0, N2

]
, we have

R?u,c ≥
bK/2c
dK/2e

b2N/Kc
2N/K

× RHS eq(11),

∀h ∈ [0 : b2N/K− 3c] , only active for N/K ≥ 3/2, (14)

R?u,c ≥
bK/2c
dK/2e

× RHS eq(12), (15)

R?u,c ≥
bK/2c
dK/2e

× RHS eq(13). (16)

7

�

By comparing Scheme A in Theorem 1 and the combination
of the new converse bound in Theorem 6 and the converse
bound for shared-link caching without privacy in [11], we
can characterize the order optimality of Scheme A under the
constraint of uncoded cache placement and user collusion in
all parameter regimes (the proof can be found in Appendix H).

Theorem 7 (Order optimality for the K-user system). For the
(K,N) D2D private caching system where N ≥ K, Scheme A in
Theorem 1 is order optimal to within a factor of 18 (numerical
simulations suggest 27/2) under the constraint of uncoded
cache placement and user collusion.

�

Note that when N < K, Theorem 2 shows that Scheme A
is generally order optimal to within a factor of 12. Hence,
from Theorems 2 and 7, we can directly have the following
conclusion.

Corollary 3. For the (K,N) D2D private caching system,
Scheme A in Theorem 1 is order optimal to within a factor
of 18 under the constraint of uncoded cache placement and
user collusion. �

Remark 5 (Coded vs Uncoded Cache Placement). For the
non-private shared-link coded caching problem in [4], by
comparing the optimal coded caching scheme with uncoded
cache placement in [5] and the general converse bound in [9],
it was proved that the gain of coded cache placement is at most
2. Similarly, for the non-private D2D coded caching problem
in [20], by comparing the coded caching scheme with uncoded
cache placement in [8] and the general converse bound in [9],
it was proved that the gain of coded cache placement is at most
4. However, for the considered D2D private coded caching
problem, by comparing the proposed converse bounds under
uncoded cache placement and Scheme C (which is with coded
cache placement), it is interesting to find that the gain of coded
cache placement is not always within a constant gap. More
precisely, let us focus on the two-user system and consider
M = N+1

2 . By letting y = 1
2 and h = 0 in (11), we have

R?u ≥ N−1
2 . By letting t = 2 in (9), Scheme C achieves

the memory-load pair (M,RC) =
(
N+1
2 , 1

)
. Hence, we have

R?
u

RC
≥ N−1

2 , which can be unbounded (in the sense that it can
be made larger than any constant by choosing a sufficiently
large N). �

D. Numerical evaluations

We conclude the overview of our main results with some
numerical evaluations. For the achievable schemes, we plot
Scheme A in Theorem 1, Scheme B in Theorem 3 (for the two-
user system), and Scheme C in Remark 4 (with coded cache
placement). We also plot the converse bound under uncoded
cache placement in Theorem 4 for K = 2 and the converse
bound under uncoded cache placement and user collusion in
Theorem 6 for K ≥ 3. For sake of comparison, we also plot
the converse bound in [9] and the converse bound under the
constraint of uncoded cache placement in [11] for shared-link
caching without privacy.

4 4.5 5 5.5 6 6.5 7 7.5 8

M

0

1

2

3

4

5

6

7

8

L
o
a
d

Scheme A in Theorem 1

Scheme B in Theorem 3

Scheme C in Remark 4

Novel converse bound under uncoded

cache placement in Theorem 4

Converse bound under uncoded cache

placement in [11]

Converse bound in [9]

5.5 6 6.5 7
0

0.5

1

1.5

2

Fig. 1: The memory-load tradeoff for the D2D private caching
system, where K = 2 and N = 8.

In Fig. 1, we consider the case where K = 2 and N = 8.
Here the converse bounds in [11] and [9] are the same. It can
be seen in Fig. 1 that, Scheme B and the proposed converse
bound meet for all memories except 4.5 ≤ M ≤ 6. When 4 <
M ≤ 5.8, Scheme C, with coded cache placement, achieves
a lower load than the converse bound under uncoded cache
placement in Theorem 4.

In Fig. 2, we consider the case where K = 10 and N = 40.
It can be seen in Fig. 2 that compared to the converse bound
in [11], the proposed converse bound is tighter when M is
small. This is mainly because in the proposed converse bound
we treat K/2 = 5 users as a powerful super-user, which
loosens the converse bound when M grows. However, for
the low memory size regime, this strategy performs well and
gives the order optimality result of Scheme A, while the gap
between the converse bound in [11] and Scheme A is not a
constant. Hence, combining the proposed converse bound and
the converse bound in [11], we can obtain the order optimality
results of Scheme A for any memory size.

In Fig. 3, we consider the case where K = 40 and N = 10.
It can be seen that the multiplicative gap between Scheme A
and the converse bounds for non-private shared-link coded
caching problem is to within a constant. In addition, Scheme
A outperforms Scheme C for any M ∈ [0,N].

IV. ACHIEVABLE SCHEMES

In this section we provide the details of the achievable
schemes together with illustrative examples.

A. Example of Scheme A

Before introducing Scheme A in full generality, we present
an example to illustrate the main idea for the D2D private
system with K = 2 users, N = 3 files, and t = 2
(corresponding to cache size M = 5

2).
At a high level, we aim to create a “virtual users”-system

with a total KN = 6 effective (i.e., real or virtual) users. We
then effectively divide the “virtual users”-system into K = 2
independent shared-link models, in each of which a real user

8

5 10 15 20 25 30 35 40

M

0

5

10

15

20

25

30

35

40
L
o
a
d

Scheme A in Theorem 1

Scheme C in Remark 4

Novel converse bound under uncode

cache placement in Theorem 6

Converse bound under uncoded cache

placement in [11]

Converse bound in [9]

15 20 25 30
0

1

2

3

4

Fig. 2: The memory-load tradeoff for the D2D private caching
system, where K = 10 and N = 40.

1 2 3 4 5 6 7 8 9 10

M

0

1

2

3

4

5

6

7

8

9

10

L
o
a
d

Scheme A in Theorem 1

Scheme C in Remark 4

Converse bound under uncoded cache

placement in [11]

Converse bound in [9]

5 5.5 6 6.5 7 7.5 8
0

0.5

1

1.5

2

Fig. 3: The memory-load tradeoff for the D2D private caching
system, where K = 40 and N = 10.

broadcasts coded multicast packets to (K− 1)N = 3 effective
users (including K− 1 = 1 real users and (K− 1)(N− 1) = 2
virtual users). The demand vector of the effective users served
on each independent shared-link model is such that each file
is requested exactly K − 1 = 1 times, thereby guaranteeing
privacy.

File Partitioning. Each file is partitioned into 6 equal-length
subfiles as

Fi = {F 1
i,{4,5}, F

1
i,{4,6}, F

1
i,{5,6}, F

2
i,{1,2}, F

2
i,{1,3}, F

2
i,{2,3}},

(17)

where i ∈ [3]. Each subfile contains B/6 bits. The subfiles
(F 1
i,{4,5}, F

1
i,{4,6}, F

1
i,{5,6} : i ∈ [3]) are to be delivered in

the first independent shared-link model by real user 1 to the
effective users indexed by [N+1 : 2N] = [4 : 6]. Similarly, the
subfiles (F 2

i,{1,2}, F
2
i,{1,3}, F

2
i,{2,3} : i ∈ [3]) are to be delivered

in the second independent shared-link model by real user 2 to
the effective users indexed by [N] = [3].

Placement Phase. Real user 1 stores all the subfiles with
superscript 1 (which it is charged to deliver in the delivery

phase), and similarly, real user 2 must store all subfiles with
superscript 2. In addition, each real user also stores other sub-
files as follows. Real user k ∈ [2] selects Pk uniformly i.i.d.
over [3]. The realization of P1 is unknown to real user 2, and
similarly P2 is unknown to real user 1. Real user k ∈ [2]
impersonates effective user θk = 3(k − 1) + Pk. Thus, the
actual cache content of each real user k ∈ [2] is

Zk = {F ki,V : i ∈ [3], ∀V}
⋃

j∈[K]\{k}

{F ji,V : i ∈ [3], θk ∈ V}.

(18)

For example, if we assume P1 = 1 (real user 1 impersonates
effective user 1) and P2 = 1 (real user 2 impersonates effective
user 4), then real users’ cached contents are

Z1 = (F 1
i,{4,5}, F

1
i,{4,6}, F

1
i,{5,6}, F

2
i,{1,2}, F

2
i,{1,3} : i ∈ [3]),

(19)

Z2 = (F 1
i,{4,5}, F

1
i,{4,6}, F

2
i,{1,2}, F

2
i,{1,3}, F

2
i,{2,3} : i ∈ [3]),

(20)

each of M = 3 5
6 files.

Thus in the first shared-link model served by real
user 1 with the library (F 1

i,{4,5}, F
1
i,{4,6}, F

1
i,{5,6} : i ∈

[3]), each effective user k ∈ [4 : 6] caches (F 1
i,V :

V ∈ {{4, 5}, {4, 6}, {5, 6}}, k ∈ V). In the second
shared-link model served by real user 2 with the library
(F 2
i,{1,2}, F

2
i,{1,3}, F

2
i,{2,3} : i ∈ [3]), each effective user

k ∈ [3] caches (F 2
i,V : V ∈ {{1, 2}, {1, 3}, {2, 3}}, k ∈ V).

Delivery Phase. In order to guarantee privacy, we want
that each file is demanded the same number of times by the
effective users served in each independent shared-link model.
Therefore, we let real user k ∈ [K], who wants to retrieve
the file indexed by dk, choose uniformly i.i.d. at random one
permutation among all permutations of [N] with Pk-th entry
equal to dk.

Assume that the demand vector is (d1, d2) = (1, 1). Denote
the demand of effective user k by qk. Real user 1, who
impersonates effective user 1 with demand q1 = 1, randomly
chooses (q2, q3) to be either (2, 3) or (3, 2), with equal
probability. Real user 1 sends `1 = (q1, q2, q3) as a query to
real user 2. Similarly, real user 2, who impersonates effective
user 4 with demand q4 = 1, randomly chooses (q5, q6) to be
either (2, 3) or (3, 2), with equal probability. Real user 2 sends
`2 = (q4, q5, q6) as a query to real user 1. It can be seen that
in each independent shared-link model each file is demanded
exactly once.

Real user 1 then sends

X1 = F 1
q4,{5,6} ⊕ F

1
q5,{4,6} ⊕ F

1
q6,{4,5}; (21)

thus real user 2, who has cached F 1
q5,{4,6}, F

1
q6,{4,5}, can

recover F 1
q4,{5,6}. Similarity, real user 2 then sends

X2 = F 2
q1,{2,3} ⊕ F

2
q2,{1,3} ⊕ F

2
q3,{1,2}; (22)

thus real user 1, who has cached F 2
q2,{1,3} and F 2

q3,{1,2}, can
recover F 2

q1,{2,3}.
Performance. In the delivery phase, the load is 2 1

6 , which
coincides with (8). Privacy is guaranteed as, from the view-
point of real user 1, who does not know the realization of

9

P2, all the effective users in [4 : 6] are equivalent; similarly
for real user 2. The information theoretic proof on the privacy
will be provided later for the general case. Note that |Pk|, |`k|
where k ∈ [2] do not scale with B, satisfying our assumption
in Section II. In conclusion, the proposed scheme is decodable
and secure.

B. Proof of Theorem 1: Description of Scheme A

We are now ready to generalize the example in Sec-
tion IV-A.

Recall that U = (K − 1)N denotes the number of virtual
users. Let t ∈ [U + 1]. Similar to the “virtual users” scheme
for the shared-link model in [7], we aim to contact a D2D
system with K(N − 1) virtual users (in addition the K real
users) and divide it into K independent shared-link models,
each of which serves U effective users, where (K− 1)(N− 1)
are virtual users.

File Partitioning. Each file is partitioned into K
(

U
t−1
)

equal-
length subfiles as

Fi ={F ki,V : k ∈ [K],V ⊆ [KN] \ [(k − 1)N+ 1 : kN],

|V| = t− 1}, ∀i ∈ [N], (23)

where each subfile contains B
K(U

t−1)
bits. Note that, for each

k ∈ [K], in (23) we have eliminated the index interval [(k −
1)N+ 1 : kN], which is associated with real user k, from the
set of all effective users [KN].

Placement Phase. Each real user k ∈ [K] selects Pk ∈ [N]
uniformly at random and independently across users. We let
real user k ∈ [K] impersonate effective user θk := (k− 1)N+
Pk among the KN effective users. The realization of Pk, k ∈
[K], is unknown to all the other real users, that is, the other real
users do not know the realization of θk ∈ [(k−1)N+1 : kN].

Each real user k ∈ [K] caches all sub-files F ji,V for which
either k = j or θk ∈ V , for all files i ∈ [N], requiring

M = N

(
U
t−1
)
+ (K− 1)

(
U−1
t−2
)

K
(

U
t−1
) = N

1 + (t− 1)/N

K
. (24)

Delivery Phase. In the first step, each real user k ∈ [K]
who demands dk ∈ [N], uniformly and independently selects
a vector `k = (q(k−1)N+1, . . . , qkN) among all permutations
of [N] whose Pk-th element equals dk. Then real user k ∈
[K] broadcasts `k to all the other real users. Thus, from the
viewpoint of each of the other real users, the union of the
demands of the effective users in [(k−1)N+1 : kN] is always
[N], which is key to guarantee privacy.

In the second step of the delivery phase, each real user
k ∈ [K] performs a YMA delivery on the k-th shared-link
model with sub-files

(F ki,V : i ∈ [N],V ⊆ [KN] \ [(k − 1)N+ 1 : kN], |V| = t− 1),
(25)

for effective users [KN] \ [(k− 1)N+1 : kN]. More precisely,
for each i ∈ [N], the effective user with the smallest index
in [KN] \ [(k − 1)N + 1 : kN] which requires Fi is chosen a
leader for Fi. The leader set for the k-th shared-link model

is denoted by Lk. For each S ⊆ [KN] \ [(k − 1)N + 1 : kN]
where |S| = t, we let

W k
S = ⊕

j∈S
F kqj ,S\{qj}. (26)

Then real user k broadcasts

Xk =
(
W k
S : S ⊆ [KN] \ [(k − 1)N+ 1 : kN],

|S| = t,S ∩ Lk 6= ∅
)
. (27)

Decodability. We focus on real user k ∈ [K]. From Xj

where j ∈ [K] \ {k}, it was shown in [5, Lemma 1], real user
k can reconstruct each multicast message W j

S where S ⊆
([KN] \ [(j− 1)N+1 : jN]) and |S| = t. Then real user k can
recover each F jdk,V where V ⊆ ([KN] \ [(j − 1)N + 1 : jN]),
|V| = t − 1, and θk /∈ V from W j

V∪{θk}, since real user k
caches all the subfiles in W j

V∪{θk} except F jdk,V . In conclusion,
real user k can recover all the uncached subfiles of Fdk from
(Xj : j ∈ [K] \ {k}).

Privacy. We will prove that the privacy constraint in (4)
holds.6 By our construction, the cached content of each
effective user is fixed. Hence, (X1, . . . , XK) only depends
on the demands of the effective users. Since Pj , j ∈ [K],
is chosen uniformly i.i.d over [N], θj is uniformly i.i.d. over
[(j−1)N+1 : jN]. Hence, for any permutation of [N] denoted
by u, any i ∈ [N], and any (j, k) ∈ [K]2 where j 6= k, (assume
that the p-th element of u is i)

Pr{(q(j−1)N+1, . . . , qjN) = u|dj = i, dk, Zk}
= Pr{(q(j−1)N+1, . . . , qjN) = u|dj = i} (28a)
= Pr{Pj = p|dj = i}Pr{(q(j−1)N+1, . . . , qp−1,

qp+1, . . . , qjN|Pj = p, dj = i} (28b)

=
1

N
Pr{(q(j−1)N+1, . . . , qp−1, qp+1, . . . , qjN|Pj = p, dj = i}

(28c)

=
1

N

1

(N− 1)!
, (28d)

where (28a) follows since, given dj , the demands of the
effective users in [KN] \ [(j − 1)N + 1 : jN] are independent
of the cached content, queries, and demands of other effective
users; (28c) follows since Pj is chosen uniformly over [N]
independent of dj ; and (28d) follows since, given Pj and
dj , the demand vector of the effective users in [(j − 1)N +
1 : jN] is chosen uniformly among all permutations of [N]
where the Sj-th element is dj . From (28d), it can be seen
that Pr{(q(j−1)N+1, . . . , qjN)|dj , dk, Zk} does not depend on
(dj , dk, Zk); thus

I(q(j−1)N+1, . . . , qjN; dj |dk, Zk) = 0. (29)

Hence, from (29) and the fact that given dj , the demands of
the effective users in [KN]\[(j−1)N+1 : jN] are independent
of the cached content, queries, and demands of other effective
users, we have

I(q1, . . . , qKN;d|dk, Zk) = 0. (30)

6Note that the privacy proof in [7] needs the constraint that the demand of
each real user is uniformly i.i.d. over [N]. In the following, we will show that
this condition is not necessary.

10

Recall that (X1, . . . , XK) only depends on the demands of the
effective users; thus we can prove (4). Similarly, we can also
prove the privacy constraint against colluding users in (7).

Performance. Each real user k ∈ [K] broadcasts
(
U
t

)
−
(
U−N
t

)
multicast messages, each of which contains B

K(U
t−1)

bits. Hence,

the achieved load is given by (8). Note that |Pk|, |`k| where
k ∈ [K] do not scale with B, satisfying our assumption in
Section II.

C. Example of Scheme B

We now focus on the case of K = 2 user and propose a
scheme that does not introduce virtual users and removes the
redundancy in the placement phase of Scheme A. Let us return
to the example in Section IV-A but with M = 9

4 to illustrate
the key insights.

Let us first go back to Scheme A. Recall that in Scheme A,
each file is split as in (17), the cached contents of the real
users are given by (19) and (20). and the transmitted signals
are given by (21) and (22). Assume that the demand vector is
(d1, d2) = (1, 1) and the queries are `1 = `2 = (1, 2, 3). Thus
the transmitted signals are

X1 = F 1
1,{5,6} ⊕ F

1
2,{4,6} ⊕ F

1
3,{4,5}, (31)

X2 = F 2
1,{2,3} ⊕ F

2
2,{1,3} ⊕ F

2
3,{1,2}. (32)

Note that real user 2 caches (F 1
2,{4,5}, F

1
2,{4,6}) but only uses

F 1
2,{4,6} in the decoding procedure. Similarly, real user 2

caches (F 1
3,{4,5}, F

1
3,{4,6}) but only uses F 1

3,{4,5} in the de-
coding procedure. In other words, the cached subfiles F 1

2,{4,5}
and F 1

3,{4,6} are redundant for user 2. Similarly, the cached
subfiles F 2

2,{1,2} and F 2
3,{1,3} are redundant for user 1. The

same is true for any demand vector.
We propose Scheme B to remove this cache redundancy as

follows.
File Partitioning. We partition each file into 4 subfiles as

Fi = {F 1
i,1, F

1
i,2, F

2
i,1, F

2
i,2}, i ∈ [3], (33)

where each subfile contains B/4 bits.
Placement Phase. User 1 selects P1 = (p1,2, p2,2, p3,2)

uniformly i.i.d. over [2]3; user 2 selects P2 = (p1,1, p2,1, p3,1)
uniformly i.i.d. over [2]3. Then user 1 caches Z1 =
(F 1
i,1, F

1
i,2, F

2
i,pi,2

: i ∈ [3]), and user 2 caches Z2 =

(F 1
i,pi,1

, F 2
i,1, F

2
i,2 : i ∈ [3]). Hence, M = 9

4 files.
Delivery Phase. In the delivery phase, we assume that the

demand vector is (d1, d2) = (1, 1). User 1 sends query `1 =
(q, p2,2, p3,2) to user 2, where q ∈ [2]\{p1,2}. After receiving
`1, user 2 responds by transmitting

X2 = F 2
1,q ⊕ F 2

2,p2,2 ⊕ F
2
3,p3,2 . (34)

User 2 sends query `2 = (q′, p2,1, p3,1) to user 1, where q′ ∈
[2]\{p1,1}. After receiving `2, user 1 responds by transmitting

X1 = F 1
1,q′ ⊕ F 1

2,p2,1 ⊕ F
1
3,p3,1 . (35)

The same can be done for any demand vector.
Performance. Similar to the analysis of Scheme A,

Scheme B is decodable and private. In this scheme, |Pk|, |`k|
where k ∈ [2] do not scale with B neither. In this example,

Scheme B achieves the memory-load pair
(
9
4 ,

1
2

)
. Scheme A

achieves the memory-load pairs (2, 1) for t = 1, and
(
5
2 ,

1
3

)
for

t = 2; hence, by memory-sharing Scheme A achieves the load
2
3 when M = 9

4 . Therefore, Scheme B outperforms Scheme A.

D. Proof of Theorem 3: Description of Scheme B

We now ready to provide the general description of Scheme
B.

Placement Phase. Each file Fi, where i ∈ [N], is
partitioned in two equal-length parts, denoted as Fi =
{F 1

i , F
2
i } where |F 1

i | = |F 2
i | = B/2. For each k ∈

[2], we further partition F ki into
(
N−1
t′

)
+
(
N−2
t′−1

)
equal-

length subfiles, denoted by F ki,1, . . . , F
k
i,(N−1

t′)+(
N−2
t′−1)

, where

each subfile has B

2((N−1
t′)+(

N−2
t′−1))

bits. We randomly gener-

ate a permutation of
[(

N−1
t′

)
+
(
N−2
t′−1

)]
, denoted by pi,k =(

pi,k[1], . . . , pi,k

[(
N−1
t′

)
+
(
N−2
t′−1

)])
, independently and uni-

formly over the set of all possible permutations.
We let P1 = (pi,2 : i ∈ [N]) and P2 = (pi,1 : i ∈ [N]).

Then, we let user k cache all subfiles of F ki . In addition,
we let the other user (i.e., the user in [2] \ {k}) cache
F ki,pi,k[1], . . . , F

k
i,pi,k[(N−2

t′−1)]
.

Considering all the files, each user in total caches((
N−1
t′

)
+ 2
(
N−2
t′−1

))
N subfiles, requiring memory

M =

((
N−1
t′

)
+ 2
(
N−2
t′−1

))
N

2
((

N−1
t′

)
+
(
N−2
t′−1

)) =
N

2
+

Nt′

2(N+ t′ − 1)
. (36)

Delivery Phase. We first focus on the transmission by user 1,
in charge of delivery the subfiles with superscirpt 1. For each
subset S ⊆ [N] where |S| = t′ + 1, we generate an XOR
message containing exactly one subfile of each file in S . More
precisely, for each subset S ⊆ [N] where |S| = t′ + 1,
• If d2 ∈ S , we pick a non-picked subfile among
F 1
d2,pd2,1[(N−2

t′−1)+1]
, . . . , F 1

d2,pd2,1[(N−1
t′)+(

N−2
t′−1)]

. In addi-

tion, for each i ∈ S \ {d2}, we pick a non-picked subfile
among F 1

i,pi,1[1]
, . . . , F 1

i,pi,1[(N−2
t′−1)]

.

• If d2 /∈ S , for each i ∈ S , we pick a non-picked subfile
among F 1

i,pi,1[(N−2
t′−1)+1]

, . . . , F 1
i,pi,1[(N−1

t′)+(
N−2
t′−1)]

.

We let W 1
S be the XOR of the picked t′ + 1 subfiles, where

|W 1
S | = B

2((N−1
t′)+(

N−2
t′−1))

.

We proceed similarly for user 2. We let W 2
S be the

binary sum of the picked t′ + 1 subfiles, where |W 2
S | =

B

2((N−1
t′)+(

N−2
t′−1))

.

Finally, user 1 asks user 2 to transmit X1 = (W 1
S : S ⊆

[N], |S| = t′ + 1), and user 2 asks user 1 to transmit X2 =
(W 2
S : S ⊆ [N], |S| = t′ + 1).7

Decodability. We focus on user 1. In each message W 2
S

where S ⊆ [N], |S| = t′ + 1, and d1 ∈ S , user 1 caches all
subfiles except one subfile from Fd1 , so user 1 can recover
this subfile. Hence, user 1 in total recovers

(
N−1
t′

)
uncached

7In other words, the query `k , k ∈ [2], represents the indices of the subfiles
in Wk

S , where S ⊆ [N] and |S| = t′ + 1.

11

subfiles of Fd1 , and thus can recover Fd1 . Similarly, user 2
can also recover Fd2 .

Privacy. Let us focus on user 1. Since user 1 does not
know the random permutations generated in the placement
phase, from its viewpoint, all subfiles in F 1

i where i ∈ [N]
are equivalent.8 X1 contains

(
N
t′

)
messages, each of which

corresponds to a different (t′ + 1)-subset of [N] and contains
exactly one subfile of each file in the subset. Hence, the
compositions of X1 for different demands of user 2 are
equivalent from the viewpoint of user 1. In addition, X2 is
generated independent of d2, and thus X2 cannot reveal any
information of d2. As a result, the demand of user 2 is private
against user 1. Similarly, the demand of user 1 is private
against user 2.

Performance. Each user broadcasts
(

N
t′+1

)
messages, each

of which contains B

2((N−1
t′)+(

N−2
t′−1))

bits. Hence, the achieved

load is

R =
2
(

N
t′+1

)
2
((

N−1
t′

)
+
(
N−2
t′−1

)) =
N(N− 1)

(t′ + 1)(N+ t′ − 1)
. (37)

Note that |Pk|, |`k| where k ∈ [2] do not scale with B,
satisfying our assumption in Section II.

V. NEW CONVERSE BOUNDS UNDER THE CONSTRAINT OF
UNCODED CACHE PLACEMENT AND USER COLLUSION

In this section, we provide the proofs of our new converse
bounds in Theorems 4 and 6. We first introduce the proposed
converse bound for the two-user system and then extend it
to the K-user system. We start by introducing an example to
illustrate in the simplest possible case the new ideas needed
to derive our new converse bound.

A. Example of converse

We consider the D2D private system with (K,N) = (2, 2)
and M = 6/5, for which the achieved load by both Scheme A
and Scheme B is R = 7/5. The converse bound under the
constraint of uncoded cache placement and one-shot delivery
for D2D caching without privacy in [8] gives R?u(6/5) ≥ 4/5.9

In the following, we prove that R?u(6/5) = 7/5.
Assume we have a working system, that is, a system

where all encoding, decoding and privacy constraints listed
in Section II are met. In the following, in order not to clutter
the derivation with unnecessary “epsilons”, we shall neglect
the terms Pk, `k where k ∈ [K] that contribute εB = o(B)
when B→∞ to bounds like the one in (40). Finally, without
loss of generality (see Remark 7), each user caches a fraction
M/N = 3/5 of each file and each bit in the library is cached
by at least one user.

Assume that the cache configurations of the two users are
Z1
1 and Z1

2 , where Z1
1 ∪ Z1

2 = {F1, F2}. For the demand
vector (d1, d2) = (1, 1), any working scheme must produce
transmitted signals (X1, X2) such that the demand vector

8In our paper, the statement that from the viewpoint of a user A and B
are equivalent, means that given the known information of this user, A and
B are identically distributed.

9For K = 2, any D2D caching scheme is one-shot.

(d1, d2) = (1, 1) can be satisfied. The following observation is
critical: because of the privacy constraint, from the viewpoint
of user 1, there must exist a cache configuration of user 2,
denoted by Z2

2 , such that Z1
1∪Z2

2 = {F1, F2}, H(X2|Z2
2) = 0,

and F2 can be decoded from (X1, Z
2
2). If such a cache

configuration Z2
2 did not exist, then user 1 would know that

the demand of user 2 is F1 from (Z1
1 , X1, X2, d1), which is

impossible in a working private system. Similarly, from the
viewpoint of user 2, there must exist a cache configuration
of user 1, denoted by Z2

1 , such that Z2
1 ∪ Z1

2 = {F1, F2},
H(X1|Z2

1) = 0, and F2 can be decoded from (X2, Z
2
1).

From (Z1
1 , Z

1
2), because of Remark 7, for each file Fi, i ∈

[2], we have10

|Fi ∩ Z1
1 | =

BM

N
=

3B

5
, (38a)

|Fi \ Z1
1 | = |Fi \ Z1

2 | = B− 3B

5
=

2B

5
, (38b)

|Fi ∩ Z1
1 ∩ Z1

2 | =
B

5
. (38c)

Similarly, since Z1
1 ∪Z1

2 = Z1
1 ∪Z2

2 = {F1, F2}, we also must
have

|Fi ∩ Z1
1 ∩ Z2

2 | =
B

5
, (38d)

Fi \ Z1
1 ⊆ Fi ∩ Z1

2 ∩ Z2
2 . (38e)

Inspired by the genie-aided converse bound for shared-link
caching networks without privacy in [5], [11], we construct a
genie-aided super-user with cached content

Z ′ =
(
Z1
2 , Z

2
2 \ (F1 ∪ Z1

2)
)
, (39)

who is able to recover the whole library from (X1, Z
′). Indeed,

after file F1 is reconstructed from (X1, Z
1
2), the combination

of (F1 ∪ Z1
2) and Z2

2 \ (F1 ∪ Z1
2) gives Z2

2 ; now, file F2 can
be reconstructed from (X1, Z

2
2). Therefore, we have

2B = H(F1, F2) ≤ H
(
X1, Z

′) (40a)

= H
(
X1, Z

1
2 , Z

2
2 \ (F1 ∪ Z1

2)
)

(40b)

= H
(
X1, Z

1
2

)
+H

(
Z2
2 \ (F1 ∪ Z1

2)|X1, Z
1
2 , F1

)
(40c)

≤ H(X1) +H(Z1
2) +H

(
Z2
2 |Z1

2 , F1

)
(40d)

= H(X1) +H(Z1
2) +H(F2 ∩ Z2

2 ∩ Z1
1 |Z1

2) (40e)

= H(X1) +H(Z1
2)︸ ︷︷ ︸

≤MB

+H(F2 ∩ Z2
2 ∩ Z1

1)︸ ︷︷ ︸
≤B/5

−H(F2 ∩ Z2
2 ∩ Z1

1 ∩ Z1
2︸ ︷︷ ︸

:=Q

), (40f)

where (40e) follows since, from (40d), only the bits in F2 are
left, and Z2

2 \ Z1
2 = (Z2

2 ∩ Z1
1) \ Z1

2 following the reasoning
leading to (38e); the last step in (40f) follows since the bits
in a file are independent.

10Intuitively, with uncoded cache placement, each file is split into disjoint
pieces as Fi = (Fi,{1}, Fi,{2}, Fi,{1,2}), i ∈ [2], and the users cache
Z1 = ∪2i=1(Fi,{1}, Fi,{1,2}), Z2 = ∪2i=1(Fi,{2}, Fi,{1,2}); by symmetry,
let x ∈ [0, 1] with |Fi,{1}| = |Fi,{2}| = Bx/2 and |Fi,{1,2}| = B(1− x)
such that x/2 + 1 − x = M/N = 3/5 → x = 2(1 − M/N) = 4/5. In
the proof, one can think of different cache configurations as different ways
to split the files.

12

Z1
1 ∩ F2

F2∖Z1
2

File F2

F2∖Z1
1F2 ∩ Z1

1 ∩ Z1
2

Z1
2 ∩ F2

 bits2B/5 bitsB/5 bits2B/5

F2 ∩ Z2
2

Q

Z1
1 ∩ F2

F2∖Z1
2

File F2

F2∖Z1
1F2 ∩ Z1

1 ∩ Z1
2

Z1
2 ∩ F2

 bits2B/5 bitsB/5 bits2B/5

After
considering

Z2
2

Fig. 4: Illustration of the composition of Q := F2 ∩Z1
1 ∩Z1

2 ∩Z2
2 .

At this point, we need a bound that can be combined with
the one in (40) such that it contains on the right hand side
the term H(X2), so that H(X1) + H(X2) can be bounded
by BRu, and a term that allows one to get rid of the negative
entropy of the random variable

Q := F2 ∩ Z1
1 ∩ Z1

2 ∩ Z2
2 , (41)

which is illustrated in Fig. 4.
In the next step, we will introduce another approach to

construct a genie-aided super-user, in order to derive an
inequality eliminating Q in (40f). We then focus on the cache
configurations Z1

1 and Z2
1 , and the transmitted packets X2.

Recall that F1 can be reconstructed from (Z1
1 , X2), and F2

can be reconstructed from (Z2
1 , X2). Furthermore, by recalling

the definition of Q in (41), it can be seen that the bits
in (F2 ∩ Z1

1) \ Q are independent of X2. Thus F1 can be
reconstructed from (Z1

1 ∩F1,Q, X2). Hence, we can construct
a super-user with cached content

Z ′′ = (Z1
1 ∩ F1, Z

2
1 ∩ F2,Q), (42)

who can decode both files. Thus

2B = H(F1, F2) ≤ H(X2, Z
′′) (43a)

≤ H(X2) +H(Z1
1 ∩ F1)︸ ︷︷ ︸
≤3B/5

+H(Z2
1 ∩ F2)︸ ︷︷ ︸
≤3B/5

+H(Q). (43b)

Finally, by summing (40f) and (43b), we have that any
achievable rate under uncoded cache placement must satisfy

Ru ≥
H(X1) +H(X2)

B
≥ 7

5
. (44)

The bound in (44) shows that Scheme A and Scheme B are
indeed optimal for the considered memory point.

Remark 6 (A high-level explanation of the converse tech-
nique). The key take-away points in the example in Section V-A
are as follows.
• By exploiting the privacy constraints, we note that from

the viewpoint of each user k (i.e., given cache Zk and
transmitted packets (X1, X2)), any demand of the other

user is equally possible. Hence, there must exist a cache
configuration of the other user that allow for the decoding
of any file using the same (X1, X2).

• We introduce an auxiliary random variable Q to repre-
sents the set of bits F2 ∩Z1

1 ∩Z1
2 ∩Z2

2 . We then use two
different approaches to construct genie-aided super-users
to decode the whole library, in such a way that we can
get rid of “tricky” entropy term when the various bounds
are summed together:

1) In the first approach, we focus on (X1, Z
1
2 , Z

2
2) and

construct a genie-aided super-user who can reconstruct
the whole library by receiving X1. The bits in Q
belong to the overlap of Z1

2 and Z2
2 . Hence, the size

of the genie-aided super-user’s cache decreases when
|Q| increases. In other words, the needed transmitted
load increases when |Q| increases (see (40f)).

2) In the second approach, we focus on (X2, Z
1
1 , Z

2
1) and

construct a genie-aided super-user who can reconstruct
the whole library by receiving X2. Now the bits in Q
are in the cache of the super-user. Hence, the size of
the genie-aided super-user’s cache increases when |Q|
increases. In other words, the needed transmitted load
decreases when |Q| increases (see (43b)).

Finally, by summing (40f) and (43b), the effect of Q is
fully cancelled, such that we derive (44).

�

Remark 7 (On Optimality of Symmetric Placement). To
derive the converse bound under the constraint of uncoded
cache placement in the above example, we assumed that every
user caches a fraction M/N of each file. This assumption
is without loss of generality. Assume that there exists a
caching scheme where users cache different fraction of the
files. By taking a permutation of [N] and by using the same
strategy to fill the users’ caches, we can get another caching
scheme. By symmetry, these two caching schemes have the
same load. Hence, by considering all possible permutations
and taking memory-sharing among all such cache schemes,
we have constructed a scheme where every user caches the
same fraction of each file, with the same achieved load as the
original caching scheme.

In addition, in the example, we also assumed the total
number of cached bits by each user is exactly MB, i.e., the
cache of each user is full. Assume that the total number of
cached bits by user k is MkB. By reasoning as above, we can
prove that for any caching scheme, there must exist a caching
scheme where M1 = · · · = MK and with the same load
as the above scheme. Furthermore, the converse bounds in
Theorem 4 and Theorem 6 derived under the assumption that
M1 = · · · = MK = M, are non-increasing with the increase
of M. Hence, the assumption that the total number of cached
bits by each user is exactly MB bits, is also without loss of
generality.

Hence, in the proof of our new converse bounds, without
loss of generality, we can assume each uses caches a fraction
M
N of each file. �

13

B. Proof of Theorem 4: Two-user system

We focus on uncoded cache placement. Without loss of
generality, each uses caches a fraction M

N of each file (as
explained in Remark 7). Let

M =
N

2
+ y, (45)

where y ∈
[
0, N2

]
.

Assume the cache configurations of the two users are
(Z1

1 , Z
1
2), where Z1

1 ∪ Z1
2 = {F1, . . . , FN}. For the demand

vector (d1, d2) = (1, 1), any achievable scheme must produce
transmitted packets (X1, X2), such that the demand vector
(d1, d2) = (1, 1) can be satisfied. By the privacy constraint
in (4), from the viewpoint of user 1 with cache configu-
ration Z1

1 , there must exist some cache configuration Zj2
such that Z1

1 ∪ Z
j
2 = {F1, . . . , FN}, H(X2|Zj2) = 0, and

H(Fj |X1, Z
j
2) = 0, for any j ∈ [N]; otherwise, user 1 will

know that the demand of user 2 is not Fj . Similarly, we have
the following lemmas.

Lemma 1. For any i ∈ [N] and j ∈ [N], there must exist some
cache configurations Zi1 and Zj2 , such that

Zi1 ∪ Z1
2 = Z1

1 ∪ Z
j
2 = {F1, . . . , FN}; (46a)

H(X1|Zi1) = H(X2|Zj2) = 0; (46b)

H(Fi|X2, Z
i
1) = H(Fj |X1, Z

j
2) = 0. (46c)

Lemma 2. From Zi1 and Zj2 where i, j ∈ [N] as in Lemma 1,
it must hold
• consider Zi1 where i ∈ [N]. For any j′ ∈ [N], there must

exist a cache configuration denoted by Z(i,j′)
2 such that

Zi1 ∪ Z
(i,j′)
2 = {F1, . . . , FN}, H(X2|Z(i,j′)

2) = 0, and
H(Fj′ |X1, Z

(i,j′)
2) = 0; and

• consider Zj2 where j ∈ [N]. For any i′ ∈ [N], there must
exist a cache configuration denoted by Z(i′,j)

1 such that
Z

(i′,j)
1 ∪ Zj2 = {F1, . . . , FN}, H(X1|Z(i′,j)

1) = 0, and
H(Fi′ |X2, Z

(i′,j)
1) = 0.

In addition, by definition of Lemma 1,

• when i = 1, we have Z(1,j′)
2 = Zj

′

2 for each j′ ∈ [N];
when j = 1, we have Z(i′,1)

1 = Zi
′

1 for each i′ ∈ [N];
and

• when j′ = 1, we have Z
(i,1)
2 = Z1

2 for each i ∈ [N];
when i′ = 1, we have Z(1,j)

1 = Z1
1 for each j ∈ [N].

We can represent the construction of the cache configura-
tions in Lemmas 1 and 2 by an N-ary tree, as illustrated in
Fig. 5.
• Two vertices (assumed to be represented by cache con-

figurations Z ′1 and Z ′2) are connected by an edge with su-
perscript (i, j), if Z ′1∪Z ′2 = {F1, . . . , FN}, H(X1|Z ′1) =
H(X2|Z ′2) = 0, and H(Fi|X2, Z

′
1) = H(Fj |X1, Z

′
2) =

0.
• For each i ∈ [N], Zi1 is connected to exactly N vertices,

which are Z(i,j′)
2 where j′ ∈ [N].

• For each j ∈ [N], Zj2 is connected to exactly N vertices,
which are Z(i′,j)

1 where i′ ∈ [N].

…

(1,1)

…

𝑍2
(2,2)

…

…

…

…

Sub-trees of 𝑍1
1 and 𝑍2

1

𝑍2
(2,3)

𝑍2
(2,𝑁)

𝑍2
(𝑁,2)

𝑍2
(𝑁,3)

𝑍2
(𝑁,𝑁)

𝑍1
1

𝑍1
2

𝑍1
𝑁

𝑍2
1

𝑍1
(2,2)

𝑍1
(3,2)

𝑍1
(𝑁,2)

𝑍2
2

𝑍1
(2,𝑁)

𝑍1
(3,𝑁)

𝑍1
(𝑁,𝑁)

𝑍2
𝑁

Fig. 5: Construction of cache configurations in Lemmas 1 and 2.

Consider Zi1 where i ∈ [N]. Recall that M = N/2 + y, and
that for each j′ ∈ [N], we have Zi1 ∪ Z

(i,j′)
2 = {F1, . . . , FN}.

For each file Fp where p ∈ [N], by defining

Zi1,p := Zi1 ∩ Fp, Z
(i,j′)
2,p := Z

(i,j′)
2 ∩ Fp, ∀j′ ∈ [N], (47a)

we have

|Fp \ Zi1,p| = |Fp \ Z
(i,1)
2,p | = · · · = |Fp \ Z

(i,N)
2,p | =

B

2
− yB

N
;

(47b)

|Zi1,p ∩ Z
(i,j′)
2,p | =

2yB

N
, ∀j′ ∈ [N]; (47c)

(Fp \ Zi1,p) ⊆ Z
(i,j′)
2,p , ∀j′ ∈ [N]. (47d)

For each file p ∈ [N], we define that

Qi1,p = Zi1,p ∩ Z
(i,1)
2,p ∩ · · · ∩ Z

(i,N)
2,p , (48)

and that qi1,p = |Qi1,p|.
Similarly, focus on Zj2 where j ∈ [N], and we have

Zj2,p := Zj2 ∩ Fp, Z
(i′,j)
1,p := Z

(i′,j)
1 ∩ Fp, ∀i′ ∈ [N]; (49a)

|Fp \ Zj2,p| = |Fp \ Z
(1,j)
1,p | = · · · = |Fp \ Z

(N,j)
1,p |

=
B

2
− yB

N
; (49b)

|Zj2,p ∩ Z
(i′,j)
1,p | =

2yB

N
, ∀i′ ∈ [N]; (49c)

(Fp \ Zj2,p) ⊆ Z
(i′,j)
1,p , ∀i′ ∈ [N]. (49d)

For each file p ∈ [N], we define that

Qj2,p = Zj2,p ∩ Z
(1,j)
2,p ∩ · · · ∩ Z

(N,j)
2,p , (50)

and that qj2,p = |Q
j
2,p|.

After the above definitions, we are ready to prove Theo-
rem 4. As illustrated in the example in Section V-A, we will
use two different approaches to construct powerful super-users.

First approach: Consider Zi1 where i ∈ [N]. We then
focus the connected vertices of Zi1 in Fig. 5, i.e., Z(i,j′)

2

where j′ ∈ [N]. By the construction, from (X1, Z
(i,j′)
2), we

can reconstruct Fj′ . The first approach is inspired by the

14

acyclic index coding converse bound in [5], [11] for shared-
link caching without privacy. We pick a permutation of [N],
assumed to be u = (u1, . . . , uN), where u1 = i. We can
construct a genie-aided super-user with the cache

∪p∈[N]Z
(i,up)
2 \

(
Fu1
∪ · · · ∪ Fup−1

∪ Z(i,u1)
2 ∪

· · · ∪ Z(i,up−1)
2

)
. (51)

The genie-aided super-user can successively decode the whole
library from its cache and X1. More precisely, it can first de-
code Fu1 from (X1, Z

(i,u1)
2). From (X1, Fu1 , Z

(i,u1)
2 , Z

(i,u2)
2 \

(Fu1∪Z
(i,u1)
2), then it can decode Fu2 . By this way, the genie-

aided super-user can decode the whole library. Hence, we have

H(F1, . . . , FN)

≤ H(X1) +H
(
∪p∈[N] Z

(i,up)
2 \

(
Fu1
∪ · · · ∪ Fup−1

∪ Z(i,u1)
2 ∪ · · · ∪ Z(i,up−1)

2

))
(52a)

≤ H(X1) +H(Z
(i,u1)
2) +H(Z

(i,u2)
2 |Fu1

, Z
(i,u1)
2) + · · ·

+H(Z
(i,uN)
2 |Fu1 , . . . , FuN−1

, Z
(i,u1)
2 , . . . , Z

(i,uN−1)
2) (52b)

= H(X1) +H(Z
(i,i)
2) +H(Z

(i,u2)
2 |Fi, Z(i,i)

2) + · · ·+

H(Z
(i,uN)
2 |Fi, Fu2

, . . . , FuN−1
, Z

(i,i)
2 , Z

(i,u2)
2 , . . . , Z

(i,uN−1)
2)

(52c)

= H(X1) +H(Z
(i,i)
2)

+
(
H(Z

(i,u2)
2,u2

|Z(i,i)
2,u2

) + · · ·+H(Z
(i,uN)
2,uN

|Z(i,i)
2,uN

)
)
+ · · ·

+
(
H(Z

(i,uN)
2,uN

|Z(i,i)
2,uN

, Z
(i,u2)
2,uN

, . . . , Z
(i,uN−1)
2,uN

)
)

(52d)

= H(X1) +H(Z
(i,i)
2) +H(Z

(i,u2)
2,u2

|Z(i,i)
2,u2

) +H(Z
(i,u2)
2,u3

,

Z
(i,u3)
2,u3

|Z(i,i)
2,u3

) + · · ·+H(Z
(i,u2)
2,uN

, . . . , Z
(i,uN)
2,uN

|Z(i,i)
2,uN

), (52e)

where (52c) follows since u1 = i, (52d) follows since all bits
in the library are independent, (52e) comes from the chain rule
of the entropy.

From (52e), it will be proved in Appendix A-A and Ap-
pendix A-B that (recall y = M− N/2),

H(X1) ≥
B

2
− yB

N
; (53)

H(X1) ≥ B− 4yB

N
+ qi1,u2

. (54)

In addition, by considering all permutations of [N] where
the first element is i, we can list all (N − 1)! inequalities
as in (52e). By summing all these (N − 1)! inequalities, we
can obtain the following inequality, which will be proved in
Appendix A-C,

H(X1) ≥
NB

2
− yB− 4(N− 1)yB

(h+ 2)N
+

2

h+ 2

∑
p∈[N]\{i}

qi1,p

−
∑

p∈[N]\{i}

{
N− 2

(h+ 1)(h+ 2)

(
2yB

N
− qi1,p

)

+
h

h+ 2

(
B

2
− yB

N

)}
, ∀h ∈ [0 : N− 3]. (55)

By considering all i ∈ [N], we can list all N inequalities as
in (55). By summing all these N inequalities, we obtain

H(X1) ≥
NB

2
− yB− 4(N− 1)yB

(h+ 2)N

+
2

(h+ 2)N

∑
i∈[N]

∑
p∈[N]\{i}

qi1,p

−
∑
i∈[N]

∑
p∈[N]\{i}

{
N− 2

(h+ 1)(h+ 2)N

(
2yB

N
− qi1,p

)

+
h

(h+ 2)N

(
B

2
− yB

N

)}
, ∀h ∈ [0 : N− 3]. (56a)

We now consider Zj2 where j ∈ [N]. By the similar step as
above to derive (56a), we obtain

H(X2) ≥
NB

2
− yB− 4(N− 1)yB

(h+ 2)N
+

2

(h+ 2)N

∑
j∈[N]

∑
p∈[N]\{j}

qj2,p

−
∑
j∈[N]

∑
p∈[N]\{j}

{
N− 2

(h+ 1)(h+ 2)N

(
2yB

N
− qj2,p

)

+
h

(h+ 2)N

(
B

2
− yB

N

)}
, ∀h ∈ [0 : N− 3]. (57)

By summing (56a) and (57), we obtain

R?uB ≥ H(X1) +H(X2) (58a)

≥NB− 2yB− 8(N− 1)yB

(h+ 2)N
− N− 2

(h+ 1)(h+ 2)N
4y(N− 1)B

− h(N− 1)

(h+ 2)

(
B− 2yB

N

)
+

(
2

(h+ 2)N
+

N− 2

(h+ 1)(h+ 2)N

)
∑
i∈[N]

∑
p∈[N]\{i}

qi1,p +
∑
j∈[N]

∑
p∈[N]\{j}

qj2,p

 , ∀h ∈ [0 : N− 3].

(58b)

Second approach: We then use the second approach to
construct genie-aided super-users. We first consider X2. By the
construction, from (X2, Z

i
1) where i ∈ [N], we can reconstruct

Fi.
Now we fix an integer i ∈ [N]. We pick a permutation of

[N], assumed to be u = (u1, . . . , uN), where u1 = i. We can
construct a genie-aided super-user with the cache

∪p∈[N]
(
Z
up

1,up
∪Qu1

1,up
∪ · · · ∪ Qup−1

1,up

)
. (59)

Now we prove that the genie-aided super-user can successively
decode the whole library from its cache and X2. Note that
from (Zu1

1 , X2), we can reconstruct Fu1 . Furthermore, for
each file Fp1 where p1 ∈ [N]\{u1}, by recalling the definition
of Qu1

1,p1
in (48), it can be seen that the bits in Zu1

1,p1
\ Qu1

1,p1
are independent of X2. Hence, it is enough to reconstruct Fu1

from (X2, Z
u1
1,u1

,Qu1
1,u2

, . . . ,Qu1
1,uN

), and thus the super-user
can reconstruct Fu1 . After recovering Fu1 , the super-user can
reconstruct Fu2 from (X2, Fu1 , Z

u2
1,u2

,Qu2
1,u3

, . . . ,Qu2
1,uN

). By
this way, the genie-aided super-user can decode the whole
library. Hence, we have

H(X2) ≥ H(F1, . . . , FN)

15

−H
(
∪p∈[N]

(
Z
up

1,up
∪Qu1

1,up
∪ · · · ∪ Qup−1

1,up

))
(60a)

≥
(
H(Fu1

)−H(Zu1
1,u1

)
)

+
(
H(Fu2

)−H(Zu2
1,u2

,Qu1
1,u2

)
)
+ · · ·

+
(
H(FuN

)−H(ZuN
1,uN

,Qu1
1,uN

, . . . ,QuN−1

1,uN
)
)
. (60b)

From (60b), it will be proved in Appendix B-A and Ap-
pendix B-B that,

H(X2) ≥
B

2
− yB

N
; (61)

H(X2) ≥ B− 2yB

N
− qi1,u2

. (62)

By letting the two permutations to derive (52e) and (60b)
be the same, we now sum (53) and (61) to obtain

R?uB ≥ H(X1) +H(X2) ≥ B− 2yB

N
, (63)

which coincides with the proposed converse bound in (13).
Similarly, by summing (54) and (62), we obtain

R?uB ≥ H(X1) +H(X2) ≥ 2B− 6yB

N
, (64)

which coincides with the proposed converse bound in (12).
In addition, by considering all permutations of [N] where

the first element is i, we can list all (N − 1)! inequalities
as in (60b). By summing all these (N − 1)! inequalities, we
can obtain the following inequalities, which will be proved in
Appendix B-C,

H(X2) ≥
NB

2
− yB− 2

h+ 2

∑
p∈[N]\{i}

qi1,p

−
∑

p∈[N]\{i}

{∑
n∈[N]\{i,p} q

n
1,p

(h+ 1)(h+ 2)
+

h

h+ 2

(
B

2
− yB

N

)}
,

∀h ∈ [0 : N− 3]. (65)

By considering all i ∈ [N], we can list all N inequalities as
in (65). By summing all these N inequalities, we obtain

H(X2) ≥
NB

2
− yB− 2

(h+ 2)N

∑
i∈[N]

∑
p∈[N]\{i}

qi1,p

−
∑
i∈[N]

∑
p∈[N]\{i}

{∑
n∈[N]\{i,p} q

n
1,p

(h+ 1)(h+ 2)N

+
h

(h+ 2)N

(
B

2
− yB

N

)}
, ∀h ∈ [0 : N− 3]. (66)

We now consider X1. By the similar steps as above to
derive (66), we obtain

H(X1) ≥
NB

2
− yB− 2

(h+ 2)N

∑
j∈[N]

∑
p∈[N]\{j}

qj2,p

−
∑
j∈[N]

∑
p∈[N]\{j}

{∑
n∈[N]\{j,p} q

n
2,p

(h+ 1)(h+ 2)N

+
h

(h+ 2)N

(
B

2
− yB

N

)}
, ∀h ∈ [0 : N− 3]. (67)

By summing (66) and (67), we obtain

R?uB ≥ H(X1) +H(X2) (68a)

≥ NB− 2yB

− 2

(h+ 2)N

∑
j∈[N]

∑
p∈[N]\{j}

qj2,p +
∑
i∈[N]

∑
p∈[N]\{i}

qi1,p


− 1

(h+ 1)(h+ 2)N

∑
j∈[N]

∑
p∈[N]\{j}

∑
n∈[N]\{j,p}

qn2,p

+
∑
i∈[N]

∑
p∈[N]\{i}

∑
n∈[N]\{i,p}

qn1,p

− h(N− 1)

(h+ 2)

(
B− 2yB

N

)
(68b)

= NB− 2yB

− 2

(h+ 2)N

∑
j∈[N]

∑
p∈[N]\{j}

qj2,p +
∑
i∈[N]

∑
p∈[N]\{i}

qi1,p


− 1

(h+ 1)(h+ 2)N

(N− 2)
∑
j1∈[N]

∑
p1∈[N]\{j1}

qj12,p1

+(N− 2)
∑
i2∈[N]

∑
p2∈[N]\{i2}

qi21,p2


− h(N− 1)

(h+ 2)

(
B− 2yB

N

)
, ∀h ∈ [0 : N− 3], (68c)

where (68c) follows since11∑
j∈[N]

∑
p∈[N]\{j}

∑
n∈[N]\{j,p}

qn2,p =
∑
j1∈[N]

∑
p1∈[N]\{j1}

qj12,p1 ,

and∑
i∈[N]

∑
p∈[N]\{i}

∑
n∈[N]\{i,p}

qn1,p = (N− 2)
∑
i2∈[N]

∑
p2∈[N]\{i2}

qi21,p2 .

Finally, by summing (58b) and (68c), we obtain ∀h ∈ [0 :
N− 3],

R?u ≥
1

2

{
N− 2y − 8(N− 1)y

(h+ 2)N
− (N− 2)(N− 1)4y

(h+ 1)(h+ 2)N
−

h(N− 1)

(h+ 2)

(
1− 2y

N

)}
+

1

2

{
N− 2yN− h(N− 1)

(h+ 2)

(
1− 2y

N

)}
(69a)

= N− 2y − 4y + (N− 1)h

h+ 2

+
h2(n− 1)− N(N− 3) + h(N+ 1)

(h+ 1)(h+ 2)

2y

N
, (69b)

which coincides with the proposed converse bound in (11).

C. Proof of Theorem 6: K-user System

We extend the proposed converse bound for the two-user
system to K-user system and consider the privacy constraint
against colluding users in (7). In the following, we consider

11In the sum
∑

j∈[N]
∑

p∈[N]\{j}
∑

n∈[N]\{j,p} q
n
2,p, let us compute the

coefficient of term qj12,p1 where j1 6= p1. qj12,p1 appears in the sum when
p = p1 and n = j1. Hence, there are N − 2 possibilities of j, which are
[N] \ {p1, j1}. So the coefficient of qj12,p1 in the sum is N− 2.

16

the case where K/2 is an integer and 2N/K is also an integer.
In Appendix C we generalize the proof to any K and N.

Let M = N
K + 2y

K , where y ∈
[
0, N2

]
. We use a genie-

aided proof by generating two aggregate users, denoted by
k1 and k2. We assume that the cache size of each aggregate
user is MB × K

2 = NB
2 + yB, i.e., the cache size of each

aggregate user is the total cache size of K/2 users. In addition,
the demanded files of aggregate users k1 and k2 are the union
sets of the demanded files of users in [K/2] and of users in
[K/2 + 1 : K], respectively. The objective is to design a two-
user D2D private caching scheme with minimum load R?g, such
that each aggregate user can decode its demanded files without
knowing anything about the demand of the other aggregate
user.

Obviously, for any K-user D2D private caching satisfying
the encoding (2), decoding (3), and privacy constraints (7), it
must be an achievable scheme for the above genie system.
In other words, R?u,c ≥ R?g. Hence, in the following we
characterize a converse bound for R?g, which is also a converse
bound for R?u,c.

We partition the N files into 2N/K equal-size groups, each
of which contains K/2 files. Each aggregate user demands one
group of files. Hence, it is equivalent to the two-user D2D
private caching problem with 2N/K files, each of which has
KB/2 bits, and each of the two users caches

(
NB
2 + yB

)
bits

in its cache and demands one file.
We assume the caches of aggregate users k1 and k2 are

A1
1 and A1

2. The transmitted packets by aggregate users k1
and k2 are denoted by X ′1 and X ′2, such that from (X ′2, A

1
1)

aggregate user k1 can decode the files in group 1 and from
(X ′1, A

1
2) aggregate user k2 can also decode the files in group

1. We then also construct the cache configurations of aggregate
users k1 and k2 by a 2N/K-ary tree, as we did in Section V-B.

By the first approach of constructing converse bound de-
scribed in Section V-B, when we consider Ai1 where i ∈

[
2N
K

]
(cache of aggregate user k1 from which and X ′2, the files in
group i can be reconstructed), with a permutation of [2N/K]
denoted by u = (u1, . . . , u2N/K) where u1 = i, we obtain (by
the similar derivations of (53) and (54)),

H(X ′1) ≥
(
B

2
− yB

N

)
K

2
; (70)

H(X ′1) ≥
K

2
B− K

2

4yB

N
+ qi1,u2

, (71)

where qi1,u2
represent the number of bits in Ai1∩A

(i,1)
2 ∩· · ·∩

A
(i,2N/K)
2 , which are from the files in group u2.
By considering all permutations of [2N/K] whose first

element is i, we obtain (by the similar derivation of (55)),

H(X ′1) ≥
NB

2
− yB− 2

h+ 2

{(
2N

K
− 1

)
2yB

N

K

2

}
+

2

h+ 2

∑
p∈[2NK]\{i}

qi1,p

−
∑

p∈[2NK]\{i}

{
2N
K − 2

(h+ 1)(h+ 2)

(
2yB

N

K

2
− qi1,p

)

+
h

h+ 2

(
B

2
− yB

N

)
K

2

}
, ∀h ∈

[
0 :

2N

K
− 3

]
.

(72)

By considering all i ∈
[
2N
K

]
to bound H(X ′1) and all j ∈[

2N
K

]
to bound H(X ′2), we sum all inequalities as in (72) to

obtain (by the similar derivation of (58b)),

R?gB ≥ NB− 2yB− 4

h+ 2

{(
2N

K
− 1

)
2yB

N

K

2

}
−

2N
K − 2

(h+ 1)(h+ 2)

4y(2NK − 1)B

N

K

2

−
h
(
2N
K − 1

)
(h+ 2)

(
B− 2yB

N

)
K

2

+

(
2

(h+ 2) 2NK
+

2N
K − 2

(h+ 1)(h+ 2)(2N/K)

)
 ∑
i∈[2NK]

∑
p∈[2NK]\{i}

qi1,p +
∑
j∈[2NK]

∑
p∈[2NK]\{j}

qj2,p

 ,

∀h ∈
[
0 :

2N

K
− 3

]
. (73)

Similarly, by the second approach of constructing converse
bound described in Section V-B, when we consider X ′2 and
the same permutation as the one to derive (70) and (71), we
obtain (by the similar derivations of (61) and (62)),

H(X ′2) ≥
(
B

2
− yB

N

)
K

2
; (74)

H(X ′2) ≥
K

2
B− K

2

2yB

N
− qi1,u2

. (75)

By summing (70) and (74), we prove (16). By summing (71)
and (75), we prove (15).

In addition, by the second approach of constructing con-
verse bound described in Section V-B, after considering all
permutations to bound H(X ′1) and all permutations to bound
H(X ′2), we obtain (by the similar derivation of (68c)),

R?gB ≥ NB− 2yB−
h
(
2N
K − 1

)
(h+ 2)

(
B− 2yB

N

)
K

2

−

(
2

(h+ 2) 2NK
+

2N/K− 2

(h+ 1)(h+ 2) 2NK

)
 ∑
i∈[2NK]

∑
p∈[2NK]\{i}

qi1,p +
∑
j∈[2NK]

∑
p∈[2NK]\{j}

qj2,p

 ,

∀h ∈
[
0 :

2N

K
− 3

]
. (76)

By summing (73) and (76), we prove (14).

VI. CONCLUSIONS

We introduced a new D2D private caching model, which
aims to preserve the privacy of the users’ demands. We
proposed new D2D private coded caching schemes, which
were proved to be order optimal by matching a new converse
bound under the constraint of uncoded cache placement and

17

user collusion to within a constant gap. Further works include
proving new converse bounds for any cache placement, and
investigating the decentralized D2D private coded caching
problem.

APPENDIX A
PROOFS OF (53), (54), AND (55)

Recall that by considering a permutation of [N], assumed to
be u = (u1, . . . , uN), where u1 = i, we can derive (52e),

H(F1, . . . , FN) ≤ H(X1) +H(Z
(i,i)
2)

+
∑

p∈[2:N]

H
(
Z

(i,u2)
2,up

, . . . , Z
(i,up)
2,up

|Z(i,i)
2,up

)
.

(77)

For each p ∈ [2 : N], since |Z(i,i)
2,up
| = B

2 + yB
N , we have

H
(
Z

(i,u2)
2,up

, . . . , Z
(i,up)
2,up

|Z(i,i)
2,up

)
≤ H(Fp|Z(i,i)

2,up
) =

B

2
− yB

N
.

(78)

A. Proof of (53)

Now we bound each term H
(
Z

(i,u2)
2,up

, . . . , Z
(i,up)
2,up

|Z(i,i)
2,up

)
where p ∈ [2 : N] in (77) by B

2 −
yB
N , to obtain

H(F1, . . . , FN) ≤ H(X1) +H(Z
(i,i)
2)

+
∑

p∈[2:N]

H
(
Z

(i,u2)
2,up

, . . . , Z
(i,up)
2,up

|Z(i,i)
2,up

)
(79a)

≤ H(X1) +H(Z
(i,i)
2) + (N− 1)

(
B

2
− yB

N

)
(79b)

= H(X1) +
NB

2
+ yB+ (N− 1)

(
B

2
− yB

N

)
. (79c)

Hence, we have

H(X1) ≥
B

2
− yB

N
, (80)

which proves (53).

B. Proof of (54)

We first prove for each i ∈ [N] and n, p ∈ [N] \ {i}, we
have

H
(
Z

(i,n)
2,p |Z

(i,i)
2,p

)
= H

(
Z

(i,n)
2,p |Z

(i,i)
2,p , Fp \ Zi1,p

)
(81a)

= H
(
Z

(i,n)
2,p ∩ Zi1,p|Z

(i,i)
2,p , Fp \ Zi1,p

)
(81b)

= H
(
Z

(i,n)
2,p ∩ Zi1,p|Z

(i,i)
2,p

)
(81c)

≤ H
(
Z

(i,n)
2,p ∩ Zi1,p

)
− qi1,p (81d)

=
2yB

N
− qi1,p, (81e)

where (81a) follows since Z(i,i)
2,p ∪ Zi1,p = Z

(i,n)
2,p ∪ Zi1,p = Fp

and thus (Fp \ Zi1,p) ⊆ Z
(i,i)
2,p , (81b) and (81c) follow

since all bits in the library are independent, (81d) comes
from (48), (81e) comes from (47c).

Now we bound each term H
(
Z

(i,u2)
2,up

, . . . , Z
(i,up)
2,up

|Z(i,i)
2,up

)
where p ∈ [3 : N] in (77) by B

2 −
yB
N , to obtain

H(F1, . . . , FN) ≤ H(X1) +H(Z
(i,i)
2)

+
∑

p∈[2:N]

H
(
Z

(i,u2)
2,up

, . . . , Z
(i,up)
2,up

|Z(i,i)
2,up

)
(82a)

≤ H(X1) +
NB

2
+ yB+H

(
Z

(i,u2)
2,u2

|Z(i,i)
2,u2

)
+ (N− 2)

(
B

2
− yB

N

)
(82b)

≤ H(X1) +
NB

2
+ yB+

2yB

N
− qi1,u2

+ (N− 2)

(
B

2
− yB

N

)
, (82c)

where (82c) comes from (81e).
Hence, we have

H(X1) ≥
NB

2
− yB− 2yB

N
+ qi1,u2

− (N− 2)

(
B

2
− yB

N

)
(83a)

= B− 4yB

N
+ qi1,u2

, (83b)

which proves (54).

C. Proof of (55)
Note that when N = 2, (55) does not exist. Hence, in the

following we consider N ≥ 3 to prove (55).
From (77), we have

H(F1, . . . , FN) ≤ H(X1) +H(Z
(i,i)
2)

+
∑

p∈[2:N]

H
(
Z

(i,u2)
2,up

, . . . , Z
(i,up)
2,up

|Z(i,i)
2,up

)
(84a)

= H(X1) +H(Z
(i,i)
2) +

∑
p∈[2:N]

{
H
(
Z

(i,up)
2,up

|Z(i,i)
2,up

)
+H

(
Z

(i,u2)
2,up

, . . . , Z
(i,up−1)
2,up

|Z(i,i)
2,up

, Z
(i,up)
2,up

)}
(84b)

= H(X1) +
NB

2
+ yB+

∑
p∈[2:N]

H
(
Z

(i,up)
2,up

|Z(i,i)
2,up

)
+
∑

p∈[2:N]

H
(
Z

(i,u2)
2,up

, . . . , Z
(i,up−1)
2,up

|Z(i,i)
2,up

, Z
(i,up)
2,up

)
. (84c)

By considering all permutations of [N] where the first element
is i and summing all inequalities as (84c), we have

H(X1) ≥
NB

2
− yB− 1

(N− 1)!

∑
u:u1=i

∑
p∈[2:N]

H
(
Z

(i,up)
2,up

|Z(i,i)
2,up

)
− 1

(N− 1)!

∑
u:u1=i

∑
p∈[2:N]

H
(
Z

(i,u2)
2,up

, . . . , Z
(i,up−1)
2,up

|Z(i,i)
2,up

, Z
(i,up)
2,up

)
(85a)

=
NB

2
− yB−

∑
p∈[N]\{i}

H
(
Z

(i,p)
2,p |Z

(i,i)
2,p

)
− 1

(N− 1)!

∑
p∈[N]\{i}∑

r∈[2:N]

∑
u:u1=i,ur=p

H
(
Z

(i,u2)
2,p , . . . , Z

(i,ur−1)
2,p |Z(i,i)

2,p , Z
(i,p)
2,p

)
,

(85b)

18

where (85b) comes from the re-arrangements on the summa-
tions.

To bound the last term in (85b), we now focus on one file
Fp where p ∈ [N] \ {i} and bound the following term∑
r∈[2:N]

∑
u:u1=i,ur=p

H
(
Z

(i,u2)
2,p , . . . , Z

(i,ur−1)
2,p |Z(i,i)

2,p , Z
(i,p)
2,p

)
.

(86)

Note that the conditional entropies in (86) are conditioned on
the same term, which is Z(i,i)

2,p ∪ Z
(i,p)
2,p . In addition, for any

n ∈ [N] \ {i, p}, we have

Z
(i,n)
2,p \ (Z

(i,i)
2,p ∪ Z

(i,p)
2,p) ⊆ Fp \ (Z(i,i)

2,p ∪ Z
(i,p)
2,p).

Hence, we divide the bits in Fp \ (Z(i,i)
2,p ∪ Z

(i,p)
2,p) into sub-

pieces, and denote (with a slight abuse of notation)

Fp \ (Z(i,i)
2,p ∪ Z

(i,p)
2,p) = {Fp,S : S ⊆ ([N] \ {i, p})}, (87)

where

Fp,S =
(
Fp \ (Z(i,i)

2,p ∪ Z
(i,p)
2,p)

)
∩
(
∩n∈SZ(i,n)

2,p

)
\
(
∪n1 /∈SZ

(i,n1)
2,p

)
. (88)

In other words, Fp,S represents the bits in Fp\(Z(i,i)
2,p ∪Z

(i,p)
2,p)

which are exclusively in Z(i,n)
2,p where n ∈ S .

We then define

ft :=
∑

S⊆([N]\{i,p}):|S|=t

|Fp,S |, ∀t ∈ [0 : N− 2], (89)

as the total length of sub-pieces Fp,S where |S| = t.
In (81e), we proved that for each n ∈ [N] \ {i, p}, we

have H(Z
(i,n)
2,p |Z

(i,i)
2,p) ≤ 2yB

N − qi1,p. Hence, we also have
H(Z

(i,n)
2,p |Z

(i,i)
2,p , Z

(i,p)
2,p) ≤ H(Z

(i,n)
2,p |Z

(i,i)
2,p) ≤ 2yB

N − q
i
1,p. In

other words, ∑
S⊆[N]\{i,p}:n∈S

|Fp,S | ≤
2yB

N
− qi1,p. (90)

By summing (90) over all n ∈ [N] \ {i, p}, we have∑
t∈[0:N−2]

tft =
∑

n∈[N]\{i,p}

∑
S⊆[N]\{i,p}:n∈S

|Fp,S | (91a)

≤ (N− 2)

(
2yB

N
− qi1,p

)
. (91b)

In addition, since Fp \ (Z(i,i)
2,p ∪ Z

(i,p)
2,p) = (Fp \ Z(i,i)

2,p) \
(Z

(i,p)
2,p \ Z

(i,i)
2,p), we have

|Fp \ (Z(i,i)
2,p ∪ Z

(i,p)
2,p)| = |Fp \ Z(i,i)

2,p | − |Z
(i,p)
2,p \ Z

(i,i)
2,p |

(92a)

=
B

2
− yB

N
−H(Z

(i,p)
2,p |Z

(i,i)
2,p).

(92b)

Hence, we have∑
t∈[0:N−2]

ft =
∑

S⊆[N]\{i,p}

|Fp,S | (93a)

=
B

2
− yB

N
−H(Z

(i,p)
2,p |Z

(i,i)
2,p). (93b)

From the above definitions, we can re-write (86) as follows,∑
r∈[2:N]

∑
u:

u1=i,ur=p

H
(
Z

(i,u2)
2,p , . . . , Z

(i,ur−1)
2,p |Z(i,i)

2,p , Z
(i,p)
2,p

)
=

∑
r∈[2:N]

∑
u:

u1=i,ur=p

∑
S⊆([N]\{i,p}):
S∩{u2,...,ur−1}6=∅

|Fp,S |. (94)

In (94), for each r ∈ [2 : N], we can compute∑
u:

u1=i,ur=p

∑
S⊆([N]\{i,p}):
S∩{u2,...,ur−1}6=∅

|Fp,S |

=
∑

t∈[0:N−2]

(N− 2)!

(
N−2
t

)
−
(
N−r−1

t

)(
N−2
t

) ft. (95)

This is because in
∑

S⊆([N]\{i,p}):
S∩{u2,...,ur−1}6=∅

|Fp,S |, there are(
N−2
t

)
−
(
N−2−(r−1)

t

)
sub-pieces whose S has t elements.

Considering all permutations u where u1 = i and ur = p,
by the symmetry, the coefficient of each |Fp,S | where S = t
should be the same. In addition, there are in total

(
N−2
t

)
sub-

pieces whose S has t elements. Hence, we obtain (95).
Considering all r ∈ [2 : N− 2], from (95) we have∑
r∈[2:N]

∑
u:

u1=i,ur=p

H
(
Z

(i,u2)
2,p , . . . , Z

(i,ur−1)
2,p |Z(i,i)

2,p , Z
(i,p)
2,p

)

=
∑

r∈[2:N]

∑
t∈[0:N−2]

(N− 2)!

(
N−2
t

)
−
(
N−r−1

t

)(
N−2
t

) ft (96a)

= (N− 2)!
∑

t∈[0:N−2]

∑
r∈[2:N]

(
N−2
t

)
−
(
N−r−1

t

)(
N−2
t

) ft (96b)

= (N− 2)!
∑

t∈[0:N−2]

(
(N− 2)

(
N−2
t

)
−
(
N−2
t+1

)(
N−2
t

))
ft (96c)

= (N− 1)!
∑

t∈[0:N−2]

t

t+ 1
ft, (96d)

where (96c) comes from the Pascal’s Triangle,
(
N−3
t

)
+ · · ·+(

t
t

)
=
(
N−2
t+1

)
.

The next step is to use Fourier-Motzkin elimination on ft
where t ∈ [0 : N−2] in (96d) (as we did in [11]) with the help
of (91b) and (93b). More precisely, we fix one integer h ∈ [0 :

N− 3]. We multiply (91b) by (N−1)!
(h+1)(h+2) and multiply (93b)

by (N−1)!h
h+2 , and sum them to obtain∑
t∈[0:N−2]

(
t

(N− 1)!

(h+ 1)(h+ 2)
+

(N− 1)!h

h+ 2

)
ft

≤ (N− 1)!(N− 2)

(h+ 1)(h+ 2)

(
2yB

N
− qi1,p

)
+

(N− 1)!h

h+ 2

(
B

2
− yB

N
−H(Z

(i,p)
2,p |Z

(i,i)
2,p)

)
. (97)

From (97), we have

(N− 1)!h

h+ 1
fh +

(N− 1)!(h+ 1)

h+ 2
fh+1

≤ (N− 1)!(N− 2)

(h+ 1)(h+ 2)

(
2yB

N
− qip

)

19

+
(N− 1)!h

h+ 2

(
B

2
− yB

N
−H(Z

(i,p)
2,p |Z

(i,i)
2,p)

)
−

∑
t∈[0:N−2]:t/∈{h,h+1}

(
t

(N− 1)!

(h+ 1)(h+ 2)
+

(N− 1)!h

h+ 2

)
ft.

(98)

We then take (98) into (96d) to obtain,∑
r∈[2:N]

∑
u:

u1=i,ur=p

H
(
Z

(i,u2)
2,p , . . . , Z

(i,ur−1)
2,p |Z(i,i)

2,p , Z
(i,p)
2,p

)

≤ (N− 1)!(N− 2)

(h+ 1)(h+ 2)

(
2yB

N
− qi1,p

)
+

(N− 1)!h

h+ 2

(
B

2
− yB

N
−H(Z

(i,p)
2,p |Z

(i,i)
2,p)

)
−

∑
t∈[0:N−2]

(N− 1)!
(h− t)(h+ 1− t)

(h+ 1)(h+ 2)(t+ 1)
ft (99a)

≤ (N− 1)!(N− 2)

(h+ 1)(h+ 2)

(
2yB

N
− qi1,p

)
+

(N− 1)!h

h+ 2

(
B

2
− yB

N
−H(Z

(i,p)
2,p |Z

(i,i)
2,p)

)
. (99b)

Finally, we take (99b) into (85b) to obtain, for each h ∈
[0 : N− 3],

H(X1) ≥
NB

2
− yB−

∑
p∈[N]\{i}

H
(
Z

(i,p)
2,p |Z

(i,i)
2,p

)
− 1

(N− 1)!

∑
p∈[N]\{i}

∑
r∈[2:N]

∑
u:

u1=i,ur=p

H
(
Z

(i,u2)
2,p , . . . , Z

(i,ur−1)
2,p |Z(i,i)

2,p , Z
(i,p)
2,p

)
(100a)

≥ NB

2
− yB−

∑
p∈[N]\{i}

H
(
Z

(i,p)
2,p |Z

(i,i)
2,p

)
− 1

(N− 1)!

∑
p∈[N]\{i}

{
(N− 1)!(N− 2)

(h+ 1)(h+ 2)

(
2yB

N
− qi1,p

)

+
(N− 1)!h

h+ 2

(
B

2
− yB

N
−H(Z

(i,p)
2,p |Z

(i,i)
2,p)

)}
(100b)

=
NB

2
− yB− 2

h+ 2

∑
p∈[N]\{i}

H
(
Z

(i,p)
2,p |Z

(i,i)
2,p

)
−

∑
p∈[N]\{i}{

(N− 2)

(h+ 1)(h+ 2)

(
2yB

N
− qi1,p

)
+

h

h+ 2

(
B

2
− yB

N

)}
(100c)

≥ NB

2
− yB− 2

h+ 2

∑
p∈[N]\{i}

(
2yB

N
− qi1,p

)
−

∑
p∈[N]\{i}{

(N− 2)

(h+ 1)(h+ 2)

(
2yB

N
− qi1,p

)
+

h

h+ 2

(
B

2
− yB

N

)}
,

(100d)

where (100d) comes from (81e). Hence, we prove (55).

APPENDIX B
PROOFS OF (61), (62), AND (65)

The proofs of (61) (62) (65) come from a similar strategy
used in Appendix A. Hence, in the following, we briefly
describe the proofs of (61) (62) (65).

Recall from (60b) that by considering a permutation of [N],
assumed to be u = (u1, . . . , uN), where u1 = i, we can derive

H(X2) ≥
(
H(Fi)−H(Zi1,i)

)
+∑

p∈[2:N]

(
H(Fup)−H(Z

up

1,up
,Qi1,up

,Qu2
1,up

, . . . ,Qup−1

1,up
)
)
.

(101)

For each p ∈ [2 : N], we have

H(Fup
)−H(Z

up

1,up
,Qi1,up

,Qu2
1,up

, . . . ,Qup−1

1,up
) ≥ 0. (102)

A. Proof of (61)
Now we bound each term H(Fup

) −
H(Z

up

1,up
,Qi1,up

,Qu2
1,up

, . . . ,Qup−1

1,up
) where p ∈ [2 : N]

in (101) by 0, to obtain

H(X2) ≥ H(Fi)−H(Zi1,i) =
B

2
− yB

N
, (103)

which proves (61).

B. Proof of (62)
Now we bound each term H(Fup

) −
H(Z

up

1,up
,Qi1,up

,Qu2
1,up

, . . . ,Qup−1

1,up
) where p ∈ [3 : N]

in (101) by 0, to obtain

H(X2) ≥
(
H(Fi)−H(Zi1,i)

)
+
∑

p∈[2:N]

(
H(Fup)−H(Z

up

1,up
,Qi1,up

,Qu2
1,up

, . . . ,Qup−1

1,up
)
)

(104a)

≥
(
H(Fi)−H(Zi1,i)

)
+
(
H(Fu2

)−H(Zu2
1,u2

,Qi1,u2
)
)

(104b)

≥ H(Fi)−H(Zi1,i +H(Fu2)−H(Zu2
1,u2

)−H(Qi1,u2
)

(104c)

= B− 2yB

N
− qi1,u2

. (104d)

which proves (62).

C. Proof of (65)
Note that when N = 2, (65) does not exist. Hence, in the

following we consider N ≥ 3 to prove (65).
From (101), we have

H(X2) ≥
(
H(Fi)−H(Zi1,i)

)
+
∑

p∈[2:N]

(
H(Fup

)−H(Z
up

1,up
,Qi1,up

,Qu2
1,up

, . . . ,Qup−1

1,up
)
)

(105a)

=
(
H(Fi)−H(Zi1,i)

)
+
∑

p∈[2:N]

(
H(Fup

)−H(Z
up

1,up
)

−H(Qi1,up
|Zup

1,up
)−H(Qu2

1,up
, . . . ,Qup−1

1,up
|Zup

1,up
,Qi1,up

)
)

(105b)

= N

(
B

2
− yB

N

)
−
∑

p∈[2:N]

H(Qi1,up
|Zup

1,up
)

−
∑

p∈[2:N]

H(Qu2
1,up

, . . . ,Qup−1

1,up
|Zup

1,up
,Qi1,up

). (105c)

20

By considering all permutations of [N] where the first element
is i and summing all inequalities as (105c), we can obtain

H(X2) ≥ N

(
B

2
− yB

N

)
− 1

(N− 1)!

∑
u:u1=i

∑
p∈[2:N]

H(Qi1,up
|Zup

1,up
)

− 1

(N− 1)!

∑
u:u1=i

∑
p∈[2:N]

H(Qu2
1,up

, . . . ,Qup−1

1,up
|Zup

1,up
,Qi1,up

)

(106a)

= N

(
B

2
− yB

N

)
−
∑

p∈[N]\{i}

H(Qi1,p|Z
p
1,p)−

1

(N− 1)!∑
p∈[N]\{i}

∑
r∈[2:N]

∑
u:u1=i,ur=p

H(Qu2
1,p, . . . ,Q

ur−1

1,p |Z
p
1,p,Qi1,p),

(106b)

where (106b) comes from the re-arrangements on the summa-
tions.

To bound the last term in (106b), we now focus on one file
Fp where p ∈ [N] \ {i} and bound the following term∑

r∈[2:N]

∑
u:u1=i,ur=p

H(Qu2
1,p, . . . ,Q

ur−1

1,p |Z
p
1,p,Qi1,p). (107)

We divide the bits in Fp \ (Zp1,p ∪ Qi1,p) into sub-pieces, and
denote

Fp \ (Zp1,p ∪Qi1,p) = {Gp,S : S ⊆ ([N] \ {i, p})}, (108)

where

Gp,S =
(
Fp \ (Zp1,p ∪Qi1,p)

)
∩
(
∩n∈SQn1,p

)
\
(
∪n1 /∈SQ

n1
1,p

)
.

(109)

We then define

gt :=
∑

S⊆([N]\{i,p}):|S|=t

|Gp,S |, ∀t ∈ [0 : N− 2]. (110)

For each n ∈ [N] \ {i, p}, we have H(Qn1,p|Z
p
1,p,Qi1,p) ≤

H(Qn1,p). Hence, we have∑
t∈[0:N−2]

tgt ≤
∑

n∈[N]\{i,p}

qn1,p. (111)

In addition, since Fp \ (Zp1,p∪Qi1,p) = (Fp \Zp1,p)\ (Qi1,p \
Zp1,p), we have∑
t∈[0:N−2]

gt =
∑

S⊆[N]\{i,p}

|Gp,S | =
B

2
− yB

N
−H(Qi1,p|Z

p
1,p).

(112)

From the above definitions, we can re-write (106b) (as we
did to obtain (96d)),∑

r∈[2:N]

∑
u:

u1=i,ur=p

H(Qu2
1,p, . . . ,Q

ur−1

1,p |Z
p
1,p,Qi1,p)

=
∑

r∈[2:N]

∑
u:

u1=i,ur=p

∑
S⊆([N]\{i,p}):
S∩{u2,...,ur−1}6=∅

|Gp,S | (113a)

=
∑

r∈[2:N]

∑
t∈[0:N−2]

(N− 2)!

(
N−2
t

)
−
(
N−r−1

t

)(
N−2
t

) gt (113b)

= (N− 1)!
∑

t∈[0:N−2]

t

t+ 1
gt. (113c)

By Fourier-Motzkin elimination on gt where t ∈ [0 : N−2]
in (113c) with the help of (111) and (112), we obtain for each
h ∈ [0 : N− 3],∑

r∈[2:N]

∑
u:

u1=i,ur=p

H(Qu2
1,p, . . . ,Q

ur−1

1,p |Z
p
1,p,Qi1,p)

≤ (N− 1)!

(h+ 1)(h+ 2)

∑
n∈[N]\{p,i}

qn1,p

+
(N− 1)!h

h+ 2

(
B

2
− yB

N
−H(Qi1,p|Z

p
1,p)

)
. (114)

Finally, by taking (114) into (106b), we obtain for each
h ∈ [0 : N− 3],

H(X2) ≥ N

(
B

2
− yB

N

)
− 2

h+ 2

∑
p∈[N]\{i}

H(Qi1,p|Z
p
1,p)

−
∑

p∈[N]\{i}

{∑
n∈[N]\{p,i} q

n
1,p

(h+ 1)(h+ 2)
− h

h+ 2

(
B

2
− yB

N

)}
(115a)

≥ N

(
B

2
− yB

N

)
− 2

h+ 2

∑
p∈[N]\{i}

qi1,p

−
∑

p∈[N]\{i}

{∑
n∈[N]\{p,i} q

n
1,p

(h+ 1)(h+ 2)
− h

h+ 2

(
B

2
− yB

N

)}
,

(115b)

where (115b) follows since H(Qi1,p|Z
p
1,p) ≤ H(Qi1,p) = qi1,p.

Hence, we prove (65).

APPENDIX C
GENERALIZATION OF THE PROOF IN SECTION V-C

In Section V-C, we prove Theorem 6 for the case where K/2
is an integer and 2N/K is also an integer. In the following,
we only consider the case where K/2 is not integer and N

bK/2c
is not an integer neither. The proof for the case where K/2
is an integer and 2N/K is not an integer, or K/2 is not an
integer and N

bK/2c is an integer, can be directly derived from
the following proof.

Recall M = N
K + 2y

K , where y ∈
[
0, N2

]
. We first fix one user

k ∈ [K] (assuming now k = K). We can divide the users in
[K] \ {k} into two groups, and generate an aggregate user for
each group. Denoted the two aggregate users by k1 and k2,
respectively. The cache size of each aggregate user is MB ×
K−1
2 . In addition, the demanded files of aggregate users k1

and k2 are the union sets of the demanded files of users in
[(K− 1)/2] and of users in [(K+ 1)/2 : K− 1], respectively.

By denoting N1 := b2N/Kc bK/2c, we divide files in [N1]
into b2N/Kc non-overlapping groups, each of which contains
bK/2c files. Each aggregate user demands one group of files.

We assume that the caches of aggregate users k1 and k2
are A1

1 and A1
2. The transmitted packets by aggregate users

k1 and k2 are denoted by X ′1 and X ′2, and the transmitted
packets by user k = K are denoted by Xk, such that from
(X ′2, Xk, A

1
1) aggregate user k1 can decode the files in group

21

1 and from (X ′1, Xk, A
1
2) aggregate user k2 can also decode

the files in group 1. We then construct the cache configurations
of aggregate users k1 and k2 by a b2N/Kc-ary tree, as we did
in Section V-B.

In the first approach, when we consider Ai1 where
i ∈ [b2N/Kc] (cache of aggregate user k1 where from
(X ′2, Xk, A

i
1), the files in group i can be decoded), by con-

structing a genie-aided super-user as in (51) (the cache of this
super-user is denoted by A), by Fano’s inequality,

H(F1, . . . , FN|{F` : ` ∈ [N1 + 1 : N]})
≤ H(X ′1) +H(Xk) +H(A|{F` : ` ∈ [N1 + 1 : N]}).

(116)

By considering one permutation of [b2N/Kc], denoted by
u = (u1, . . . , ub2N/Kc) where u1 = i, by the similar deriva-
tions of (70) and (71), we obtain

H(X ′1) +H(Xk) ≥
(
B

2
− yB

N

)
bK/2c ; (117)

H(X ′1) +H(Xk) ≥ bK/2cB− bK/2c
4yB

N
+ qi1,u2

. (118)

By considering all permutations of [b2N/Kc] where the first
element is i to develop (116) as we did in (52e), and by the
similar derivation of (72), we obtain

H(X ′1) +H(Xk)

≥
(
B

2
− yB

N

)
N1 −

2

h+ 2

(
(b2N/Kc − 1)

2yB

N
bK/2c

)
+

2

h+ 2

∑
p∈[b2N/Kc]\{i}

qi1,p

− (b2N/Kc − 1)(b2N/Kc − 2)

(h+ 1)(h+ 2)

2yB

N
bK/2c

− (b2N/Kc − 1)h

h+ 2

(
B

2
− yB

N

)
bK/2c

+
b2N/Kc − 2

(h+ 1)(h+ 2)

∑
p∈[b2N/Kc]\{i}

qi1,p

≥ N1

N

{(
B

2
− yB

N

)
N− 2

h+ 2

(
(2N/K− 1)

2yB

N

K

2

)
− (2N/K− 1)(2N/K− 2)

(h+ 1)(h+ 2)

2yB

N

K

2
− (2N/K− 1)h

h+ 2(
B

2
− yB

N

)
K

2

}
+

(
2

h+ 2
+
b2N/Kc − 2

(h+ 1)(h+ 2)

)
∑

p∈[b2N/Kc]\{i}

qi1,p, ∀h ∈ [0 : b2N/Kc − 3] , (119a)

where (119a) follows since

N

N1
(b2N/Kc − 1) bK/2c = N− N

b2N/Kc
≤ (2N/K− 1)

K

2
.

(120)

By considering all i ∈ [b2N/Kc] to bound H(X ′1)+H(Xk),
and all j ∈ [b2N/Kc] to bound H(X ′2) + H(Xk), we sum
all inequalities as (119a) to obtain (by the similar derivation
of (73)),

R?u,cB+H(Xk) ≥
N1

N

{(
B− 2yB

N

)
N− 4

h+ 2

(
(2N/K− 1)

2yB

N

K

2

)
− (2N/K− 1)(2N/K− 2)

(h+ 1)(h+ 2)

4yB

N

K

2

−h(2N/K− 1)

(h+ 2)

(
B− 2yB

N

)
K

2

}
+

(
2

(h+ 2) b2N/Kc

+
b2N/Kc − 2

(b2N/Kc)(h+ 1)(h+ 2)

) ∑
i∈[b2N/Kc]

∑
p∈[b2N/Kc]\{i}

qi1,p

+
∑

j∈[b2N/Kc]

∑
p∈[b2N/Kc]\{j}

qj2,p

 , ∀h ∈ [0 : b2N/Kc − 3] .

(121)

Similarly, in the second approach, when we consider
(X ′2, Xk) and the same permutation as the one to derive (117)
and (118), by constructing a genie-aided super-user as in (59)
(the cache of this super-user is denoted by A′), by Fano’s
inequality,

H(F1, . . . , FN|{F` : ` ∈ [N1 + 1 : N]})
≤ H(X ′2) +H(Xk) +H(A′|{F` : ` ∈ [N1 + 1 : N]}).

(122)

By the similar derivations of (74) and (75), we obtain

H(X ′2) +H(Xk) ≥
(
B

2
− yB

N

)
bK/2c ; (123)

H(X ′2) +H(Xk) ≥ bK/2cB− bK/2c
2yB

N
− qi1,u2

. (124)

In addition, by considering all permutations to bound
H(X ′1) + H(Xk) and all permutations to bound H(X ′2) +
H(Xk), we sum all inequalities to obtain (by the similar
derivation of (76)),

R?u,cB+H(Xk)

≥ N1

N

{
NB− 2yB−

h
(
2N
K − 1

)
(h+ 2)

(
B− 2yB

N

)
K

2

}

−
(

2

(h+ 2) b2N/Kc
+

b2N/Kc − 2

(h+ 1)(h+ 2) b2N/Kc

)
 ∑
j∈[2NK]

∑
p∈[2NK]\{j}

qj2,p +
∑
i∈[2NK]

∑
p∈[2NK]\{i}

qi1,p

 ,

∀h ∈ [0 : b2N/Kc − 3] . (125)

By summing (117) and (123), summing (118) and (124),
and summing (121) and (125), we obtain

R?u,cB+H(Xk) ≥
(
B− 2yB

N

)
bK/2c ; (126a)

R?u,cB+H(Xk) ≥
(
2B− 6yB

N

)
bK/2c ; (126b)

R?u,cB+H(Xk)

≥ N1

N

{
NB− 2yB− 2

h+ 2

(
(2N/K− 1)

2yB

N

K

2

)
− (2N/K− 1)(2N/K− 2)

(h+ 1)(h+ 2)

2yB

N

K

2

−h(2N/K− 1)

(h+ 2)

(
B− 2yB

N

)
K

2

}
, ∀h ∈ [0 : b2N/Kc − 3] .

(126c)

22

Finally we consider all k ∈ [K] and sum inequalities
as (126), to obtain (recall that R?u,cB ≥

∑
k∈[K]H(Xk)),

R?u,cB ≥
K

2 dK/2e

(
B− 2yB

N

)
bK/2c

=
bK/2c
dK/2e

(
B− 2yB

N

)
K

2
; (127a)

R?u,cB ≥
K

2 dK/2e

(
2B− 6yB

N

)
bK/2c

=
bK/2c
dK/2e

(
2B− 6yB

N

)
K

2
; (127b)

R?u,cB ≥
K

2 dK/2e
N1

N

{
NB− 2yB− 2

h+ 2(
(2N/K− 1)

2yB

N

K

2

)
− (2N/K− 1)(2N/K− 2)

(h+ 1)(h+ 2)

2yB

N

K

2

−h(2N/K− 1)

(h+ 2)

(
B− 2yB

N

)
K

2

}
=
bK/2c
dK/2e

b2N/Kc
2N/K

{
NB− 2yB− 2

h+ 2(
(2N/K− 1)

2yB

N

K

2

)
− (2N/K− 1)(2N/K− 2)

(h+ 1)(h+ 2)

2yB

N

K

2

−h(2N/K− 1)

(h+ 2)

(
B− 2yB

N

)
K

2

}
, ∀h ∈ [0 : b2N/Kc − 3] ,

(127c)

where (127c) comes from (recall that N1 := b2N/Kc bK/2c),

K

2 dK/2e
N1

N
=

K

2 dK/2e
b2N/Kc bK/2c

N
=
bK/2c
dK/2e

b2N/Kc
2N/K

.

(128)

Hence, we prove Theorem 6.

APPENDIX D
PROOF OF THEOREM 2

We first provide a direct upper bound of the achieved load of

Scheme A in Theorem 1, since (Ut)−(
U−N
t)

(U
t−1)

≤ (Ut)
(U
t−1)

= U−t+1
t .

Lemma 3. The achieved load of Scheme A in Theorem 1 is
upper bound by the lower convex envelop of (N/K,N) and(

N+ t− 1

K
,
U− t+ 1

t

)
, ∀t ∈ [U+ 1]. (129)

We then introduce the following lemma, whose proof is in
Appendix E.

Lemma 4. The multiplicative gap between the lower convex
envelop of the memory-load tradeoff

(
N+t1−1

K , U−t1+1
t1

)
where

t1 ∈ [U], and the lower convex envelop of the memory-load
tradeoff

(
Nt
K ,

K−t
t+1

)
where t ∈ [2 : K], is at most 3 when

M ≥ 2N
K .

We then prove the two cases in Theorem 2, where N ≥ K
and N < K.

A. N ≥ K

Converse. It was proved in [9] that for the shared-link
caching model with N ≥ K, the lower convex envelope of
the corner points

(
Nt
K ,

K−t
t+1

)
, where t ∈ [0 : K], achieved by

the MAN caching scheme in [4] is order optimal to within a
factor of 2. In addition, it was proved in [11] that these corner
points are successively convex. Hence, when M ≥ 2N/K, the
lower convex envelop of

(
Nt
K ,

K−t
t+1

)
, where t ∈ [2 : K] is order

optimal to within a factor of 2. We will also use this converse
in our model. Hence, for M ∈ [2N/K,N], R? is lower bounded
by the lower convex envelope

(
Nt
K ,

K−t
2(t+1)

)
, where t ∈ [2 : K].

Achievability. From Lemma 4, it can be seen that from the
proposed scheme in Theorem 1, we can achieve the lower
convex envelop of the memory-load tradeoff

(
Nt
K ,

3(K−t)
t+1

)
where t ∈ [2 : K].

As a result, the proposed scheme in Theorem 1 is order
optimal to within a factor of 6 when N ≥ K and M ≥ 2N

K .

B. N < K

Converse. It was proved in [36] that for the shared-link
caching model with N < K, the lower convex envelope of the
corner points (0,N) and

(
Nt
K ,

K−t
t+1

)
, where t ∈ [K], achieved

by the MAN caching scheme in [4] is order optimal to within
a factor of 4.

Since the corner points
(

Nt
K ,

K−t
t+1

)
where t ∈ [K], are

successively convex, the lower convex envelop of the MAN
caching scheme for N < K is as follows. There exists one
t2 ∈ [K], such that the lower convex envelop of the MAN
caching scheme for M ∈ [0,Nt2/K] is the memory-sharing
between (0,N) and

(
Nt2
K , K−t2t2+1

)
, while the lower convex

envelop for M ∈ [Nt2/K,N] is the lower convex envelop of
the successive corner points

(
Nt
K ,

K−t
t+1

)
where t ∈ [t2 : K]. In

addition, it is obvious that t2 is the maximum value among
x ∈ [K] such that the memory-sharing between (0,N) and(

Nx
K ,

K−x
x+1

)
at the memory M′ = N(x−1)

K leads to a lower

load than K−x+1
x . More precisely, if we interpolate (0,N)

and
(

Nx
K ,

K−x
x+1

)
where x ∈ [K] to match M′ = N(x−1)

K , the
achieved load is

−
N− K−x

x+1
Nx
K

N(x− 1)

K
+ N =

(K− x)(x− 1)

x(x+ 1)
+

N

x
.

Hence, we have

t2 := arg max
x∈[K]

{
(K− x)(x− 1)

x(x+ 1)
+

N

x
≤ K− x+ 1

x

}
(130a)

=

⌊
2K− N+ 1

N+ 1

⌋
. (130b)

We then interpolate (0,N) and
(

Nt2
K , K−t2t2+1

)
to match M1 =

N/K, to get the memory-load tradeoff

(M1,R1) =

(
N

K
,N−

N− K−t2
t2+1

t2

)
. (131)

23

Hence, it is equivalent to say that the lower convex envelop
of the achieved memory-load tradeoffs by the MAN caching
scheme for M ≥ N/K also has two regimes.

1) M ∈
[
N
K ,

Nt2
K

]
. The lower convex envelop is the memory-

sharing between (M1,R1) and
(

Nt2
K , K−t2t2+1

)
.

2) M ∈
[
Nt2
K ,N

]
. The lower convex envelop of the MAN

scheme is the lower convex envelop of the corner points(
Nt
K ,

K−t
t+1

)
, where t ∈ [t2 : K].

Since the MAN scheme is order optimal to within a factor of
4, R? is lower bounded by the lower convex envelope of the
corner points

(
M1,

R1

4

)
and

(
Nt
K ,

K−t
4(t+1)

)
, where t ∈ [t2 : K].

Achievability. Let us first focus on M = N/K. The achieved
load by the proposed scheme in Theorem 1 is N. In the
following, we will prove N ≤ 2R1. More precisely,

N− 2R1 = 2
N− K−t2

t2+1

t2
− N

=
2N(t2 + 1)− 2(K− t2)− Nt2(t2 + 1)

t2(t2 + 1)

=
−Nt22 + (N+ 2)t2 − 2(K− N)

t2(t2 + 1)

=
−t2(Nt2 − N− 2)− 2(K− N)

t2(t2 + 1)

=
−(Nt2 − N− 2)− 2(K−N)

t2

(t2 + 1)
. (132)

We consider the following two cases.
1) t2 = 1. From (132), we have

N− 2R1 =
2− 2(K− N)

2
≤ 0, (133)

which follows K > N.
2) t2 > 1. From (132), we have

N− 2R1 ≤
−(2N− N− 2)− 2(K−N)

t2

t2 + 1
< 0, (134)

which follows N ≥ 2 and K > N.
Hence, from the proposed scheme in Theorem 1, we can
achieve (M1, 2R1). In addition, from Lemma 4, it can be
seen that from the proposed scheme in Theorem 1, we can
achieve the lower convex envelop of the memory-load tradeoff(

Nt
K ,

3(K−t)
t+1

)
where t ∈ [t2 : K].

As a result, the proposed scheme in Theorem 1 is order
optimal to within a factor of 12 when N < K.

APPENDIX E
PROOF OF LEMMA 4

It was proved in [11] that the corner points
(

Nt
K ,

K−t
t+1

)
where t ∈ [0 : K] are successively convex, i.e., for each
memory size M ∈

[
Nt
K ,

N(t+1)
K

]
where t ∈ [0 : K − 1], the

lower convex envelop is obtained by memory-sharing between(
Nt
K ,

K−t
t+1

)
and

(
N(t+1)

K , K−t−1t+2

)
. Hence, in order to prove

Lemma 4, in the following we prove from
(

N+t1−1
K , U−t1+1

t1

)

where t1 ∈ [U], we can achieve
(

Nt
K , 3

K−t
(t+1)

)
for each

t ∈ [2 : K].
We now focus on one t ∈ [2 : K]. We let t1 = N(t− 1)+ 1

such that the memory size is

N+ t1 − 1

K
=

N+ N(t− 1) + 1− 1

K
=

Nt

K
. (135)

The achieved load is

U− t1 + 1

t1
=

U− U(t−1)
K−1

U(t−1)
K−1 + 1

=
U(K− 1)− U(t− 1)

U(t− 1) + (K− 1)

=
K− t

t− 1 + K−1
N

≤ K− t
t− 1

≤ 3
K− t
t+ 1

, (136)

where (136) comes from t ≥ 2. Hence, we prove the proof of
Lemma 4.

APPENDIX F
PROOF OF COROLLARY 1

Recall that for the two-user system, the achieved cor-
ner points of Scheme A are

(
N+t−1

2 , N−t+1
t

)
, where t ∈

[N + 1]. The achieved corner points of Scheme B are(
N
2 + Nt′

2(N+t′−1) ,
N(N−1)

(t′+1)(N+t′−1)

)
and (N, 0), where t′ ∈ [0 :

N− 1].
To prove Scheme B is better than Scheme A for the two-user

system, we prove that for each t ∈ [N], by memory-sharing
between

(
N
2 + Nt′

2(N+t′−1) ,
N(N−1)

(t′+1)(N+t′−1)

)
and (N, 0), where

t′ = t − 1, we can obtain
(
N+t−1

2 , N−t+1
t

)
. More precisely,

we let α = (N+t′−1)(N−t′)
N(N−1) . We have

α

(
N

2
+

Nt′

2(N+ t′ − 1)

)
+ (1− α)N

=
(N+ t′ − 1)(N− t′)

N(N− 1)

N(N+ 2t′ − 1)

2(N+ t′ − 1)
+
t′(t′ − 1)

N(N− 1)
N

=
(N+ 2t′ − 1)(N− t′)

2(N− 1)
+
t′(t′ − 1)

N− 1

=
(N− 1)(N− t′)

2(N− 1)

=
N− t+ 1

2
; (137)

α
N(N− 1)

(t′ + 1)(N+ t′ − 1)
+ (1− α)× 0 =

N− t′

t′ + 1
=

N− t+ 1

t
.

(138)

APPENDIX G
PROOF OF THEOREM 5

A. Optimality in Theorem 5

When N = 2, it can be easily checked that the con-
verse bound in Theorem 4 is a piecewise curve with corner
points

(
N
2 ,N

)
,
(
3N
4 ,

1
2

)
, and (N, 0), which can be achieved

24

by Scheme B in (10). Hence, in the following, we focus on
N > 2.

Recall that M = N
2 + y. For 0 ≤ y ≤ 1

2 , from the converse
bound in (11) with h = 0, we have

R?u ≥ N− 2y − 4y + (N− 1)h

h+ 2

+
h2(N− 1)− N(N− 3) + h(N+ 1)

(h+ 1)(h+ 2)

2y

N

= N− 2y − 2y − y(N− 3)

= N− y(N+ 1). (139)

In other words, when N
2 ≤ M ≤ N+1

2 , the converse bound on
R?u in (139) is a straight line between

(
N
2 ,N

)
and

(
N+1
2 , N−12

)
.

In addition, Scheme B in (10) achieves
(
N
2 ,N

)
with t′ = 0,

and
(
N+1
2 , N−12

)
with t′ = 1. Hence, we prove Scheme B

is optimal under the constraint of uncoded cache placement
when N

2 ≤ M ≤ N+1
2 .

For 2N
3 ≤ M ≤ 3N

4 (i.e., N
6 ≤ y ≤ N

4), from the converse
bound in (12)

R?u ≥ 2− 6y

N
= 5− 6M

N
. (140)

By noticing that N(3N−5)
2(2N−3) ≥

2N
3 when N ≥ 3, from (140), it

can be seen that when M = N(3N−5)
2(2N−3) , R?u ≥ N

2N−3 , coinciding
with Scheme B in (10) with t′ = N − 2. When M = 3N

4 ,
R?u ≥ 1

2 , coinciding with Scheme B in (10) with t′ = N − 1.
Hence, we prove that Scheme B is optimal under the constraint
of uncoded cache placement when N(3N−5)

2(2N−3) ≤ M ≤ 3N
4 .

Finally, for 3N
4 ≤ M ≤ N (i.e., N

4 ≤ y ≤ N
2), from the

converse bound in (13), we have

R?u ≥ 1− 2y

N
= 2− 2M

N
. (141)

From (141), it can be seen that when M = 3N
4 , R?u ≥ 1

2 ,
coinciding with Scheme B in (10) with t′ = N − 1. When
M = N, R?u ≥ 0, which can be also achieved by Scheme B.
Hence, we prove that Scheme B is optimal under the constraint
of uncoded cache placement when 3N

4 ≤ M ≤ N.

B. Order optimality in Theorem 5

From Theorem 4, we can compute that the proposed con-
verse bound is a piecewise curve with the corner points(

N

2
+

Nh′

2(N+ 2h′ − 2)
,
(h′ − 1)(N+ h′) + (N− 1)N

(h′ + 1)(N+ 2h′ − 2)

)
,

∀h′ ∈ [0 : N− 2], (142)(
3N
4 ,

1
2

)
, and (N, 0).12 Note that the proposed converse bound

is a piecewise linear curve with the above corner points, and
that the straight line in the memory-load tradeoff between

12The first corner point in (142) is
(

N
2
,N
)

with h′ = 0, and the last corner
point is (N, 0). For each h′ ∈ [N−3], we obtain the corner point in (142) by
taking the intersection between the converse bounds in (11) with h = h′ − 1
and h = h′. The corner point in (142) with h′ = N−2, is obtained by taking
the intersection between the converse bounds in (11) with h = N−3 and the
converse bound in (12). The corner point

(
3N
4
, 1
2

)
is obtained by taking the

intersection between the converse bounds in (12) and (13).

two achievable points is also achievable by memory-sharing.
Hence, in the following, we focus on each corner point of
the converse bound, and characterize the multiplicative gap
between Scheme B and the converse bound.

Note that in (142), when h′ = 0, we have
(
N
2 ,N

)
; when

h′ = 1, we have
(
N+1
2 , N−12

)
; when h′ = N − 2, we

have
(
2N
3 , 1

)
. In addition, in Appendix G-A, we proved the

optimality of Scheme B under the constraint of uncoded cache
placement when M ≤ N+1

2 or when M ≥ 3N
4 . Hence, in the

following, we only need to compare Scheme B and the corner
points in (142) where h′ ∈ [2 : N− 2] and N ≥ 4.

In Corollary 1, we show that Scheme B is better than
Scheme A. We will prove the multiplicative gap between
Scheme A and the corner points in (142) where h′ ∈ [2 : N−2]
and N ≥ 4, is no more than 3.

Recall that the achieved points of Scheme A for the two-
user system are(

N+ t− 1

2
,
N− t+ 1

t

)
, ∀t ∈ [N+ 1]. (143)

We want to interpolate the achieved points of Scheme A
to match the converse bound at the memory size M =
N
2 + Nh′

2(N+2h′−2) where h′ ∈ [2 : N− 2]. By computing

N+ t− 1

2
=

N

2
+

Nh′

2(N+ 2h′ − 2)

⇐⇒ t =
Nh′

N+ 2h′ − 2
+ 1, (144)

and observing N−t+1
t is non-increasing with t, it can be seen

that the achieved load of Scheme A at M = N
2 + Nh′

2(N+2h′−2)
is lower than

R′ =
N− Nh′

N+2h′−2 + 1
Nh

N+2h′−2
=

N2 + (N+ 2)(h′ − 1)

Nh′
. (145)

By comparing R′ and (h′−1)(N+h′)+(N−1)N
(h′+1)(N+2h′−2) , we have

R′

(h′−1)(N+h′)+(N−1)N
(h′+1)(N+2h′−2)

=

(
N2 + (N+ 2)(h′ − 1)

)
(h′ + 1)(N+ 2h′ − 2)

Nh′
(
(h′ − 1)(N+ h′) + (N− 1)N

) . (146)

In addition, we compute

3Nh′
(
(h′ − 1)(N+ h′) + (N− 1)N

)
−
(
N2 + (N+ 2)(h′ − 1)

)
(h′ + 1)(N+ 2h′ − 2)

= 2N3h′ − N3 − 6N2h′ − 3Nh′
2

+ (N− 4)h′
3

+ 3N2 + 2Nh′ + 4h′(h′ + 1)− 4. (147)

Now we want to prove the RHS of (147) is larger than 0
for N ≥ 4 and h′ ∈ [2 : N− 2]. More precisely, when N = 4
and h′ = 2, we can compute the RHS of (147) is equal to 36;
when N = 5 and h′ = 2, the RHS of (147) is equal to 138;
when N = 5 and h′ = 3, the RHS of (147) is equal to 216.
Now we only need to consider N ≥ 6 and h′ ∈ [2 : N− 2].

When N ≥ 6 and h′ ∈ [2 : N− 2], we have

2N3h′ − N3 − 6N2h′ − 3Nh′
2

+ (N− 4)h′
3

+ 3N2

25

+ 2Nh′ + 4h′(h′ + 1)− 4

> 2N3h′ − N3 − 6N2h′ − 3Nh′
2

= (N3h′ − 6N2h′) + (0.5N3h′ − 3Nh′
2

) + (0.5N3h′ − N3)

≥ 0. (148)

Hence, we prove

3Nh′
(
(h′ − 1)(N+ h′) + (N− 1)N

)
−
(
N2 + (N+ 2)(h′ − 1)

)
(h′ + 1)(N+ 2h′ − 2) > 0.

(149)

By taking (149) into (146), we prove that the multiplicative
gap between Scheme A and the corner points in (142) where
h′ ∈ [2 : N− 2] and N ≥ 4, is no more than 3.

In conclusion, we prove that Scheme B is order optimal
under the constraint of uncoded cache placement to within a
factor of 3.

APPENDIX H
PROOF OF THEOREM 7

In this proof, for the achievability, we consider the load in
Lemma 3, which is an upper bound of the achieved load of
Scheme A.

We first focus on the case where N ≤ 6K, and compare
Scheme A with the shared-link caching converse bound under
the constraint of uncoded cache placement (without privacy)
in [11]. Recall that when M ∈

[
N
K ,N

]
, the converse bound

in [11] is a piecewise curve with corner points
(

Nt
K ,

K−t
t+1

)
,

where t ∈ [K]. It was proved in Appendix D-A that Scheme A
can achieve the corner points

(
Nt
K , 3

K−t
t+1

)
, where t ∈ [2 : K].

In addition, when M = N
K , the converse bound in [11] is R?u ≥

K−1
2 , while the achieved load of Scheme A is

N ≤ 6K ≤ 9(K− 1), when K ≥ 3.

Hence, the multiplicative gap between Scheme A and the
converse bound in [11] at M = N

K is no more than 18. So
we prove that N ≤ 6K, Scheme A is order optimal under the
constraint of uncoded cache placement within a factor of 18.

In the rest of the proof, we focus on the case where N > 6K.
It was proved in Theorem 2 that when N ≥ K and M ≥ 2N

K ,
Scheme A is order optimal to within a factor of 6. Hence,
in the following we consider N

K ≤ M ≤ 2N
K , which is then

divided into three memory size regimes, and prove the order
optimality of Scheme A separately,

Regime 1 :
N

K
≤ M ≤ N

K
+

Nh1
2(N+ Kh1 − K)

,

where h1 :=

⌊
4(K− 2)(N− K)

K(N− 4K+ 8)

⌋
; (150a)

Regime 2 :
N

K
+

Nh1
2(N+ Kh1 − K)

≤ M ≤

N

K
+

Nh2
2(N+ Kh2 − K)

, where h2 :=

⌊
2N

K
− 2

⌋
; (150b)

Regime 3 :
N

K
+

Nh2
2(N+ Kh2 − K)

≤ M ≤ 2N

K
. (150c)

Note that when N > 6K, we have h1 :=
⌊
4(K−2)(N−K)
K(N−4K+8)

⌋
< 10

and h2 :=
⌊
2N
K − 2

⌋
≥ 10. Thus we have h1 < h2. In addition,

we have

N

K
+

Nh2
2(N+ Kh2 − K)

≤ N

K
+

N 2N
K − 2

2
(
N+ K 2N

K − 2K− K
)

=
4N

3K
. (151)

Hence, the above memory regime division is possible.
From the converse bound in (14), for each h ∈

[0 : b2N/K− 3c] we have,

R?u,c ≥
bK/2c
dK/2e

b2N/Kc
2N/K

{
N− 2y − 8y + h(2N− K)

2h+ 4

+
h2K(2N− K)− 2N(2N− 3K) + hK(K+ 2N)

(h+ 1)(h+ 2)KN
y

}
≥ 6

13

{
N− 2y − 8y + h(2N− K)

2h+ 4

+
h2K(2N− K)− 2N(2N− 3K) + hK(K+ 2N)

(h+ 1)(h+ 2)KN
y

}
, (152)

where (152) follows since K ≥ 3 and N > 6K.
In Regimes 1 and 2, we will use (152) as the converse

bound. In Regime 3, we use the shared-link caching con-
verse bound under the constraint of uncoded cache placement
in [11].

A. Regime 1

It can be computed that the converse bound in (152) for
N
K ≤ M ≤ N

K + Nh1

2(N+Kh1−K) is a piecewise curve with the
corner points(

N

K
+

Nh′

2(N+ Kh′ − K)
,

6

13

K(h′ − 1)(2N+ Kh′) + 2N(2N− K)

4(h′ + 1)(N+ Kh′ − K)

)
, ∀h′ ∈ [0 : h1],

(153)

where h′ = 0 represents the first corner point where M = N/2,
and each corner point in (153) with h′ is obtained by taking
the intersection of the converse bounds in (152) between h =
h′ − 1 and h = h′.

For the achievability, we take the memory-sharing between(
N
K ,N

)
and

(
N+t3−1

K , U−t3+1
t3

)
, where t3 = 2K − 3. Notice

that
N+ t3 − 1

K
=

N+ 2K− 4

K
=

N

K
+

2K− 4

K
. (154)

In addition, we have

N

K
+

Nh1
2(N+ Kh1 − K)

=
N

K
+

Nh1
2(N+ Kh1 − K)

(155a)

≤ N

K
+

N 4(K−2)(N−K)
K(N−4K+8)

2(N+ K 4(K−2)(N−K)
K(N−4K+8) − K)

(155b)

=
N

K
+

4N(K− 2)(N− K)

2
(
(N− K)K(N− 4K+ 8) + 4K(K− 2)(N− K)

)
(155c)

26

=
N

K
+

4N(K− 2)(N− K)

2KN(N− K)
(155d)

=
N

K
+

2K− 4

K
, (155e)

where (155b) comes from Nh1

2(N+Kh1−K) is increasing with h1

and h1 ≤ 4(K−2)(N−K)
K(N−4K+8) . From (154) and (155e), we can see

that this memory-sharing can cover all memory sizes in regime
1.

When h′ = 0, we have the corner point in (153) is
(
N
2 ,

6N
13

)
,

while Scheme A achieves
(
N
2 ,N

)
. Hence, the multiplicative

gap between Scheme A and the converse is 13
6 .

For each h′ ∈ [h1], we now interpolate Scheme A between
(M1,R1) =

(
N
K ,N

)
and (M2,R2) =

(
N+t3−1

K , U−t3+1
t3

)
to

match the corner point in the converse bound
(M3,R3) =

(
N
K + Nh′

2(N+Kh′−K) ,
6
13

K(h′−1)(2N+Kh′)+2N(2N−K)
4(h′+1)(N+Kh′−K)

)
.

More precisely, by memory-sharing between (M1,R1) and
(M2,R2) with coefficient

α =
M2 −M3

M2 −M
=

N(4K− h′K− 8) + 4K(h′ − 1)(K− 2)

4(K− 2)(N+ h′K− K)
(156)

such that αM1 + (1 − α)M2 = M3, we get at M3 Scheme A
can achieve,

R′ = αR1 + (1− α)R2

= N
−12N+ 8K2(h′ − 1) + K

(
N(8− h′)− 14h′ + 12

)
4(2K− 3)(N+ h′K− K)

.

(157)

In the following, we compare R′ and R3 to obtain

R′

R3
=

13N(h′ + 1)

6(2K− 3)
(
K(h′ − 1)(2N+ Kh′) + 2N(2N− K)

)(
−12N+ 8K2(h′ − 1) + K

(
N(8− h′)− 14h′ + 12

))
.

(158)

Finally, we will prove

6R′

13R3
=

N(h′ + 1)

(2K− 3)
(
K(h′ − 1)(2N+ Kh′) + 2N(2N− K)

)(
−12N+ 8K2(h′ − 1) + K

(
N(8− h′)− 14h′ + 12

))
< 8. (159)

We can compute that

8(2K−3)
(
K(h′ − 1)(2N+Kh′)+2N(2N− K)

)
−N(h′ + 1)(

−12N+8K2(h′ − 1)+K
(
N(8− h′)− 14h′ + 12

))
≥ 8(2K−3)

(
K(h′ − 1)(2N+Kh′)+2N(2N− K)

)
− N(h′ + 1)

(
−12N+ 8K2(h′ − 1) + KN(8− h′)

)
(160a)

=
(
32(2K− 3) + 12(h′ + 1)− K(8− h′)(h′ + 1)

)
N2

−
(
8K(h′ + 1)(h′ − 1)− 16(2K− 3)(h′ − 2)

)
KN

+ 8(2K− 3)K2h′(h′ − 1) (160b)

≥
(
32(2K− 3) + 12(h′ + 1)− K(8− h′)(h′ + 1)

)
N2

−
(
8(h′ + 1)(h′ − 1)− 16(h′ − 2)

)
K2N

+ 8(2K− 3)K2h′(h′ − 1), (160c)

where (160a) comes from h′ ≥ 1 and (160b) comes from
K ≥ 3.

Recall that N > 6K, and that h′ ≤ h1 =
⌊
4(K−2)(N−K)
K(N−4K+8)

⌋
<

10.
We first focus on h′ = 9. If h′ = 9, it can be seen that

6K < N < 32
5 K. Hence, we have

8(2K− 3)K2h′(h′ − 1) >
5

4
(2K− 3)KNh′(h′ − 1)

≥ 5

4
K2Nh′(h′ − 1) = 90K2N. (161)

We take h′ = 9 and (161) into (160c) to obtain

8(2K−3)
(
K(h′ − 1)(2N+Kh′)+2N(2N− K)

)
−N(h′ + 1)(

−12N+8K2(h′ − 1)+K
(
N(8− h′)− 14h′ + 12

))
> (74K+ 24)N2 − (640− 112− 90)K2N (162a)

> 74KN2 − 438K2N (162b)
> 0, (162c)

where (162c) comes from N > 6K.
We then focus on h′ = 8. If K = 3, from (160c), we have

the RHS of (160c) becomes 204N(N− 18)+ 12096, which is
larger than 0 since N > 6K ≥ 18. Now we consider K ≥ 4.
From (160b), we have

8(2K−3)
(
K(h′ − 1)(2N+Kh′)+2N(2N− K)

)
−N(h′ + 1)(

−12N+8K2(h′ − 1)+K
(
N(8− h′)− 14h′ + 12

))
>
(
32(2K− 3) + 12(h′ + 1)− K(8− h′)(h′ + 1)

)
N2

−
(
8K(h′ + 1)(h′ − 1)− 16(2K− 3)(h′ − 2)

)
KN (163a)

≥
(
32(2K− 3) + 12(h′ + 1)− K(8− h′)(h′ + 1)

)
N2

−
(
8K(h′ + 1)(h′ − 1)− 20K(h′ − 2)

)
KN (163b)

=
(
(56 + h′

2

− 7h′)K+ 12h′ − 84
)
N2

− (32 + 8h′
2

− 20h′)K2N (163c)

≥ (56 + h′
2

− 7h′)KN2 − (32 + 8h′
2

− 20h′)K2N (163d)

> 6(56 + h′
2

− 7h′)K2N− (32 + 8h′
2

− 20h′)K2N (163e)
= 0, (163f)

where (163b) comes from K ≥ 4 and thus 2K−3
K ≥ 5

4 ,
and (163e) comes from N > 6K.

Lastly, we consider h′ ∈ [7]. From (160c), we have

8(2K−3)
(
K(h′ − 1)(2N+Kh′)+2N(2N− K)

)
−N(h′ + 1)(

−12N+8K2(h′ − 1)+K
(
N(8− h′)− 14h′ + 12

))
>
(
32(2K− 3) + 12(h′ + 1)− K(8− h′)(h′ + 1)

)
N2

−
(
8(h′ + 1)(h′ − 1)− 16(h′ − 2)

)
K2N (164a)

=
(
(56 + h′

2

− 7h′)K+ 12h′ − 84
)
N2

− (24 + 8h′
2

− 16h′)K2N (164b)

≥ (56 + h′
2

− 7h′ + 4h′ − 28)KN2

− (24 + 8h′
2

− 16h′)K2N (164c)

> 6(28 + h′
2

− 3h′)K2N− (24 + 8h′
2

− 16h′)K2N (164d)

= (144− 2h′
2

− 2h′)K2N (164e)
> 0 (164f)

27

where (164c) comes from h′ ≤ 7 and K ≥ 3, which lead to
12h′ − 84 ≥ (4h′ − 28)K, and (164d) comes from N > 6K,
and (164f) comes from h′ ∈ [7].

In conclusion, we prove (159). In other words, under the
constraint of uncoded cache placement and user collusion,
Scheme A is order optimal to within a factor of 13

6 × 8 < 18
for the memory size Regime 1.

B. Regime 2

Similar to the converse bound for Regime 1, it can be com-
puted that the converse bound in (152) for N

K + Nh1

2(N+Kh1−K) ≤
M ≤ N

K + Nh2

2(N+Kh2−K) is a piecewise curve with the corner
points(

N

K
+

Nh′

2(N+ Kh′ − K)
,

6

13

K(h′ − 1)(2N+ Kh′) + 2N(2N− K)

4(h′ + 1)(N+ Kh′ − K)

)
, ∀h′ ∈ [h1 : h2].

(165)

For the achievability, we take the memory-sharing among
the achieved points in (129),

(
N+t−1

K , U−t+1
t

)
, where t ∈ [U+

1]. We want to interpolate the achieved points of Scheme A
to match the converse bound at the memory size M = N

K +
Nh′

2(N+Kh′−K) where h′ ∈ [h1 : h2]. By computing

N+ t− 1

K
=

N

K
+

Nh′

2(N+ Kh′ − K)

⇐⇒ t =
Nh′K

2(N+ Kh′ − K)
+ 1, (166)

and observing U−t+1
t is non-increasing with t, it can be seen

that the achieved load of Scheme A at M = N
K + Nh′

2(N+Kh′−K)
is lower than

R′ =
U− Nh′K

2(N+Kh′−K) + 1

Nh′K
2(N+Kh′−K)

. (167)

By comparing R′ and 6
13

K(h′−1)(2N+Kh′)+2N(2N−K)
4(h′+1)(N+Kh′−K) , we

have (168) (at the top of the next page).
Since K ≥ 3, we have

h′ ≥ h1 =

⌊
4(K− 2)(N− K)

K(N− 4K+ 8)

⌋
≥
⌊

2(N− K)

N− 4K+ 8

⌋
> 2;

(169a)

h′ ≤ h2 =

⌊
2N

K
− 2

⌋
<

2N

K
. (169b)

In the following, we will use (169) and N > 6K ≥ 18 to
prove (170) (at the top of the next page).

We can compute that

8KNh′
(
K(h′ − 1)(2N+ Kh′) + 2N(2N− K)

)
− 4(N+ Kh′ − K)(h′ + 1)

(
2K2N(h′ − 1)

+ K(2N2 + 2N+ 2h′ − 3Nh′ − 2)− 2N(N− 1)
)

≥ 8KNh′
(
K(h′ − 1)(2N+ Kh′) + 2N(2N− K)

)
− 4(N+ Kh′ − K)(h′ + 1)

(
2K2N(h′ − 1)

+ K(2N2 + 2N+ 2h′ − 3Nh′ − 2)
)

(171a)

= 8K(N− K) + 8K3N(h′ − 1) + 4KN2(h′ − 2)

+ 8KN(3N2h′ − 4KNh′ − N2)

+ 4Kh′(3KNh′
2

− 3KN− 2Kh′
2

) + 4KNh′
2

(3N− 2K− 2)

+ 8K2N+ 16K2N2 + 8K2h′ + 8K2h′
2

(171b)

> 8K(N− K) + 8K3N(h′ − 1) + 4KN2(h′ − 2)

+ 8KN(3N2h′ − 4KNh′ − N2)

+ 4Kh′(3KNh′
2

− 3KN− 2Kh′
2

) + 4KNh′
2

(3N− 2K− 2)
(171c)

> 8KN(3N2h′ − 4KNh′ − N2)

+ 4Kh′(3KNh′
2

− 3KN− 2Kh′
2

) (171d)

= 8KN(N2h′ − N2) + 8KN(2N2h′ − 4KNh′)

+ 4Kh′(KNh′
2

− 3KN) + 4Kh′(2KNh′
2

− 2Kh′
2

) (171e)
> 0, (171f)

where (171d) and (171f) come from N > 6K and h′ > 2.
In conclusion, we prove (170). In other words, under the

constraint of uncoded cache placement and user collusion,
Scheme A is order optimal to within a factor of 13

6 × 8 < 18
for the memory size Regime 2.

C. Regime 3

When N
K ≤ M ≤ 2N

K , the converse bound in [11] is a straight
line between

(
N
K ,

K−1
2

)
and

(
2N
K ,

K−2
3

)
, which is denoted by

R [11](M). Hence, the converse bound in [11] for Regime 3
where N

K + Nh2

2(N+Kh2−K) ≤ M ≤ 2N
K is a straight line. When

M = 2N
K , we proved in Appendix D-A that the multiplicative

gap between Scheme A and the converse bound in [11] is no
more than 6. Hence, in the rest of this proof, we focus on the
memory size M = N

K + Nh2

2(N+Kh2−K) ≤ M ≤ 2N
K .

Recall that h2 :=
⌊
2N
K − 2

⌋
≤ 2N

K − 2, we note that

N

K
+

Nh2
2(N+ Kh2 − K)

≤ N

K
+

N
(
2N
K − 2

)
2{N+ K

(
2N
K − 2

)
− K}

=
4N

3K
. (172)

Hence, the load of the converse bound in [11] at M = N
K +

Nh2

2(N+Kh2−K) is strictly higher than the one at M′ = 4N
3K . By

computing the converse bound in [11] at M′ = 4N
3K is

R [11](M
′) =

2

3

K− 1

2
+

1

3

K− 2

3
=

4K− 5

9
, (173)

at M = N
K + Nh2

2(N+Kh2−K) , we have

R?u,c ≥ R [11](M) > R [11](M
′) =

4K− 5

9
. (174)

For the achievability, it was proved in (167) that the
achieved load of Scheme A at M = N

K + Nh2

2(N+Kh2−K) is lower
than

R′ =
U− Nh2K

2(N+Kh2−K) + 1

Nh2K
2(N+Kh2−K)

(175a)

≤
U− N(2N/K−3)K

2
(
N+K(2N/K−3)−K

) + 1

N(2N/K−3)K
2
(
N+K(2N/K−3)−K

) (175b)

28

R′

R3
=

13

6

4(N+ Kh′ − K)(h′ + 1)
(
2K2N(h′ − 1) + K(2N2 + 2N+ 2h′ − 3Nh′ − 2)− 2N(N− 1)

)
KNh′

(
K(h′ − 1)(2N+ Kh′) + 2N(2N− K)

) . (168)

6R′

13R3
=

4(N+ Kh′ − K)(h′ + 1)
(
2K2N(h′ − 1) + K(2N2 + 2N+ 2h′ − 3Nh′ − 2)− 2N(N− 1)

)
KNh′

(
K(h′ − 1)(2N+ Kh′) + 2N(2N− K)

) < 8. (170)

=
(6K− 8)N2 − (8K− 11)KN+ 6N− 8K

2N2 − 3KN
, (175c)

where (175b) comes that U−t+1
t is non-increasing with t, and

that h2 ≤ 2N/K− 3.
Finally, we compare R′ and 4K−5

9 to obtain,

R′

4K−5
9

= 9
(6K− 8)N2 − (8K− 11)KN+ 6N− 8K

(2N2 − 3KN)(4K− 5)
. (176)

In addition, we compute

2(2N2 − 3KN)(4K− 5)

−
(
(6K− 8)N2 − (8K− 11)KN+ 6N− 8K

)
= 2N(5KN− 6N− 8K2) + (19KN− 6N) + 8K (177a)

> 2N(5KN− 6N− 8K2) (177b)

≥ 2N(3KN− 8K2) (177c)
> 0, (177d)

where (177b) and (177c) come from K ≥ 3, and (177d) comes
from N > 6K. By taking (177d) into (176), it can be seen that
the multiplicative gap between Scheme A and the converse
bound in [11] at M = N

K + Nh2

2(N+Kh2−K) is less than 18.
In conclusion, we prove that under the constraint of uncoded

cache placement and user collusion, Scheme A is order
optimal to within a factor of 18 for the memory size Regime
3.

REFERENCES

[1] K. Wan, H. Sun, M. Ji, D. Tuninetti, and G. Caire, “Device-to-Device
private caching with trusted server,” in IEEE Intern. Conf. Commun.
(ICC), Jun. 2020.

[2] ——, “Novel converse for Device-to-Device demand-private caching
with a trusted server,” in IEEE Int. Symp. Inf. Theory (ISIT), pp. 1705–
1710, Jun. 2020.

[3] E. Bastug, M. Bennis, and M. Debbah, “Living on the edge: The role
of proactive caching in 5g wireless networks,” IEEE Communications
Magazine, vol. 52, no. 8, pp. 82–89, Aug. 2014.

[4] M. A. Maddah-Ali and U. Niesen, “Fundamental limits of caching,”
IEEE Trans. Infor. Theory, vol. 60, no. 5, pp. 2856–2867, May 2014.

[5] Q. Yu, M. A. Maddah-Ali, and S. Avestimehr, “The exact rate-memory
tradeoff for caching with uncoded prefetching,” IEEE Trans. Infor.
Theory, vol. 64, no. 2, pp. 1281–1296, Feb. 2018.

[6] K. Wan and G. Caire, “On coded caching with private demands,” IEEE
Trans. Inf. Theory, vol. 67, no. 1, pp. 358–372, Jan. 2021.

[7] S. Kamath, “Demand private coded caching,” arXiv:1909.03324, Sep.
2019.

[8] C. Yapar, K. Wan, R. F. Schaefer, and G. Caire, “On the optimality
of D2D coded caching with uncoded cache placement and one-shot
delivery,” IEEE Trans. Communications, vol. 67, no. 12, pp. 8179–8192,
Dec. 2019.

[9] Q. Yu, M. A. Maddah-Ali, and A. S. Avestimehr, “Characterizing the
rate-memory tradeoff in cache networks within a factor of 2,” IEEE
Trans. Infor. Theory, vol. 65, no. 1, pp. 647–663, Jan. 2019.

[10] K. Wan, D. Tuninetti, and P. Piantanida, “On the optimality of uncoded
cache placement,” in IEEE Infor. Theory Workshop (ITW), Sep. 2016.

[11] ——, “An index coding approach to caching with uncoded cache
placement,” IEEE Transactions on Information Theory, vol. 66, no. 3,
pp. 1318–1332, Mar. 2020.

[12] F. Arbabjolfaei, B. Bandemer, Y.-H. Kim, E. Sasoglu, and L. Wang, “On
the capacity region for index coding,” in IEEE Int. Symp. Inf. Theory
(ISIT), Jul. 2013.

[13] C. Tian, “Symmetry, outer bounds, and code constructions: A computer-
aided investigation on the fundamental limits of caching,” Entropy 2018,
20, 603.

[14] F. Engelmann and P. Elia, “A content-delivery protocol, exploiting the
privacy benefits of coded caching,” 2017 15th Intern. Symp. on Modeling
and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt),
May 2017.

[15] V. Aravind, P. K. Sarvepalli, and A. Thangaraj, “Coded caching with
demand privacy: Constructions for lower subpacketization and general-
izations,” arXiv:2007.07475, Jul. 2020.

[16] Q. Yan and D. Tuninetti, “Fundamental limits of caching for demand
privacy against colluding users,” IEEE Journal on Selected Areas in
Information Theory, vol. 2, no. 1, pp. 192–207, Mar. 2021.

[17] K. K. K. Namboodiri and B. S. Rajan, “Optimal demand private coded
caching for users with small buffers,” in IEEE Int. Symp. Inf. Theory
(ISIT), pp. 706–711, Jul. 2021.

[18] A. Gholami, K. Wan, H. Sun, M. Ji, and G. Caire, “Coded caching with
private demands and caches,” arXiv:2201.11539, Jan. 2022.

[19] S. Kamath, J. Ravi, and B. K. Dey, “Demand-private coded caching and
the exact trade-off for N=K=2,” National Conference on Communica-
tions (NCC), Feb. 2020.

[20] M. Ji, G. Caire, and A. Molisch, “Fundamental limits of caching in
wireless D2D networks,” IEEE Trans. Inf. Theory, vol. 62, no. 1, pp.
849–869, 2016.

[21] B. Chor, O. Goldreich, E. Kushilevitz, and M. Sudan, “Private infor-
mation retrieval,” in Proceedings of the 36th Annual Symposium on
Foundations of Computer Science, pp. 41–50, 1995.

[22] H. Sun and S. A. Jafar, “The capacity of private information retrieval,”
IEEE Trans. Inf. Theory, vol. 63, no. 7, pp. 4075–4088, 2017.

[23] ——, “The capacity of robust private information retrieval with collud-
ing databases,” IEEE Trans. Inf. Theory, vol. 64, no. 4, pp. 2361–2370,
2018.

[24] Y. Zhang and G. Ge, “Private information retrieval from MDS coded
databases with colluding servers under several variant models,” available
at arXiv:1705.03186, May. 2017.

[25] R. Tajeddine, O. W. Gnilke, D. Karpuk, R. Freij-Hollanti, and C. Hollant,
“Private information retrieval from coded storage systems with col-
luding, byzantine, and unresponsive servers,” IEEE Trans. Inf. Theory,
vol. 65, no. 6, pp. 3898–3906, 2019.

[26] J. Körner and K. Marton, “General broadcast channels with degraded
message sets,” IEEE Trans. Infor. Theory, vol. 23, no. 1, pp. 60–64,
1977.

[27] A. E. Gamal and Y.-H. Kim, Network Information Theory. Cambridge,
UK: Cambridge University Press, 2011.

[28] R. H. Etkin, D. N. C. Tse, and H. Wang, “Gaussian interference channel
capacity to within one bit,” IEEE Trans. Infor. Theory, vol. 54, no. 12,
pp. 5534–5562, Dec. 2008.

[29] V. R. Cadambe and S. A. Jafar, “Interference alignment and degrees of
freedom of the k-user interference channel,” IEEE Trans. Infor. Theory,
vol. 54, no. 8, pp. 3425–3441, Aug. 2008.

[30] A. Porter and M. Wootters, “Embedded index coding,” IEEE Trans. Inf.
Theory, vol. 67, no. 3, pp. 1461–1477, Mar. 2021.

[31] T. Liu and D. Tuninetti, “Private pliable index coding,” in Proc. IEEE
Inf. Theory Workshop (ITW), Aug. 2019.

[32] A. Beimel, Y. Ishai, and E. Kushilevitz, “General constructions for
information-theoretic private information retrieval,” Journal of Computer
and System Sciences, vol. 71, no. 2, pp. 213–247, 2005.

29

[33] R. Tajeddine, O. W. Gnilke, D. Karpuk, R. Freij-Hollanti, C. Hollanti,
and S. El Rouayheb, “Private information retrieval schemes for coded
data with arbitrary collusion patterns,” in 2017 IEEE International
Symposium on Information Theory (ISIT). IEEE, 2017, pp. 1908–1912.

[34] K. Banawan and S. Ulukus, “The capacity of private information
retrieval from byzantine and colluding databases,” IEEE Transactions
on Information Theory, vol. 65, no. 2, pp. 1206–1219, 2018.

[35] K. Wan, H. Sun, M. Ji, D. Tuninetti, and G. Caire, “On optimal load-
memory tradeoff of cache-aided scalar linear function retrieval,” IEEE
Trans. Infor. Theory, vol. 67, no. 6, pp. 4001–4018, Jun. 2021.

[36] H. Ghasemi and A. Ramamoorthy, “Improved lower bounds for coded
caching,” IEEE Trans. Infor. Theory, vol. 63, no. 7, pp. 4388–4413, May
2017.

Kai Wan (S ’15 – M ’18) received the B.E. degree in Optoelectronics from
Huazhong University of Science and Technology, China, in 2012, the M.Sc.
and Ph.D. degrees in Communications from Université Paris-Saclay, France,
in 2014 and 2018. He is currently a post-doctoral researcher with the Commu-
nications and Information Theory Chair (CommIT) at Technische Universität
Berlin, Berlin, Germany. His research interests include information theory,
coding techniques, and their applications on coded caching, index coding,
distributed storage, distributed computing, wireless communications, privacy
and security. He has served as an Associate Editor of IEEE Communications
Letters from Aug. 2021.

Hua Sun (S ’12 – M ’17) received the B.E. degree in Communications
Engineering from Beijing University of Posts and Telecommunications, China,
in 2011, and the M.S. degree in Electrical and Computer Engineering and
the Ph.D. degree in Electrical Engineering from University of California
Irvine, USA, in 2013 and 2017, respectively. He is an Assistant Professor
in the Department of Electrical Engineering at the University of North Texas,
USA. His research interests include information theory and its applications to
communications, privacy, security, and storage.

Dr. Sun is a recipient of the NSF CAREER award in 2021, and the UNT
College of Engineering Distinguished Faculty Fellowship in 2021. His co-
authored papers received the IEEE Jack Keil Wolf ISIT Student Paper Award
in 2016, and an IEEE GLOBECOM Best Paper Award in 2016.

Mingyue Ji (S ’09 – M ’15) received the B.E. in Communication Engineering
from Beijing University of Posts and Telecommunications (China), in 2006,
the M.Sc. degrees in Electrical Engineering from Royal Institute of Tech-
nology (Sweden) and from University of California, Santa Cruz, in 2008 and
2010, respectively, and the PhD from the Ming Hsieh Department of Electrical
Engineering at University of Southern California in 2015. He subsequently
was a Staff II System Design Scientist with Broadcom Corporation (Broadcom
Limited) in 2015-2016. He is now an Assistant Professor of Electrical and
Computer Engineering Department and an Adjunct Assistant Professor of
School of Computing at the University of Utah. He received the NSF
CAREER Award in 2022, the IEEE Communications Society Leonard G.
Abraham Prize for the best IEEE JSAC paper in 2019, the best paper awards at
2021 IEEE Globecom conference and at 2015 IEEE ICC conference, the best
student paper award at 2010 IEEE European Wireless conference and USC
Annenberg Fellowship from 2010 to 2014. He has served as an Associate Ed-
itor of IEEE Transactions on Communications from 2020. He is interested the
broad area of information theory, coding theory, concentration of measure and
statistics with the applications of caching networks, wireless communications,
distributed storage and computing systems, distributed machine learning, and
(statistical) signal processing.

Daniela Tuninetti (M ’98 – SM ’13 – F ’21) is currently a Professor within
the Department of Electrical and Computer Engineering at the University
of Illinois at Chicago (UIC), which she joined in 2005. Dr. Tuninetti got
her Ph.D. in Electrical Engineering in 2002 from ENST/Télécom ParisTech
(Paris, France, with work done at the Eurecom Institute in Sophia Antipo-
lis, France), and she was a postdoctoral research associate at the School
of Communication and Computer Science at the Swiss Federal Institute
of Technology in Lausanne (EPFL, Lausanne, Switzerland) from 2002 to
2004. Dr. Tuninetti is a recipient of a best paper award at the European
Wireless Conference in 2002, of an NSF CAREER award in 2007, and
named University of Illinois Scholar in 2015. Dr. Tuninetti was the editor-
in-chief of the IEEE Information Theory Society Newsletter from 2006 to
2008, an editor for IEEE COMMUNICATION LETTERS from 2006 to
2009, for IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS
from 2011 to 2014; and for IEEE TRANSACTIONS ON INFORMATION
THEORY from 2014 to 2017. She is currently a distinguished lecturer for
the Information Theory society. She is also currently an editor for IEEE
Transactions on Communications. Dr. Tuninetti’s research interests are in the
ultimate performance limits of wireless interference networks (with special
emphasis on cognition and user cooperation), coexistence between radar and
communication systems, multi-relay networks, content-type coding, cache-
aided systems and distributed private coded computing.

Giuseppe Caire (S ’92 – M ’94 – SM ’03 – F ’05) was born in Torino in 1965.
He received the B.Sc. in Electrical Engineering from Politecnico di Torino in
1990, the M.Sc. in Electrical Engineering from Princeton University in 1992,
and the Ph.D. from Politecnico di Torino in 1994. He has been a post-doctoral
research fellow with the European Space Agency (ESTEC, Noordwijk, The
Netherlands) in 1994-1995, Assistant Professor in Telecommunications at the
Politecnico di Torino, Associate Professor at the University of Parma, Italy,
Professor with the Department of Mobile Communications at the Eurecom
Institute, Sophia-Antipolis, France, a Professor of Electrical Engineering with
the Viterbi School of Engineering, University of Southern California, Los
Angeles, and he is currently an Alexander von Humboldt Professor with
the Faculty of Electrical Engineering and Computer Science at the Technical
University of Berlin, Germany.

He received the Jack Neubauer Best System Paper Award from the IEEE
Vehicular Technology Society in 2003, the IEEE Communications Society
and Information Theory Society Joint Paper Award in 2004 and in 2011, the
Okawa Research Award in 2006, the Alexander von Humboldt Professorship
in 2014, the Vodafone Innovation Prize in 2015, an ERC Advanced Grant
in 2018, the Leonard G. Abraham Prize for best IEEE JSAC paper in 2019,
the IEEE Communications Society Edwin Howard Armstrong Achievement
Award in 2020, and he is a recipient of the 2021 Leibinz Prize of the German
National Science Foundation (DFG). Giuseppe Caire is a Fellow of IEEE
since 2005. He has served in the Board of Governors of the IEEE Information
Theory Society from 2004 to 2007, and as officer from 2008 to 2013. He was
President of the IEEE Information Theory Society in 2011. His main research
interests are in the field of communications theory, information theory, channel
and source coding with particular focus on wireless communications.

	Introduction
	Brief review of coded caching models
	Shared-link networks without privacy constraints
	Shared-link networks with privacy constraints
	D2D networks without privacy constraints

	New D2D networks with privacy constraints
	Contributions
	Paper organization
	Notation convention

	System Model
	Main Results
	Results for general (N,K) by non-trivial extensions of known schemes
	Results for K=2: new converse bound to truly account for privacy constraints
	Order optimality results for any system parameter when users may collude
	Numerical evaluations

	Achievable Schemes
	Example of Scheme A
	Proof of Theorem 1: Description of Scheme A
	Example of Scheme B
	Proof of Theorem 3: Description of Scheme B

	New Converse Bounds Under the Constraint of Uncoded Cache Placement and User Collusion
	Example of converse
	Proof of Theorem 4: Two-user system
	Proof of Theorem 6: K-user System

	Conclusions
	Appendix A: Proofs of (53), (54), and (55)
	Proof of (53)
	Proof of (54)
	Proof of (55)

	Appendix B: Proofs of (61), (62), and (65)
	Proof of (61)
	Proof of (62)
	Proof of (65)

	Appendix C: Generalization of the Proof in Section V-C
	Appendix D: Proof of Theorem 2
	NK
	N< K

	Appendix E: Proof of Lemma 4
	Appendix F: Proof of Corollary 1
	Appendix G: Proof of Theorem 5
	Optimality in Theorem 5
	Order optimality in Theorem 5

	Appendix H: Proof of Theorem 7
	Regime 1
	Regime 2
	Regime 3

	References
	Biographies
	Kai Wan
	Hua Sun
	Mingyue Ji
	Daniela Tuninetti
	Giuseppe Caire

