
1

A General Coded Caching Scheme
for Scalar Linear Function Retrieval

Yinbin Ma and Daniela Tuninetti

Abstract—Coded caching aims to minimize the network’s peak-
time communication load by leveraging the information pre-
stored in the local caches at the users. The original setting by
Maddah-Ali and Niesen, which considered single file retrieval,
has been recently extended to general Scalar Linear Function
Retrieval (SLFR) by Wan et al., who proposed a linear scheme
that surprisingly achieves the same optimal load under the
constraint of uncoded cache placement as in single file retrieval.
This paper’s goal is to characterize the conditions under which a
general SLFR linear scheme is optimal and gain insights into why
the specific choices made by Wan et al. work. This paper shows
that the optimal decoding coefficients are necessarily the product
of two terms, one only involving the encoding coefficients and the
other only the demands of the users. In addition, the algebraic
relationships among the encoding coefficients of an optimal code
are shown to be captured by the cycles of a universal graph. Thus,
a general linear scheme for the SLFR problem can be found by
solving a spanning tree problem for the universal graph. The
proposed framework readily extends to caching-like problems,
such as the problem of finding a general linear scheme for Sun
et al.’s private function computation.

Index Terms—Coded caching; Scalar Linear Function Re-
trieval; Universal graph; Spanning tree;

I. INTRODUCTION

Coded caching, originally introduced by Maddah-Ali and
Niesen (MAN) in [2], has been the focus of much research
efforts recently as it predicts, for networks with a server
delivering a single file to each cache-aided user, that it is
possible to achieve a communication load that does not scale
with the number of users. A coded caching scheme, with one
server, K users and N files, comprises two phases. During
the placement phase, the server distributes content in the K
caches as a function of the N files stored in its library but
still ignoring the user demands. During the delivery phase, the
server broadcasts to the users a signal through a shared link;
the signal is function of the library, the cached contents and the
demands. The goal is to minimize the numbers of information
bits sent through the shared link during the delivery phase
for the worst-case demands. The MAN achievable scheme
includes an uncoded cache placement phase and a (linear
network) coded delivery phase, which comprising several
multicast messages. Each multicast message benefits a subset
of t+1 users simultaneously, where t is a parameter that relates
to the aggregate amount of cache memory in the system;
therefore, the MAN scheme is able to reduce the worst-case
communication load by a factor t+ 1 compared to a scheme

The authors are with the Electrical and Computer Engineering Department
of the University of Illinois Chicago, Chicago, IL 60607, USA (e-mail:
yma52@uic.edu, danielat@uic.edu). Part of this work was presented at the
2021 IEEE International Symposium on Information Theory (ISIT) [1]. This
work was supported in part by NSF Award 1910309.

that serves the demand of each user one by one. The MAN
scheme is not optimal. Yu et al. (YMA) in [3] improved
on the delivery phase of the MAN scheme by removing
those multicast messages that are linearly dependent on others,
which may happen when a file is requested by multiple users
and the cache size is small. The YMA scheme in [3] meets
the converse bound first proposed by Wan et al. in [4] derived
under the constraint of uncoded cache placement. When the
assumption of uncoded cache placement is relaxed (i.e., coding
is allowed also in the placement phase), Yu et al. in [3] showed
that the YMA scheme has at most twice the load of the yet-
to-be-found optimal coded caching scheme.

Much work followed the original MAN paper [2]. Some
works focused on achievable schemes with coded place-
ment [5] while others on tightening MAN’s original cut-
set bound [6]. Another line of development has considered
extensions of the MAN’s original setting. For example, coded
caching with secure delivery was studied in [7], with private
demands in [8], with more realistic network topologies in [9],
[10], with Device-to-Device delivery in [11], etc. Ideas from
coded caching have found applications to other problems,
such as coded distributed computing [12], coded data shuf-
fling [13]–[15], and private information retrieval [16], [17].

Directly relevant to this work, is Wan et al.’s extension
of the MAN setup so as to allow users to request general
scalar linear combinations of the files stored in the library [18].
Despite the fact that the number of possible demands in Scalar
Linear Function Retrieval (SLFR) increases exponentially in
the number of files compared to MAN’s single file retrieval,
Wan et al. in [18] surprisingly showed that the optimal
communication load remains the same in both settings, at least
under the constraint of uncoded cache placement.

The scheme proposed in [18] uses a linear code in the
delivery phase, in which the server selects a set of leader
users (i.e., whose demand vectors are a linearly independent
spanning set of the set of all possible demands) and creates
multicast messages by performing linear combinations of the
demanded subfiles that were not cached. The coefficients
for such linear combinations are referred to as encoding
coefficients and can be optimized. As in the YMA scheme,
multicast messages that would only be useful for non-leader
users are not sent and have to be locally reconstructed as
a linear combination of the sent multicast messages; the
coefficients for such linear combinations are referred to as
decoding coefficients and must guarantee that each non-leader
user correctly decodes its demanded linear combination of
files. The choice of encoding and decoding coefficients in [18]
is rather non trivial and not a simple extension of the MAN
scheme, which actually fails to guarantee successful decoding

2

on finite fields of characteristics strictly larger than two.
The encoding coefficients chosen in [18] were inspired by
Private Function Retrieval (PFR) [17]: they all have unit
modulo but alternate in sign between by the leader users’
and non-leader users’ demands. The corresponding decoding
coefficients in [18] are, up to a sign, the determinants of certain
matrices derived from the demand matrix. Why such a PFR-
inspired choice works could not be explained in [18] (and
neither in [17], for that matter).

A. Paper Contribution
This paper aims to gain fundamental insights into why the

choices in [18] (and in [17], for that matter) work by analyz-
ing the most general YMA-like linear scheme (i.e., general
encoding and decoding coefficients). Our main contribution is
to show that the optimal decoding coefficients are necessarily
the product of two terms, one only involving the encoding
coefficients and the other only the determinants of certain
matrices derived from the demand matrix. In addition, we
characterize the algebraic relationships which the encoding
coefficients need to satisfy in order to guarantee successful
decoding at all users as the cycles of a certain graph, which
we name universal graph (because it does not depend on
the demand matrix). Thus, we show that a general YMA-like
scheme for SLFR, which is optimal under uncoded placement,
can be found by solving a spanning tree problem.

B. Paper Organization
The rest of the paper is organized as follow. Section II

introduces the SLFR problem and summarizes relevant results.
Section III presents our main result: a general YMA-like linear
scheme for SLFR can be found by solving a spanning tree
problem on a universal graph, whose proof can be found
in Sections IV and V. Section VI shows how the proposed
framework extends to PFR. Section VII concludes the paper.
Proofs of some auxiliary results can be found in Appendix.

C. Notation Convention
In this paper we use the following notation convention.

Sans-serif symbols denote system parameters. |·| denotes either
the cardinality of a set or the length of a vector. det(M) is the
determinant of the matrix M . 1{E} is the indicator function
of the event E . M [Q,S] is the sub-matrix of M obtained by
selecting the rows indexed by Q and the columns indexed by
S . For an integer b, we let [b] := {1, . . . , b}. For a ground
set G and an integer t, we let Ωt

G := {T ⊆ G : |T | = t}.
Moreover, S \ Q := {k : k ∈ S, k /∈ Q}. IndS,k returns
the position of the element k ∈ S , where the element of the
integer set S are considered in increasing order. For example,
Ind{3,5},3 = 1 and Ind{3,5},5 = 2. By convention IndS,k = 0
if k ̸∈ S . TotS returns the sum of all elements in S . For
example, Tot{2,3} = 2 + 3 = 5. By convention Tot∅ = 0.

II. PROBLEM FORMULATION AND KNOWN RESULTS

A. Problem Formulation
A (K,N, q) scalar linear function retrieval (SLFR) problem

is defined as follows. A central server stores a library of N

files, where each file has B independent and uniformly dis-
tributed symbols over the finite field Fq, for some prime-power
q. Files are denoted as F1, . . . , FN. The server communicates
through an error-free shared link to K users. User k ∈ [K] has
a local memory denoted as Zk ∈ FMB

q , for some M ∈ [0,N].
M ∈ [0,N] is referred to as the memory size, measured in
multiple of the file size. The SLFR problem includes two
phases, cache placement phase and delivery phase.

a) Cache Placement Phase: the server populates the
caches with content from the library files, that is

H(Zk|F1, . . . FN) = 0, ∀k ∈ [K]. (1)

During this phase, the server is unaware of what content the
users will request in the future.

b) Delivery Phase: User k ∈ [K] demands a scalar linear
function of the files denoted as

Bk := dk,1F1 + . . .+ dk,NFN ∈ FB
q , ∀k ∈ [K], (2)

where the row vector dk = (dk,1, . . . , dk,N) ∈ FN
q is referred

to as the demand vector of user k. The demand matrix D :=
[d1; . . . ;dK;] ∈ FK×N

q collects the demands of all the users.
Once the server receives D, it generates a message X ∈ FRB

q

from the files, that is

H(X|F1, . . . , FN,D) = 0. (3)

The server broadcasts the signal X to all users. R ∈
[0,min{K,N}] is referred to as the communication load,
measured in multiple of the file size.

c) Decoding: All users must decode their desired func-
tion correctly based on their local cache and the signal sent
by the server, that is

H(Bk|Zk,dk, X) = 0, ∀k ∈ [K]. (4)

d) Performance: Performance is measured as follows.
• Optimal Worst-Case Load: design the cache placement

phase in (1) and the delivery phase in (3) that attain

R⋆(M) = lim sup
B→∞

min
Z1,...,ZK,X

max
D
{R : all above

conditions are satisfied}, ∀M ∈ [0,N], (5)

where the maximization over the demand matrix is be-
cause we seek to provide performance guarantees for the
worst case scenario.

• Optimal Worst-Case Load Under Uncoded Placement:
If symbols form the files are directly copied into the
caches without coding, the placement phase is said to be
uncoded. The worst-case load under uncoded placement
is denoted as R⋆

u(M) and is defined as in (5) with the
exception that in (1) the placement is restricted to be
uncoded. Clearly R⋆(M) ≤ R⋆

u(M).

B. General YMA-type SLFR Scheme

For a (K,N, q) SLFR problem, for a fixed MK/N = t ∈
[0 : K], the following YMA-type scheme is a generalization
of the scheme in [18].

3

a) Cache Placement Phase: Partition the set [B] as

[B] =

{
IT : IT ⊆ [B], T ∈ Ωt

[K], |IT | = B/

(
K

t

)}
, (6)

and define (with a Matlab-like notation) the sub-files as

Fi,T := Fi(IT) ∈ FB/(Kt)
q , ∀T ∈ Ωt

[K], ∀i ∈ [N]. (7)

The cache of user k ∈ [K] is populated as

Zk = {Fi,T : T ∈ Ωt
[K], k ∈ T , i ∈ [N]} ∈ FBN(K−1

t−1)/(
K
t)

q . (8)

The memory size is thus

M = N

(
K− 1

t− 1

)/(
K

t

)
=

Nt

K
. (9)

b) Delivery Phase: The demands of the users in (2) are
represented in the demand matrix D := [d1; . . . ;dK;]. As for
the sub-files in (7), we define the demand-blocks as

Bk,T = Bk(IT) ∈ FB/(Kt)
q , ∀T ∈ Ωt

[K], ∀k ∈ [K], (10)

where the demanded scalar linear function Bk was defined
in (2). Some demand-blocks can be reconstructed based on the
cache content available locally at the users as defined in (8),
while the remaining ones need to be delivered by the server.

Define the set of leader users L as

L ⊆ [K] : rankq(D) = rankq(D[L, :]) = |L|. (11)

The set L is not unique but its size is, as every finite-
dimensional vector space has a basis.

Define the transformed demand matrix D′ ∈ FK×|L|
q as the

matrix with entries

[D′]k,ℓ =

{
1{k=ℓ} if k ∈ L
xk,ℓ if k /∈ L

, ∀k ∈ [K], ∀ℓ ∈ L, (12)

which allows one to express the demand-blocks of non-leader
users as a linear combination of the demand-blocks of the
leader users as follows

Bk,T =
∑
ℓ∈L

xk,ℓ Bℓ,T , ∀T ∈ Ωt
[K], ∀k ∈ [K] \ L. (13)

The existence of {xu,ℓ ∈ Fq : u ∈ [K] \ L, ℓ ∈ L} in (13)
follows from a change of basis.

The server forms the following multicast messages

WS :=
∑
k∈S

αk,S\{k} Bk,S\{k} ∈ FB/(Kt)
q , ∀S ∈ Ωt+1

[K] , (14)

for some encoding coefficients

ENC := {αk,S\{k} ∈ Fq \ {0} : S ∈ Ωt+1
[K] , k ∈ S}. (15)

The server sends all multicast messages in (14) that are
useful for the leader users, that is

X = {WS : S ∈ Ωt+1
[K] , |S ∩ L| > 0} ∪ {L,D′}

∈ F∆+B((K
t+1)−(

K−|L|
t+1))/(Kt)

q . (16)

Note that sending the leader set and the transformed demand
matrix in (16) requires at most

∆ = |L|(⌈logq(K)⌉+ K) symbols, (17)

where ∆ in (17) does not scale with the file length B.
From (16) (we shall see in the next subsections that suc-

cessful decoding is possible with this transmitted signal), we
see that the worst-case load occurs when the leader set size
is the largest possible, that is when |L| = min(K,N), and the
resulting load is

R =

[(
K

t+ 1

)
−
(
K−min(K,N)

t+ 1

)]/(
K

t

)
. (18)

c) Decoding: Successful decoding is possible with the
transmitted signal in (16) and the cache contents in (8) if the
following holds. For a given S ∈ Ωt+1

[K] , user k ∈ S can decode
its desired demand-block Bk,S\{k} from WS by “caching out”
all the other blocks in WS . Thus, by construction of (16), every
leader user can retrieve its demanded scalar linear function.
For the non-leader users, we need to show how to locally
reconstruct the non-sent multicast messages

Xnot-sent = {WA : A ∈ Ωt+1
[K]\L}, (19)

from the transmitted signal in (16); if so, each non-leader user
can retrieve its demanded scalar linear function.

For K − |L| ≥ t + 1, the local reconstruction of Xnon-sent
in (19) is possible if we can express

WA =
∑

S∈Ωt+1
[K]

,|S∩L|>0

β
(A)
S WS , ∀A ∈ Ωt+1

[K]\L, (20)

by finding an appropriate set of decoding coefficients

DEC := {β(A)
S ∈ Fq : S ∈ Ωt+1

[K] ,

|S ∩ L| > 0, A ∈ Ωt+1
[K]\L}. (21)

At this point the question is to determine which choice of
encoding coefficients in the linear scheme in (14) ensures we
can satisfy (20), where the choice of encoding coefficients
in (15) and of decoding coefficients in (21) must work for all
realizations of the demands and all realizations of the files1.
Next we give the solution proposed in [18].

C. Known Results from [18]

In [18] it was shown that successful decoding is possible if
one alternates between +1 and −1 the encoding coefficients
in (14) as follows

αk,S\{k} = (−1)IndS∩L,k+IndS\L,k , (22)

and the resulting decoding coefficients are

β
(A)
S = (−1)1+TotA\S · det (D′[A \ S, S \ A]) , (23)

where the functions Ind in (22) and Tot in (23) were defined
in the Section I-C. Therefore one concludes the following.

Theorem 1 (Results from [18]). For a (K,N, q) SLFR prob-
lem, requesting arbitrary scalar linear functions of the files
from the server does not incur any load penalty with respect
to requesting a single file, i.e., the lower convex envelope of the

1The leader set in (11), the encoding coefficients in (15) and the decoding
coefficients in (21) are all function of the demand matrix D. Such a
dependency is not made explicit here in order not to clutter the notation.

4

A1 B1

A

A1, A2, A3, A4

B1,B2,B3,B4

A2 B2 A3 B3 A4 B4

User 1 User 2 User 3 User 4

B A+B

Leaders

Shared link

A+B2

Server

Fig. 1: MAN cache placement and SLFR demands.

following points from [3] is achievable for the SLFR problem
as well [18]: for all t ∈ [0 : K]

(M,RYMA) =

(
Nt

K
,

(
K

t+1

)
−
(
K−min(N,K)

t+1

)(
K
t

))
. (24)

In addition, as for the single file retrieval problem, R⋆
u =

RYMA [3], [18], and R⋆
u ≤ 2R⋆ [6]. □

D. Example of SLFR system with parameters (N,K, |L|, t) =
(2, 4, 2, 1): scheme in [18]

We realize that the notation used in the description of the
achievable scheme in the previous subsections may be difficult
to follow. We thus provide here a detailed example to illustrate
the scheme in Section II-C from [18]. We consider the SLFR
problem with N = 2 files, K = 4 users, |L| = 2 leaders, and
memory parameter t = 1.

a) Cache Placement Phase: As shown in Fig. 1, the
caches are populated as in the MAN scheme.

b) Delivery Phase: We consider the user demands

D = D′ =

1 0
0 1
1 1
2 1

 . (25)

In this example the leader users are indexed by L = {1, 2}. In
response to the demands in (25), the SLFR scheme in [18]
constructs the following multicast messages (see choice of
encoding coefficients in (22))

S WS
{1, 2} A2 − B1

{1, 3} A3 + (A1 +B1)
{1, 4} A4 + (2A1 +B1)
{2, 3} B3 + (A2 +B2)
{2, 4} B4 + (2A2 +B2)
{3, 4} (A4 +B4) − (2A3 +B3)

(26)

in which all encoding coefficients are equal to +1 with the
only exception of a negative sign for W{1,2} and for W{3,4},
because those are the only multicast messages that benefit
more than one leader user or more than one non-leader user.

The server sends all multicast messages in (26) except W{3,4},
because W{3,4} is only useful to non-leader users.

c) Decoding: The leader users can decode their missing
demand-blocks from the sent multicast messages. The non-
leader users need W{3,4} to recover a demand-block not
computable from their local cache content, i.e., (A4 + B4)
is needed by user 3, and (2A3 +B3) by user 4.

According to the SLFR scheme in [18], the non-leader users
locally reconstruct W{3,4} by taking a linear combination of
the multicast messages in (26), except W{3,4}, with decoding
coefficients (see choice of decoding coefficients in (23)),

S β
({3,4})
S

{1, 2} (−1)1+(3+4) det (D[{3, 4}, {1, 2}]) = −1
{1, 3} (−1)1+4 det (D[{4}, {1}]) = −2
{1, 4} (−1)1+3 det (D[{3}, {1}]) = +1
{2, 3} (−1)1+4 det (D[{4}, {2}]) = −1
{2, 4} (−1)1+3 det (D[{3}, {2}]) = +1

We can verify that as shows Fig. 2 Therefore the non-leader
users can recover their missing demand-block. The attained
memory-load pair is (M,R) = (2/4, 5/4), which coincides
with (24) for the choice of parameters in this example.

In the next section we describe the most general version of
this linear YMA-type SLFR scheme.

III. MAIN RESULTS

The Authors of [18] did not provide a fundamental reason as
of why the choice of alternating signs in (22) for the encoding
coefficients (and the resulting decoding coefficients in (23))
allows successful decoding by all users; they mentioned they
were inspired by PFR [17]. The open question we aim to an-
swer in this paper is whether the choice in [18] is fundamental,
that is, whether (up to scaling) the only choice of encoding
and decoding coefficients that guarantees successful decoding
in any YMA-type scheme is the one found in [18] given
by (22) and (23). We answer this open question by analyzing
the most general linear scheme in the form of (14) and (20).
In a nutshell, our main contribution is to show that:

1) the signs of the encoding coefficients must follow a
pattern where they alternate in sign (but not necessarily
as in (22)) and their modulo need not be one;

2) the decoding coefficients are proportional to the determi-
nants of certain matrices obtained from the transformed
demand matrix as in (23), but the proportionality coeffi-
cient need not have modulo one; and

3) finally and importantly, the encoding and decoding coeffi-
cients must satisfy certain relationships that are captured
by the cycles of certain universal graph. Thus, we show
that a general SLFR linear scheme can be found by
solving a spanning tree problem.

A. Main Result 1: General YMA-type SLFR Scheme

Our main result is to show that the linear scheme in Sec-
tion II-B guarantees successful decoding under the conditions
stated in Theorem 2. We provide the proof of Theorem 2 in
Section IV.

5

−W{1,2} −2W{1,3} +W{1,4} −W{2,3} +W{2,4} = W{3,4}
A1 −2 +2
A2 −1 −1 +2
A3 −2 −2
A4 +1 +1
B1 +1 −2 +1
B2 −1 +1
B3 −1 −1
B4 +1 +1

Fig. 2: Local reconstruction of W{3,4} by exploiting the decoding coefficients.

Theorem 2. For the (K,N, q) SLFR problem with memory
size parameterized by t as in (9), given the demand matrix D,
fix the of set of leader users L as in (11) and determine the
corresponding transformed demand matrix D′ as in (12). For
each A ∈ Ωt+1

[K]\L, the decoding coefficients defined in (21) for
the non-sent multicast message WA must be of the form

β
(A)
S = β̃

(A)
S · det (D′[A \ S, S \ A]) , ∀S ∈ Ωt+1

A∪L, (27a)

where β̃
(A)
S in (27a) only depends on the encoding coefficients

in (15) through the relationship

β̃
(A)
S · αk,T · (−1)ϕ

(A)
k,T = c

(A)
T ,

∀k ∈ S, where T = S \ {k}, (27b)

for some set of constants {c(A)
T ∈ Fq : T ∈ Ωt

A∪L} and where
the ‘sign function’ ϕ(A)

k,T in (27b) is given by

ϕ
(A)
k,T =

{
1 + Ind({k}∪T)\A,k k ∈ L \ T
IndA\T ,k k ∈ A \ T

,

∀k ∈ S, where T = S \ {k}, (27c)

where the function Ind was defined in Section I-C. □

Remark 1. Our main result in Theorem 2 generalizes the
scheme described in Section II-C from [18]. The reason
why the signs of the encoding coefficients (and the resulting
decoding coefficients) must alternate in [18] as given in (22)
is because of the ‘sign function’ in (27c), which is satisfied
by the choice in (22). However, the alternating patten in (22)
is just one possible feasible linear scheme in Theorem 2.
The choice of encoding coefficients in (22) (and the resulting
decoding coefficients in (23)) has the following advantages: (a)
the scheme does not involve divisions other than by elements
of unit modulo, which in turns allows one to extend the scheme
to monomial retrieval as well, as noted in [18]; and (b) the
scheme works irrespective of the characteristics of the finite
field. □

B. Example of SLFR system with parameters (N,K, |L|, t) =
(2, 4, 2, 1): general scheme

We consider the same SLFR problem as in Section II-D.
The placement is the same as shown in Fig. 1. We consider

the user demands in (25). The most general version of the
multicast messages in (26) is

S WS
{1, 2} α1,{2}A2 + α2,{1}B1

{1, 3} α1,{3}A3 + α3,{1}(A1 +B1)
{1, 4} α1,{4}A4 + α4,{1}(2A1 +B1)
{2, 3} α2,{3}B3 + α3,{2}(A2 +B2)
{2, 4} α2,{4}B4 + α4,{2}(2A2 +B2)
{3, 4} α3,{4}(A4 +B4) + α4,{3}(2A3 +B3)

(28)

and the non-sent multicast message W{3,4} is reconstructed
locally by a linear combination of the other multicast messages
by using decoding coefficients

S β
({3,4})
S

{1, 2} α3,{4}α4,{2}
α1,{2}α2,{4}

det (D[{3, 4}, {1, 2}])
{1, 3} α4,{3}

α1,{3}
det (D[{4}, {1}])

{1, 4} α3,{4}
α1,{4}

det (D[{3}, {1}])
{2, 3} α4,{3}

α2,{3}
det (D[{4}, {2}])

{2, 4} α3,{4}
α2,{4}

det (D[{3}, {2}])

(29)

How to obtain the decoding coefficients in (29) from the
relationships in (27) is explained in the next subsection. More
details on this specific example can be found in Section V-A as
well; we defer this detailed derivation after we have introduced
some concepts in Section V.

C. Main Result 2: Universal Graph

The relationship in (27b) (i.e., a relationship that must be
satisfied by the part of the decoding coefficients that does
not depend on the demand matrix) can be represented on a
graph. This graph representation is useful to find a set of
encoding coefficients that satisfy Theorem 2 as clarified next
in Proposition 1.

Proposition 1. For a fixed non-sent multicast message WA
(i.e., such that A ∈ Ωt+1

[K]\L), the conditions identified by
Theorem 2 can be represented on an undirected bipartite graph
that has the β̃

(A)
S ’s and the c

(A)
T ’s appearing in (27b) as

vertices, and whose edges are labeled by the encoding coeffi-
cients according to the relationship in (27b). An unweighted
spanning tree on such a graph identifies all the encoding
coefficients that are free to vary, in other words, cycles on
such a graph identify constraints that the encoding coefficients
must satisfy. □

6

Remark 2. Proposition 1 identifies a graph for each non-sent
multicast message, that is, for each subset A ∈ Ωt+1

[K]\L; we
shall thus refer to the graph for multicast message WA as
graph-A. All these graphs share edges, by which we mean
the encoding coefficients that label the edges. This is so
because the vertices are unique to each graph-A (i.e., their
superscript identify which subset A they refer to) but the labels
on the edges are not. The labels on the edges are in fact,
up to a sign, the encoding coefficients. The same encoding
coefficient appears in many graphs if strictly more than one
non-sent multicast message must be locally reconstructed by
the non-leader users (see for example Fig. 4). This presents
a problem when we need to simultaneously find a spanning
tree in more than one graph because we need to make sure
that the encoding coefficients that are not part of a spanning
tree in one graph (i.e., that are not free to vary) retain the
same value in the other graphs; we refer to this condition as
“consistency among graphs.”. In the conference version [1] of
this journal paper we presented a greedy algorithm to ensure
consistency among graphs. In this journal version we present
a different approach to the problem of consistency among
graphs: we seek a universal solution for the (β̃

(A)
{k}∪T , c

(A)
T)’s

that that satisfy Theorem 2 and that does not depend on A; this
is accomplished by obtaining a novel ‘sign function’ instead
of (27c) that does not depend on A. As a result, all the
relationships captured by the graph-A’s can be expressed in
a single universal graph. By finding a spanning tree for the
universal graph, we thus determine all encoding coefficients
that are free to vary at once, resulting in Proposition 2 whose
proof is in Section V. □

Proposition 2. Theorem 2 has the following as a solution. All
parameters (β̃

(A)
{k}∪T , c

(A)
T)’s in (27) do not depend on A and

the ‘sign function’ in (27c) can be equivalently replaced by

ϕ′
k,T :=

{
Ind{k}∪T \L,k k ∈ L
IndL\T ,k k ∈ L

, ∀T ∈ Ωt
[K], L := [K] \ L.

(30)

Remark 3. Theorem 2 and Proposition 2 are derived from the
SLFR caching problem. In Section VI we shall see that the
derived framework applies to the various download sub-phases
of the PFR scheme proposed in [17]. □

IV. PROOF OF THEOREM 2
We shall start to prove the result for the case K−|L| = t+1

in Section IV-A (i.e., only the multicast message indexed
by A = [K] \ L must be reconstructed in (20)). Then, in
Section IV-B, we shall argue that the case K−|L| > t+1 can
be solved by analyzing several “reduced systems” with only
|L| + t + 1 users in each system, for all |L| ∈ [min(K,N)]
and t ∈ [0 : K]. In the following, for a subset T of [K], we let
T := [K] \ T .

A. Case K− |L| = t+ 1

We consider here a system with K users, |L| = r (where r
stands for “rank”) leader users, and memory size parameter-
ized by t, where (t, r) are fixed and satisfy K = r+ t+ 1. In
particular, L is the set of non-leader users.

Given L, define the transformed demand matrix as in (12).
Here only the multicast message indexed by A = L needs
to be reconstructed, thus for notation convenience we drop A
from β

(A)
S in (20) so as not to clutter the notion; thus A∪L =

[K]. We re-write the condition in (20) with βL = −1 as follow

∑
S∈Ωt+1

[K]

βSWS (31a)

=
∑

S∈Ωt+1
[K]

βS
∑
k∈S

αk,S\{k}
∑
ℓ∈L

[D′]k,ℓBℓ,S\{k} (31b)

=
∑

T ∈Ωt
[K]

∑
ℓ∈L

∑
k∈T

β{k}∪T αk,T [D′]k,ℓBℓ,T (31c)

= 0 ∈ FB/(Kt)
q , (31d)

where (31b) is because of the definition of multicast messages
in (14) and the property of the transformed demand matrix
in (13); where (31c) follows by rearranging the oder of the
summations; and where (31d) is because of (20) and since we

set βL = −1. Since (31) must hold for all {Bℓ,T ∈ FB/(Kt)
q :

ℓ ∈ L, T ∈ Ωt
[K]}, and by the definition of transformed

demand matrix in (12), we equivalently rewrite (31) as∑
k∈T

β{k}∪T αk,T [D′]k,ℓ (32a)

=
∑

k∈T ∩L

β{k}∪T αk,T 1{k=ℓ} +
∑

k∈T ∩L

β{k}∪T αk,T xk,ℓ

(32b)
= 0 ∈ Fq, ∀ℓ ∈ L, ∀T ∈ Ωt

[K]. (32c)

We finally rewrite (32) by separating it into two cases∑
k∈T ∩L

β{k}∪T αk,T xk,ℓ ={
0 ∀ℓ ∈ L ∩ T , ∀T ∈ Ωt

[K]

−β{ℓ}∪T αℓ,T ∀ℓ ∈ L ∩ T , ∀T ∈ Ωt
[K]

. (33)

Next, we say that a set T ⊆ [K] is in “hierarchy h” if
|T ∩L| = h for some h ∈ [0 : min(|T |, |L|)]. We also say that
βS is in hierarchy h if S is in hierarchy h. We next seek to show
that in general the decoding coefficients in hierarchy h+1 can
be expressed as a linear combination of those in hierarchy h.

Initialization, or hierarchy h = 1: βL = −1 is the
only decoding coefficient in hierarchy 0. Next we derive an
expression for the decoding coefficients in hierarchy 1. By
picking T = L \ {u}, u ∈ L, and ℓ ∈ L in (33) (and
thus T ∩ L = {u}), we express the decoding coefficients in
hierarchy 1 as follows

β{ℓ}∪L\{u} =
αu,L\{u}

αℓ,L\{u}
xu,ℓ, ∀u ∈ L, ∀ℓ ∈ L. (34)

Hierarchy h: From (33) with ℓ ∈ T , we have∑
k∈T ∩L

β{k}∪T αk,T xk,ℓ = 0, ∀ℓ ∈ L ∩ T , ∀T ∈ Ωt
[K].

(35)

7

In particular, for a fixed T in hierarchy h > 0, WLOG we
let (recall that here |L| = K − r = t + 1 = |T | + 1 and thus
|T ∩L| = h, |T ∩L| = t−h, |T ∩L| = r−h, |T ∩L| = h+1)

T ∩ L = {ℓ1, . . . , ℓh} : ℓ1 < . . . < ℓh, (36a)

T ∩ L = {j1, . . . , jh, jh+1} : j1 < . . . < jh+1, (36b)

and collect the h constraints in (35) in matrix form as report
in (37) at the top of the next page, which we equivalently
re-write (by re-arranging some terms in the matrix equation)
as in (38) at the top of the next page. By Cramer’s rule, the
solution of (38) can be written as

(−1)h+1−i det
(
D′[T ∩ L \ {ji},L ∩ T]

)
det
(
D′[T ∩ L \ {jh+1},L ∩ T]

)
=

β{ji}∪T αji,T

β{jh+1}∪T αjh+1,T
, ∀i ∈ [h], (39)

or equivalently (39) can be written as (recall ji ∈ T ∩ L for
all i ∈ [h+ 1])

(−1)1
β{j1}∪T αj1,T

det
(
D′[T ∩ L \ {j1},L ∩ T]

) (40a)

= (−1)2
β{j2}∪T αj2,T

det
(
D′[T ∩ L \ {j2},L ∩ T]

) (40b)

...

= (−1)h+1 β{jh+1}∪T αjh+1,T

det
(
D′[T ∩ L \ {jh+1},L ∩ T]

) , (40c)

that is

(−1)IndT ∩L,j
β{j}∪T αj,T

det
(
D′[T ∩ L \ {j},L ∩ T]

) = c
(L)
T ,

∀j ∈ T ∩ L, ∀T ∈ Ωt
[K], (41)

for some constant c
(L)
T ∈ Fq. All the decoding coefficients

in (41) are in hierarchy h if the set T is hierarchy h.
Hierarchy h + 1: We plug the decoding coefficients in

hierarchy h from (41) into (33) with ℓ ∈ T and, by definition
of determinant (i.e., Laplace expansion along a column), for
a fixed T ∈ Ωt

[K] we obtain (42), which is at the top of the
next page, that is

(−1)1+IndL∩T ∪{ℓ},ℓ
β{ℓ}∪T αℓ,T

det
(
D′[T ∩ L,L ∩ T ∪ {ℓ}]

) = c
(L)
T ,

∀ℓ ∈ T ∩ L, ∀T ∈ Ωt
[K]. (43)

where the constant c(L)
T in (43) is the same as in (41). Notice

that all the decoding coefficients in (43) are in hierarchy h+1
if the set T is hierarchy h.

Combing everything together: We can interpret (41)
and (43) as follows: for a set T ∈ Ωt

[K] and an element
k ∈ T , we create a set S = T ∪ {k} ∈ Ωt+1

[K] that satisfies the
following:

• add a non-leader

k = j ∈ T ∩ L : T ∩ L \ {j} = L \ ({j} ∪ T),

L ∩ T = ({j} ∪ T) \ L, (44a)

• add a leader

k = ℓ ∈ T ∩ L : T ∩ L = L \ ({ℓ} ∪ T),
L ∩ T ∪ {ℓ} = ({ℓ} ∪ T) \ L. (44b)

Therefore (recall T ∩ L = L \ T , T ∩ L = L \ T) ∀T ∈
Ωt

[K], ∀k ∈ T we have (now we add again the superscript L
to the decoding coefficients)

β̃
(L)
{k}∪T :=

β
(L)
{k}∪T

det
(
D′[L \ ({k} ∪ T), ({k} ∪ T) \ L]

) , (45a)

ϕ
(L)
k,T :=

{
IndL\T ,k k ∈ L \ T
1 + Ind({k}∪T)\L,k k ∈ L \ T

, (45b)

(−1)ϕ
(L)
k,T · αk,T · β̃(L)

{k}∪T = c
(L)
T , (45c)

for some constants {c(L)
T : T ∈ Ωt

[K]}. Note that the
relationships in (45) are the same as those in (27) in Theorem 2
for the special case A = L.

The term β̃
(L)
{k}∪T in (45a) (that only depends on {k} ∪ T

as opposed to on both k and T) can be further expressed as
a function of the encoding coefficients as follows. For a set
S ∈ Ωt+1

[K] ,S ̸= L, in hierarchy h and by setting WLOG

S ∩ L = {ℓ1, . . . , ℓh} : ℓ1 < . . . < ℓh, (46a)

S ∩ L = {j1, . . . , jh} : j1 < . . . < jh, (46b)

L = {j1, . . . , jh} ∪ J , (46c)

i.e., S∩L = J and S = {ℓ1 . . . ℓh}∪J , we iteratively use (43)
to express the decoding coefficient with S = {ℓ1 . . . ℓh} ∪ J
as (47), which is at the top of the next page. The last equality
in (47) follows since by definition β{jh...j1}∪J = βL =
−1 and by convention det (D′[∅, ∅]) = 1. The relationship
in (47) shows that each decoding coefficient is proportional to
the determinant of a sub-matrix of the transformed demand
matrix, and that the proportionality coefficient (denoted as
β̃
(L)
{ℓ1...ℓh}∪J) depends only on the encoding coefficients; the

encoding coefficients however are not all free to vary, as they
need to satisfy the relationships imposed by (45c).

This concludes the proof for the case K− r = t+ 1.

B. Case K− |L| > t+ 1

It is easy to see that in order to locally reconstruct all
non-sent multicast messages, we need not sum over all sent
multicast messages indexed by {S ∈ Ωt+1

[K] : |S ∩ L| > 0} but
only on those indexed by {S ∈ Ωt+1

A∪L : S ̸= A}. By doing
so, we can equivalently re-write (20) as

0 =
∑

S∈Ωt+1
A∪L

β
(A)
S WS : β

(A)
A = −1, ∀A ∈ Ωt+1

[K]\L, (48)

where in (48) the summation is over the
(|L|+t+1

t+1

)
subsets

of A ∪ L rather than over
(

K
t+1

)
−
(
K−|L|
t+1

)
terms in (20). In

other words, for reconstructing non-sent multicast messages
WA, we can consider a “reduced system” with users indexed
by A ∪ L for which WA is only non-sent multicast message

8

[
β{j1}∪T αj1,T . . . β{jh}∪T αjh,T β{jh+1}∪T αjh+1,T

]


xj1,ℓ1 · · · xj1,ℓh
...

. . .
...

xjh,ℓ1 · · · xjh,ℓh

xjh+1,ℓ1 · · · xjh+1,ℓh


︸ ︷︷ ︸

=D′[T ∩L,L∩T]∈Fh+1×h
q

= 0 ∈ F1×h
q , (37)

[
β{j1}∪T αj1,T

β{jh+1}∪T αjh+1,T
. . .

β{jh}∪T αjh,T

β{jh+1}∪T αjh+1,T

] xj1,ℓ1 · · · xj1,ℓh
...

. . .
...

xjh,ℓ1 · · · xjh,ℓh


︸ ︷︷ ︸

=D′[T ∩L\{jh+1},L∩T]∈Fh×h
q

= −
[
xjh+1,ℓ1 . . . xjh+1,ℓh

]︸ ︷︷ ︸
=D′[{jh+1},L∩T]∈F1×h

q

, (38)

−β{ℓ}∪T αℓ,T =
∑

k∈T ∩L

β{k}∪T αk,T xk,ℓ (42a)

=
β{jh+1}∪T αjh+1,T

det
(
D′[T ∩ L \ {jh+1},L ∩ T]

) · ∑
i∈[h+1]

(−1)h+1−i det
(
D′[T ∩ L \ {ji},L ∩ T]

)
xji,ℓ (42b)

= (−1)h+1 β{jh+1}∪T αjh+1,T

det
(
D′[T ∩ L \ {jh+1},L ∩ T]

) · (−1)−IndL∩T ∪{ℓ},ℓ det
(
D′[T ∩ L,L ∩ T ∪ {ℓ}]

)
(42c)

= c
(L)
T · (−1)−IndL∩T ∪{ℓ},ℓ det

(
D′[T ∩ L,L ∩ T ∪ {ℓ}]

)
, ∀ℓ ∈ T ∩ L, ∀T ∈ Ωt

[K], (42d)

β̃
(L)
S = β̃

(L)
{ℓ1...ℓh}∪J =

β{ℓ1...ℓh}∪J

det
(
D′[S ∩ L,S ∩ L]

) = −
αjh,{ℓ1...ℓh−1}∪J

αℓh,{ℓ1...ℓh−1}∪J

β{jh}∪{ℓ1...ℓh−1}∪J

det
(
D′[S ∩ L \ {jh},S ∩ L \ {ℓh}]

) (47a)

= (−1)h
αjh,{ℓ1...ℓh−1}∪J

αℓh,{ℓ1...ℓh−1}∪J

αjh−1,{jh}∪{ℓ1...ℓh−2}∪J

αℓh−1,{jh}∪{ℓ1...ℓh−2}∪J
. . .

αj1,{jh...j2}∪J

αℓ1,{jh...j2}∪J

β{jh...j1}∪J

det (D′[∅, ∅])
(47b)

= (−1)h+1
h∏

i=1

αji,{jh...ji+1}∪{ℓ1...ℓi−1}∪J

αℓi,{jh...ji+1}∪{ℓ1...ℓi−1}∪J
, (47c)

to be reconstructed by the non-leader users indexed by A.
The analysis we did in Section IV-A applies to this “reduced
system” with |A ∪ L| = t+ 1 + r users. After substituting A
instead of L, the conditions in (45) are as stated in in (27) in
Theorem 2. This concluded the proof.

V. PROOF OF PROPOSITIONS 1 AND 2
In order to clarify our proposed approach, which is aimed

to identify how to choose the encoding coefficients that are
free to vary and which one are therefore determined by the
relationships identified by (27) in Theorem 2, we continue
with our example in Section III-B.

A. Example of SLFR system with parameters (N,K, |L|, t) =
(2, 4, 2, 1): algebraic manipulations

We continue our example of the SLFR problem with N = 2
files, K = 4 users, |L| = 2 leader users, and memory size
t = 1. The steps reported next are as in the proof of Theorem 2
in the previous Section.

The multicast messages sent by the server that are useful
for the leader users indexed by L = {1, 2} are those in (28),

except W{3,4}. The multicast message W{3,4} is not sent
because it is only useful for the non-leader users. In order
to reconstruct W{3,4} at the non-leader users, we seek to find
decoding coefficients {β{3,4}

S : S ∈ Ω2
[4],S ̸= {3, 4}} such

that W{3,4} can be written as

W{3,4} = β
{3,4}
{1,2}W{1,2} + β

{3,4}
{1,3}W{1,3} + β

{3,4}
{1,4}W{1,4}

+ β
{3,4}
{2,3}W{2,3} + β

{3,4}
{2,4}W{2,4}. (49)

In other words, we aim to solve the equation in (50) at the
top of the next page (where we use the definition of multicast
messages and transformed demand matrix) for any realization
of the demand-blocks, and where we set β{3,4}

{3,4} = −1 (which
is only decoding coefficient in hierarchy 0 corresponding
to S = {3, 4}). This can be done by equating the scalar
coefficient that multiplies each demand-block in (50) to zero
as follows.

We start with the decoding coefficients in hierarchy 1,
namely those decoding coefficients β

{3,4}
S ’s for S ∈

{{1, 3}, {1, 4}, {2, 3}, {2, 4}} (since each such set S satisfies
|S ∩L| = |S ∩{1, 2}| = 1). These S’s can be obtained in two

9

0 = β
{3,4}
{1,2}

(
α1,{2}B1,{2} + α2,{1}B2,{1}

)
(50a)

+ β
{3,4}
{3,4}

(
α3,{4}[x3,1B1,{4} + x3,2B2,{4}] + α4,{3}[x4,1B1,{3} + x4,2B2,{3}]

)
(50b)

+ β
{3,4}
{1,3}

(
α1,{3}B1,{3} + α3,{1}[x3,1B1,{1} + x3,2B2,{1}]

)
+ β

{3,4}
{1,4}

(
α1,{4}B1,{4} + α4,{1}[x4,1B1,{1} + x4,2B2,{1}]

)
(50c)

+ β
{3,4}
{2,3}

(
α2,{3}B2,{3} + α3,{2}[x3,1B1,{2} + x3,2B2,{2}]

)
+ β

{3,4}
{2,4}

(
α2,{4}B2,{4} + α4,{2}[x4,1B1,{2} + x4,2B2,{2}]

)
(50d)

ways: (Case a) by adding a leader user to either T = {3} or
T = {4}, or (Case b) by adding a non-leader user to either
T = {1} or T = {2}. We look at these two cases separately.
• Case a): Decoding Coefficients in Hierarchy 1 from a
T ∈ Ω1

[4] in Hierarchy 0. By focusing on some demand-blocks
in (50), we equate their scalar coefficient to zero to get

for B1,{3} : α4,{3}x4,1 = β
{3,4}
{1,3}α1,{3} (51a)

⇐⇒
β
{3,4}
{1,3}

x4,1
=

α4,{3}

α1,{3}
= β̃

{3,4}
{1,3} , (51b)

for B1,{4} : α3,{4}x3,1 = β
{3,4}
{1,4}α1,{4} (51c)

⇐⇒
β
{3,4}
{1,4}

x3,1
=

α3,{4}

α1,{4}
= β̃

{3,4}
{1,4} , (51d)

for B2,{3} : α4,{3}x4,2 = β
{3,4}
{2,3}α2,{3} (51e)

⇐⇒
β
{3,4}
{2,3}

x4,2
=

α4,{3}

α2,{3}
= β̃

{3,4}
{2,3} , (51f)

for B2,{4} : α3,{4}x3,2 = β
{3,4}
{2,4}α2,{4} (51g)

⇐⇒
β
{3,4}
{2,4}

x3,2
=

α3,{4}

α2,{4}
= β̃

{3,4}
{2,4} , (51h)

where (51b) is equivalent to (34) for u = 4, ℓ = 1, where (51d)
is equivalent to (34) for u = 3, ℓ = 1, where (51f) is equivalent
to (34) for u = 4, ℓ = 2, and where (51d) is equivalent to (34)
for u = 3, ℓ = 2.

The relationships in (51) correspond to the initialization step
in (34); they can also be seen as an iteration in (42) with
c
{3,4}
{3} = α4,{3} and c

{3,4}
{4} = α3,{4}.

• Case b): Decoding Coefficients in Hierarchy 1 from a
T ∈ Ω1

[4] in Hierarchy 1. The decoding coefficients we just
derived in (51) also appear in other terms in (50). In particular

for B1,{1} : 0 = β
{3,4}
{1,3}α3,{1}x3,1 + β

{3,4}
{1,4}α4,{1}x4,1 (52a)

⇐⇒ −
β
{3,4}
{1,3}α3,{1}

x4,1
=

β
{3,4}
{1,4}α4,{1}

x3,1
= c

{3,4}
{1} (52b)

⇐⇒ −
α4,{3}α3,{1}

α1,{3}
=

α3,{4}α4,{1}

α1,{4}
= c

{3,4}
{1} , (52c)

for B2,{2} : 0 = β
{3,4}
{2,3}α3,{2}x3,2 + β

{3,4}
{2,4}α4,{2}x4,2 (52d)

⇐⇒ −
β
{3,4}
{2,3}α3,{2}

x4,2
=

β
{3,4}
{2,4}α4,{2}

x3,2
= c

{3,4}
{2} (52e)

⇐⇒ −
α4,{3}α3,{2}

α2,{3}
=

α3,{4}α4,{2}

α2,{4}
= c

{3,4}
{2} , (52f)

where (52a) is equivalent to (35) for T = {1}, ℓ = 1,
where (52b) is equivalent to (40) for T = {1}, j1 = 3, j2 = 4,
where (52c) is by substituting (51b) and (51d), where (52d)
is equivalent to (35) for T = {2}, ℓ = 2, where (52e) is

equivalent to (40) for T = {2}, j1 = 3, j2 = 4,where (52f) is
by substituting (51f) and (51h).

We see that (52c) and (52f) are constraints that the encoding
coefficients must satisfy in order to be able to locally recon-
struct the non-sent multicast message.

We now look at the decoding coefficients in hierarchy 2.
There is only one decoding coefficient in hierarchy 2, namely
β
{3,4}
S for S = {1, 2}. Set S = {1, 2} can be obtained in two

ways: (Case a’) by adding leader user ℓ = 2 to T = {1}, or
(Case b’) by adding leader user ℓ = 1 to T = {2}. We shall
now look at these two cases separately.
• Case a’): we get

for B2,{1} : −β{3,4}
{1,2}α2,{1} (53a)

= β
{3,4}
{1,3}α3,{1}x3,2 + β

{3,4}
{1,4}α4,{1}x4,2 (53b)

= (−x4,1x3,2 + x3,1x4,2)︸ ︷︷ ︸
=det(D′[{3,4},{1,2}])

·
α3,{4}α4,{1}

α1,{4}︸ ︷︷ ︸
=c

{3,4}
{1}

(53c)

⇐⇒
β
{3,4}
{1,2}

x3,1x4,2 − x4,1x3,2
= −

α3,{4}α4,{1}

α1,{4}α2,{1}

= −
c
{3,4}
{1}

α2,{1}
= β̃

{3,4}
{1,2} , (53d)

where (53b) is equivalent to (42) for ℓ = 2, T = {1},
where (53c) is by substituting the values in (51b) and (51d)
and by using the equality in (52c), and where (53d) is by
rearranging the terms and is equivalent to (43) with ℓ = 2 to
T = {1}.
• Case b’): as in (53) but by swapping the role of the leader

users, we get

for B1,{2} :
β
{3,4}
{1,2}

x3,1x4,2 − x4,1x3,2
= −

α4,{3}α3,{2}

α2,{3}α1,{2}
(54a)

=
c
{3,4}
{2}

α1,{2}
= β̃

{3,4}
{1,2} , (54b)

where (54b) is equivalent to (42) for ℓ = 1 to T = {2}.
We see that (53d) and (54b) give two different values for

β̃
{3,4}
{1,2} , therefore they impose a constraint on the encoding

coefficients, which together with (52c) and (52f) result in

−
α4,{3}α3,{1}

α1,{3}α2,{1}

by (52c)
=

α3,{4}α4,{1}

α1,{4}α2,{1}
(55a)

by (53d) and (54b)
=

α4,{3}α3,{2}

α2,{3}α1,{2}
(55b)

by (52f)
= −

α3,{4}α4,{2}

α2,{4}α1,{2}
. (55c)

10

α1,{2}-α2,{1}

-α3,{2}

α4,{2}

-α3,{1}

α4,{1}

α1,{3} α2,{3}

-α4,{3}

α1,{4} α2,{4}-α3,{4}

β
˜
{1,2}←

α3,{4} α4,{2}

α1,{2} α2,{4}

c{2}←
α3,{4} α4,{2}

α2,{4}

c{1}←
α3,{4} α4,{1}

α1,{4}

β
˜
{1,3}←

α4,{3}

α1,{3}

c{3}←α4,{3}

β
˜
{1,4}←

α3,{4}

α1,{4}

c{4}←α3,{4}

β
˜
{2,3}←

α4,{3}

α2,{3}

β
˜
{2,4}←

α3,{4}

α2,{4}
β
˜
{3,4}←-1

Fig. 3: A graph representing the relationships imposed
by (45) in for the case K = 4, |L| = 2, t = 1, with

L = {1, 2} and A = {3, 4}. The superscript A = {3, 4} in
the vertices is omitted in order not to clutter the figure.

To conclude, in order to be able to locally reconstruct the
non-sent multicast message from the sent multicast messages,
by rearranging the terms in (55), we find that 3 (out of 12)
encoding coefficients must have a specific expression, for
example

by (52c) for c{3,4}1 : α3,{1} = −α1,{3}
α4,{1}

α1,{4}

α3,{4}

α4,{3}
, (56a)

by (52f) for c{3,4}2 : α3,{2} = −α2,{3}
α4,{2}

α2,{4}

α3,{4}

α4,{3}
, (56b)

by (55) for β̃{3,4}
{1,2} : α2,{1} = −

α4,{1}

α1,{4}

α2,{4}

α4,{2}
α1,{2}, (56c)

which means that only 9 encoding coefficients are free to vary
(they also must be non-zero) and the remaining 3 must be a
function of those 9. The question we ask in this section is
whether the encoding coefficients that are free to vary can be
found in an efficient way, as opposed to ‘by inspection’ as
we have done in this simple example. The answer is in the
positive and the key is to visualize the constraints imposed by
Theorem 2 on a graph, as we shall explain next.

B. Example of SLFR system with parameters (N,K, |L|, t) =
(2, 4, 2, 1): graph representation

Fig. 3 shows a graph representing the relationships imposed
by (45) for the case of K = 4 users, |L| = 2 leader users,
and memory size t = 1, where WLOG L = {1, 2} and thus
A = {3, 4}. For legibility, we omitted the superscript A =
{3, 4} from the vertices in Fig. 3 and in the notation in the
rest of this subsection. The vertices of the graph are {β̃S :
S ∈ Ω2

[4]}, which are the 6 yellow boxes in Fig. 3, and {cT :

T ∈ Ω1
[4]}, which are the 4 cyan boxes in Fig. 3. The graph is

undirected and bipartite and does not depend on the demand
matrix. The edges are labeled by an encoding coefficient with
an appropriate sign according to (45c).

We note that the so obtained graph has cycles, where the
encoding coefficients on the edges on a cycle are constrained
by (45). Therefore, a spanning tree2 for the graph identifies the
encoding coefficients that are free to vary (those that label the
edges of the spanning tree) while the remaining ones must be
of a specific form adhering to (45). For the example in Fig. 3,
the solid red edges form a spanning tree; the expression on the
RHS of the symbol← in a vertex box is the value of the vertex
when we traverse the graph from the decoding coefficient in
hierarchy 0 (here β̃{3,4} = −1, which we choose to be the
root of a spanning tree) along the spanning tree. For the graph
in Fig. 3, the 3 edges that are not in the spanning tree (marked
by doted blue lines) correspond to the constraints in (56). This
can be seen as follows.

A vertex on a cycle can “take” two different values depend-
ing from which side we reach said vertex and these two values
must be equal; therefore each cycle is a constraint. In Fig. 3 by
starting from vertex β̃{3,4} = −1, we arrive at the hierarchy 1
coefficients in {β̃{ℓ,j}, ℓ ∈ L = {1, 2}, j ∈ A = {3, 4}}
through c{3} = α4,{3} and c{4} = α3,{4} (see also comment
right after eq.(51)). At this point we see there are two cycles:
starting from the vertex β̃{3,4} along the edge with label
−α4,{3}, one is clockwise (towards vertex β̃{2,3}) and the
other is counterclockwise (towards vertex β̃{1,3}). In order
to get a spanning tree, we do not include the edge with
label −α3,{1} (for the counterclockwise cycle) and the edge
with label −α3,{2} (for the clockwise cycle). We note that by
imposing that the value of the vertex c{1} (resp. c{2}) is the
same even if we reach it through the left-out-edge −α3,{1}
(resp. −α3,{2}) we obtain the that α3,{1} must take the value
in (56a) (resp. α3,{2} must take the value in (56b)). At this
point the only vertex that has not been covered by the spanning
tree is β̃{1,2}; we have two paths that lead to β̃{1,2}: (i) by
proceeding from c{2} along the edge with label +α1,{2}: this
imposes the relationship in (54); while (ii) by proceeding
from c{1} along the edge with label −α2,{1}: this imposes
the relationship in (53); but the two must be equal, thus we
get that, for example, α1,{2} must take the value in (56c).

We next generalize the ideas through a simple example.

C. Graph Representation – Proof of Proposition 1

In Theorem 2, for a fix set L of leader users and for each
non-sent multicast message indexed by the set A ∈ Ωt+1

[K]\L of
non-leader users, the relationships among the parameters in

V(A)
1 := {c(A)

T : T ∈ Ωt
A∪L}, (57a)

V(A)
2 := {β̃(A)

S : S ∈ Ωt+1
A∪L}, (57b)

imposed by (27) can be represented by an undirected bipartite
graph G(A), where V(A) := V(A)

1 ∪ V(A)
2 as defined in (57) is

the vertex set and E(A) is the edge set given by

E(A) := {(β̃(A)
{k}∪T , c

(A)
T) :

2A spanning tree is a subset of the graph, which has all the vertices of the
graph covered with minimum possible number of edges. Hence, a spanning
tree does not have cycles and it cannot be disconnected. Moreover, every
connected and undirected graph has at least one spanning tree.

11

T ∈ Ωt
A∪L, k ∈ (A ∪ L) \ T }. (58)

We then label each edge with (up to a sign) an encoding
coefficient to capture the relationships in (27), in particular
we assign

label (−1)ϕ
(A)
k,T αk,T to edge (β̃

(A)
{k}∪T , c

(A)
T). (59)

The labels in (59) are not to be interpreted as weights for
the edges. The graph G(A) is what we referred to earlier as
graph-A.

As we did in Section IV, also here we distinguish the case
when there is only one non-sent multicast message to locally
reconstruct from the case of strictly more than one.

1) Case K−|L| = t+1: We create a spanning tree to find
values for all the vertices by using (45). We elect β̃(A)

A (recall
here we have A = L) to be the root node and assign to it
the value −1. We then create a spanning tree from that root.
By the properties of spanning trees, the encoding coefficients
on the edges of the spanning tree are free to vary (i.e., they
can be any non-zero value), while the encoding coefficients
on edges that are not part of the spanning tree are determined
through the following relationship: every path from the root to
a node determines the value of the node by using (45) and all
those values must be equal; in other words, every cycle in the
graph, obtained by adding an edge that is not on the spanning
tree to the spanning tree, is a constraint.

2) Case K − |L| > t + 1: In the case K − |L| = t + 1,
there is only one graph and finding a spanning tree on the
graph identifies all the encoding coefficients that are free to
vary. The situation is more complex when K − |L| > t +
1 as now there are multiple non-sent multicast messages; in
this case, there are multiple disjoint components to the overall
graph (one per each non-sent multicast message) that share the
same encoding coefficients as edge labels. This more complex
scenario is analyzed next as illustrated in the next example.

Fig. 4 shows the overall graph (composed of disconnected
component G({3,4}) and G({3,5}) and G({4,5})) and a set of
possible spanning trees for the case K = 5, r = 2, t = 1,
by using the same convention as in Fig. 3. Unlike the case
K − |L| = t + 1, here some encoding coefficients appear
more than once in the overall graph, meaning that finding
a spanning tree independently for each disconnect component
may result in some encoding coefficients being part of one
spanning tree (and thus being free to vary) while not being
part of other spanning trees (and thus being determined by the
corresponding ‘cycle’ constraint). Our goal is to determine all
encoding coefficients that are free to vary, while guaranteeing
that encoding coefficients on the edges of the disconnected
components have consistent values. In the conference version
of this work [1] we proposed a greedy algorithm to find a
spanning tree for each disconnected component that guarantees
constancy among disconnected components. In this journal
version we take a different approach.

We note that all disconnected components are isomorphic,
that is, by an appropriate mapping of the labels in one
component we get another component of the overall graph. For
example, by replacing each 4 with a 5 in G({3,4}) in Fig. 4a,
we get G({3,5}) in Fig. 4b. Based on this observation, we seek

solutions for (27) in Theorem 2 where β̃
(A)
{k}∪T , ϕ

(A)
k,T , c

(A)
T do

not depend on A. This is possible if we can find an alternative
formulation of the ‘sign function’ ϕ(A)

k,T in (27c) that does not
depend on A. In the case of our example, this amounts to
show that we can change the sign of both α4,{1} and α1,{4}
in G({4,5}) in Fig. 4c and still have a scheme that guarantees
we can successfully reconstruct W{4,5}.

In the next subsection we show that indeed we can find an
alternative formulation of the ‘sign function’ ϕ

(A)
k,T in (27c)

that does not depend on A and still guarantees successfully
reconstruction of all non-sent multicast messages. This new
‘sign function’ is denoted by ϕ′

k,T and is given by (30).
With (30), for the case of our example, the overall graph is
exactly as in Fig. 4 (where we had omitted the superscript
A) but with the sign of both α4,{1} and α1,{4} in G({4,5})
in Fig. 4c flipped. This however is not a valid graph as the
same vertex appears multiple components. What we do next
is to ‘merge’ the different components into a single graph,
which we refer to as the universal graph (as it captures all the
constraints needed for successful reconstruction of all non-sent
multicast messages). The universal graph is drawn as for the
case case K−|L| = t+1 but by using the new ‘sign function’
in (30) to label the edges, i.e., in the universal graph an edge
exists between β̃{k}∪T and cT and has label (−1)ϕ

′
k,T αk,T .

For the case of our example, ‘merging’ the three components
in Fig. 4 results in the universal graph in Fig. 5a.

Remark 4. When K−|L| ≥ t+1, the disconnect components
of the overall graph generated by Theorem 2 are subgraphs of
the universal graph generated by Proposition 2, except possibly
for the signs of some of the edge labels. Fig. 5 shows the
three subgraphs of the universal graph corresponding to the 3
multicast messages that must be locally reconstructed. □

Remark 5. When K − |L| ≥ t + 1, the number of encoding
coefficients in the universal graph that are free to vary (i.e.,
are on a spanning tress) is

(
K
t

)
+
(

K
t+1

)
− 1. This is because

the number of vertexes in the universal graph is
(
K
t

)
+
(

K
t+1

)
.

Thus, the number of edges in a spanning tree on the universal
graph is one less than the number of edges [19]. □

D. Proof of (30) – Proof of Proposition 2

Graphs drawn as in Fig. 4 have cycles that represent
constraints among encoding coefficients, and the shortest cycle
has length 6. We refer to such a length-6 cycle as a minimal
cycle, which has the following structure. Suppose L and A
are defined as in the rest of the paper and are fixed. Assume
P ∈ Ωt−1

A∪L and {k1, k2, k3} ⊆ A ∪ L \ P , where k1, k2 and
k3 are distinct. A minimal cycle involving (P, k1, k2, k3) is
shown in Fig. 6, where we used the shorthand notation

ρk,T := (−1)ϕ
(A)
k,T · αk,T (60)

to label the edges. In Fig. 6, the red edges form a possible
spanning tree and the left out edge (with label ρk1,{k2}∪P)
has its value determined as

ρk1,{k2}∪P =
ρk2,{k1}∪P ρk1,{k3}∪P ρk3,{k2}∪P

ρk3,{k1}∪P ρk2,{k3}∪P
. (61)

12

α1,{2}-α2,{1}

-α3,{2}

α4,{2}

-α3,{1}

α4,{1}

α1,{3} α2,{3}

-α4,{3}

α1,{4} α2,{4}-α3,{4}

β
˜
{1,2}

c{2}c{1}

β
˜
{1,3}

c{3}

β
˜
{1,4}

c{4}

β
˜
{2,3}

β
˜
{2,4}β

˜
{3,4}

(a) Component G({3,4}) for W{3,4}

α1,{2}-α2,{1}

-α3,{2}

α5,{2}

-α3,{1}

α5,{1}

α1,{3} α2,{3}

-α5,{3}

α1,{5} α2,{5}-α3,{5}

β
˜
{1,2}

c{2}c{1}

β
˜
{1,3}

c{3}

β
˜
{1,5}

c{5}

β
˜
{2,3}

β
˜
{2,5}β

˜
{3,5}

(b) Component G({3,5}) for W{3,5}

α1,2-α2,1

-α4,2

α5,2

-α4,1

α5,1

α1,4 α2,4

-α5,4

α1,5 α2,5-α4,5

β

1,2

c2c1

β

1,4

c4

β

1,5

c5

β

2,4

β

2,5β


4,5

(c) Component G({4,5}) for W{4,5}

Fig. 4: The graph and possible spanning trees for the case K = 5, r = 2, t = 1. The convention is as in Fig. 3. For sake of
legibility, we omitted the superscripts in the various sub-figures, which should be the index of the multicast message listed in

the sub-caption.

In particular, starting from (61), in Appendix A we show that

(−1)ϕ
(A)

k2,{k1}∪P (−1)ϕ
(A)

k1,{k3}∪P (−1)ϕ
(A)

k3,{k2}∪P

(−1)ϕ
(A)

k3,{k1}∪P (−1)ϕ
(A)

k2,{k3}∪P (−1)ϕ
(A)

k1,{k2}∪P

= −1, (62)

which implies that
αk2,{k1}∪P αk1,{k3}∪P αk3,{k2}∪P

αk3,{k1}∪P αk2,{k3}∪P αk1,{k2}∪P
= −1, (63)

where (62) only includes the part “(−1)ϕ
(A)
k,T ” of the function

ρk,T in (61), and (63) only the part “αk,T .” In Appendix A,
we show that (62) holds by examining all the possible cases
for |{k1, k2, k3} ∩ L|.

It is easy to see that the new sign function ϕ′
k,T in

Proposition 2 also satisfies (62) and (61).

VI. EXTENSION TO PRIVATE FUNCTION RETRIEVAL (PFR)

So far we discussed the coded caching problem with scalar
linear function retrieval and we showed the constraints a
general YMA-type linear scheme must satisfy in order to
guarantee successful decoding at all user. We next show how
the derived framework applies to other problems as well.

The Private Information Retrieval problem (PIR) was first
introduced by Chor et al. in [20]. It describes a scenario where
a user aims to retrieve a single file from multiple non-colluding
servers (all storing the same library of files) without reveling
its desired file to any server. A trivial solution is to request
all files from every server, but the network load would be
extremely large. In [16], Sun and Jafar determined the capacity
of PIR when the files are independent. Later, Sun and Jafar
in [17] generalized the PIR setting to the case where there are
linear dependency among the files, i.e., some files are linear
combinations of the the remaining files. We refer to this setting
as Private Function Retrieval (PFR). Surprisingly, [17] showed
that the capacity of PFR is the same as that of PIR. The SLFR
optimal solution under uncoded placement proposed by Wan
et. al. in [18] (see Section II-C) was inspired by the PFR

capacity achieving scheme in [17]: both schemes alternate the
encoding coefficients between −1 and 1 in some controlled
manner. In this section, we focus on the PFR scheme in [17],
and show how our universal graph framework to determine a
SLFR optimal linear scheme under uncoded placement extends
to the PFR case.

A. Problem Settings and Known Results
We start by restating the PFR problem formulation in [17]

in the SLFR notation we have been using in this paper so far.
In the following database is synonym of file. Suppose we have
K databases in which r of them are linearly independent (i.e.,
K ≥ r). Each independent database is comprised of B i.i.d.
symbols uniformly distributed over a finite field Fq. Moreover,
we have S non-colluding servers which store all databases.
The user aims to retrieve the θ-th database while preserving
privacy toward any of the servers, i.e., by leaving all servers
ignorant about the actual value θ. The goal is to minimize the
total number of symbols downloaded by user from servers.

In [17], Sun and Jafar purposed an achievable scheme
where the user first downloads uncoded symbols per each
database from each server. Then the user exploits the undesired
downloaded symbols as side information to retrieve further
desired symbols. The user repeats this procedure until the
desired database is downloaded. In order to preserve privacy,
the scheme must be symmetric across all serves and across
all files. Each step of this scheme is actually equivalent to the
delivery phase of an SLFR scheme; thus, the universal graph
approach can be used to derive a general PFR linear scheme.

We are not going to describe the general optimal PFR
scheme for all possible problem’s parameters. Instead we give
an example next to show how to use the universal graph
approach in the PFR problem.

B. Example A in [17]
Suppose we have S = 2 servers and K = 4 databases.

The databases are denoted as A,B,C,D. We assume A

13

α1,2

-α2,1
-α3,2

α4,2

-α5,2

-α3,1

α4,1

-α5,1 α1,3

α2,3

-α4,3

α5,3

α1,4

α2,4

-α3,4

α5,4

α1,5

α2,5

-α3,5

α4,5

β

1,2

c2

c1

β

1,3

c3

β

1,4

c4

β

1,5

c5

β

2,3

β

2,4

β

2,5

β

3,4

β

3,5

β

4,5

(a) The universal graph.

β

1,2

c2

c1

β

1,3

c3

β

1,4

c4

β

2,3

β

2,4

β

3,4

(b) Component for W{3,4}.
β

1,2

c2

c1

β

1,3

c3

β

1,5

c5

β

2,3

β

2,5

β

3,5

(c) Component for W{3,5}.

β

1,2

c2

c1
β

1,4

c4

β

1,5

c5

β

2,4

β

2,5

β

4,5

(d) Component for W{4,5}.

Fig. 5: Example for K = 5, r = 2, t = 1. Fig. 5a shows the universal graph and a spanning tree. Fig. 5b, Fig. 5c and Fig. 5d
are the components of the universal graph showed in Fig. 4, and spanning trees obtained from the example spanning tree in

Fig. 5a. For sake of legibility, all spanning trees are highlighted in red.

and B are linearly independent, while C and D are linear
combinations of A and B. The i-th symbol of each database
(i.e., ai, bi, ci, di) can be expressed as


ai
bi
ci
di

 =


1 0
0 1

d3,1 d3,2
d4,1 d4,2


︸ ︷︷ ︸

D

[
ai
bi

]
, (64)

for some generator matrix D. Here r = rank(D) = 2.

An optimal scheme is as follows [17]. When the user
demands A, i.e., θ = 1, the symbols dowloaded from the

serves are

t Server 1 Server 2
0 a1, b1, c1, d1 a2, b2, c2, d2
1 a3 − b2 a6 − b1

a4 − c2 a7 − c1
a5 − d2 a8 − d1
b4 − c3 b7 − c6
b5 − d3 b8 − d6
c5 − d4 c8 − d7

2 a9 − b7 + c6 a12 − b4 + c3
a10 − b8 + d6 a13 − b5 + d3
a11 − c8 + d7 a14 − c5 + d4
b11 − c10 + d9 b14 − c13 + d12

3 a15 − b14 + c13 − d12 a16 − b11 + c10 − d9

(65)

where we highlight the in cyan the ‘redundant’ messages , that
is, the user can locally construct those rather than retrieving
them from the servers. For example, the pair (c1, d1) is a
function of the pair (a1, b1) through the linear transformation
in (64).

14

ρk2,k1⋃

ρk3,k1⋃

ρk1,k2⋃

ρk3,k2⋃

ρk1,k3⋃ ρk2,k3⋃

ck1⋃

β

k1,k2⋃

ck2⋃

β

k1,k3⋃

ck3⋃

β

k2,k3⋃

Fig. 6: A minimal cycle. Fixed L and A, assume P ∈ Ωt−1
A∪L

and {k1, k2, k3} ⊆ A ∪ L \ P . ρk,T := (−1)ϕ
(A)
k,T αk,T . For

the sake of legibility, we omitted all superscript A in all
vertexes.

We see that with S = 2 servers, the messages in each block t
in (65) sent by the same server are equivalent to the multicast
messages generated as in the (K, r, q) SLFR problem with
memory size t and with demand matrix D in (64). For example,
one can see that

• the messages corresponding to the ‘row’ t = 1 in (65)
sent by Server 1 are the same as the multicast messages of
an SLFR problem with 4 users, 2 leaders, cache contents

Z1 = {a2, b2, c2, d2}, (66a)
Z2 = {a3, b3, c3, d3}, (66b)
Z3 = {a4, b4, c4, d4}, (66c)
Z4 = {a5, b5, c5, d5}, (66d)

and with demand matrix D in (64). The correspondence
between PFR and SLFR is evident if we map the symbol
indexes in (66) to the subsets in Ω1

[4] according to

(2, 3, 4, 5)→ ({1}, {2}, {3}, {4}). (67)

For example, “2→ {1}” means that symbol a2 is cached
by SLFR user 1, in other words, a2 in PFR would be
indicated as a{1} in SLFR. Each SLFR user demands
symbols cached by other SLFR users; in this sense, the
SLFR scheme generates multicast messages exactly same
as the PFR.

• the messages in the ‘row’ t = 2 in (65) sent by Server 2
are the same as the multicast messages of an SLFR
problem with 4 users, 2 leaders, cache contents

Z1 =
⋃
i∈I1

{ai, bi, ci, di}, with I1 = {3, 4, 5}, (68a)

Z2 =
⋃
i∈I2

{ai, bi, ci, di}, with I2 = {3, 12, 13}, (68b)

Z3 =
⋃
i∈I3

{ai, bi, ci, di}, with I3 = {4, 12, 14}, (68c)

Z4 =
⋃
i∈I4

{ai, bi, ci, di}, with I4 = {5, 13, 14}, (68d)

and with demand matrix D in (64). The correspondence
between PFR and SLFR is again evident if we map the
symbol indexes in (68) to the subsets Ω2

[4] as follows

(3, 4, 5, 12, 13, 14)

→
(
{1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}

)
. (69)

For example, “3 → {1, 2}” means that symbol a3 is
cached by SLFR users 1 and 2, in other words, a3 in
PFR would be indicated as a{1,2} in SLFR. In this sense,
it is straightforward that the PFR messages are equivalent
to SLFR multicast messages.

C. Constraints among Coefficients of Symbols

In the PFR scheme in [17], the encoding coefficients alter-
nate between +1 and −1. With the help of universal graph, it is
possible to select other elements in Fq as encoding coefficients
and capture the constraints among them. The PFR user exploits
previous messages which do not contain desired symbols as
side information for future messages sent by another server.
We explained above how those PFR messages are equivalent
to SLFR multicast messages.

We denote the encoding coefficient with the SLFR-like
notation {αi,W ∈ Fq \ {0}, i ∈ [K],W ⊆ [K]} by following
the maps in (67) and in (69). The most general version of the
scheme in (65) when θ = 1 is requested is as shows in (70) at
the top of the next page. In (70), we highlighted in magenta
the symbols treated as side information for further messages,
and in blue the symbols that are side information in the current
block. For example, a magenta symbol from Server 2 in ‘row’
t = 1 is a blue symbol for Server 1 in ‘row’ t = 2, possibly
multiplied by an encoding coefficient. Encoding coefficients
with modulo different from one will not affect privacy.

In (70), we can build a universal graph for the messages
sent by the same server in each ‘row’ t ∈ [K − r − 1], i.e.,
when redundant multicast messages exist in the equivalent
SLFR problem. However, there are some additional equality
constraints in PFR among the encoding coefficients not present
in SLFR, that is, the messages highlighted in blue in a ‘row’
should be equal to the messages highlighted in magenta in
previous ‘row’. For example, we should have constraints such
as α2,{3} = α2,{1,3}, α3,{2} = α3,{1,2}, etc. A solution to
this new issue is as follows: the encoding coefficients that are
not-free in the universal graph for the messages sent by the
same server in ‘row’ t will be inherited by the universal graph
in ‘row’ t+ 1 for the other server. Therefore, one can derive
the conditions a general linear scheme for PFR must satisfy
by solving a series of spanning tree problems for the various
universal graphs in the corresponding SLFR problem, one such
problem for each ‘row’ at each server.

VII. CONCLUSION

In this paper, we investigated the constraints that a linear
scheme for cache-aided scalar linear function retrieval must
satisfy in order to be feasible. We showed that the constraints

15

t Server 1 Server 2
0 a2, b2, c2, d2
1 α1,{2}a3 + α2,{1}b2

α1,{3}a4 + α3,{1}c2
α1,{4}a5 + α4,{1}d2
α2,{3}b4 + α3,{2}c3
α2,{4}b5 + α4,{2}d3
α3,{4}c5 + α4,{3}d4

2 α1,{2,3}a12 + α2,{1,3}b4 + α3,{1,2}c3
α1,{2,4}a13 + α2,{1,4}b5 + α4,{1,2}d3
α1,{3,4}a14 + α3,{1,4}c5 + α4,{1,3}d4
α2,{3,4}b14 + α3,{2,4}c13 + α4,{2,3}d12

3 α1,{2,3,4}a15 + α2,{1,3,4}b14+
+α3,{1,2,4}c13 + α4,{1,2,3}d12

(70)

among the parameters of a feasible linear scheme are captured
by the cycles of the universal graph. Equivalently, we showed
that a spanning tree for the universal graph identifies all
the parameters of the feasible linear scheme that are free to
vary. The structure of our general scheme sheds light into a
scheme that had been previously proposed in the literature
and naturally extends to problems such as private function
computation/retrieval.

APPENDIX A
PROOF OF (62) AND (63)

The condition in (62) is equivalent to

ϕ
(A)
k2,{k1}∪P + ϕ

(A)
k1,{k3}∪P + ϕ

(A)
k3,{k2}∪P − ϕ

(A)
k3,{k1}∪P

− ϕ
(A)
k2,{k3}∪P − ϕ

(A)
k1,{k2}∪P = (An odd number), (71)

which is equivalent to

ϕ
(A)
k2,{k1}∪P ± ϕ

(A)
k1,{k3}∪P ± ϕ

(A)
k3,{k2}∪P ± ϕ

(A)
k3,{k1}∪P

± ϕ
(A)
k2,{k3}∪P ± ϕ

(A)
k1,{k2}∪P = (An odd number), (72)

since neither plus nor minus affects parity. We show here
that (72) is true. We separate the proof into four cases, i.e.,
|{k1, k2, k3} ∩ L| ∈ {0, 1, 2, 3}. Assume k1 < k2 < k3. By
definition of the function ϕ

(A)
k,T we have

1) k1, k2, k3 are non-leader users:

ϕ
(A)
k1,{k3}∪P + ϕ

(A)
k1,{k2}∪P

= IndA\({k3}∪P),k1
+ IndA\({k2}∪P),k1

= IndA\P,k1
+ IndA\P,k1

= (even), (73a)

ϕ
(A)
k2,{k1}∪P + ϕ

(A)
k2,{k3}∪P

= IndA\({k1}∪P),k2
+ IndA\({k3}∪P),k2

= (IndA\P,k2
− 1) + IndA\P,k2

= (odd), (73b)

ϕ
(A)
k3,{k2}∪P + ϕ

(A)
k3,{k1}∪P

= IndA\({k2}∪P),k3
+ IndA\({k1}∪P),k3

= (IndA\P,k3
− 1) + (IndA\P,k3

− 1)

= (even). (73c)

Therefore, the sum of the above three terms is an odd
number.

2) k1 is a leader:

ϕ
(A)
k1,{k3}∪P + ϕ

(A)
k1,{k2}∪P

= (1 + Ind({k1,k3}∪P)\A,k1
) + (1 + Ind({k1,k2}∪P)\A,k1

)

= (1 + Ind({k1}∪P)\A,k1
) + (1 + Ind({k1}∪P)\A,k1

)

= (even), (74a)

ϕ
(A)
k2,{k1}∪P + ϕ

(A)
k2,{k3}∪P

= IndA\({k1}∪P),k2
+ IndA\({k3}∪P),k2

(74b)
= IndA\P,k2

+ IndA\P,k2
= (even),

ϕ
(A)
k3,{k2}∪P + ϕ

(A)
k3,{k1}∪P

= IndA\({k2}∪P),k3
+ IndA\({k1}∪P),k3

= (IndA\P,k3
− 1) + IndA\P,k3

= (odd). (74c)

Therefore, the sum of the above three terms is an odd
number.

3) k1, k2 are leader users:

ϕ
(A)
k1,{k3}∪P + ϕ

(A)
k1,{k2}∪P

= (1 + Ind({k1,k3}∪P)\A,k1
) + (1 + Ind({k1,k2}∪P)\A,k1

)

= (1 + Ind({k1}∪P)\A,k1
) + (1 + Ind({k1}∪P)\A,k1

)

= (even), (75a)

ϕ
(A)
k2,{k1}∪P + ϕ

(A)
k2,{k3}∪P

= (1 + Ind({k1,k2}∪P)\A,k2
) + (1 + Ind({k2,k3}∪P)\A,k2

)

= (2 + Ind({k2}∪P)\A,k2
) + (1 + Ind({k2}∪P)\A,k2

)

= (odd), (75b)

ϕ
(A)
k3,{k2}∪P + ϕ

(A)
k3,{k1}∪P

= IndA\({k2}∪P),k3
+ IndA\({k1}∪P),k3

= IndA\P,k3
+ IndA\P,k3

= (even). (75c)

Therefore, the sum of the above three terms is an odd
number.

4) k1, k2, k3 are leader users:

ϕ
(A)
k1,{k3}∪P + ϕ

(A)
k1,{k2}∪P

= (1 + Ind({k1,k3}∪P)\A,k1
) + (1 + Ind({k1,k2}∪P)\A,k1

)

= (1 + Ind({k1}∪P)\A,k1
) + (1 + Ind({k1}∪P)\A,k1

)

= (even), (76a)

ϕ
(A)
k2,{k1}∪P + ϕ

(A)
k2,{k3}∪P

16

= (1 + Ind({k1,k2}∪P)\A,k2
) + (1 + Ind({k2,k3}∪P)\A,k2

)

= (2 + Ind({k2}∪P)\A,k2
) + (1 + Ind({k2}∪P)\A,k2

)

= (odd), (76b)

ϕ
(A)
k3,{k2}∪P + ϕ

(A)
k3,{k1}∪P

= (1 + Ind({k2,k3}∪P)\A,k3
) + (1 + Ind({k1,k3}∪P)\A,k3

)

= (2 + Ind({k3}∪P)\A,k3
) + (2 + Ind({k3}∪P)\A,k3

)

= (even). (76c)

Therefore, the sum of the above three terms is an odd
number.

This concludes the proof that the condition in (62) is true.
With (62) into (61), we have that the condition in (63) is also
true.

REFERENCES

[1] Y. Ma and D. Tuninetti, “A general coded caching scheme for scalar
linear function retrieval,” in 2021 IEEE International Symposium on
Information Theory (ISIT), pp. 2816–2821, IEEE, 2021.

[2] M. A. Maddah-Ali and U. Niesen, “Fundamental limits of caching,”
IEEE Transactions on Information Theory, vol. 60, no. 5, pp. 2856–
2867, 2014.

[3] Q. Yu, M. A. Maddah-Ali, and A. S. Avestimehr, “The exact rate-
memory tradeoff for caching with uncoded prefetching,” IEEE Transac-
tions on Information Theory, vol. 64, no. 2, pp. 1281–1296, 2017.

[4] K. Wan, D. Tuninetti, and P. Piantanida, “An index coding approach
to caching with uncoded cache placement,” IEEE Transactions on
Information Theory, vol. 66, no. 3, pp. 1318–1332, 2020.

[5] A. M. Ibrahim, A. A. Zewail, and A. Yener, “Benefits of edge caching
with coded placement for asymmetric networks and shared caches,”
IEEE Journal on Selected Areas in Information Theory, vol. 2, no. 4,
pp. 1240–1252, 2021.

[6] Q. Yu, M. A. Maddah-Ali, and A. S. Avestimehr, “Characterizing the
rate-memory tradeoff in cache networks within a factor of 2,” IEEE
Transactions on Information Theory, vol. 65, no. 1, pp. 647–663, 2018.

[7] A. Sengupta, R. Tandon, and T. C. Clancy, “Fundamental limits of
caching with secure delivery,” IEEE Transactions on Information Foren-
sics and Security, vol. 10, no. 2, pp. 355–370, 2014.

[8] K. Wan and G. Caire, “On coded caching with private demands,” IEEE
Transactions on Information Theory, vol. 67, no. 1, pp. 358–372, 2020.

[9] M. Cheng, Y. Li, X. Zhong, and R. Wei, “Improved constructions of
coded caching schemes for combination networks,” IEEE Transactions
on Communications, vol. 68, no. 10, pp. 5965–5975, 2020.

[10] K. Wan, D. Tuninetti, M. Ji, and P. Piantanida, “Combination networks
with end-user-caches: Novel achievable and converse bounds under
uncoded cache placement,” arXiv preprint arXiv:1701.06884, 2017.

[11] M. Ji, G. Caire, and A. F. Molisch, “Fundamental limits of caching
in wireless d2d networks,” IEEE Transactions on Information Theory,
vol. 62, no. 2, pp. 849–869, 2015.

[12] S. Li, M. A. Maddah-Ali, Q. Yu, and A. S. Avestimehr, “A funda-
mental tradeoff between computation and communication in distributed
computing,” IEEE Transactions on Information Theory, vol. 64, no. 1,
pp. 109–128, 2017.

[13] M. A. Attia and R. Tandon, “Near optimal coded data shuffling for
distributed learning,” IEEE Transactions on Information Theory, vol. 65,
no. 11, pp. 7325–7349, 2019.

[14] A. Elmahdy and S. Mohajer, “On the fundamental limits of coded
data shuffling for distributed machine learning,” IEEE Transactions on
Information Theory, vol. 66, no. 5, pp. 3098–3131, 2020.

[15] K. Wan, D. Tuninetti, M. Ji, G. Caire, and P. Piantanida, “Fundamental
limits of decentralized data shuffling,” IEEE Transactions on Information
Theory, vol. 66, no. 6, pp. 3616–3637, 2020.

[16] H. Sun and S. A. Jafar, “The capacity of private information retrieval,”
IEEE Transactions on Information Theory, vol. 63, no. 7, pp. 4075–
4088, 2017.

[17] H. Sun and S. A. Jafar, “The capacity of private computation,” IEEE
Transactions on Information Theory, vol. 65, no. 6, pp. 3880–3897,
2018.

[18] K. Wan, H. Sun, M. Ji, D. Tuninetti, and G. Caire, “On the optimal
load-memory tradeoff of cache-aided scalar linear function retrieval,”
IEEE Transactions on Information Theory, vol. 67, no. 6, pp. 4001–
4018, 2021.

[19] J. Kleinberg and E. Tardos, Algorithm design. Pearson Education, 2006.
[20] B. Chor, O. Goldreich, E. Kushilevitz, and M. Sudan, “Private infor-

mation retrieval,” in Proceedings of IEEE 36th Annual Foundations of
Computer Science, pp. 41–50, IEEE, 1995.

Yinbin Ma (Student Member, IEEE) is a Ph.D.
candidate in Electrical and Computer Engineering
(ECE) at University of Illinois Chicago (UIC). He
received a Master’s degree of Science in ECE from
UIC in 2020, and a Bachelor’s degree of Science
in Computer Science from Xidian University in
2019. His research interests include the distributed
information management and information theory.

Daniela Tuninetti (Fellow, IEEE) received the
Ph.D. degree in Electrical Engineering from
ENST/Télécom ParisTech, Paris, France, in 2002,
with work done at the Eurecom Institute, Sophia
Antipolis, France. She is currently a Professor and
Department Head of Electrical and Computer En-
gineering (ECE) at University of Illinois Chicago
(UIC), where she joined in 2005. She was a Post-
Doctoral Research Associate with the School of
Communication and Computer Science, Swiss Fed-
eral Institute of Technology in Lausanne (EPFL),

Lausanne, Switzerland, from 2002 to 2004. Her research interests include the
ultimate performance limits of wireless interference networks (with special
emphasis on cognition and user cooperation), coexistence between radar and
communication systems, multi-relay networks, content-type coding, cache-
aided systems, and distributed private coded computing. She was a recipient
of the Best Paper Award at the European Wireless Conference in 2002, the
NSF CAREER Award in 2007, and named as the University of Illinois Scholar
in 2015. She was the Editor-in-Chief of the IEEE Information Theory Society
Newsletter from 2006 to 2008, an Editor of IEEE COMMUNICATIONS
LETTERS from 2006 to 2009, IEEE TRANSACTIONS ON WIRELESS
COMMUNICATIONS from 2011 to 2014, and IEEE TRANSACTIONS ON
INFORMATION THEORY from 2014 to 2017. She is an Editor of IEEE
TRANSACTIONS ON COMMUNICATIONS. She is currently a Distin-
guished Lecturer and an elected member of the Board of Governors of the
IEEE Information Theory Society.

	Introduction
	Paper Contribution
	Paper Organization
	Notation Convention

	Problem Formulation and Known Results
	Problem Formulation
	General YMA-type SLFR Scheme
	Known Results from wan2021optimal
	Example of SLFR system with parameters (N,K,|blueL|,t)=(2,4,2,1): scheme in wan2021optimal

	Main Results
	Main Result 1: General YMA-type SLFR Scheme
	Example of SLFR system with parameters (N,K,|blueL|,t)=(2,4,2,1): general scheme
	Main Result 2: Universal Graph

	Proof of Theorem 2
	Case K-|blueL|=t+1
	Case K-|blueL| > t+1

	Proof of Propositions 1 and 2
	Example of SLFR system with parameters (N,K,|blueL|,t)=(2,4,2,1): algebraic manipulations
	Example of SLFR system with parameters (N,K,|blueL|,t)=(2,4,2,1): graph representation
	Graph Representation – Proof of Proposition 1
	Case K-|blueL| = t+1
	Case K- |blueL| > t+1

	Proof of (30) – Proof of Proposition 2

	Extension to Private Function Retrieval (PFR)
	Problem Settings and Known Results
	Example A in sun2018capacity
	Constraints among Coefficients of Symbols

	Conclusion
	Appendix A: Proof of (62) and (63)
	References
	Biographies
	Yinbin Ma
	Daniela Tuninetti

