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Abstract—This work investigates a system where each user
aims to retrieve a scalar linear function of the files of a library,
which are Maximum Distance Separable coded and stored at
multiple distributed servers. The system needs to guarantee
robust decoding in the sense that each user must decode its
demanded function with signals received from any subset of
servers whose cardinality exceeds a threshold. In addition, (a)
the content of the library must be kept secure from a wiretapper
who obtains all the signals from the servers; (b) any subset of
users together can not obtain any information about the demands
of the remaining users; and (c) the users’ demands must be kept
private against all the servers even if they collude. Achievable
schemes are derived by modifying existing Placement Delivery
Array (PDA) constructions, originally proposed for single-server
single-file retrieval coded caching systems without any privacy
or security or robustness constraints. It is shown that the PDAs
describing the original Maddah-Ali and Niesen’s coded caching
scheme result in a load-memory tradeoff that is optimal to within
a constant multiplicative gap, except for the small memory regime
when the number of file is smaller than the number of users. As
by-products, improved order optimality results are derived for
three less restrictive systems in all parameter regimes.

Index Terms—Coded caching; Distributed storage; Maximum
distance separable code; Placement delivery array, Privacy;
Robust decoding; Scalar linear function retrieval; Security;

I. INTRODUCTION

Coded caching, introduced by Maddah-Ali and Niesen
(MAN) [2], is a technique to reduce the peak-time commu-
nication load across a bottleneck shared link by leveraging
the multicast opportunities created by content pre-stored at
users’ local caches. The model consists of a single server,
multiple users, and two phases. In the placement phase, the
users’ caches are populated without the knowledge of their
future demands. In the delivery phase, when users’ demands
are revealed, the server satisfies them by transmitting coded
packets over the shared link. For a system with N files
and K users, the MAN scheme achieves the optimal load-
memory tradeoff among all uncoded placement schemes when
N ≥ K [3], and for N < K after removing some redundant
transmissions [4]. Recently, it was showed that allowing the
users to demand arbitrary linear combinations of the files does
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not increase the load compared to the case single file retrieval,
at least under uncoded placement [5].

Content security, demand (both user- and server-side) pri-
vacy, and robustness are critical aspects of practical systems.

Content Security: In [6], the content of the library must
be protected against an external wiretapper who obtains the
signals transmitted during the delivery phase. The key idea
in [6] is that users cache the same content as in the MAN
scheme [2], and in addition also share some security keys for
the part of the files that were not cached in the MAN scheme.
The latter is done in a structured way so that each user can
retrieval all the multicast signals it needs to decode.

User-side Demand Privacy: Schemes that guarantee user
privacy, that is, no user can infer the demand of another user
after the delivery phase, were proposed in [7]. In particular,
user privacy can be guaranteed by adding virtual users [7], [8].
We investigated user privacy against colluding users in [9], for
both single file retrieval and scalar linear function retrieval,
where we imposed that any subset of users must not obtain
any information about the demands of other users even if they
exchange the content in their caches. The key idea in [9]
is that, in addition to the cached contents as in the MAN
scheme [2], each user also privately caches some privacy keys,
which are composed as random linear combinations of the
parts of the files that were not cached in the MAN scheme. The
demands are added by the same coefficients used to generate
the privacy keys, so that each user can decode its demanded
files with the privacy keys.

Content Security & User-side Demand Privacy: We
investigated simultaneous content Security and user demand
Privacy for scalar Linear Function Retrieval (SP-LFR) in [10],
where we designed a key superposition scheme to guarantee
both conditions at once by superposing (i.e., sum together)
the security keys and privacy keys. We showed that the load-
memory tradeoff in this case is the same as in the setup with
only content security guarantees. The idea of key superposition
was incorporated into the framework of Placement Delivery
Array (PDA), which was known to depict both placement and
delivery phases in a single array for coded caching systems
with neither security or privacy constraint [11]. The advantage
of the PDA framework is that low subpacketization schemes
can be obtained directly from existing PDA constructions, such
as the ones in [11]–[15].

Server-side Demand Privacy: Server-side demand pri-
vacy has been thoroughly investigated for the case of multiple
servers and a single user, which is known as the Private
Information Retrieval (PIR) problem [16]. The capacity of PIR
has been characterized in [17] for single file retrieval, in [18]
for scalar linear function retrieval, and in [19] or single file



Fig. 1: System model

retrieval and colluding servers. PIR with a cache-aided user
was investigated in [20]–[23].

MDS Coded Servers and Decoding Robustness: Since
node failures and erasures commonly arise in storage systems,
redundancy is desirable [24]. Maximum Distance Separable
(MDS) codes are often used to code the data stored across
servers. The advantage of MDS coded servers is that it saves
storage while allowing unresponsive servers. PIR from MDS-
coded servers has been investigated in [25]–[27], and the
capacity was charactered in [25]. The schemes in [26], [27]
have almost optimal sub-packetization among all schemes
achieving the smallest download rate. The PIR schemes in [28]
have asymptotically optimal download rate when any number
of unresponsive servers not exceeding some threshold show
up.

Notice that, the content security and user-side privacy
are mainly investigated in coded caching literature, which
typically involves a single server and multiple users, while
the MDS-coded servers and server-side privacy are mainly
investigated in the PIR literature, which typically involves mul-
tiple servers and a single user. For multiple-server-multiple-
user systems, the techniques from coded caching and PIR
were combined in [29], [30] to guarantee server-side privacy.
However, how to satisfy all the above requirement is not clear
as far as we know.

A. Contributions and Paper Organization

In this paper, we combine all the above mentioned require-
ments in a system whose model is depicted in Fig. 1. The
model consists of H servers, N files, and K users. Each of
the N files is stored, as an (H,L) MDS coded version1, at
all servers. Each server is connected to all the users via a
dedicated shared link, but may not be able to reach all the
users. The novel aspect of this work is to design coded caching
schemes that are robust to some servers’ unavailability, that
is, each user must be able to retrieve an arbitrary scalar linear
function of the files from the signals obtained from an arbitrary
subset of L servers (out of H servers). The security [6], user-
side privacy [9] and server-side privacy [19] conditions are
also imposed. We refer to this model as a Robust Secure and

1An (H,L) MDS code encodes L information packets into H coded
packets, with the property that upon obtaining any L (out of H) coded packets
one can recover the L information packets.

(server- and user-side) Private Linear Function Retrieval (RSP-
LFR) problem.

Our key idea on how to guarantee all those conditions
simultaneously is to extend the key superposition scheme
in [10]. In particular, the technique of superposing user-side
privacy and security keys is used in the placement phase, while
in the delivery phase, the multicast signals are created in the
MDS code domain, where the MDS coded version of the keys
are added to the MDS coded multicast signals. Robustness is
guaranteed by the linearity property of the MDS code. Security
and (server- and user-side) privacy are guaranteed since each
transmitted signal is accompanied by an appropriate MDS
coded key.

Our main contributions for the proposed RSP-LFR model
are as follows.

1) We propose a procedure to obtain a RSP-LFR scheme
from a given PDA, so that low-subpacketization RSP-
LFR schemes can be easily obtained from various ex-
isting PDA constructions [11]–[15]. Interestingly, with
the same PDA, compared to the single server SP-LFR
system in [10], the achieved memory size is the same,
but the load is scaled by a factor H/L, i.e., the inverse
of the rate of the MDS code used to encode the library
files.

2) Following the proposed procedure, RSP-LFR schemes
based on the PDAs that describe the original MAN
scheme in [2] (MAN-PDAs) are proved to achieve the
best load-memory tradeoffs among all PDA-based RSP-
LFR schemes. Moreover, we show that they have the
smallest subpacketization among all PDA based schemes
achieving the same load-memory pairs.

3) The load-memory tradeoff achieved by MAN-PDAs is
proved to be to within a constant multiplicative gap from
the optimal load-memory tradeoff, except for the regime
of small memory and less files than users.

4) For three less restrictive models, where some conditions
are dropped, we propose schemes for the corresponding
setups that improve the load-memory tradeoffs of the
novel MAN-PDA-based RSP-LFR scheme. The idea for
improving the tradeoff in less restrictive models is as
follows. In the case where security is not imposed,
security keys can be removed, and hence, some signals
in the delivery phase became redundant and can be
removed akin to [4], [5], [10]. Moreover, those improved
schemes are shown to be optimal to within a constant
multiplicative gap in their respective setups in all pa-
rameter regimes, and the gap is lower than previously
known schemes.

The rest of this paper is organized as follows. Section II
gives the formal problem definition. Section III reviews the
PDA framework and gives an illustrative example. Section IV
summarizes our main results, where the proof details are
deferred to Sections V–VII. Section VIII presents some nu-
merical results. Section IX concludes the paper.

B. Notation Convention
In this paper, N+ denotes the set of positive integers; Fq

and Fnq denote the finite field of cardinality q, for some



prime power q, and the n-dimensional vector space over Fq ,
respectively. For two integers m,n such that m ≤ n, we
use [m : n] to denote the set of the first positive integers
{m, . . . , n}; [1 : n] is also denoted by [n] for short. We use
XA to denote the tuple composed of {Xi : i ∈ A} for some
integer set A, where the elements are ordered increasingly,
e.g., X[3] = (X1, X2, X3). For variables with two or more
indices, e.g., Xi,j , we use XA,B to denote the tuple {Xi,j :
i ∈ A, j ∈ B}, where the elements are listed in lexicographical
order, e.g. X[3],[2] = (X1,1, X1,2, X2,1, X2,2, X3,1, X3,2).

II. SYSTEM MODEL

Let N,K,L,H be positive integers satisfying L ≤ H .
The (N,K,L,H) RSP-LFR system, illustrated in Fig. 1,
consists of H servers (denoted by 1, . . . ,H), where each
server is connected to K users (denoted by 1, . . . ,K) via a
dedicated shared-link. A file library of N files (denoted by
W1, . . . ,WN ∈ FBq ) are stored at the H servers in the form
of an (H,L) MDS code as follows, where B denotes the file
length. Each file Wn, n ∈ [N ], is composed of L equal-size
subfiles Wn,1, . . . ,Wn,L ∈ FB/Lq and is encoded into H coded
subfiles Wn,1, . . . ,Wn,H ∈ FB/Lq with a given (H,L) MDS
code with generator matrix

G =

 g1,1 . . . g1,H
...

. . .
...

gL,1 . . . gL,H

 ,
that is, the coded subfiles are given by

(Wn,1, . . . ,Wn,H)

=
( ∑
l∈[L]

gl,1Wn,l, . . . ,
∑
l∈[L]

gl,HWn,l

)
, ∀n ∈ [N ]. (1)

The N files are mutually independent and uniformly dis-
tributed over FBq , that is,

H(W1) = . . . = H(WN ) = B,

H(W1, . . . ,WN ) = H(W1) + . . .+H(WN ).

Therefore, each subfile or coded subfile is uniformly dis-
tributed over FB/Lq . Server h ∈ [H] stores the h-th coded
subfile of each file, i.e.,

W [N ],h := (W 1,h, . . . ,WN,h), ∀h ∈ [H].

For notational simplicity, for a vector a = (a1, . . . , aN )> ∈
FNq , we denote the scalar (i.e., operations are meant element-
wise across files) linear combination of the files or (coded)
subfiles for all l ∈ [L] and h ∈ [H] as

Wa :=
∑
n∈[N ]

anWn, (2a)

Wa,l :=
∑
n∈[N ]

anWn,l, (2b)

W a,h :=
∑
n∈[N ]

anWn,h =
∑
l∈[L]

gl,hWa,l. (2c)

Notice that, Wa,Wa,l,W a,h are linear in a, e.g., for any
u, v ∈ Fq and a,b ∈ FNq , Wua+vb = uWa+vWb. Moreover,

since Wn,[H] := (Wn,1, . . . ,Wn,H) is the MDS coded ver-
sion of Wn,[L] := (Wn,1, . . . ,Wn,L), ∀n ∈ [N ], by linearity
we have that W a,[H] := (W a,1, . . . ,W a,H) is the MDS coded
version of Wa,[L] := (Wa,1, . . . ,Wa,L), ∀a ∈ FNq , as in (2c).

The system operates in two phases as follows.
Placement Phase: The servers can communicate with

each other, and all users can access all servers. To ensure the
security condition in (4b), the servers share some randomness
V from some finite alphabet V . Each user k ∈ [K] generates
some random variable Pk from some finite alphabet Pk and
cache some content Ck as a function of Pk, V and the file
library W[N ]. Let the cached content be

Ck := ϕk(Pk, V,W[N ]) ∈ FbMBc
q , ∀ k ∈ [K],

for some encoding functions ϕk : Pk × V × FNBq 7→
FbMBc
q , ∀ k ∈ [K]. The quantity M is referred to as memory

size. The encoding functions ϕ1, . . . , ϕK are known by the
servers, but the randomness P1, . . . , PK are kept private by
the corresponding users.

Delivery Phase: Each user k ∈ [K] generates a demand
dk = (dk,1, . . . , dk,N )> ∈ FNq , meaning it is interested
in retrieving the linear combination of the files Wdk

. The
following random variables are independent

H(d[K],W[N ], P[K], V ) =∑
k∈[K]

H(dk) +
∑
n∈[N ]

H(Wn) +
∑
k∈[K]

H(Pk) +H(V ).

User k ∈ [K] generates queries Qk,[H] := (Qk,1, . . . , Qk,H)
as

Qk,h := κk,h(dk, Ck) ∈ F`k,h
q , ∀h ∈ [H],

for some query functions κk,h : FNq ×FbMBc
q 7→ F`k,h

q , where
`k,h is the length of the query Qk,h. If any randomness is
needed in the queries, it has to be stored in the cache. Then
user k ∈ [K] sends the query Qk,h to server h ∈ [H].

Upon receiving the queries from all the users, server h ∈
[H] creates a signal Xh as

Xh := φh(V,Q[K],h,W [N ],h) ∈ FbRhBc
q , ∀h ∈ [H],

for some encoding function φh : V × F
∑

k∈[K] `k,h

q × F
NB
L
q 7→

FbRhBc
q . The quantity Rh, h ∈ [H], is referred to as the load

of server h. The (total) load of the system is defined as

R :=
∑
h∈[H]

Rh.

An RSP-LFR scheme must satisfy the following conditions
for all demands d1, . . . ,dK ∈ FNq .

[Robust Correctness] : H(Wdk
|XL,dk, Ck) = 0,

∀ k ∈ [K],L ⊆ [H] : |L| = L, (4a)
[Security] : I(W[N ];X[H]) = 0, (4b)
[User-side Privacy] : I(d[K]\S ;CS , X[H],dS , |W[N ]) = 0,

∀S ⊆ [K] : S 6= ∅, (4c)
[Server-side Privacy] :

I(d[K];Q[K],[H],W [N ],[H], V ) = 0, (4d)



Objective: A memory-load pair (M,R) ∈ [1, N ] × R+

is said to be B-achievable if, for any ε > 0, there exists a
scheme satisfying all the conditions in (4) with memory size
less than M + ε, load less than R + ε with file-length B.
The main objective of this paper is to characterize the optimal
load-memory tradeoff of the system, defined as

R∗(M) := inf
B∈N+

{
R : (M,R) is B-achievable

}
. (5)

Throughout this paper, we consider the case N ≥ 2, since
demand privacy is impossible for N = 1 (i.e., there is only
one possible file to be demanded).

For a given scheme, we are also interested in its subpacke-
tization level, which is defined as the number of packets each
file has to be partitioned into in order to implement the scheme.

Remark 1 (Implications of the conditions in (4)). The con-
strains in (4) imply the following.

1) The robust correctness condition in (4a) guarantees that
each user can correctly decode its required scalar linear
function by receiving any L-subsets of the transmitted
signals. Since each user decodes independently, the
available subset of signals L need not to be same across
the users.

2) The security condition in (4b) guarantees that a wiretap-
per, who is not a user in the system and observes all the
delivery signals, can not obtain any information about
the contents of the library files. It was proved in [9,
Appendix A] that the conditions in (4b) and (4c) imply

I(W[N ],d[K];X[H]) = 0,

that is, the wiretapper having access to X[H] in fact
can not obtain any information on both the files and
the demands of the users.

3) The user-side privacy condition in (4c) guarantees that
any subset of users who exchange their cache contents
cannot jointly learn any information on the demands of
the other users, regardless of the file realizations.

4) The server-side privacy condition in (4d) guarantees
that the servers can not obtain any information on the
demands of the users, even if all the servers collude by
exchanging their stored contents.

Remark 2 (Minimum memory size). It was proved in [6] that,
in order to guarantee the correctness condition in (4a) and the
security condition in (4b) simultaneously, the memory size M
has to be no less than one. Thus the load-memory tradeoff is
defined for M ∈ [1, N ].

Remark 3 (Comparison with [29]). In the case L = 1 and G =
[1, 1, . . . , 1], the servers store replicated databases. A scheme
to retrieve single files from replicated databases for multiple
users was proposed in [29], while guaranteeing server-side
privacy. This is different from our setup, even if we remove
the user-side privacy and security conditions, since our robust
decoding setup in this case imposes that each user can decode
from the signal of any single server (i.e., L = 1).

Remark 4 (Less Constrained Systems and Naming Conven-
tion). For any given RSP-LFR (N,K,L,H) system, the

robust correctness condition in (4a) guarantees that the users
can correctly decode their demands by receiving the signals
from any L servers. In addition to investigating the load-
memory tradeoff of the RSP-LFR system, we also discuss less
constrained systems where some of the conditions in (4) are
relaxed or dropped. In such systems, the optimal load-memory
tradeoff can be similarly defined as in (5). In particular, we
use R∗C(M) to denote the optimal load-memory tradeoff of a
system with only the constrains listed in the label C, which
can be any of the following:
• L: scalar Linear Function Retrieval (LFR) demands, i.e.,

the demands d1, . . . ,dK ∈ FNq ;
• F: File Retrieval (FR) demands, i.e., the demands

d1, . . . ,dK are restricted to {e1, . . . , eK}, where en ∈
FNq , n ∈ [N ], is the vector with the n-th digit being 1
and all the others zero;

• S: the security condition in (4b);
• P: both privacy conditions in (4c) and (4d);
• PU: the user-side privacy condition in (4c);
• PS: the server-side privacy condition in (4d);

The convention for the subscript C is:
1) It contains either L or F, but not both, so as to identify

the demand type allowed in the system.
2) It contains at most one character between P,PU,PS,,

which identifies the privacy condition imposed on the
system.

3) The tradeoff is defined for M ∈ [1, N ] if it contains S,
and for M ∈ [0, N ] otherwise (see Remark 2).

With the above conventions, the value of C is one from the
set

Ω := {L,LS,LP,LPS,LPU,LSP,LSPS,LSPU,

F,FS,FP,FPU,FPS,FSP,FSPS,FSPU}.

Notice that, if C = LSP, the system is the novel RSP-LFR
setup introduced in this paper, thus, R∗LSP(M) = R∗(M)
in (5), defined for all M ∈ [1, N ].

We will also need to discuss the single server system where
all the files are stored at the server. The optimal load-memory
tradeoff can be similarly defined for such a system for any
constraint implied by C ∈ Ω. We will use R

∗
C(M) to denote

the optimal tradeoff in the single server system with constraint
identified by C ∈ Ω.

III. PDAS AND A TOY EXAMPLE

Our achievable results are based on the notion of PDA [11],
originally introduced to reduce the subpacketization in the
single-server systems for single file retrieval and without any
security or privacy guarantees. In this section, we first review
the definition of PDA, and then give an example to highlight
the key ideas in the design of our RSP-LFR scheme. The
general construction will be discussed in the rest of the paper.

A. Placement Delivery Array

Definition 1 (PDA [11]). For given K,F ∈ N+ and Z, S ∈ N,
an F × K array A = [ai,j ], i ∈ [F ], j ∈ [K], composed of
Z specific symbols “∗” in each column and some ordinary



symbols 1, . . . , S, each occurring at least once, is called a
(K,F,Z, S) PDA, if, for any two distinct entries ai,j and
ai′,j′ , we have ai,j = ai′,j′ = s, for some ordinary symbol
s ∈ [S] only if

a) i 6= i′, j 6= j′, i.e., they lie in distinct rows and distinct
columns; and

b) ai,j′ = ai′,j = ∗, i.e., the corresponding 2×2 sub-array
formed by rows i, i′ and columns j, j′ must be of the
following form[

s ∗
∗ s

]
or
[
∗ s
s ∗

]
.

With a given (K,F,Z, S) PDA, it was showed in [11] that
there exists an associated coded caching scheme in the single
server system without any security or privacy constraint, where
the parameter K is the number of users, F is the number of
packets each file is split into (i.e., subpacketization), Z is the
number of uncoded packets from each file stored at each user,
and S is the number of coded multicast signals.

In our model, those implications are used on the subfiles and
each single server: the parameter K is the number of users,
F is the number of packets each subfile Wn,l is split into, Z
is the number of uncoded packets from each subfile stored at
each user; and S is the number of coded multicast signals sent
by each individual server.

B. A Toy RSP-LFR Example from PDAs

We derive here a RSP-LFR scheme associated to the
(K,F,Z, S) = (3, 3, 1, 3) PDA

A =

 ∗ 1 2
1 ∗ 3
2 3 ∗

 (6)

for an (N,K,L,H) = (4, 3, 2, 3) distributed system.
Let the four files be W1,W2,W3,W4 ∈ FB2 and the (3, 2)

generator matrix is given by

G =

[
1 0 1
0 1 1

]
. (7)

That is, each file is split into L = 2 subfiles, Wn =
(Wn,1,Wn,2), n ∈ [4] and by (1), the contents stored at the
servers are

W [4],1 =W[4],1,

W [4],2 =W[4],2,

W [4],3 =W[4],1 ⊕W[4],2.

Based on the PDA A in (6), each subfile Wn,l is partitioned
into F = 3 equal-size packets, Wn,l,1,Wn,l,2,Wn,l,3 for all
n ∈ [4], l ∈ [2]. Accordingly, the coded subfile Wn,h is parti-
tioned into F = 3 equal-size packets, Wn,h,1,Wn,h,2,Wn,h,3.

Similarly to (2), for any a = (a1, a2, a3, a4)
> ∈ F4

2, we
use the following notation to denote the linear combination of
(un)coded packets with coefficient vector a:

Wa,l,i :=
⊕
n∈[4]

anWn,l,i,

TABLE I: The cached contents of users† according to A in (6).

User 1 User 2 User 3
W[4],[2],1 Wp2,[2],1 ⊕ V[2],1 Wp3,[2],1 ⊕ V[2],2

Wp1,[2],2 ⊕ V[2],1 W[4],[2],2 Wp3,[2],2 ⊕ V[2],3

Wp1,[2],3 ⊕ V[2],2 Wp2,[2],3 ⊕ V[2],3 W[4],[2],3

† In addition, each user k ∈ [3] caches pk .

W a,h,i :=
⊕
n∈[4]

anWn,h,i =
⊕
l∈[2]

gl,hWa,l,i

for all l ∈ [2], i ∈ [3], h ∈ [3].
The system operates as follows.
Placement Phase: The servers share LS = 6 vectors
{Vl,s : l ∈ [2], s ∈ [3]}, which are generated independently
and uniformly from FB/62 , where the packets V1,s, V2,s will be
associated to the ordinary symbol s ∈ [3]. Each user k ∈ [3]
generates a random vector pk = (pk,1, pk,2, pk,3, pk,4)

> ∈ F4
2.

The cache content of the user k is composed of pk and the
(un)coded packets in the corresponding column in Table I.

The packets W[4],[2],i are associated to the i-th row of A
in (6) and user k is associated to the k-th column of A.
The packets in the i-th row of Table I of user k are created
according to the entry ai,k of A in (6): if ai,k = ∗, user k
caches NL = 8 uncoded packets W[4],[2],i, otherwise it caches
L = 2 coded packets Wpk,[2],i ⊕ V[2],ai,k .

Delivery Phase: Assume that user 1, 2, 3 demands the
linear combination Wd1

,Wd2
and Wd3

, respectively, where
d1,d2,d3 ∈ F4

2. Each user k ∈ [3] sends qk = pk⊕dk to all
the servers as queries. Upon receiving the query vectors q[3],
each server h ∈ [3] sends a signal Xh to the users, where Xh is
composed of the query vectors q[3] and S = 3 coded packets
as in the Table II, which are associated to the ordinary symbols
s = 1, 2, 3 of A in (6), respectively, where (V 1,s, V 2,s, V 3,s)
is the MDS codeword of (V1,s, V2,s) with generator matrix G
in (7), i.e., for s ∈ [3],

V 1,s = V1,s, V 2,s = V2,s, V 3,s = V1,s ⊕ V2,s.

Performance: Each user k ∈ [3] can decode the linear
combination Wdk

with signals from any L = 2 servers because
user k can decode Wdk,[2],k since it has cached all the uncoded
packets W[4],[2],k from Table I. For the other packets, we note:

• For each s ∈ [3], the signals associated to s over the
servers form an MDS codeword with generator matrix
G, whose original packets are coded packets within each
subfile as shown in Table III. By the property of MDS
codes, each user can decode the signals in Table III by
receiving signals from any L = 2 of the servers.

• Upon obtaining the signals in Table III, each user k ∈ [3]
can proceed with the decoding process for each subfile
l ∈ [2] as in [9]. Let us take s = 1 for subfile l = 1
as an example. As a1,2 = a2,1 = 1, user 1 can decode
Wd1,1,2 and user 2 can decode Wd2,1,1 from the signal
V1,1 ⊕Wq1,1,2 ⊕Wq2,1,1, i.e.,

Wd1,1,2 = (V1,1 ⊕Wq1,1,2 ⊕Wq2,1,1) (8a)
⊕(V1,1 ⊕Wp1,1,2) (8b)
⊕Wq2,1,1, (8c)



TABLE II: The signals sent by the servers† according to A in (6).

s Server 1 Server 2 Server 3
1 V 1,1 ⊕Wq1,1,2 ⊕Wq2,1,1 V 2,1 ⊕Wq1,2,2 ⊕Wq2,2,1 V 3,1 ⊕Wq1,3,2 ⊕Wq2,3,1

2 V 1,2 ⊕Wq1,1,3 ⊕Wq3,1,1 V 2,2 ⊕Wq1,2,3 ⊕Wq3,2,1 V 3,2 ⊕Wq1,3,3 ⊕Wq3,3,1

3 V 1,3 ⊕Wq2,1,3 ⊕Wq3,1,2 V 2,3 ⊕Wq2,2,3 ⊕Wq3,2,2 V 3,3 ⊕Wq2,3,3 ⊕Wq3,3,2

† In addition, each server h ∈ [3] transmits the query vectors q[3].

TABLE III: The signals a user can decode from the transmission by the
servers† according to A in (6).

s Subfile 1 Subfile 2
1 V1,1 ⊕Wq1,1,2 ⊕Wq2,1,1 V2,1 ⊕Wq1,2,2 ⊕Wq2,2,1

2 V1,2 ⊕Wq1,1,3 ⊕Wq3,1,1 V2,2 ⊕Wq1,2,3 ⊕Wq3,2,1

3 V1,3 ⊕Wq2,1,3 ⊕Wq3,1,2 V2,3 ⊕Wq2,2,3 ⊕Wq3,2,2

† In addition, each server h ∈ [3] transmits the query vectors q[3].

thus, user 1 can decode Wd1,1,2 since the signals in (8b)
are cached by user 1, and the signal in (8c) can be
computed from the cached uncoded packets W[4],1,1 and
the vector q2. Similarly, user 2 can decode the packet
Wd2,1,1 by computing

Wd2,1,1 = (V1,1 ⊕Wq1,1,2 ⊕Wq2,1,1)

⊕(V1,1 ⊕Wp2,1,1)

⊕Wq1,1,2.

One can verify that each user k ∈ [3] can decode all the
remaining packets Wdk,[2],[3]\{k} from its stored contents,
the signals in Table III and the query vectors q[3].

This concludes the proof of correct robust decoding. Privacy
and security are guaranteed since each signal is accompanied
by a key of random and uniformly distributed bits.

In term of memory-load performance, recall that each packet
is of size B

6 bits. Each user caches 12 packets and 1 vectors
in F4

2, whose length does not scale with B. Thus the needed
memory is M = 12 × 1

6 = 2 files. Each of the 3 server
sends 3 packets and 3 vectors in F4

2, thus the achieved load
is R = 3 × 3 × 1

6 = 3
2 files. Hence, the scheme achieves the

memory-load pair (M,R) =
(
2, 32

)
.

IV. MAIN RESULTS

A. PDA based RSP-LFR Schemes

With any given PDA, we will construct an associated RSP-
LFR scheme. The following theorem summarizes the perfor-
mance of PDA based SP-LFR scheme, which will be proved
by presenting and analyzing the construction in Section V.

Theorem 1. For any (N,K,L,H) system and a given
(K,F,Z, S) PDA A, there exists an associated RSP-LFR
scheme that achieves the memory-load pair(

MA, RA

)
=

(
1 +

Z

F
(N − 1),

H

L
· S
F

)
. (10)

with subpacketization LF .

Remark 5 (Comparison with single-server systems). With the
procedure described in Section V, we can easily obtain RSP-

LFR schemes from existing PDA constructions, such as those
in [11]–[15]. If H = L = 1, the system degrades to a single-
server shared-link system, where all the files are stored at the
server [2]. In [10], a key superposition scheme was proposed to
guarantee the correctness, security, and user privacy conditions
simultaneously based on any (K,F,Z, S) PDA A for single-
server systems. The scheme in [10] achieves the memory-load
pair in (10) with H/L = 1. In other words, the RSP-LFR
scheme with PDA A achieves the same memory size as in the
single server case but the load is scaled by a factor H

L . In the
case H = L, each user needs to retrieve information from all
the servers, and the total load is the same as that from a single
server case (i.e., H = L = 1). Moreover, this indicates that,
in addition to guaranteeing correctness, security, and user-side
privacy conditions, the server-side privacy condition does not
increase the load-memory tradeoff in the non-robust multi-
server case with H = L.

B. Optimality of MAN-PDA based RSP-LFR Schemes

The following PDA describing the MAN scheme in [2]
is important, and will be referred to as MAN-PDA in the
following.

Definition 2 (MAN-PDA). For any integer j ∈ [0 : K], define
the set Ωj , {T ⊆ [K] : |T | = j}. Fix any integer t ∈ [0 :
K], denote the set Ωt = {Ti : i ∈ [

(
K
t

)
]}. Also, choose an

arbitrary bijective function κt+1 from Ωt+1 to the set
[(

K
t+1

)]
.

Then, define the array At = [ai,j ] as

ai,j ,

{
∗, if j ∈ Ti
κt+1({j} ∪ Ti), if j /∈ Ti

. (11)

It was proved in [11] that At from (11) in Definition 2 is
a (K,

(
K
t

)
,
(
K−1
t−1
)
,
(
K
t+1

)
) PDA.

Example 1 (A MAN-PDA). Consider K = 4, t = 2, let T1 =
{1, 2}, T2 = {1, 3}, T3 = {1, 4}, T4 = {2, 3}, T5 = {2, 4} and
T6 = {3, 4}. Let κ3 be the lexicographic order of a subset of
size 3 in Ω3, e.g., κ3({1, 2, 3}) = 1, κ3({1, 2, 4}) = 2 and
κ3({1, 3, 4}) = 3 and κ3({2, 3, 4}) = 4. The corresponding
(4, 6, 3, 4) PDA is given by

A2 =


∗ ∗ 1 2
∗ 1 ∗ 3
∗ 2 3 ∗
1 ∗ ∗ 4
2 ∗ 4 ∗
3 4 ∗ ∗

 .

The following theorem summarizes the performance of
MAN-PDA and its optimality. The proof is presented in
Section VI-A



Theorem 2. Let R(M) be the lower convex envelope of the
following points

(Mt, Rt) =

(
1 +

t(N − 1)

K
,
H(K − t)
L(t+ 1)

)
, (12)

where t ∈ [0 : K], then R(M) is achievable in an
(N,K,L,H) RSP-LFR system, where the point (Mt, Rt) can
be achieved with subpacketization L

(
K
t

)
. Moreover, R(M)

and the optimal communication load R∗(M) satisfies

1) N ≥ K, for all M ∈ [1, N),

R(M)

R∗(M)
≤


1, if K = 1
2, if N = K = 2
6.02652, if N = K ≥ 3
5.0221, if N = K + 1
4.01768, if N ≥ K + 2

.

2) N < K, for all M ∈ [2, N),

R(M)

R∗(M)
< 8.

Remark 6 (On Unbounded Regime). In the regime N <
K, 1 ≤ M < 2 the gap is unbounded. From our proof,
R(M)
R∗(M) is upper bounded by RLSPU

(M)

R
∗
LSPU

(M)
, where RLSPU

(M)

is the tradeoff achieved by the key superposition scheme in
the single server system where the security and user-side
privacy conditions are imposed [10], and R

∗
LSPU

(M) is the
corresponding optimal tradeoff. The gap result in Theorem
2 thus follows from the bound for RLSPU

(M)

R
∗
LSPU

(M)
in [10], where

the same regime is open. The main problem in this regime
for the single server model is that, if security keys are used
[6], [10], for the point M = 1 the best know achievable
load is K, while the best known converse is N . Thus, it
seems that the larger load when K > N is mainly caused
by the security condition; closing the gap in small memory
regime is an open problem in the S-FR setup [6]. When
new converse and gap will be obtained for this regime in the
single server case, the same gap will apply to our RSP-LFR
system. In fact, it was observed in [10] that, RLSPU

(M)

R
∗
LSPU

(M)
is

upper bounded by the constant 17 for the regime N > K and
1 + (N−K)(N−1)

NK ≤ M ≤ 2, which was a gap obtained for
S-FR setup [6]. Thus, the gap remains unbounded only for
the regime K > N, 1 ≤M ≤ 1 + (N−K)(N−1)

NK .

The following theorem implies that, with the given proce-
dure of deriving RSP-LFR scheme in Section V, the memory-
load pairs {(Mt, Rt) : t ∈ [0 : K]} achieved by the
MAN-PDAs are Pareto-optimal among all PDA based RSP-
LFR schemes. Moreover, the MAN-PDAs have the smallest
subpacketization among all PDA based RSP-LFR schemes
achieving these points. The proof is deferred to Section VI-B.

Theorem 3. Given a (K,F,Z, S) PDA, if the associated
RSP-LFR scheme achieves a memory-load pair (M,R), then
necessarily

R ≥ HK(N −M)

L(N − 1 +K(M − 1))
=
H(K − x)
L(x+ 1)

∣∣∣∣
x=KM−1

N−1

.(13)

In particular, the memory-load pairs {(Mt, Rt) : t ∈ [0 : K]}
satisfy (13) with equality. Moreover, if M =Mt and R = Rt
for some t ∈ [0 : K], then the subpacketization is at least
L
(
K
t

)
.

Remark 7 (Subpacketizations). By the procedure described
in Section V, we can easily obtain RSP-LFR schemes from
existing PDA constructions, such as those in [11]–[15]. It was
showed in [10] that the new PDA construction based scheme
in [11] achieves a slightly larger load than MAN-PDA for
the same memory size, while reducing the subpacketization
by a factor that increases exponentially with K. Thus, PDAs
in [11] sacrifice some load for an exponential reduction in
subpacketization.

C. Improved Load-Memory Tradeoffs for Less Constrained
Systems

Obviously, the load-memory tradeoff R(M) in Theorem
2 is achievable for any less constrained system described in
Remark 4. In this subsection, we present improved achievable
results for the following three less constrained systems. The
details are presented in Section VII.

1) Robust Private Linear Function Retrieval (RP-LFR) Sys-
tem (C = LP): In an (N,K,L,H) RP-LFR system, the
correctness condition (4a) and the privacy conditions (4c)–(4d)
must be guaranteed for all LFR demands.

Theorem 4. For an (N,K,L,H) RP-LFR system, let
RLP(M) be the lower convex envelope of the point

(
0, HNL

)
and the following points

(MLP
t , RLP

t ) :=(
1 +

t(N − 1)

K
,
H
((

K
t+1

)
−
(
K−min{K,N}

t+1

))
L
(
K
t

) )
, (14)

where t ∈ [0 : K]. Then, RLP(M) is achievable, and it
satisfies

RLP(M)

R∗LP(M)
≤ 6.3707, ∀M ∈ [0, N ].

2) Robust Private File Retrival (RP-FR) System (C = FP):
In an (N,K,L,H) RP-FR system, the correctness condi-
tion (4a) and the privacy conditions (4c)–(4d) must be guar-
anteed for all FR demands.

Theorem 5. For an (N,K,L,H) RP-FR system, let RFP(M)
be the lower convex envelope of the point

(
0, HNL

)
and the

following points

(MFP
t , RFP

t ) :=(
1 +

t(N − 1)

K
,
H
((

K
t+1

)
−
(
K−min{K,N−1}

t+1

))
L
(
K
t

) )
,

where t ∈ [0 : K]. Then, RRP-F(M) is achievable, and it
satisfies

RFP(M)

R∗FP(M)
≤ 5.4606, ∀M ∈ [0, N ].



3) Robust Linear Function Retrieval (R-LFR) System (C =
L): In an (N,K,L,H) R-LFR system, only the correctness
condition (4a) must be guaranteed for all LFR demands.

Theorem 6. For an (N,K,L,H) R-LFR system, let RL(M)
be the lower convex envelope of the following points

(ML
t , R

L
t ) :=

(
tN

K
,
H
((

K
t+1

)
−
(
K−min{K,N}

t+1

))
L
(
K
t

) )
,

where t ∈ [0 : K]. Then, RL(M) is achievable and it satisfies

RL(M)

R∗L(M)
≤ 2.00884, ∀M ∈ [0, N ].

Remark 8 (Less Constrained Systems). Notice that if RC(M)
is achievable for the constraint C, then RC(M) is achievable
for all constrains that are less restrictive than C. In particular,
with Theorem 2, the tradeoff R(M) is achievable for all C ∈
Ω. Moreover, with Theorems 4–6, the tradeoff

1) RLP(M) is achievable for any C ∈ {LP,LPS,LPU};
2) RFP(M) is achievable for any C ∈ {FP,FPS,FPU};
3) RL(M) is achievable for any C ∈ {L,F}.

Moreover, from the proofs in Section VII, it is clear that the
subpacketzation for (MCt , R

C
t ) is L

(
K
t

)
for all t ∈ [0 : K]

and C ∈ {LP,FP,L} (and thus also for their less constrained
systems).

V. PROOF OF THEOREM 1

In this section, we derive a RSP-LFR scheme for an
(N,K,L,H) system from any given (K,F,Z, S) PDA A =
[ai,j ]F×K . Based on A, each subfile Wn,l (n ∈ [N ], l ∈
[F ]) is partitioned into F equal-size packets, denoted by
Wn,l,1, . . . ,Wn,l,F , where each packet Wn,l,i ∈ FB/(LF )

q . The
packets with index i, i.e., W[N ],[L],i, are associated to the
i-th row of A. According to (1), each coded subfile Wn,h

(n ∈ [N ], h ∈ [H]) is composed of F coded packets, denoted
by Wn,h,1, . . . ,Wn,h,F , where

Wn,h,i =
∑
l∈[L]

gl,hWn,l,i, ∀ i ∈ [F ].

That is, the coded contents stored at server h are

W [N ],h,[F ], ∀h ∈ [H].

We use the following notations similarly to (2) for any
a = (a1, . . . , aN )> ∈ FNq to denote the linear combination
of (un)coded packets:

Wa,l,i =
∑
n∈[N ]

anWn,l,i, ∀ l ∈ [L], i ∈ [F ].

W a,h,i =
∑
n∈[N ]

anWn,h,i, ∀h ∈ [H], i ∈ [F ].

Notice that (W a,1,i, . . . ,W a,H,i) is the MDS codeword of
(Wa,1,i, . . . ,Wa,L,i), i.e.,

(W a,1,i, . . . ,W a,H,i)

=
( ∑
l∈[L]

gl,1Wa,l,i, . . . ,
∑
l∈[L]

gl,HWa,l,i

)
. (15)

Moreover, Wa,l,i,W a,h,i are linear in a.

Placement Phase: the servers share the random variables

V = {Vl,s : l ∈ [L], s ∈ [S]}, (16)

which are SL vectors independently and uniformly distributed
over FB/(FL)q . Each user k ∈ [K] locally generates a random
vector pk uniformaly over FNq , and constructs its local cache
Ck as

Ck = {pk} (17a)⋃
{Wn,l,i : n ∈ [N ], l ∈ [L], i ∈ [F ], ai,k = ∗} (17b)⋃
{Wpk,l,i + Vl,ai,k : l ∈ [L], i ∈ [F ], ai,k 6= ∗}. (17c)

Delivery Phase: Assume that user k ∈ [K] demands
Wdk

, for some dk ∈ FNq . Then user k ∈ [K] sends query
qk = dk + pk to all the servers, i.e., the queries Qk,[H] are
constructed as

Qk,h = qk = dk + pk, ∀h ∈ [H]. (18)

For each s ∈ [S], consider the MDS coded version of
(V1,s, . . . , VL,s) with the generator matrix G, i.e.,

(V 1,s, . . . , V H,s) =
( ∑
l∈[L]

gl,1Vl,s, . . . ,
∑
l∈[L]

gl,HVl,s

)
. (19)

Upon receiving the queries Q[K],h = q[K], each server h ∈
[H] sends the signal

Xh = (q[K], Y h,[S]) (20)

to the users, where for each s ∈ [S], Y h,s is

Y h,s = V h,s +
∑

(u,v)∈[F ]×[K]
au,v=s

Wqv,h,u. (21)

Robust Correctness: We need to show that for each
user k ∈ [K], with any L ⊆ [K] such that |L| = L, user k
can decode its demanded scalar linear function Wdk

, i.e., all
the packets Wdk,[L],[F ].

For each i ∈ [F ] such that ai,k = ∗, by (17b), user k ∈
[K] has stored all the packets W[N ],[L],i, thus it can directly
compute the packets Wdk,l,i for each l ∈ [L].

Now, consider any i ∈ [F ] such that ai,k 6= ∗. Let s , ai,k,
notice that by (15) and (19), (Y 1,s, . . . , Y H,s) is the MDS
coded version of information coded packets (Y1,s, . . . , YL,s)
with generator matrix G, where

Yl,s := Vl,s +
∑

(u,v)∈[F ]×[K]
au,v=s

Wqv,l,u, ∀ l ∈ [L]. (22)

By the property of MDS codes, each user can decode all the
L coded packets in (22) with signals from any subset of L
servers for each s ∈ [S]. Since ai,k = s, for each l ∈ [L], the
signal Yl,s in (22) can be written as

Yl,s = Vl,s +Wqk,l,i +
∑

(u,v)∈[F ]×[K]
au,v=s,(u,v) 6=(i,k)

Wqv,l,u

(a)
= Wdk,l,i + (Vl,ai,k +Wpk,l,i)



+
∑

(u,v)∈[F ]×[K]
au,v=s=ai,k,(u,v) 6=(i,k)

Wqv,l,u,

where (a) follows from qk = pk+dk. Therefore, user k ∈ [K]
can decode Wdk,l,i from the the signal Yl,s by canceling the
remaining terms since

1) the coded packet Vl,ai,k +Wpk,l,i is cached by user k
by (17c);

2) for each (u, v) ∈ [F ] × [K] such that au,v = s and
(u, v) 6= (i, k), since ai,k = au,v = s, by the definition
of PDA, i 6= u, v 6= k and ai,v = au,k = ∗. Thus,
user k ∈ [K] stores all the packets W[N ],[L],u. Hence,
user k can compute Wqv,l,u for each l ∈ [L].

Remark 9 (On the Robust Decoding). From the above decod-
ing process, user k ∈ [K] can decode its demanded linear
function if for any i ∈ [F ] such that ai,k 6= ∗, user k can
receive any L of the coded signals Y 1,ai,k , . . . , Y H,ai,k . This is
less restrictive than the assumptions in our setup (i.e., each user
can obtain a fixed subset of signals XL), since (i) it allows the
available subset L to vary over different transmission s ∈ [S];
(ii) it only needs to decode packets over the signals associated
to s such that, ai,k = s for some i ∈ [F ], which indicates that
for s ∈ [S]\{ai,k : i ∈ [F ]}, the availability of the signals
Y [H],s does not affect the decodability of user k.

Security: We have

I(W[N ];X[H]) (23a)

= I(W[N ];q[K], Y [H],[S]) (23b)
= I(W[N ];q[K], Y[L],[S]) (23c)
= I(W[N ];q[K]) + I(W[N ];Y[L],[S] |q[K]) (23d)
= 0, (23e)

where: (23c) holds since (Y 1,s, . . . , Y H,s) is the MDS coded
version of (Y1,s, . . . , YL,s) for each s ∈ [S], and hence they
determine each other; and (23e) follows since (a) the vectors
q[K] = d[K] + p[K] are independent of W[N ], and (b) Y[L],[S]
are independent of (W[N ],q[K]) because the random variables
V[L],[S] are independently and uniformly distributed.

User-side Privacy in (4c): We have

I(d[K]\S ;CS , X[H],dS |W[N ]) (24a)

= I(d[K]\S ;CS ,q[K], Y [H],[S],dS |W[N ]) (24b)
= I(d[K]\S ;CS ,q[K], Y[L],[S],dS |W[N ]) (24c)
= 0, (24d)

where: (24c) follows since Y [H],[S] and Y[L],[S] determine
each other due to the fact that Y [H],s is the MDS coded
version of Y[L],s for each s ∈ [S]; and (24d) fol-
lows since d[K]\S = q[K]\S − p[K]\S is independent of
(CS ,W[N ],q[K],dS , Y[L],[H]) since p[K]\S are independently
and uniformly distributed.

Server-side Privacy in (4d): We have

I(d[K];Q[K],[H]W [N ],[H], V ) (25a)
= I(d[K];q[K],W[N ], V ) (25b)
= I(d[K];W[N ], V ) + I(d[K];q[K] |W[N ], V ) (25c)
= 0, (25d)

where: (25b) follows from (18) and the fact W [N ],[H] and
W[N ] determines each other; and (25d) holds because (a)
d[K] is independent of (W[N ], V ); (b) q[K] = p[K] + d[K]

are independent of (d[K],W[N ], V ) since the vectors p[K] are
independent random variables uniformly distributed.

Performance: By construction, each subfile is split into
F equal-size packets, each of length B

LF symbols, thus the
subpacketization is LF . For each user k ∈ [K], by the cached
content in (17), for each i ∈ [F ] such that ai,k = ∗, there
are LN associated packets cached by the user, one from each
file (see (17b)). For each i ∈ [F ] such that ai,k 6= ∗, there
are L associated coded packet cached at the user (see (17c)).
In addition, the pk in (17a) can be stored with N symbols.
Recall that, each column of a (K,F,Z, S) PDA has Z “ ∗ ”s
and F − Z ordinary symbols, thus, the needed cache size is

MA = inf
B∈N+

1

B

(
(Z LN + (F − Z)L) B

LF
+N

)
=
F + Z (N − 1)

F
.

By (20), each server h ∈ [H] sends S coded packets Yh,[S],
each of size B

LF symbols, and the coefficient vectors q[K] can
be sent in KN symbols, thus the achieved load is

RA = inf
B∈N+

1

B

(
HS

B

LF
+H KN

)
=
HS

LF
.

Remark 10 (Novality of This Work). Compared to our pre-
vious work on SP-LFR systems in [10], this work extends
the key superposition scheme in [10] to distributed systems.
The prefetched contents are packets of original files, while
the multicast signals are formed by the MDS coded pack-
ets, as indicated by (17) and (21), respectively. This inserts
the property of robust decoding in the distributed setup as
mentioned in Remark 9. As distributed systems are widely
used in practice, due to their advantages such as less storage
space at each server, robustness against server failures and so
on, the proposed scheme indicates that the techniques such
as multicast coding, key superpositions from the single server
system can be integrated with the robustness provided by MDS
code and applied to distributed systems.

VI. MAN-PDA AND ITS OPTIMALITY

A. MAN-PDA: Performance and Gap Results (Proof of Theo-
rem 2)

The achievability of the point (Mt, Rt) directly follows
from Theorem 1 and the (K,

(
K
t

)
,
(
K−1
t−1
)
,
(
K
t+1

)
) MAN-PDA

At in Definition 2. Moreover, the lower convex envelope
of the points in (12) can be achieved by memory-sharing
technique [2].

For the gap result, we derive the following lemma for any
C ∈ Ω.

Lemma 1. For any C ∈ Ω, for any feasible2 M ,

R∗C(M) ≥ H

L
·R∗C(M),

2If C contains S, M ∈ [1, N ]; else M ∈ [0, N ] (see Remark 2).



Proof: For a (N,K,L,H) system with the constraint
C, for any feasible design of caches Z[K] and signals X[H]

satisfying the constraint C, for any L ⊆ [H], the contents
Z[K] and signal X , XL are a feasible scheme for the single
server system with the same constraint C. Thus,

H(XL)

B
≥ R∗C(M), ∀L ⊆ [K], |L| = L.

Therefore,

R∗C(M) ≥ 1

B

∑
h∈[H]

H(Xh) (26a)

=
H

B
· 1
H

∑
h∈[H]

H(Xh) (26b)

≥ H

B
· 1(

H
L

) ∑
L⊆[H],|L|=L

H(XL)

L
(26c)

= H · 1(
H
L

) ∑
L⊆[H],|L|=L

R∗C(M)

L
(26d)

≥ H

L
·R∗C(M), (26e)

where (26c) follows from Han’s inequality [34].
Let RLSPU

(M) be the lower convex envelope of the fol-
lowing points: for each t ∈ [0 : K],(

M t, Rt
)
=
(
1 +

t(N − 1)

K
,
K − t
t+ 1

)
, (27)

Notice that RLSPU
(M) is achievable by the key superposition

scheme in [10] for the single server system with constraint
LSPU. Comparing (12) with (27), we see that R(M) = H

L ·
RLSPU(M) (see also Remark 5), hence by Lemma 1, for all
M ∈ [1, N ],

R(M)

R∗(M)
≤ RLSPU

(M)

R
∗
LSP(M)

(a)

≤ RLSPU
(M)

R
∗
LSPU

(M)
. (28)

where (a) follows from the fact R
∗
LSP(M) ≥ RLSPU

(M),
since the constraint LSP is stronger than the constraint LSPU.
Thus, the claimed multiplicative gap result directly follows
from (28) and the bound for RLSPU

(M)

R
∗
LSPU

(M)
in [10, Theorem 3].

B. MAN-PDA:Optimality within PDA Based RSP-LFR
Schemes (Proof of Theorem 3)

Consider a single server network with constraint LSPU as
in [10]. For any (K,F,Z, S), the scheme proposed in [10]
from PDA A achieves the memory-load pair

(
MA, RA

)
=(

1 + Z(N−1)
F , SF

)
. The following conclusion was proved

in [10].

Lemma 2 (From [10, Theorem 2]). Given a (K,F,Z, S) PDA
A, if the associated scheme for the single server system with
constraint LSPU achieves a memory-load pair (MA, RA),
then necessarily

RA ≥
K(N −MA)

N − 1 +K(MA − 1)
. (29)

In particular, the memory-load pairs {(M t, Rt) : t ∈ [0 : K]}
given in (27) satisfy (29) with equality. Moreover, if MA =
M t and RA = Rt for some t ∈ [0 : K], then F ≥

(
K
t

)
.

Now consider a (K,F,Z, S) PDA A. Assume that the
associated RSP-LFR scheme achieves the memory-load pair
(M,R) = (MA, RA), then

R = RA =
H

L
·RA (30a)

≥ H

L
· K(N −MA)

N − 1 +K(MA − 1)
(30b)

=
HK(N −M)

L(N − 1 +K(M − 1))
(30c)

=
H(K − x)
L(1 + x)

∣∣∣∣
x=KM−1

N−1

, (30d)

where: (30a) follows from Remark 5; (30b) follows from (29);
and (30c) follows from the fact M = MA = MA by
Remark 5.Therefore, we proved (13).

The fact that memory pairs {(Mt, Rt) : t ∈ [0 : K]}
satisfy (13) with equality can be verified trivially. Moreover,
if M = MA = Mt and R = RA = Rt, then MA = M t and
RA = Rt, by the facts Mt =M t, Rt =

H
L ·Rt and Remark 5.

Therefore, by Lemma 2, it must hold that F ≥
(
K
t

)
. Thus, by

Theorem 1, the subpacketization of the RSP-LFR scheme is
at least L

(
K
t

)
.

VII. IMPROVED LOAD-MEMORY TRADEOFFS IN LESS
CONSTRAINED SYSTEMS

The basic idea for improving the load-memory tradeoff
in less constrained systems is that in the case the security
condition (4b) is not imposed (i.e., the constraint C does not
contain S), some redundant signals may be removed when
N ≤ K as in [4], [5]. Notice that in such less constrained
systems, R∗C(M) is defined on M ∈ [0, N ].

Consider a fixed MAN-PDA At in (11), where F =
(
K
t

)
and S =

(
K
t+1

)
. Notice that each row of At is associated to

a subset of size t, i.e., for any given a ∈ FNq and l ∈ [L] or
h ∈ [H], each linear combination of files Wa,l,u or W a,h,u is
associated to the subset Tu ⊆ [K]. For notational simplicity,
in this section, for each u ∈ [

(
K
t

)
], denote

Wa,l,Tu :=Wa,l,u, W a,h,Tu :=W a,h,u. (31)

Moreover, each signal Yl,s or Y h,s is associated to a subset
J ⊆ [K] of size t + 1, i.e., the subset J such that s =
κt+1(J ). Denote

Yl,J := Yl,κt+1(J ), Y h,J := Y h,κt+1(J ). (32)

In RP-LFR, RP-FR and R-LFR systems, the security con-
dition (4b) is not imposed. Thus, the security keys can be
dropped, i.e., instead of generating the random variables
in (16) we set

Vl,s = 0, ∀ l ∈ [L], s ∈ [S]. (33)



Therefore, with notations as in (31) and (32), by (21) and (22),
we have

Yl,J =
∑
j∈J

Wqj ,l,J\{j}, Y h,J =
∑
j∈J

Wqj ,h,J\{j},

where (Y 1,J , . . . , Y H,J ) is the MDS coded version of
(Y1,J , . . . , YL,J ) with generator matrix G.

A. Improved Tradeoff in RP-LFR System (Proof of Theorem 4)

In RP-LFR system, the robust correctness, user-side and
server-side privacy conditions are guarantted for all LFR
demands. Notice that, the point (0, HNL ) can be achieved by
trivially transmitting the whole coded subfiles W [N ],h to the
users for any server h ∈ [H]. The point

(
MLP
K , RLP

K ) = (N, 0)
can be achieved by trivially storing all the N files at each user.
In the following, we describe the scheme achieving the point(
MLP
t , RLP

t ) in (14) for each fixed t ∈ [0 : K−1]. The lower
convex envelope of those points can be achieved by memory-
sharing technique.

Placement Phase: The cached contents of the users are
generated as in (17) according to At, i.e., with notations as
in (31), user k ∈ [K] caches

Ck =

{Wn,l,T : n ∈ [N ], l ∈ [L], T ⊆ [K], |T | = t, k ∈ T } (34a)
∪{Wpk,l,T : l ∈ [L], T ⊆ [K], |T | = t, k /∈ T } (34b)
∪{pk}. (34c)

Delivery Phase: The queries q[K] are generated as
in (18). Let I ⊆ [K] be a subset such that the vectors qI form
a maximum linear independent vector group of the vectors
q[K]. Each server h ∈ [H] sends

XLP
h =

(
q[K], Y h(I)

)
, (35)

where

Y h(I) , {Y h,J : J ⊆ [K], |J | = t+ 1,J ∩ I 6= ∅}. (36)

Robust Correctness: For any fixed J ⊆ [K] of size
t + 1, (Y 1,J , . . . , Y H,J ) is the MDS coded version of
(Y1,J , . . . , YL,J ) with generator matrix G. Thus with signals
from any L servers, each user can decode

{Yl,J : l ∈ [L],J ⊆ [K], |J | = t+ 1,J ∩ I 6= ∅}.

Moreover, for each fixed l ∈ [L], by the results in [5], the
signals {Yl,J }J⊆[K],|J |=t+1 can be decoded from the signals
{Yl,J }J⊆[K],|J |=t+1,J∩I6=∅. As a result, each user k ∈ [K]
can decode

{Yl,J : l ∈ [L],J ⊆ [K], |J | = t+ 1}
= {Yl,s : l ∈ [L], s ∈ [S]},

i.e., all the signals in (22). By continue with the same
arguments following (22), each user can correctly decode its
demanded linear combination of the files.

User/Server-side Privacy: The proof that the scheme
guarantees the server-side and user-side privacy conditions fol-
low the same line of reasoning as in (24) and (25), respectively.

Performance: By (34), each user stores NL
(
K−1
t−1
)
+

L
(
K−1
t

)
packets, each of size B

L(Kt )
, and a vector pk ∈ FNq of

length N . The needed memory size is given by

MLP
t = inf

B∈N+

1

B

(B(NL(K−1t−1
)
+ L

(
K−1
t

))
L
(
K
t

) +N
)

=1 +
t(N − 1)

K
.

Let rankq(q[K]) be the rank of vectors q[K], i.e., the car-
dinality of I. By (35) and (36), each server sends

(
K
t+1

)
−(K−rankq(q[K])

t+1

)
packets, and K vectors of length N . Notice

that the worst case is rankq(q[K]) = min{N,K}, therefore,
the load is given by

RLP
t = inf

B∈N+

1

B

(HB(( Kt+1

)
−
(
K−min{K,N}

t+1

))
L
(
K
t

) +NK
)

=
H
((

K
t+1

)
−
(
K−min{K,N}

t+1

))
L
(
K
t

) .

Gap Result: Let RLPU(M) be the load-memory tradeoff
achieved by the scheme in [9] in the single server case, where
user-side privacy is guaranteed for all LFR demands, which is
given by the lower convex envelope of the point (0, N) and
the following points(

M
LPU

t , R
LPU

t ) =(
1 +

t(N − 1)

K
,

(
K
t+1

)
−
(
K−min{K,N}

t+1

)(
K
t

) )
,

where t ∈ [0 : K]. Notice that, for the corner points with
M = 0 and M ∈ {MLPU

t : t ∈ [0 : K]}, it always hold

RLP(M) =
H

L
·RLPU

(M). (37)

Since the corner points coincide on M , (37) hold for all M ∈
[0, N ]. Moreover,

RLP(M)

R∗LP(M)

(a)

≤ RLPU
(M)

R
∗
LP(M)

(b)

≤ RLPU
(M)

R
∗
LPU

(M)
, (38)

where: (a) follows from Lemma 1 and (37); and (b) follows
from the fact R

∗
LP(M) ≥ R

∗
LPU

(M), since the constraint
LP is stronger than the constraint LPU. Then the gap result
directly follows from bound for RLPU

(M)

R
∗
LPU

(M)
in [9, Theorem 6].

B. Improvement in RP-FR System (Proof of Theorem 5)

In RP-FR system, the robust correctness, user-side and
server-side privacy conditions are guaranteed for all FR de-
mands. The proof of Theorem 5 follows similarly to the
proof of Theorem 4 in Section VII-A, with the following
distinctions.

Placement Phase: Instead of generating p1, . . . ,pK uni-
formly from FNq , we let p1, . . . ,pK generated uniformly from{
(x1, . . . , xN )> ∈ FNq :

∑
n∈[N ] xn = q − 1

}
.

Performance: Since the queries q1, . . . ,qK are generated
as in (18) and the demands d1, . . . ,dK ∈ {e1, . . . , eN}, the
queries are uniformly distributed over the N − 1 dimensional



subspace
{
(x1, . . . , xN )> ∈ FNq :

∑
n∈[N ] xn = 0

}
. Thus, in

the worst case, rankq(q[K]) = min{K,N − 1}. As a result,
the achieved memory-load pair (MFP

t , RFP
t ) is given by

(MFP
t , RFP

t ) =(
1 +

t(N − 1)

K
,
H
((

K
t+1

)
−
(
K−min{K,N−1}

t+1

))
L
(
K
t

) )
.

Gap Result: Let RFPU
(M) be the lower convex envelope

of the point (0, N) and points
{(
M

FPU

t , R
FPU

t

)
: t ∈ [0 : K]

}
,

where

(M
FPU

t , R
FPU

t ) =(
1 +

t(N − 1)

K
,

(
K
t+1

)
−
(
K−min{K,N−1}

t+1

)(
K
t

) )
,

which is proved to be achievable in the single server case for
all FR demands in [9, Theorem 1]. Following the same line of
reasoning as to obtain (38), we have RFP(M) = H

L ·RFPU
(M)

for all M ∈ [0, N ], and

RFP(M)

R∗FP(M)
≤ RFPU(M)

R
∗
FP(M)

≤ RFPU(M)

R
∗
FPU

(M)
.

Then gap result directly follows from the upper bound for
RLPU

(M)

R
∗
LPU

(M)
in [9, Theorem 5].

C. Improvement in R-LFR System (Proof of Theorem 6)

In the R-LFR system, only the robust correctness condition
must be guaranteed for all LFR demands. As a result, in
addition to dropping the security keys (see (33)), the privacy
keys can also be dropped, i.e., set to zero. In particular,
the stored contents in (34b) and (34c) can be dropped, i.e.,
set to zero. The correctness can be easy verified by setting
p1 = . . . = pK = 0 and following the same line of reasoning
as in Section VII-A. The distinctions are in performance and
gap results.

Performance: In the modified scheme for R-LFR system,
only the contents in (34a) are stored. The delivered signals are
the same as in (35). Thus, the achieved memory-load pair is
given by

(ML
t , R

L
t ) =

(
tN

K
,
H
((

K
t+1

)
−
(
K−min{K,N}

t+1

))
L
(
K
t

) )
,

where t ∈ [0 : K]. The lower convex envelope of those points
can be achieved by memory-sharing.

Gap Result: Let RF(M) be the lower convex envelope
of the points

{(
M

F

t , R
F

t

)
: t ∈ [0 : K]

}
where

(M
F

t , R
F

t ) =

(
tN

K
,

(
K
t+1

)
−
(
K−min{K,N}

t+1

)(
K
t

) )
,

which is proved to be achievable in the single server case for
all FR demands in [4]. Following the same line of reasoning
as to obtain (38), we have RL(M) = H

L · RF(M) for all
M ∈ [0, N ], and

RL(M)

R∗L(M)
≤ RF(M)

R
∗
L(M)

≤ RF(M)

R
∗
F(M)

.

Then the gap result follows from the upper bound for RF(M)

R
∗
F(M)

in [36, Theorem 1].

VIII. NUMERICAL RESULTS

In Fig. 2, we plot the achievable memory-load tradeoff
under different constrains (Theorems 2, 4, 5 and 6) for the
three regimes:

a) N ≥ K+1+
√
3K2+1

2 , see Fig. 2(a);
b) K < N < K+1+

√
3K2+1

2 , see Fig. 2(b); and
c) N ≤ K, see Fig. 2(c).

We choose parameters (N,K,L,H) =
(30, 10, 15, 20), (25, 20, 15, 20), (10, 30, 15, 20), respectively.
From the figures, we observe:
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Fig. 2: Load-memory tradeoffs for robust systems (a) N ≥ K+1+
√

3K2+1
2

;

(b) K < N <
K+1+

√
3K2+1

2
; (c) N ≤ K.

1) For N ≥ K+1+
√
3K2+1

2 (Fig. 2(a)), the MAN-PDA based
scheme in the RSP-LFR system achieves the same tradeoff
as that in the RP-LFR and RP-FR systems on the interval
M ∈ [1, N ]. This is because:



i) there is no redundant signals to be removed in RP-LFR
or RP-FR;

ii) the privacy keys and security keys are stored in the
superposition form;

iii) the lower convex envelope of (0, HNL ) and {(Mt, Rt) :
t ∈ [0 : K]} are formed by connecting (0, HNL ) and
(M0, R0), (M1, R1), . . . , (MK , RK) sequentially. This
can be verified by letting the slope of the line connecting
(0, HNL ) and (M0, R0) be no larger than the slope of
connecting (M0, R0) and (M1, R1), i.e.,

R0 −HN/L
M0 − 0

≤ R1 −R0

M1 −M0
, (39)

which indicates that N should satisfy N ≥
K+1+

√
3K2+1

2 .
The improved tradeoff in R-LFR system is due to the saved
memory for keys for the regime M ∈ [1, N ], and there is no
need to guarantee privacy by sending all coded files at M = 0
(i.e., the point (0,K) is achievable in R-LFR system).

2) For K < N < K+1+
√
3K2+1

2 (Fig. 2(b)), similar
phenomena are observed as in the case N ≥ K+1+

√
3K2+1

2 ,
except that now there is slightly improvement in RP-LFR
and RP-FR systems over the RSP-LFR system in the interval
M ∈

[
1, 1 + N−1

K

]
. This improvement comes from taking

the lower convex envelope with the additional point (0, HNL )
(observe that (39) does not hold). Notice that for the case
N > K (Fig. 2(a) and 2(b)), all the tradeoffs are proved to be
within a constant multiplicative gap of the optimal tradeoff in
their respective setups.

3) For the case N ≤ K (Fig. 2(c)), the tradeoff in RP-
LFR and RP-FR systems significantly smaller than that in the
LSP-LFR system for small M regime, because:

i) The trivial point (M,R) = (0, HNL ) can be achieved,
and thus memory-sharing the other points with this point
increases the performance.

ii) For M ∈ {Mt : t ∈ [0 : K − N ]}, some redundant
signals are removed in RP-LFR and RP-FR, similarly
to [4], [5].

In this case, due to the use of security keys in the RSP-LFR
system, the counterpart of redundant signals in RP-LFR and
RP-FR system can not be obtained from the counterpart of
the transmitted signals. Notice that, the tradeoff in RP-FR
is slightly better than that in the RP-LFR system, since the
number of removed redundant signals in RP-FR system is(
K−N+1
t+1

)
, which is larger than that in the RP-LFR system(

K−N
t+1

)
. The improvement in the R-LFR system over RP-

LFR/RP-FR systems comes from the saved memory size for
privacy keys.

IX. CONCLUSION

A PDA-based key superposition RSP-LFR scheme is pro-
posed for MDS distributed storage systems that simultaneously
guarantees content security against a wiretapper having access
to the delivery signals and demand privacy against both servers
and colluding users. The load-memory tradeoff turns out to
be the single-server one scaled by the inverse of the rate
of the MDS code in order to guarantee robustness against

link/server failures. The performance of MAN-PDA-based
RSP-LFR scheme is showed to be to within a multiplicative
gap of at most eight from optimal in all regimes, except for
small memory regime with less files than users. Moreover, in
three less restrictive systems without the security constraint
(i.e., RP-LFR, RP-FR, and R-LFR systems), some redundant
signals can be removed to further improve the load-memory
tradeoff, which are proved to be within a constant multiplica-
tive gap of the optimal tradeoff in their respective setups.
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2002 from ENST/Téĺecom ParisTech (Paris, France,
with work done at the Eurecom Institute in Sophia
Antipolis, France), and she was a postdoctoral re-
search associate at the School of Communication
and Computer Science at the Swiss Federal Insti-
tute of Technology in Lausanne (EPFL, Lausanne,

Switzerland) from 2002 to 2004. Dr. Tuninetti is a recipient of a best
paper award at the European Wireless Conference in 2002, of an NSF
CAREER award in 2007, and named University of Illinois Scholar in 2015.
Dr. Tuninetti was the editor-in-chief of the IEEE Information Theory Society
Newsletter from 2006 to 2008, an editor for IEEE COMMUNICATION
LETTERS from 2006 to 2009, for IEEE TRANSACTIONS ON WIRELESS
COMMUNICATIONS from 2011 to 2014; for IEEE TRANSACTIONS ON
INFORMATION THEORY from 2014 to 2017; and for IEEE TRANSAC-
TIONS ON COMMUNICATIONS since 2021. She is currently a distinguished
lecturer for the Information Theory society. Dr. Tuninetti’s research interests
are in the ultimate performance limits of wireless interference networks (with
special emphasis on cognition and user cooperation), content-type coding,
cache-aided systems, distributed private coded computing, with security or
privacy constraints.


	Introduction
	Contributions and Paper Organization
	Notation Convention

	System Model
	PDAs and A Toy Example
	Placement Delivery Array
	A Toy RSP-LFR Example from PDAs

	Main Results
	PDA based RSP-LFR Schemes
	Optimality of MAN-PDA based RSP-LFR Schemes
	Improved Load-Memory Tradeoffs for Less Constrained Systems
	Robust Private Linear Function Retrieval (RP-LFR) System (C=LP)
	Robust Private File Retrival (RP-FR) System (C=FP)
	Robust Linear Function Retrieval (R-LFR) System (C=L)


	Proof of Theorem 1
	MAN-PDA and Its Optimality
	MAN-PDA: Performance and Gap Results (Proof of Theorem 2)
	MAN-PDA:Optimality within PDA Based RSP-LFR Schemes (Proof of Theorem 3)

	Improved Load-Memory Tradeoffs in Less Constrained Systems
	Improved Tradeoff in RP-LFR System (Proof of Theorem 4)
	Improvement in RP-FR System (Proof of Theorem 5)
	Improvement in R-LFR System (Proof of Theorem 6)

	Numerical Results
	Conclusion
	References
	Biographies
	Qifa Yan
	Daniela Tuninetti


