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ABSTRACT

It is estimated that by the year 2024, the total number of systems

equipped with voice assistant software will exceed 8.4 billion de-

vices globally. While these devices provide convenience to con-

sumers, they suffer from a myriad of security issues. This paper

highlights the serious privacy threats exposed by information leak-

age in a smart assistant’s encrypted network traffic metadata. To

investigate this issue, we have collected a new dataset composed of

dynamic and static commands posed to an Amazon Echo Dot using

data collection and cleaning scripts we developed.

Furthermore, we propose the Smart Home Assistant Malicious

Ensemble model (SHAME) as the new state-of-the-art Voice Com-

mand Fingerprinting classifier. When evaluated against several

datasets, our attack correctly classifies encrypted voice commands

with up to 99.81% accuracy on Google Home traffic and 95.2% accu-

racy on Amazon Echo Dot traffic. These findings show that security

measures must be taken to stop internet service providers, nation-

states, and network eavesdroppers from monitoring our intimate

conversations.
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1 INTRODUCTION

Smart home assistants, such as the Google Home and Amazon Echo,

are becoming increasingly common in modern households [29].

Thanks to their convenience, low cost, and wide range of functions,

these devices continue to expand their role in performing everyday

tasks. With the growing purchase and use of these smart assis-

tants worldwide comes questions concerning end-user privacy. In

this work, we investigate the extent to which smart assistants leak

information through a type of attack called Voice Command Finger-

printing (VCF). In this attack, an adversary eavesdrops on a smart

speaker’s encrypted traffic and attempts to infer the voice command

spoken by the victim. Since most data in transit is encrypted via

Transport Layer Security (TLS), this attack utilizes side-channel

information such as packet size, direction, and timestamps to infer

the voice command based on patterns, bypassing the need for de-

cryption. By analyzing this information, a mapping of traffic flow

patterns to voice commands can be created.

Deep learning (DL) models have proven effective in fingerprint-

ing attacks, such as Website Fingerprinting (WF) [23] and VCF [30].

However, supervised deep learning models generally rely on large-

scale datasets for training. Previous works in VCF have collected

their data manually [13], resulting in small datasets that would

not be sufficient for training DL models. Wang et al., in the most

recent work related to VCF [30], were able to automate the data

collection process, resulting in a large-scale dataset. This paper pro-

poses a more streamlined approach to automate the process while

also reliably removing erroneous samples with minimal human

interaction.

Most of the recent work in WF is focused on Tor, which has

fixed 512-byte cells that greatly limit the value of packet size in-

formation [19, 23]. VCF data, however, typically runs over TLS

connections that reveal fine-grained packet sizes to an eavesdrop-

per. To account for this, we design a new ensemble model, SHAME,

that captures packet direction, time, and packet size.

The contributions of this work are:

(1) We design and develop an automated data collection system

for smart assistants to generate large-scale datasets. We sub-

sequently use this system to collect an open-source dataset

of 10 dynamic, and 10 static voice commands for Amazon

Alexa devices [11].

(2) We develop a novel VCF model, SHAME, that uses multiple

base models to cover timing, inter-packet delay, and packet

size separately before putting them into an ensemble. We
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Dataset Time IAT Size SHAME DeepVC [30]

Our Alexa Dataset [C] 81.0 ± 1.2% 84.0 ± 0.7% 89.3 ± 0.8% 92.5 ± 0.3% 80.6 ± 8.1%

Amazon Alexa [D] 85.5 ± 3.6% 87.3 ± 0.2% 92.8 ± 0.1% 95.2 ± 0.1% 92.7 ± 0.4%

Google Home [D] 99.16 ± 0.02% 99.37 ± 0.05% 99.69 ± 0.02% 99.81 ± 0.01% 99.64 ± 0.05%

Table 1: The SHAME model performance compared to each individual model and the

DeepVC [30] attack. Reported as mean accuracy with ± standard deviation over ten runs.

Table (1) shows the SHAMEmodel’s results compared to the high-

est scores the DeepVC Fingerprinting model was able to achieve for

each dataset.When evaluating theDeepVC attack, we use the author

provided code with some modifications4. Compared to DeepVC,

our proposed SHAME model is seen to reduce the error in classi-

fying Google Home traffic by 0.17%, achieving an almost perfect

accuracy in classifying the testing samples. More significantly, the

SHAME model saw a reduction in error of 2.5% when tested against

Amazon Alexa traffic. Furthermore, the SHAME model has proven

to greatly outperform DeepVC, reducing the error rate by 11.9%,

when dynamic questions are introduced into the dataset. This could

indicate that the SHAME model can generalize dynamic questions,

likely thanks to our timing and directional information.

There are multiple elements of our SHAME attack that allow it

to outperform the DeepVC attack. First, the architecture for our

CNN models is slightly better than that of DeepVC. We compare

each constituent DeepVC model with our tuned DF CNN in Appen-

dix A and see that our model performs approximately 1% better

when evaluated against Wang et al.’s Alexa dataset. Next, DeepVC

ensembles multiple DL networks using a weighted sum of each

model’s prediction vectors. This method of joining the models lim-

its the amount of information each model may contribute to the

final classification, and it allows a poor prediction from one model

to negatively affect the final output. The SHAME approach of en-

sembling by training a new MLP network allows for more complex

classification using all the information extracted by each model.

Finally, our inclusion of models trained using timing information

provides a further advantage over DeepVC, as packet timing char-

acteristics can contain critical information for correctly identifying

some samples.

6 FUTURE WORK

Fingerprinting Defense. A top priority, now knowing the sever-

ity of VCF, is to develop a plausible defense that does not introduce

aggressive overhead or delays. Wang et al. [30] presented a defense

that implements adaptive padding [22] and differential privacy [31].

The authors achieved an impressive reduction of attack accuracy

down to 28.42%. However, it seems improbable that the organiza-

tions producing these devices would willingly expend the additional

bandwidth required to implement such defenses.

Real-world Evaluation. Current evaluations have considered

VCF under the scope of a fairly limited number of commands. It

is unclear how performance scales as the world size is increased

4Modifications include changes to be compatible with Tensorflow 2.x so as to run on
our system, the ability to load our dataset file formats, and an increased input data
dimension size for their CNN model.

to more closely match the real-world scope of such devices. For-

tunately, the world size of VCF is relatively small when compared

to other domains such as WF. Furthermore, this attack needs to be

considered in the context of probable real-world attack pipelines.

Sivanathan et al. [25] demonstrated that Smart Home Assistants

could be identified relatively reliably by attacks outside the local net-

work. However, the impact of errors at this stage of the real-world

VCF attack pipeline has yet to be fully explored.

Data Freshness. Another question still undetermined is how

voice command traffic changes over time. More specifically, the

traffic fingerprint of a voice command may change due to changes

in the response content (as is the case for "dynamic" questions)

and potentially as an effect of API changes. Research in the WF

domain has demonstrated that traffic fingerprints can change over

relatively short periods, significantly reducing the performance

of models trained on the previous "stale" dataset [12]. While we

believe that VCF traffic is likely to remain "fresh" for longer periods,

it is unclear to what extent this claim is true.

Uniqueness of Assistant Brands. Intriguingly, Amazon Alexa

traffic seems to be consistently less finger-printable than Google

devices. This may be due to slight variations in how Amazon de-

vices communicate with the server, imperfections in the current

collection of Alexa traffic, or that Amazon has implemented a subtle

undisclosed defense. This oddity has proven consistent throughout

the academic literature, yet it remains unclear why this is the case.

Lastly, crossover effectiveness between a SHAME model trained

on a specific smart assistant being reused for attacking a different

branded smart assistant is unknown.

7 CONCLUSION

It is evident that VCF attacks on smart assistants such as Ama-

zon Echo and Google Home are not only possible but can be done

quickly and accurately with standard hardware by an adversary.

The current assumption is that traffic patterns of commands infre-

quently change, leading to trivial exploitation, but these assump-

tions need to be validated by future works. Our research finds a

significant risk to every consumer that owns a smart assistant, un-

knowingly disclosing private information about your personal life,

device usage, and daily routine.
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A NON-ENSEMBLE MODEL COMPARISON

Dataset DF CNN [23]
DeepVC

CNN [30]

DeepVC

LSTM [30]

DeepVC

SAE [30]

Amazon

Alexa [D]
92.8 ± 0.1% 91.9 ± 0.3% 78.5 ± 0.4% 72.8 ± 0.6%

Google

Home [D]
99.69 ± 0.02% 99.56 ± 0.05% 99.06 ± 0.06% 87.4 ± 1.3%

Table 2: Highest non-ensemble model accuracy compared

across the Amazon Alexa and Google Home datasets [D].

We further examine the performance of the attack models for DF

and DeepVC when they are evaluated separately from their re-

spective ensembled models. Table 2 presents the individual model

performance using the Packet Direction x Size input representation.

This representation is the same used by the original DeepVC model.

Our results show that our tuned DF CNN model is superior to the

various DeepVC models when compared like-for-like. The DF CNN

achieves a small performance lead of 0.9% compared to the DeepVC

CNN model against their Alexa dataset.

When comparing our tuned DF CNN model with the DeepVC

CNNmodel, we see that our model has many more trainable param-

eters. The DF CNN includes two additional convolutional layers

that all use smaller kernel sizes. This leads to a more gradual re-

finement of the features layer-by-layer and is compensated for by

the additional feature extraction layers. Furthermore, the usage

of spatial dropout after our convolutional layers ensures that the

model does not become over-dependent upon any one feature map.

These elements combined produce a slightly more effective detector

model.

B HANDCRAFTED ENSEMBLE FEATURES

Packet count

Byte count

Mean & median packet size

Mean, median & sum of packet sizes for

intervals of 40 packets

Mean & sum of packet inter-arrival

times for intervals of 40 packets

Mean & sum of packet inter-arrival

times for intervals of 40 packets

Bytes per millisecond for intervals of 40

packets

Cumulative sums of packets for inter-

vals of 10 packets

Table 3: List of handcrafted features. Traffic is organized into

incoming-only, outgoing-only, and combined streams. The

features are extracted for each of the three-stream types.

C DYNAMIC VS STATIC DATASET

QUESTIONS

Static Questions

How many days are in September?

How hot is the sun?

How deep is the indian ocean?

How far away is the moon?

How tall is the Empire State Building?

What is the fastest animal in the world?

Do dogs dream?

What is the capital of Spain?

Is a tomato a fruit or a vegetable?

How many days in a year?

Dynamic Questions

Tell me a joke.

What is the price of Bitcoin?

What is the price of silver?

What time is it?

Give me a random fact.

How is the dow jones doing?

What is the price of gold?

What is the price of Monero?

What is the weather in Canberra, Australia?

What is the stock price of Tesla?

Table 4: The 20 queries used in our dataset to determine if

dynamic questions drastically alter the performance of the

SHAME model.

The static and dynamic questions selected for our study are pre-

sented in Table 4. The categorization of a question depends on the

variability of the Alexa smart device’s responses. For example, ask-

ing "How deep is the Indian Ocean?" will result in the same answer

every time, and so is categorized as a static question. A dynamic

question, such as "What is the price of gold?" will elicit different re-

sponses depending on the current price when the question is asked.

We note that some questions may also result in larger variations in

the response, such as "Tell me a joke," resulting in shorter or longer

jokes. After recording the network traces for many questions, we

analyzed and selected the most observed variation as our set of

dynamic questions for the full study. This should generally make

for harder queries to fingerprint.
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D DEEPVC FINGERPRINTING DATASET QUESTIONS

Announce Happy Valentines Day What is gluten?

Do dogs dream? What is Homecoming about?

Do you like cats or dogs? What is my sports update?

Flip a coin. What is my traffic report?

Give me a dinosaur fact. What is on your mind?

Give me a fun fact about sleep. What is Roblox?

Give me a patriots burn. What is the AFC North Standings?

Good Morning. What is the best comedy movie?

Help. What is the capital of Spain?

How deep is the Indian Ocean? What is the date tomorrow?

How do you spell appreciate? What is the fourth book in the Narnia series?

How far away is the moon? What is the history of Labor Day?

How hot is the sun? What is the longest word?

How many days are in September? What is the number one song this week?

How many days in a year? What is the price of bitcoin?

How many days until christmas? What is the scariest movie of all time?

How many days until Thanksgiving? What is the score of the Eagles game?

How many fantasy points does LeBron James have? What is the score of the Red Sox game?

How many ounces in a pound? What is the time in Singapore?

How many seconds are in a year? What is the weather for Sunday?

How many teaspoons are in a tablespoon? What is the weather?

How much does an elephant weigh? What is trending?

How much is an ounce of gold? What is your favorite flower?

How old are you? What is your favorite game?

How old is Henry Winkler? What is your favorite hobby?

How old is Serena Williams? What is your favorite sport?

How tall is Steph Curry? What is your mission?

How tall is the Empire State Building? What is zero divided by zero?

How tall is The Rock? What movies are playing?

Is a tomato a fruit or a vegetable? What were yesterdays scores?

Pick a number. When does daylight saving time end?

Surprise me. When does Game of Thrones return?

Talk like a pirate. When is Boxing Day?

Tell me a barbecue joke. When is Hanukkah?

Tell me a coffee joke. When is the NBA all star game?

Tell me a fun fact. When is the next full moon?

Tell me a Halloween hack. Where did Yoda live?

Tell me a joke. Where is Mount Rushmore?

Tell me a palindrome. Who do you love?

Tell me a Star Wars joke. Who is in Mastodon?

Tell me some good news. Who is nominated for best actor?

Tell me something weird. Who is playing Monday Night Football?

Translate good morning to Spanish. Who is second in the NBA Western Conference?

What are some flower shops nearby? Who is winning the World Series?

What are the most popular books this week? Who is your favorite author?

What are the standings in the English Premier League? Who is your favorite poet?

What are you thankful for? Who is your favorite superhero?

What can you do? Who scored for the Golden Knights?

What happened in the midterm elections? Why do leaves change color in the fall?

What is brief mode? Will it rain tomorrow?

Table 5: The 100 queries used to construct the DeepVC Amazon Alexa and Google Home datasets.
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