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ABSTRACT 1 INTRODUCTION
It is estimated that by the year 2024, the total number of systems Smart home assistants, such as the Google Home and Amazon Echo,
equipped with voice assistant software will exceed 8.4 billion de- are becoming increasingly common in modern households [29].
vices globally. While these devices provide convenience to con- Thanks to their convenience, low cost, and wide range of functions,
sumers, they suffer from a myriad of security issues. This paper these devices continue to expand their role in performing everyday
highlights the serious privacy threats exposed by information leak- tasks. With the growing purchase and use of these smart assis-
age in a smart assistant’s encrypted network traffic metadata. To tants worldwide comes questions concerning end-user privacy. In
investigate this issue, we have collected a new dataset composed of this work, we investigate the extent to which smart assistants leak
dynamic and static commands posed to an Amazon Echo Dot using information through a type of attack called Voice Command Finger-
data collection and cleaning scripts we developed. printing (VCF). In this attack, an adversary eavesdrops on a smart
Furthermore, we propose the Smart Home Assistant Malicious speaker’s encrypted traffic and attempts to infer the voice command
Ensemble model (SHAME) as the new state-of-the-art Voice Com- spoken by the victim. Since most data in transit is encrypted via
mand Fingerprinting classifier. When evaluated against several Transport Layer Security (TLS), this attack utilizes side-channel
datasets, our attack correctly classifies encrypted voice commands information such as packet size, direction, and timestamps to infer
with up to 99.81% accuracy on Google Home traffic and 95.2% accu- the voice command based on patterns, bypassing the need for de-
racy on Amazon Echo Dot traffic. These findings show that security cryption. By analyzing this information, a mapping of traffic flow
measures must be taken to stop internet service providers, nation- patterns to voice commands can be created.
states, and network eavesdroppers from monitoring our intimate Deep learning (DL) models have proven effective in fingerprint-
conversations. ing attacks, such as Website Fingerprinting (WF) [23] and VCF [30].
However, supervised deep learning models generally rely on large-
CCS CONCEPTS scale datasets for training. Previous works in VCF have collected

their data manually [13], resulting in small datasets that would
not be sufficient for training DL models. Wang et al., in the most
recent work related to VCF [30], were able to automate the data
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KEYWORDS collection process, resulting in a large-scale dataset. This paper pro-

smart assistant, voice command, traffic fingerprinting, deep learning poses a more streamlined approach to automate the process while
also reliably removing erroneous samples with minimal human
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connections that reveal fine-grained packet sizes to an eavesdrop-
per. To account for this, we design a new ensemble model, SHAME,
that captures packet direction, time, and packet size.

The contributions of this work are:
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show in experiments with our dataset that SHAME achieves
state-of-the-art VCF performance.

The code for our automated data collection script!, SHAME model?,
and proof of concept?® attack video [10] can all be referenced on
Github.

2 RELATED WORK

Smart Home Assistants. Knowing the basic operation of smart
home assistants is important to understand VCF. The device listens
for a "wake word" that starts an audio recording of the user’s com-
mand—once heard, the assistant records until ambient audio levels
are detected. Finally, the entire recording, including the wake word,
is sent to the cloud for processing. Using a combination of Auto-
matic Speech Recognition (ASR) and Natural Language Processing
(NLP), the speech files are transcribed into text. That text is then
sent to an API, and an appropriate response is determined. Finally,
the response is sent back as text to the device, converted into audio
using Text-to-Speech software, and spoken back to the user. A more
detailed explanation of the system and its inner workings is outlined
by Li et al. [15]. Recently, many works have investigated vulnera-
bilities of these devices, primarily targeting weaknesses of the ML
systems that power voice-activated smart systems [5, 21, 28, 32, 33].
These attacks craft malicious commands that trick the device into
performing some erroneous action.

Traffic Fingerprinting. The privacy threats posed by the infor-
mation leakage of traffic metadata have been considered since long
before smart devices [14]. One particularly popular attack to explore
has been website fingerprinting (WF). WF attacks deanonymize
private Internet browsing by associating websites with the traffic
metadata they produce. Recently, many ML and DL techniques
have proven effective against Tor with and without defenses im-
plemented [4, 9, 18, 20, 23, 24]. Additionally, several works have
also examined the fingerprintability of IoT devices [2, 3, 6, 13, 25].
These works have most notably shown that it is possible to uniquely
identify smart home assistants, such as Amazon Alexa and Google
Home devices, solely using the network traffic they produce.

3 AUTOMATED VCF DATA COLLECTION

3.1 Overview

We aim to demonstrate the possibility for an attacker to automate
the collection, processing, and training of smart assistant network
traffic. Automating this process requires collecting a dataset of
voice commands against a smart assistant, writing software to
prompt the device, collecting network captures associated with
the response, and developing a fingerprinting model to analyze
the collected traffic to identify features. We also aim for a modular
design to enable other researchers to collect traffic from multiple
device types.

We established a set of twenty questions to measure the effect
that dynamic questions have on deep-learning VCF models, shown
in Appendix [C]. Here, we have ten static questions, while the

!https://github.com/jockOrama/automated-voice-command-traffic-collection
2https:/ /github.com/ACK-J/SHAME_Model_Fingerprinting_Smart_Assistants
3https://github.com/ACK-J/SHAME_Model_PoC
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remaining ten questions are classified as dynamic. Dynamic ques-
tions are selected based on whether the elicited response is likely to
change for each query iteration, whereas static questions produce
consistent responses regardless of when the question is queried.

3.2 Data Collection

The data collection framework is centered around a Raspberry Pi 4
running Raspberry Pi OS (Linux 5.10.17-v71+). The Raspberry Pi is
equipped with one Ethernet port and one wireless antenna. Running
hostapd [16] allows the Pi to act as a bridged access point for the
smart device to reach the wide-area network. This arrangement
allows for complete visibility of Echo Dot’s wireless network traffic
without using port mirroring on dedicated networking equipment.

We selected the Amazon Echo Dot (2" Generation) as our pri-
mary testing device as it includes a 3.5mm audio jack capable of
auxiliary sound output. By connecting the output jack of the Echo
Dot directly to a modified input jack of the Raspberry Pi, we can
dynamically detect the moment when the response from the voice
assistant finishes without any concern of external noise interfering
(see Figure [1]).

Speaker

2AUX out

2AUX in

Figure 1: Our automated voice traffic collection setup.

We use synthetic voices generated by festival-lite [8] creating a
variety of audio command files consisting of several distinct voice
models for each question. Furthermore, to maximize the diversity of
available input samples, the script also generates several additional
audio variants by altering the original voice models’ pitch, speed,
and intonation.

3.3 Data Cleaning

When monitoring our collection process, we noticed frequent erro-
neous captures. We define a bad capture as any capture where the
expected audio response from the smart device is either missing or
incorrect due to server-side misinterpretation of the command. In a
similar fashion to recording the data samples, interpreting the audio
response from the smart device can also be partially automated.
Since both a packet capture and audio response are recorded inside
the dataset, we can safely associate each bad audio output with their
corresponding packet capture based on the file number assigned by
the recording script and the Unix modified timestamp (mtime). We
have discovered that one straightforward way of automating the
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identification of bad captures is to utilize a speech-to-text engine,
such as Mozilla’s deepspeech [17].

4 ATTACK METHODOLOGY
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Figure 2: An attacker eavesdropping and accurately predict-
ing the command spoken.

Figure (2) depicts how an attacker can passively sniff the traffic
destined to and from the smart assistant. Even though the traffic
is encrypted with TLS, side-channel information such as direction,
time, and overall packet size can be extracted for offline analy-
sis. After performing one forward pass through a trained SHAME
model, the attacker will be given a prediction of what question
the victim asked the smart assistant. A potential adversary could
position themselves anywhere between the smart assistant and
cloud server without any possibility for the victim to be alerted.
Potential adversaries could include local network eavesdroppers,
hostile nation-states, internet service providers, or a VPN server.

4.1 SHAME Model for VCF
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Figure 3: A deconstruction of the SHAME model.

The CNN model architecture designed by Sirinam et al. [23] was
utilized due to its superior performance in the WF domain. We
considered several different ways in which the voice-command
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traffic could be represented and fed into the network. The greatest
success was found with the following three styles: Packet Direction
x Size, Packet Direction x Timestamp, and Packet Direction x IAT.
Timestamp refers to the relative time in milliseconds from the start
of the trace, whereas IAT refers to the inter-packet arrival time (e.g.
the time since previous packet arrival) in milliseconds.

Using only one style of representation may limit the model’s
depth of understanding, potentially hindering performance. For our
SHAME model, we train three networks individually using the three
styles of input representation. We then use the convolutional layers
of each of these models as feature extractors to process samples into
a new feature-vector form. These feature vectors are then used to
train an MLP model to perform the final classification. To improve
stability of training, we also include some handcrafted features in
the feature-vectors fed to the ensembled model (the list of which
is available in Appendix B). This overall scheme is described in
Figure 1. In this way, the inputs to the new fully connected layers
represent a large variety of features and information.

We performed hyper-parameter tuning on Sirinam et al’s model
to achieve optimal performance on our data. The most notable
change we made was an increase in dropout regularization [26]
within the fully connected layers of the model. Additionally, we
changed the convolutional layers to use spatial dropout [27], re-
placing the standard dropout layers originally used (e.g. entire
feature-maps are dropped, rather than individual feature outputs).
For the full details of our model’s architecture, consult our code [1].

5 EVALUATION

5.1 Datasets

To evaluate the SHAME model, we used the datasets collected by
Wang et al. [7, 30] in addition to our smaller dataset. We captured
our dynamic & static dataset [C] during March of 2021 using the
processes previously described in Data Collection 3.2. Two weeks
later, we were left with approximately 16,000 packet captures after
filtering out erroneous captures, leaving about 800 samples for each
of our twenty targeted commands. The DeepVC Fingerprinting
dataset collected by Wang et al. [30] consists of 100 commands [D]
with 1,500 captures each. Samples were collected separately for an
Amazon Alexa and a Google Home device.

Each of these datasets represents their traffic samples as a se-
quence of packet metadata captured from the perspective of the
routing device. The meta-data considered includes packet direction,
size, and timestamp information.

5.2 Attack Performance

The accuracies obtained with each CNN model, individually, and the
ensembled SHAME model accuracies are noted in Table (1). After
ensembling the three models together, we observed an increase of
3.2% when trained on our Alexa dataset [C] and an increase of 2.4%
on Wang et al’s Alexa dataset [D]. Notably, the packet size style of
representation yields the highest accuracy across all datasets. We
did, however, note that using only IAT and Packet Size features was
sufficient to achieve close-to maximum accuracy, indicating that
much of the information contained in the Timestamp and hand-
crafted features are redundant.
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Dataset |  Time IAT Size | SHAME  DeepVC [30]
Our Alexa Dataset [C] 81.0 £ 1.2% 84.0 £0.7% 89.3 £ 0.8% 92.5 £ 0.3% 80.6 +8.1%
Amazon Alexa [D] 85.5 £ 3.6% 87.3 £0.2% 92.8 £0.1% 95.2 £ 0.1% 92.7 £ 0.4%

Google Home [D] ‘ 99.16 £ 0.02% 99.37 £ 0.05% 99.69 + 0.02%

99.81+0.01% 99.64 + 0.05%

Table 1: The SHAME model performance compared to each individual model and the
DeepVC [30] attack. Reported as mean accuracy with + standard deviation over ten runs.

Table (1) shows the SHAME model’s results compared to the high-
est scores the DeepVC Fingerprinting model was able to achieve for
each dataset. When evaluating the DeepVC attack, we use the author
provided code with some modifications*. Compared to DeepVC,
our proposed SHAME model is seen to reduce the error in classi-
fying Google Home traffic by 0.17%, achieving an almost perfect
accuracy in classifying the testing samples. More significantly, the
SHAME model saw a reduction in error of 2.5% when tested against
Amazon Alexa traffic. Furthermore, the SHAME model has proven
to greatly outperform DeepVC, reducing the error rate by 11.9%,
when dynamic questions are introduced into the dataset. This could
indicate that the SHAME model can generalize dynamic questions,
likely thanks to our timing and directional information.

There are multiple elements of our SHAME attack that allow it
to outperform the DeepVC attack. First, the architecture for our
CNN models is slightly better than that of DeepVC. We compare
each constituent DeepVC model with our tuned DF CNN in Appen-
dix A and see that our model performs approximately 1% better
when evaluated against Wang et al’s Alexa dataset. Next, DeepVC
ensembles multiple DL networks using a weighted sum of each
model’s prediction vectors. This method of joining the models lim-
its the amount of information each model may contribute to the
final classification, and it allows a poor prediction from one model
to negatively affect the final output. The SHAME approach of en-
sembling by training a new MLP network allows for more complex
classification using all the information extracted by each model.
Finally, our inclusion of models trained using timing information
provides a further advantage over DeepVC, as packet timing char-
acteristics can contain critical information for correctly identifying
some samples.

6 FUTURE WORK

Fingerprinting Defense. A top priority, now knowing the sever-
ity of VCF, is to develop a plausible defense that does not introduce
aggressive overhead or delays. Wang et al. [30] presented a defense
that implements adaptive padding [22] and differential privacy [31].
The authors achieved an impressive reduction of attack accuracy
down to 28.42%. However, it seems improbable that the organiza-
tions producing these devices would willingly expend the additional
bandwidth required to implement such defenses.

Real-world Evaluation. Current evaluations have considered
VCF under the scope of a fairly limited number of commands. It
is unclear how performance scales as the world size is increased

*Modifications include changes to be compatible with Tensorflow 2.x so as to run on
our system, the ability to load our dataset file formats, and an increased input data
dimension size for their CNN model.
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to more closely match the real-world scope of such devices. For-
tunately, the world size of VCF is relatively small when compared
to other domains such as WF. Furthermore, this attack needs to be
considered in the context of probable real-world attack pipelines.
Sivanathan et al. [25] demonstrated that Smart Home Assistants
could be identified relatively reliably by attacks outside the local net-
work. However, the impact of errors at this stage of the real-world
VCF attack pipeline has yet to be fully explored.

Data Freshness. Another question still undetermined is how
voice command traffic changes over time. More specifically, the
traffic fingerprint of a voice command may change due to changes
in the response content (as is the case for "dynamic" questions)
and potentially as an effect of API changes. Research in the WF
domain has demonstrated that traffic fingerprints can change over
relatively short periods, significantly reducing the performance
of models trained on the previous “stale” dataset [12]. While we
believe that VCF traffic is likely to remain "fresh” for longer periods,
it is unclear to what extent this claim is true.

Uniqueness of Assistant Brands. Intriguingly, Amazon Alexa
traffic seems to be consistently less finger-printable than Google
devices. This may be due to slight variations in how Amazon de-
vices communicate with the server, imperfections in the current
collection of Alexa traffic, or that Amazon has implemented a subtle
undisclosed defense. This oddity has proven consistent throughout
the academic literature, yet it remains unclear why this is the case.
Lastly, crossover effectiveness between a SHAME model trained
on a specific smart assistant being reused for attacking a different
branded smart assistant is unknown.

7 CONCLUSION

It is evident that VCF attacks on smart assistants such as Ama-
zon Echo and Google Home are not only possible but can be done
quickly and accurately with standard hardware by an adversary.
The current assumption is that traffic patterns of commands infre-
quently change, leading to trivial exploitation, but these assump-
tions need to be validated by future works. Our research finds a
significant risk to every consumer that owns a smart assistant, un-
knowingly disclosing private information about your personal life,
device usage, and daily routine.
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A NON-ENSEMBLE MODEL COMPARISON

DeepVC DeepVC DeepVC
Dataset ‘ DF CNN [23] CNN [30] LSTM [30] SAE [30]
Amazon 92.8 + 0.1% 91.9 + 0.3% 78.5 + 0.4% 72.8 +0.6%
Ao D) 8+0.1% 9+ 0.3% .5+ 0.4% 8+ 0.6%
Google | g9 6o+ 0.02% 99.56 % 0.05% 99.06 £ 0.06% 87.4  1.3%
Home [D]

Table 2: Highest non-ensemble model accuracy compared
across the Amazon Alexa and Google Home datasets [D].

We further examine the performance of the attack models for DF
and DeepVC when they are evaluated separately from their re-
spective ensembled models. Table 2 presents the individual model
performance using the Packet Direction x Size input representation.
This representation is the same used by the original DeepVC model.
Our results show that our tuned DF CNN model is superior to the
various DeepVC models when compared like-for-like. The DF CNN
achieves a small performance lead of 0.9% compared to the DeepVC
CNN model against their Alexa dataset.

When comparing our tuned DF CNN model with the DeepVC
CNN model, we see that our model has many more trainable param-
eters. The DF CNN includes two additional convolutional layers
that all use smaller kernel sizes. This leads to a more gradual re-
finement of the features layer-by-layer and is compensated for by
the additional feature extraction layers. Furthermore, the usage
of spatial dropout after our convolutional layers ensures that the
model does not become over-dependent upon any one feature map.
These elements combined produce a slightly more effective detector
model.

B HANDCRAFTED ENSEMBLE FEATURES

Packet count

Byte count

Mean & median packet size

Mean, median & sum of packet sizes for
intervals of 40 packets

Mean & sum of packet inter-arrival
times for intervals of 40 packets

Mean & sum of packet inter-arrival
times for intervals of 40 packets

Bytes per millisecond for intervals of 40
packets

Cumulative sums of packets for inter-
vals of 10 packets

Table 3: List of handcrafted features. Traffic is organized into
incoming-only, outgoing-only, and combined streams. The
features are extracted for each of the three-stream types.
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C DYNAMIC VS STATIC DATASET
QUESTIONS

How many days are in September?
How hot is the sun?

How deep is the indian ocean?

How far away is the moon?

How tall is the Empire State Building?
What is the fastest animal in the world?
Do dogs dream?

What is the capital of Spain?

Is a tomato a fruit or a vegetable?

How many days in a year?

Tell me a joke.

What is the price of Bitcoin?

What is the price of silver?

What time is it?

Give me a random fact.

How is the dow jones doing?

What is the price of gold?

What is the price of Monero?

What is the weather in Canberra, Australia?
What is the stock price of Tesla?

Table 4: The 20 queries used in our dataset to determine if
dynamic questions drastically alter the performance of the
SHAME model.

Static Questions

Dynamic Questions

The static and dynamic questions selected for our study are pre-
sented in Table 4. The categorization of a question depends on the
variability of the Alexa smart device’s responses. For example, ask-
ing "How deep is the Indian Ocean?" will result in the same answer
every time, and so is categorized as a static question. A dynamic
question, such as "What is the price of gold?" will elicit different re-
sponses depending on the current price when the question is asked.
We note that some questions may also result in larger variations in
the response, such as "Tell me a joke," resulting in shorter or longer
jokes. After recording the network traces for many questions, we
analyzed and selected the most observed variation as our set of
dynamic questions for the full study. This should generally make
for harder queries to fingerprint.
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D DEEPVC FINGERPRINTING DATASET QUESTIONS

Announce Happy Valentines Day

What is gluten?

Do dogs dream?

What is Homecoming about?

Do you like cats or dogs?

What is my sports update?

Flip a coin.

What is my traffic report?

Give me a dinosaur fact.

What is on your mind?

Give me a fun fact about sleep.

‘What is Roblox?

Give me a patriots burn.

What is the AFC North Standings?

Good Morning,.

What is the best comedy movie?

Help.

What is the capital of Spain?

How deep is the Indian Ocean?

What is the date tomorrow?

How do you spell appreciate?

What is the fourth book in the Narnia series?

How far away is the moon?

What is the history of Labor Day?

How hot is the sun?

What is the longest word?

How many days are in September?

What is the number one song this week?

How many days in a year?

What is the price of bitcoin?

How many days until christmas?

What is the scariest movie of all time?

How many days until Thanksgiving?

What is the score of the Eagles game?

How many fantasy points does LeBron James have?

What is the score of the Red Sox game?

How many ounces in a pound?

What is the time in Singapore?

How many seconds are in a year?

What is the weather for Sunday?

How many teaspoons are in a tablespoon?

What is the weather?

How much does an elephant weigh?

What is trending?

How much is an ounce of gold?

What is your favorite flower?

How old are you?

What is your favorite game?

How old is Henry Winkler?

What is your favorite hobby?

How old is Serena Williams?

What is your favorite sport?

How tall is Steph Curry?

What is your mission?

How tall is the Empire State Building?

What is zero divided by zero?

How tall is The Rock?

What movies are playing?

Is a tomato a fruit or a vegetable?

What were yesterdays scores?

Pick a number.

When does daylight saving time end?

Surprise me.

When does Game of Thrones return?

Talk like a pirate.

When is Boxing Day?

Tell me a barbecue joke.

When is Hanukkah?

Tell me a coffee joke.

When is the NBA all star game?

Tell me a fun fact.

When is the next full moon?

Tell me a Halloween hack.

Where did Yoda live?

Tell me a joke.

Where is Mount Rushmore?

Tell me a palindrome.

‘Who do you love?

Tell me a Star Wars joke.

Who is in Mastodon?

Tell me some good news.

Who is nominated for best actor?

Tell me something weird.

Who is playing Monday Night Football?

Translate good morning to Spanish.

Who is second in the NBA Western Conference?

What are some flower shops nearby?

‘Who is winning the World Series?

What are the most popular books this week?

Who is your favorite author?

What are the standings in the English Premier League?

Who is your favorite poet?

What are you thankful for?

Who is your favorite superhero?

What can you do?

Who scored for the Golden Knights?

What happened in the midterm elections?

Why do leaves change color in the fall?

What is brief mode?

Will it rain tomorrow?

Table 5: The 100 queries used to construct the DeepVC Amazon Alexa and Google Home datasets.
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