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Abstract—The Pliable Index CODing (PICOD) problem is a
variant of the Index Coding (IC) problem, where the desired
messages by the users, who are equipped with message side
information, are part of the optimization. This paper studies the
PICOD problem where users are subject to a privacy constraint.
In particular, the following special class of private PICODs is
investigated: 1) the side information structure is circular, and
2) each user can decode one and only one message. The first
condition is a special case of the “circular-arc network topology
hypergraph” class of PICOD studied in [6], for which an optimal
solution was given without the privacy constraint. The second
condition was first studied in [9] and was motivated by the need
to keep content private in some distribution networks.

This paper proposes both converse and achievable bounds.
The proposed achievable scheme not only strictly outperforms
the existing one for some values of the system parameters, but it
is also information theoretically optimal in some settings. For the
remaining cases, the proposed linear code is shown to require at
most one more transmission than the best possible linear code.

I. INTRODUCTION

a) Pliable Index Coding (PICOD): PICOD is a variant
of the Index Coding (IC) problem and was first introduced
in [2]. In PICOD, the messages to be decoded by the users,
who have message side information, are not part of the
problem definition. Instead, in PICOD, the sender assigns to
the users the messages they need to decode so that (i) the
assigned messages were not already present in the local side
information, and (ii) the length of the code that allows every
user to recover the assigned messages has the shortest possible
length. The PICOD problem formulation captures the nature of
some content delivery applications, where there is flexibility in
the choice of the desired messages to be delivered to the users.
This flexibility allows to reduce the number of transmissions
compared to an IC with the same side information structure.

The IC problem in its general form is known to be chal-
lenging [1]. The general PICOD problem is not simpler than
the IC problem in terms of complexity. For instance, the linear
PICOD (here the sender is restricted to use linear codes) is still
NP-hard [10]. Some efficient algorithms to solve the general
PICOD were proposed in [11]. For the case where the side
information structure of the PICOD has “symmetry,” we found
the optimal code length (under no restriction on the encoding
scheme that the sender can use) in [6]. However, the general
PICOD problem is open.

b) Private PICOD: The problem of security and privacy
in IC has been studied from different perspectives. In [3],
the Authors proposed an IC model where an eavesdropper
has a limited access to the side information sets and to
the transmitted codeword; the goal here is to prevent the

eavesdropper from obtaining any new information. In [5], the
Authors considered an IC model where the sender must design
a code that allows each user to decode its desired message, but
at the same time prevents him from obtaining any information
about the side information or the desired messages of the
other users. This latter model has the flavor of the private
information retrieval problem [12], where a user wants to
hide its desired message and/or side information from the
other users and the server. The Authors formulated the private
Index Coding problem in [8], where the privacy is defined
as the condition that a message should only be decoded at
the use who has it as its desired message. Recently, in [9],
the Authors extended the private IC in [8] to the PICOD
framework. Only the case where the side information structure
is “circular” and each user can decode one and only one
message was considered in [9]. Several schemes were given
in [9] and shown to provide the desired level of privacy, but
the optimality was discussed only under the linear encoding
constraint for some cases.

c) Contributions and Paper Organization: In this paper
we study a generalization (in terms of the form of the side
information sets) of the private PICOD model from [9], as
formally described in Section II. We provide both achievable
and the converse bounds, where past work only focused on
linear achievable schemes. The main result of this paper is
presented and discussed in Section III. In Section IV we
derive both information theoretic and linear-code restricted
converse bounds. We also provide linear achievable schemes
and show they are either information theoretically optimal, or
differ from the linear-code restricted converse by at most one
transmission. Section V concludes the paper. Some proofs are
in the Appendix.

II. SYSTEM MODEL

A private pn,m,Aq PICODptq is defined as follows. There
are n P N users and one central transmitter. The user set is
denoted as U :“ tu1, u2, . . . , unu. There are m P N indepen-
dent and uniformly distributed binary messages of κ P N bits
each. The message set is denoted as W :“ tw1, w2, . . . , wmu.

The central transmitter has knowledge of all messages W .
User ui has the messages indexed by its side information set
Ai Ă rms, i P rns. The messages index by Ai are denoted as
WAi . The collection of all side information sets is denoted as
A :“ tA1, A2, . . . , Anu, which is assumed globally known at
all users and the transmitter.



The sender and the users are connected by an error-free
broadcast link. The sender transmits the codeword

xκ` :“ ENCpW,Aq, (1)

where ENC is the encoding function.
The decoding function for user uj is

t pw
pjq
1 , . . . , pw

pjq
t u :“ DECjpWAj , x

κ`,Aq, @j P rns, (2)

where t is the number of messages desired by user uj that are
not included in Aj . The decoding functions DECj , j P rns,
are such that decoding error probability

PrrDj P rns,@tdj,1, . . . , dj,tu XAj “ H :

t pw
pjq
1 , . . . , pw

pjq
t u ‰ twdj,1 , . . . , wdj,tus ď ε, (3)

for some ε P p0, 1q. For a successful decoding at uj we have
Dj :“ tdj,1, . . . , dj,tu Ď rmszAi, i.e., Dj contains the indices
of the t desired messages decoded by uj .

Up to this point, the system definition is the same as
the classical PICOD problem. We introduce now the privacy
constraint. Privacy is modeled here as follows: user uj can
not decode any messages other than the t messages indexed
by Dj . Specifically, we impose that for all j P rns

HpWrmszpDjYAjq|x
κ`,WAj ,Aq

ěHpWrmszpDjYAjqq ´ pm´ t´ |Aj |qκε. (4)

A code is called valid for the private pn,m,Aq PICODptq
if and only if it satisfies the conditions in (3) and (4). The
goal is to find a valid code that result in the smallest possible
codelength, i.e.,

`‹ :“ mint` : D a valid xκ` such that lim
κÑ8

ε “ 0u. (5)

Finally, if the encoding function at the sender is restricted
to be a linear map from the message set, the length of shortest
possible such valid codes is denoted as `‹lin.

A. Network Topology Hypergraph (NTH) and size-s circular-h
shift Side Information

In the rest of the paper we shall consider a class of pn,m,Aq
private PICODptq problems with a specific structure on A.
Such class is a generalization of the one studied in [9], which
is a special case of the circular-arc NTH in [6], where we
fully solved the case t “ 1 for the circular-arc NTH without
the privacy constraint. The rest of the section contains graph
definition that will be used later on.

Let H “ pV, Eq denote a hypergraph with vertex set V
and edge set E , where an edge E P E is a subset of V .
The NTH, first introduced in [6], is a generalization of the
network topology graph for the IC problem [4]. In a NTH, the
hyperedges denote the messages, while the vertices denotes the
users. A user does NOT have a message in its side information
set if and only if its corresponding vertex is incident to the
hyperedge that represents the message. A 1-factor of H is
a spanning edge induced subgraph of H that is 1-regular. A
hypergraph H is called an circular-arc hypergraph if there

exists an ordering of the vertices v1, v2, . . . , vn such that if
vi, vj , i ď j are both incident to an edge E, then either
vq,@q P ri : js are incident to E or vq,@q P rmszri : js
are incident to E.

In this paper we study the pn,m,Aq private PICODp1q with
a special side information set structure: the sets in A are size-s
circular-h shift of the message set. More precisely, The side
information set of user ui is of the form

Ai “ tpi´ 1qh` 1, . . . , pi´ 1qh` su, (6)

for i P rns where all indices are intended modulo the size
of the message set, i.e., denoted as pmod mq when needed,
where 0 ď s ď m´ t and h ě 1, here t “ 1.

Let g :“ gcdpm,hq. In this private PICODp1q there are
n “ m{g users, since all users have distinct side information
sets. Note that the size-s circular-h shift side information setup
is a special case of the side information structure with circular-
arc we introduced in [6]. Also, the model studied in [9] is the
special case when g “ 1 (and thus n “ m).

III. MAIN RESULT

For the size-s circular-h shift side information private
PICODp1q problem, we have the following main result.

Theorem 1. For the private PICODp1q where the side infor-
mation sets are as in (6) we have the following.

Impossibility: when m is odd, g “ 1, and either s “ m´ 2
or s “ 1, it is not possible to satisfy the privacy constraint.

For the remaining possible cases, we have:
‚ For s ě m{2, and either 1 ď s ă m{2, g ě 3, or 1 ď
s ă m{2, s ‰ 2, g “ 2

`‹ “

#

1, if the NTH has a 1-factor,
2, otherwise.

(7)

‚ For 1 ď s ă m{2, and either g “ 1 or s “ g “ 2

rt
m

s
u{2s ď `‹lin ď

#

rtms u{2s, m
s P Z,

rtms u{2s` 1, m
s R Z.

(8)

When s ě m{2, the achievable scheme provided in [9]
is indeed information theoretically optimal as it matches the
converse bound in (7); this converse bound was derived in [6,
Theorem 3] for the case without privacy constraint. Therefore,
our main contribution in Theorem 1 is three-fold compared
to [9]: 1) for s ě m{2 we provide information theoretic
optimality of the scheme in [9]; 2) for s ă m{2 we provide a
new achievable scheme, and show it is almost linear optimal;
3) we generalize the side information structure to any g ą 1.

Remark: In (8), if we fix s and g, tms u is monotonic in
the message set size m. One interesting observation is that,
although the lower bound on `‹lin is monotonic in m, the upper
bound is not. For instance, consider the case s “ 2, g “ 1;
when m “ 10 or m “ 12, we have `‹lin ď 3, while when
m “ 11 we have `‹lin ď 4. In other words, from the point of
m “ 11 (here the upper and the lower bounds differ), both
increasing and decreasing the message set size may result



in an increase of the required number of transmissions in
our achievable scheme. It is not clear at this point whether
this means the achievable scheme here is not optimal, or the
optimal private linear PICOD solution is not monotonic in m.

IV. PROOF OF THEOREM 1
We divide the proof of Theorem 1 into various cases. In this

paper we prove Theorem 1 except for the achievability of (7).
Specifically, the impossibility result is proved in Section IV-A,
the case s ă m{2, g “ 1 in Section IV-B, and the case s ă
m{2, g “ s “ 2 in Section IV-C. The schemes that achieve (7)
are sketched in Section IV-D, while the full proof can be found
in [7, Appendix D].

A. Impossible Cases
First we show that in some cases the privacy constraint

can not be satisfied. The proof of the same under a linear
encoding constraint was provided in [9]. Here we provide a
simple information theoretic proof of the same. The main idea
is to proof the existence of a “decoding chain” (as defined
in [6]) regardless of the choices of the desired messages at
the users. This “decoding chain” technique was used in [6]
for the converse proof of so called consecutive complete–
S PICODptq. Since this argument does not rely on any
assumption on the encoding function at the server, the resulting
bound is truly information theoretical (as opposed to a form
of ‘restricted converse’).

1) Case m is odd, s “ m ´ 2, and g “ 1: Without loss
of generality (Wlog) assume h “ 1. User ui has two possible
choices for its desired message (because all the others are in its
side information set); these messages are di “ pi`sq pmodmq
or di “ pi ´ 1q pmod mq. If di “ pi ` sq pmod mq,
by decoding wdi , user ui can mimic upi´1q pmod mq since
Api´1q pmod mq Ă tpi ` sq pmod mqu Y Ai. Therefore, user
ui can decode wdpi´1q pmod mq

. To make sure user ui can
decode only one message, we need dpi´1q pmod mq P Ai so
that user ui does not decode another message that is not in its
side information set. We thus have ui P Api´1q pmod mq and
dpi´1q pmod mq P Ai. User ui and upi´1q pmod mq can mimic
each other. We say that two user mimicking each other form
a “loop”. The same argument holds for the other choice of
di as well. To make sure all users can decode one message
only, every user must be in a loop. However, one user can
be in only one loop. Thus, there must be one user that is not
contained in any loop because here we have taken m to be
odd. Therefore, there exists one user that can mimic another
user and thus decode two messages, which violates the privacy
constraint.

2) Case m is odd, s “ 1, and g “ 1: Wlog assume h “ 1.
User ui, by decoding its desired message di “ j, j ‰ i, can
mimic user uj and thus also decode dj . Sine user ui can
decode only one message, we have dj P Ai, i.e., dj “ i. User
ui and uj form a loop. Similarly, every user can be in only
one loop. We need all users to be in a loop to make sure that
every user can decode at most one message. Since m is odd,
this is impossible. Thus, there must exist one user that can
decode two messages, which violates the privacy constraint.

B. Case s ă m{2 and g “ 1 (here m “ n)

1) Achievability: Let m “ 2sq ` r for some q, r P Z such
that 0 ď r ă 2s, i.e., r is the remainder of m modulo 2s,
and q is the maximum number of users who can have disjoint
side information sets. We can have 2q` t rs u groups of s users
such that the users in each group have at least one message in
common in their side information sets. Also, r ´ st rs u is the
number of users that are not contained in any of these groups.

The intuition of our achievable scheme is as follows. Under
the privacy constraint, we can satisfy the users in two groups
with one transmission, therefore 2sq users can be satisfied by
q transmissions. If r “ 0, q transmissions suffice; if 0 ă r ď s,
we can satisfy the remaining r users by one transmission; and
if s ă r ă 2s, we can satisfy the remaining r users by two
transmissions. Therefore the total number of transmissions is
q`r rs s. Based on this intuition, we distinguish three sub-cases:
a) r “ 0; b) 0 ă r ď s; and c) s ă r ă 2s.

Case r “ 0: This is the case where m is divisible by 2s,
therefore is divisible by s. We partition the users into groups
G1, G2, . . . , G2q , such that all users in Gi have message wis
in their side information. Set the desired message of the users
in G2i, i P rqs, to be wp2i´1qs, and the desired message of the
users in G2i´1, i P rqs to be w2is There are q transmissions,
each of them is w2is ` wp2i´1qs, i P rqs, that satisfies the
users in Gi and Gi`1 while it does not provide any useful
information for the users in other groups. Therefore, q “ m

2s
transmissions suffice to satisfy all the m users.

Case 0 ă r ď s: We partition the users into 2q ` 1
groups. As for to the case r “ 0, the first 2q groups
contain s users. The users in Gi, i P r2qs, all have wis in
their side information. Group G2q`1 has r users. The first q
transmissions are w2is`wp2i´1qs, i P rqs, and satisfy the users
in groups Gi, i P r2qs. We next satisfy the users in G2q`1.

If r “ 1, we have G2q`1 “ tumu. Let dm “ s ` 1 and
the pq ` 1q-th transmission be ws`1 `

ř

jPAm
wj . Note that

s ě r ` 1 “ 2, therefore user um can decode ws`1 while
the other users can not decode any new messages once they
receive the last transmission.

If r ě 2, the users in G2q`1 all have Wr1:s´rsYtmu in
their side information. Let d2sq`1 “ s ´ r ` 1 and dj “
2sq ` 1, j P r2sq ` 2 : ms. The pq ` 1q-th transmission is
w2sq`1 ` wm `

řs´r`1
j“1 wj . Since user u2sq`1 can compute

w2sq`1`wm`
řs´r
j“1 wj and users uj , j P r2sq` 2 : ms, can

compute wm`
řs´r`1
j“1 wj , these users have the message that

is not in their side information set as their desired message.
All the other users who are not in G2q`1 have at least two
messages unknown in the transmission and thus cannot decode
it. Therefore, each user can decode only one message by the
achievable scheme with q ` 1 transmissions. If m is divisible
by s, then r “ s and q` 1 “ rm2s s; if m is not divisible by s,
q ` 1 “ rtms u{2s` 1.

Case s ă r ă 2s: We partition the users into 2q ` 2
groups. The users in group Gi, i P r2q ` 1s, all have
message wpisq, while the users in group G2q`2 all have
Wr1:2s´rsYtmu. We satisfy the first 2q groups by sending



w2is ` wp2i´1qs, i P rqs. We satisfy all users in G2q`1 by
sending w2sq`1`w2sq`s`w2sq`s`1. If r “ s` 1, G2q`2 “

tumu and we let dm “ s ` 1 and send as last transmission
ws`1 `

ř

jPAm
; otherwise, we let d2sq`s`1 “ 2s ´ r ` 1

and dj “ 2sq ` s ` 1, j P r2sq ` s ` 1 : ms and send
w2sq`s`1 ` wm `

ř2s´r`1
i“1 wi. One can verify that all users

can decode one and only one message by using this code of
length q ` 2 “ rtms u{2s` 1.

2) Converse: Messages are bit vectors of length κ, for some
κ; we thus see each message as an element in F2κ . When the
sender uses a linear code (on F2κ ), we can write the transmit-
ted codeword as x` “ Ewm, where wm “ pw1, w2, . . . , wmq

T

is the vector containing all the messages, and where E P F`ˆm2κ

is the generator matrix of the code. We denote the linear span
of the row vectors of E as SpanpEq. Recall that in this setting,
user ui, i P rns, must to be able to decode one and only one
message outside its side information set Ai; the index of the
decoded message is di. Let vi,j be a vector whose j-th element
is non-zero and all elements with index not in Ai are zeros.

A valid generator matrix E must satisfy the following two
conditions:

1) Decodability: vi,di P SpanpEq, for all i P rms;
2) Privacy: vi,j R SpanpEq, @i P rms, j P rmszpAi Y tdiuq.

The decodability condition guarantees successful decoding of
the desired message wdi by user ui as argued in [1]. The
privacy condition must hold because the existence of a vector
vi,j P SpanpEq for some j P rmszpAi Y tdiuq implies that
user ui is able to decode message wj in addition to its desired
message wdi .

The optimal linear code length `‹lin is the smallest rank of
the generator matrix E, which by definition is the maximum
number of pairwise linearly independent vectors in SpanpEq.
We prove the linear converse bound by giving a lower bound
on the maximum number of pairwise linearly independent
vectors in SpanpEq, i.e., the rank of E. To do so, we need the
following two propositions, proved in Appendices A and B,
respectively. These propositions are the key technical novelty
of this work.

Proposition 1. In a working system (where every user can
decode without violating the privacy condition) with g “ 1
we must have ei R SpanpEq for all i P rms, where ei are
standard bases of m-dimensional linear space.

Proposition 2. For a working system with g “ 1, among
all n users, consider k users whose side information sets are
pairwise disjoint. The number of transmissions of any linear
code that satisfies these k users must be `lin ě rk{2s.

Proposition 1 states that in this case, a trivial ‘uncoded
scheme’ (that consists of sending `‹lin messages one by one)
always violates the privacy constraint. In other words, no user
is allowed to decode without using its side information.

Proposition 2 provides a lower bound on the code-length
of a linear code for a subset of the users in the system
(those with pairwise disjoint side information sets), thus for
all users. Therefore, among all m users in the system, there

are tms u users with pairwise disjoint side information sets.
By Proposition 2, we need at least rtms u{2s transmissions to
satisfy these users. Therefore, in order to satisfy all the users
in the system, we must have `‹lin ě rtms u{2s. This provides the
claimed lower bound.

C. Case s ă m{2 and g “ s “ 2 (here n “ m{2)

1) Achievability: In this case we show `‹lin “ rm{4s. We
use the achievable scheme for case s “ 2 ă m{2 and g “
1 from Section IV-B1, where we need rm{4s transmissions
to satisfy all n “ m users. The users we have here are a
proper subset of the users in the case g “ 1. The achievable
scheme for g “ 1 still satisfies all users and meets the privacy
constraint. We have ` ď rm{4s in this case.

2) Converse: The converse proof in Section IV-B2 does
not directly apply in this case, mainly because the proof of
Proposition 1 requires g “ 1. In Appendix C we show that it
holds for g “ 2, stated as Proposition 3.

Hence the converse follows the same argument in Sec-
tion IV-B2 by replacing Proposition 1 with Proposition 3 in
Appendix C. We show that for k users with pairwise disjoint
side information sets, rk{2s transmissions are needed for this
case under the linear encoding restriction. Note that in this case
all n “ m{2 users are with pairwise disjoint side information
sets. Therefore, the total number of transmissions that satisfy
all users is at least rm{4s.

D. Remaining Cases

We aim to prove (7). Here we provide the converse proof,
and a sketch of the achievability proofs. The detailed proofs
can be found in [7, Appendix D].

1) Converse: By the converse bound in [6, Theorem 3] for
the circular-arc PICOD(1) without the privacy constraint, we
have `˚ ě 1 when the NTH has 1-factor, and `‹ ě 2 when the
NTH has no 1-factor. This converse bound holds also when
we impose an additional privacy constraint.

2) Achievability for s ă m{2, either g “ 2, s ‰ 2, or
g ě 3: We show how to find the first message to transmit.
Then, all the users that do not have this message in their side
information sets must be satisfied by a second transmission.
We show how to find this second transmission in such a way
that the privacy constraint is met.

3) Achievability for s ě m{2: The achievable scheme in
this case is the one proposed in [9], where only the case g “ 1
was considered. For the cases where g ą 1, the set of users in
the system is a proper subset of the set of users when g “ 1.
Therefore the scheme for g “ 1 is still valid for any g in that
both decoding and privacy constraints are met.

V. CONCLUSION

In this paper we gave both achievable and converse bounds
for the private PICODp1q problem with circular side in-
formation sets. We proposed a linear achievable scheme is
information theoretically optimal for some parameters, or it
requires at most one more transmission compared to a converse
developed under the constraint that the sender is restricted



to use linear codes. Proving, or disproving, that our linear
codes are actually information theoretically optimal is subject
of current investigation.

This work was supported in part by NSF Award number
1527059. The opinion expressed in this paper are of the
authors and do not necessarily reflect those of the NSF.

APPENDIX A
PROOF OF PROPOSITION 1

Recall that, for g “ 1, the side information sets are Ai “
pi, . . . , i ` s ´ 1 pmod mqq for all i P rms, as here n “ m.
The proof is by contradiction. Wlog assume that we have a
working system with e1 P SpanpEq, that is, every user can
decode message w1 without even using its side information.
Then, all users ui, i P r2 : m ´ s ` 1s (who do not have
w1 in their side information sets) must have desired message
w1, in order to make sure that the privacy constraint is not
violated. This implies Fact 1: user u1 can only have wd1 “
ws`1 as desired message. Fact 1 is true because u2 desires
w1, therefore A2 Y td2u Ą A1. After decoding w1, user u2
can mimic user u1 and thus decode message d2. Since user
u2 can decode only one message, d1 P A2zA1 “ ts ` 1u.
Therefore d1 “ s`1. By taking d1 “ s`1, we conclude that
there must exist vector v1,d1 “ v1,s`1 “ c`αs`1es`1, where
α P F2κ , α ‰ 0 and c P SpanpA1q, where with an abuse of
notation we let SpanpAiq denote Spanptej : j P Aiuq.

Given Fact 1, let j be the position of the fist non-zero
element in the so found v1,s`1. Clearly, j ď s ` 1 since
the ps ` 1q-th element of v1,s`1 is αs`1 ‰ 0. We have the
following cases:

1) If j “ s` 1, all the users who do not have ws`1 in their
side information sets can decode ws`1, since v1,s`1 “

αes`1 for this case. us`2 can decode both w1 and ws`1.
2) If 1 ă j ă s ` 1, then user uj`1 can decode wj since

s ` 1 P Aj . But user uj`1 decodes w1 by assumption.
Therefore, user uj can decode both w1 and wj .

3) If j “ 1, user us`2 can decode both ws`1 and w1.
Therefore, us`2 can decode two messages.

In all the three above cases, there exists at least one user who
can decode at least two messages, thus violating the privacy
constraint. Therefore, the original assumption e1 P SpanpEq
must be impossible in a working system. The same reasoning
applies to any ej , j P rms. This proves the claim.

APPENDIX B
PROOF OF PROPOSITION 2

By Proposition 1, for all i P rks there exists vi,di “ αiedi`
ci P SpanpEq, where ci P SpanpAiq and αi ‰ 0. The side
information sets Ai are assumed to be disjoint so the vectors
ci are linearly independent. vi,di is linearly dependent on the
vectors vj,dj ,@j ‰ i only if di P Aj and dj P Ai for some
i ‰ j. In other words, there exists a “loop” between ui and
uj . Note that since the side information sets are disjoint, one
user can be in at most one loop, and the number of loops is
at most tk{2u. Therefore the number of vi,di that are linearly
dependent is at most tk{2u, and thus the number of linearly

independent vi,di is at least k´ tk{2u “ rk{2s. Therefore, the
number of transmissions that is needed to satisfy k users with
disjoint side information sets must satisfy ` “ rkpEq ě rk{2s.

APPENDIX C
PROOF OF PROPOSITION 3

Proposition 3. In a working system (where every user can
decode without violating the privacy condition) with g “ s “
2 we must have ei R SpanpEq for all i P rms, where ei are
standard bases of m-dimensional linear space.

Similar to the proof of Proposition 1, Wlog assume e1 is in
SpanpEq. All users ui, i P r2 : m´ s` 1s in this case need to
desire message w1. Let d1 P Aj , for some j ‰ 1. There exists
a vector v1,d1 P SpanpEq such that: 1) the d1-th element is
non-zero; 2) all elements with indices that are not 1, 2 or d1
are zeros. We check the first and second elements of v1,d1 and
have the following cases:

1) Both elements are zero, i.e., v1,d1 “ ed1 . All users
without wd1 in their side information sets decode wd1 .

2) The first is zero and the second is non-zero. The user uj
is able decode w2 since uj already decodes w1 and has
wd1 in its side information set.

3) The first is non-zero and the second is zero. All users can
decode w1, then decode wd1 .

4) Both are non-zero. uj decodes w1 by assumption. It also
has wdi in its side information set. Therefore uj can
decode w2.

All possible cases show that there exists at least one user that
can decode at least two messages. The assumption that e1 is
in SpanpEq is impossible. The reasoning applies to all ej , j P
rms. Therefore we conclude that ei R SpanpEq for all i P rms.
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