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Abstract—The Pliable Index CODing (PICOD) problem is a
variant of the Index Coding (IC) problem, where the desired
messages by the users, who are equipped with message side
information, are part of the optimization. This paper studies the
PICOD problem where users are subject to a privacy constraint.
In particular, the following special class of private PICODs is
investigated: 1) the side information structure is circular, and
2) each user can decode one and only one message. The first
condition is a special case of the “circular-arc network topology
hypergraph” class of PICOD studied in [6], for which an optimal
solution was given without the privacy constraint. The second
condition was first studied in [9] and was motivated by the need
to keep content private in some distribution networks.

This paper proposes both converse and achievable bounds.
The proposed achievable scheme not only strictly outperforms
the existing one for some values of the system parameters, but it
is also information theoretically optimal in some settings. For the
remaining cases, the proposed linear code is shown to require at
most one more transmission than the best possible linear code.

I. INTRODUCTION

a) Pliable Index Coding (PICOD): PICOD is a variant
of the Index Coding (IC) problem and was first introduced
in [2]. In PICOD, the messages to be decoded by the users,
who have message side information, are not part of the
problem definition. Instead, in PICOD, the sender assigns to
the users the messages they need to decode so that (i) the
assigned messages were not already present in the local side
information, and (ii) the length of the code that allows every
user to recover the assigned messages has the shortest possible
length. The PICOD problem formulation captures the nature of
some content delivery applications, where there is flexibility in
the choice of the desired messages to be delivered to the users.
This flexibility allows to reduce the number of transmissions
compared to an IC with the same side information structure.

The IC problem in its general form is known to be chal-
lenging [1]. The general PICOD problem is not simpler than
the IC problem in terms of complexity. For instance, the linear
PICOD (here the sender is restricted to use linear codes) is still
NP-hard [10]. Some efficient algorithms to solve the general
PICOD were proposed in [11]. For the case where the side
information structure of the PICOD has “symmetry,” we found
the optimal code length (under no restriction on the encoding
scheme that the sender can use) in [6]. However, the general
PICOD problem is open.

b) Private PICOD: The problem of security and privacy
in IC has been studied from different perspectives. In [3],
the Authors proposed an IC model where an eavesdropper
has a limited access to the side information sets and to
the transmitted codeword; the goal here is to prevent the

danielat@uic.edu

eavesdropper from obtaining any new information. In [5], the
Authors considered an IC model where the sender must design
a code that allows each user to decode its desired message, but
at the same time prevents him from obtaining any information
about the side information or the desired messages of the
other users. This latter model has the flavor of the private
information retrieval problem [12], where a user wants to
hide its desired message and/or side information from the
other users and the server. The Authors formulated the private
Index Coding problem in [8], where the privacy is defined
as the condition that a message should only be decoded at
the use who has it as its desired message. Recently, in [9],
the Authors extended the private IC in [8] to the PICOD
framework. Only the case where the side information structure
is “circular” and each user can decode one and only one
message was considered in [9]. Several schemes were given
in [9] and shown to provide the desired level of privacy, but
the optimality was discussed only under the linear encoding
constraint for some cases.

c) Contributions and Paper Organization: In this paper
we study a generalization (in terms of the form of the side
information sets) of the private PICOD model from [9], as
formally described in Section II. We provide both achievable
and the converse bounds, where past work only focused on
linear achievable schemes. The main result of this paper is
presented and discussed in Section III. In Section IV we
derive both information theoretic and linear-code restricted
converse bounds. We also provide linear achievable schemes
and show they are either information theoretically optimal, or
differ from the linear-code restricted converse by at most one
transmission. Section V concludes the paper. Some proofs are
in the Appendix.

II. SYSTEM MODEL

A private (n, m, A) PICOD(t) is defined as follows. There
are n € N users and one central transmitter. The user set is
denoted as U := {uq,us,...,u,}. There are m € N indepen-
dent and uniformly distributed binary messages of « € N bits
each. The message set is denoted as W := {wy, wa, ..., Wy }.

The central transmitter has knowledge of all messages W.
User u; has the messages indexed by its side information set
A;  [m], i € [n]. The messages index by A; are denoted as
W 4,. The collection of all side information sets is denoted as
A= {41, As,..., A,}, which is assumed globally known at
all users and the transmitter.



The sender and the users are connected by an error-free
broadcast link. The sender transmits the codeword

™ = ENCOW, A), (1)

where ENC is the encoding function.
The decoding function for user u; is
{ ~(7)

wy"’, ..

@7} = DEC;(Wa,, &, A), Vje[n], (2

where ¢ is the number of messages desired by user u; that are
not included in A;. The decoding functions DEC;, j € [n],
are such that decoding error probability

Pr[EI] € [n],V{dj’l, e 7dj,t} N Aj = @ :
(@, 00} # {wa,,,...,wq, ] <e, )

for some € € (0,1). For a successful decoding at u; we have
Dj:={dj1,...,dj+} < [m]\A;, i.e., D; contains the indices
of the ¢ desired messages decoded by u;.

Up to this point, the system definition is the same as
the classical PICOD problem. We introduce now the privacy
constraint. Privacy is modeled here as follows: user u; can
not decode any messages other than the ¢ messages indexed
by D;. Specifically, we impose that for all j € [n]

H(Wia\(D; 02" Wy, A)
>H(Wim\(p,04,)) — (m —t — |Aj])ke. “4)

A code is called valid for the private (n,m,.A) PICOD(t)
if and only if it satisfies the conditions in (3) and (4). The
goal is to find a valid code that result in the smallest possible
codelength, i.e.,

¢* := min{¢ : 3 a valid 2" such that lim ¢ = 0}.  (5)
K—00

Finally, if the encoding function at the sender is restricted
to be a linear map from the message set, the length of shortest
possible such valid codes is denoted as ;..

A. Network Topology Hypergraph (NTH) and size-s circular-h
shift Side Information

In the rest of the paper we shall consider a class of (n,m, .A4)
private PICOD(¢) problems with a specific structure on .A.
Such class is a generalization of the one studied in [9], which
is a special case of the circular-arc NTH in [6], where we
fully solved the case ¢t = 1 for the circular-arc NTH without
the privacy constraint. The rest of the section contains graph
definition that will be used later on.

Let H = (V,€) denote a hypergraph with vertex set V'
and edge set £, where an edge F € & is a subset of V.
The NTH, first introduced in [6], is a generalization of the
network topology graph for the IC problem [4]. In a NTH, the
hyperedges denote the messages, while the vertices denotes the
users. A user does NOT have a message in its side information
set if and only if its corresponding vertex is incident to the
hyperedge that represents the message. A 1-factor of H is
a spanning edge induced subgraph of H that is 1-regular. A
hypergraph H is called an circular-arc hypergraph if there

exists an ordering of the vertices vy, vs, ..., v, such that if
v;,vj,1 < j are both incident to an edge FE, then either
vg,¥q € [i : j] are incident to E or v,,Vq € [m]\[i : j]
are incident to E.

In this paper we study the (n, m, .A) private PICOD(1) with
a special side information set structure: the sets in A4 are size-s
circular-h shift of the message set. More precisely, The side
information set of user u; is of the form

Ai={(i—=1Dh+1,...,(i— 1)h+ s}, (6)

for i € [n] where all indices are intended modulo the size
of the message set, i.e., denoted as (mod m) when needed,
where 0 <s<m—tand h > 1, here t = 1.

Let g := ged(m, h). In this private PICOD(1) there are
n = m/g users, since all users have distinct side information
sets. Note that the size-s circular-h shift side information setup
is a special case of the side information structure with circular-
arc we introduced in [6]. Also, the model studied in [9] is the
special case when g = 1 (and thus n = m).

III. MAIN RESULT

For the size-s circular-h shift side information private
PICOD(1) problem, we have the following main result.

Theorem 1. For the private PICOD(1) where the side infor-

mation sets are as in (6) we have the following.
Impossibility: when m is odd, g = 1, and either s = m — 2

or s = 1, it is not possible to satisfy the privacy constraint.
For the remaining possible cases, we have:

o For s = m/2, and either 1 < s < m/2,9 > 3, or 1 <
s<m/2,s# 2,9 =2

o 1, if the NTH has a 1-factor, 7
2, otherwise.

o For 1 < s <m/2, and either g=1o0r s =g =2

[1721/21,
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When s > m/2, the achievable scheme provided in [9]
is indeed information theoretically optimal as it matches the
converse bound in (7); this converse bound was derived in [6,
Theorem 3] for the case without privacy constraint. Therefore,
our main contribution in Theorem 1 is three-fold compared
to [9]: 1) for s > m/2 we provide information theoretic
optimality of the scheme in [9]; 2) for s < m/2 we provide a
new achievable scheme, and show it is almost linear optimal;
3) we generalize the side information structure to any g > 1.

Remark: In (8), if we fix s and g, [*]| is monotonic in
the message set size m. One interesting observation is that,
although the lower bound on £}, is monotonic in m, the upper
bound is not. For instance, consider the case s = 2,9 = 1;
when m = 10 or m = 12, we have ¢};, < 3, while when
m = 11 we have £};, < 4. In other words, from the point of
m = 11 (here the upper and the lower bounds differ), both
increasing and decreasing the message set size may result

" ez,
S

m ¢ 7. ®)

[171/2] < < {



in an increase of the required number of transmissions in
our achievable scheme. It is not clear at this point whether
this means the achievable scheme here is not optimal, or the
optimal private linear PICOD solution is not monotonic in m.

IV. PROOF OF THEOREM 1

We divide the proof of Theorem 1 into various cases. In this
paper we prove Theorem 1 except for the achievability of (7).
Specifically, the impossibility result is proved in Section IV-A,
the case s < m/2,g = 1 in Section IV-B, and the case s <
m/2,g = s = 2 in Section IV-C. The schemes that achieve (7)
are sketched in Section IV-D, while the full proof can be found
in [7, Appendix D].

A. Impossible Cases

First we show that in some cases the privacy constraint
can not be satisfied. The proof of the same under a linear
encoding constraint was provided in [9]. Here we provide a
simple information theoretic proof of the same. The main idea
is to proof the existence of a “decoding chain” (as defined
in [6]) regardless of the choices of the desired messages at
the users. This “decoding chain” technique was used in [6]
for the converse proof of so called consecutive complete—
S PICOD(t). Since this argument does not rely on any
assumption on the encoding function at the server, the resulting
bound is truly information theoretical (as opposed to a form
of ‘restricted converse’).

1) Case m is odd, s = m — 2, and g = 1: Without loss
of generality (Wlog) assume h = 1. User u; has two possible
choices for its desired message (because all the others are in its
side information set); these messages are d; = (i+s) (mod m)
or di = (i — 1) (mod m). If d; = (i + s) (mod m),
by decoding wg,, user u; can Mimic %(i_1) (mod m) SiNCE
A(i=1) (mod m) < {(i + s) (mod m)} U A;. Therefore, user
u; can decode Wd(; 1) (mod m)* To make sure user wu; can
decode only one message, we need d(;_1) (mod m) € Ai S0
that user u; does not decode another message that is not in its
side information set. We thus have u; € A(i_1) (mod m) and
d(i—1) (mod m) € Aqi. User u; and u(;_1) (mod m) can mimic
each other. We say that two user mimicking each other form
a “loop”. The same argument holds for the other choice of
d; as well. To make sure all users can decode one message
only, every user must be in a loop. However, one user can
be in only one loop. Thus, there must be one user that is not
contained in any loop because here we have taken m to be
odd. Therefore, there exists one user that can mimic another
user and thus decode two messages, which violates the privacy
constraint.

2) Case mis odd, s =1, and g = 1: Wlog assume h = 1.
User u;, by decoding its desired message d; = j,j # i, can
mimic user u; and thus also decode d;. Sine user u; can
decode only one message, we have d; € A;, i.e., d; = i. User
u; and u; form a loop. Similarly, every user can be in only
one loop. We need all users to be in a loop to make sure that
every user can decode at most one message. Since m is odd,
this is impossible. Thus, there must exist one user that can
decode two messages, which violates the privacy constraint.

B. Case s <m/2 and g = 1 (here m = n)

1) Achievability: Let m = 2sq + r for some q,r € Z such
that 0 < r < 2s, i.e., r is the remainder of m modulo 2s,
and ¢ is the maximum number of users who can have disjoint
side information sets. We can have 2q + | Z| groups of s users
such that the users in each group have at least one message in
common in their side information sets. Also, r — s|Z]| is the
number of users that are not contained in any of these groups.

The intuition of our achievable scheme is as follows. Under
the privacy constraint, we can satisfy the users in two groups
with one transmission, therefore 2sq users can be satisfied by
q transmissions. If » = 0, g transmissions suffice; if 0 < r < s,
we can satisfy the remaining r users by one transmission; and
if s < r < 2s, we can satisfy the remaining r users by two
transmissions. Therefore the total number of transmissions is
q+|%]. Based on this intuition, we distinguish three sub-cases:
aA)r=0;b)0<r<s;andc) s <r < 2s.

Case r = 0: This is the case where m is divisible by 2s,
therefore is divisible by s. We partition the users into groups
G1,Ga,...,Gag, such that all users in G; have message w;s
in their side information. Set the desired message of the users
in G'a;,1 € [q], to be w(z;_1),, and the desired message of the
users in Ga;_1,% € [g] to be wa;s There are g transmissions,
each of them is wa;s + wezi—1)s,7 € [q], that satisfies the
users in G; and G;;1 while it does not provide any useful
information for the users in other groups. Therefore, ¢ = 3~
transmissions suffice to satisfy all the m users.

Case 0 < r < s: We partition the users into 2q + 1
groups. As for to the case » = 0, the first 2¢ groups
contain s users. The users in G;,i € [2¢], all have w;, in
their side information. Group Gag4+1 has r users. The first ¢
transmissions are wa;s +w(2;—1)s, ¢ € [¢], and satisfy the users
in groups G;, i € [2q]. We next satisfy the users in Gag1.

If r = 1, we have Gag+1 = {un}. Let d,, = s+ 1 and
the (¢ + 1)-th transmission be ws41 + ZjeAm w;. Note that
s = r+ 1 = 2, therefore user u,, can decode ws,1 while
the other users can not decode any new messages once they
receive the last transmission.

If r > 2, the users in Ga441 all have Wis_pjugm) in
their side information. Let dogq41 = s —r + 1 and d; =
2sq + 1,7 € [2s¢ + 2 : m]. The (¢ + 1)-th transmission is
s—rd wj. Since user ugsg11 can compute

W2sq+1 + Wy + Zj:l

Wasqt1 + W + 557wy and users uj, j € [25q +2 : m], can

compute w,, + 357

=1 Wi these users have the message that
is not in their side information set as their desired message.
All the other users who are not in G244 have at least two
messages unknown in the transmission and thus cannot decode
it. Therefore, each user can decode only one message by the
achievable scheme with ¢ + 1 transmissions. If m is divisible
by s, then r =sand g+ 1 = [’2”—5], if m is not divisible by s,
g+1=T1m]/2+1.

Case s < r < 2s: We partition the users into 2g + 2
groups. The users in group G;,i € [2¢ + 1], all have
message w(;s), while the users in group Ga442 all have
Wii2s—rjufm}- We satisfy the first 2¢ groups by sending



Wais + Wz;—1)s,% € [q]. We satisfy all users in Gagy1 by
sending W2sq+1 + W2sq+s + W2sq+s+1- Ifr=s+ 1, G2q+2 =
{u} and we let d,, = s + 1 and send as last transmission
Wsy1 + ZjeAm; otherwise, we let doggist1 = 25 — 7 + 1
and dj = 2sq+ s+ 1,j € [2s¢ + s+ 1 : m] and send
Wosgts+1 + W + Z?:TH w;. One can verify that all users
can decode one and only one message by using this code of
length ¢ +2 = [|Z]/2] + 1.

2) Converse: Messages are bit vectors of length x, for some
k; we thus see each message as an element in [Fo~. When the
sender uses a linear code (on [Fo+), we can write the transmit-
ted codeword as ¢ = Ew™, where w™ = (w1, wy, ..., wy,)"
is the vector containing all the messages, and where E € ]Fg,fm
is the generator matrix of the code. We denote the linear span
of the row vectors of E as Span(F). Recall that in this setting,
user u;,% € [n], must to be able to decode one and only one
message outside its side information set A;; the index of the
decoded message is d;. Let v; ; be a vector whose j-th element
is non-zero and all elements with index not in A; are zeros.

A valid generator matrix ' must satisfy the following two
conditions:

1) Decodability: v; 4, € Span(E), for all i € [m];

2) Privacy: v; j ¢ Span(E), Vi € [m],j € [m]\(4; u {d;}).
The decodability condition guarantees successful decoding of
the desired message wgq, by user u; as argued in [1]. The
privacy condition must hold because the existence of a vector
v;,; € Span(E) for some j € [m]\(A4; u {d;}) implies that
user u; is able to decode message w; in addition to its desired
message Wy, -

The optimal linear code length £ is the smallest rank of
the generator matrix E, which by definition is the maximum
number of pairwise linearly independent vectors in Span(FE).
We prove the linear converse bound by giving a lower bound
on the maximum number of pairwise linearly independent
vectors in Span(FE), i.e., the rank of E. To do so, we need the
following two propositions, proved in Appendices A and B,
respectively. These propositions are the key technical novelty
of this work.

Proposition 1. In a working system (where every user can
decode without violating the privacy condition) with g = 1
we must have e; ¢ Span(E) for all i € [m], where e; are
standard bases of m-dimensional linear space.

Proposition 2. For a working system with g = 1, among
all n users, consider k users whose side information sets are
pairwise disjoint. The number of transmissions of any linear
code that satisfies these k users must be Oy = [k/2].

Proposition 1 states that in this case, a trivial ‘uncoded
scheme’ (that consists of sending £};, messages one by one)
always violates the privacy constraint. In other words, no user
is allowed to decode without using its side information.

Proposition 2 provides a lower bound on the code-length
of a linear code for a subset of the users in the system
(those with pairwise disjoint side information sets), thus for
all users. Therefore, among all m users in the system, there

are || users with pairwise disjoint side information sets.

By Proposition 2, we need at least [| /2] transmissions to
satisfy these users. Therefore, in order to satisfy all the users
in the system, we must have £}, > [|*]/2]. This provides the
claimed lower bound.

C. Case s<m/2 and g = s =2 (here n = m/2)
1) Achievability: In this case we show ¢ = [m/4]. We

lin
use the achievable scheme for case s = 2 < m/2 and g =
1 from Section IV-B1, where we need [m/4] transmissions
to satisfy all n = m users. The users we have here are a
proper subset of the users in the case g = 1. The achievable
scheme for g = 1 still satisfies all users and meets the privacy
constraint. We have ¢ < [m/4] in this case.

2) Converse: The converse proof in Section IV-B2 does
not directly apply in this case, mainly because the proof of
Proposition 1 requires g = 1. In Appendix C we show that it
holds for g = 2, stated as Proposition 3.

Hence the converse follows the same argument in Sec-
tion IV-B2 by replacing Proposition 1 with Proposition 3 in
Appendix C. We show that for k£ users with pairwise disjoint
side information sets, [k/2] transmissions are needed for this
case under the linear encoding restriction. Note that in this case
all n = m/2 users are with pairwise disjoint side information
sets. Therefore, the total number of transmissions that satisfy
all users is at least [m/4].

D. Remaining Cases

We aim to prove (7). Here we provide the converse proof,
and a sketch of the achievability proofs. The detailed proofs
can be found in [7, Appendix D].

1) Converse: By the converse bound in [6, Theorem 3] for
the circular-arc PICOD(1) without the privacy constraint, we
have ¢* > 1 when the NTH has 1-factor, and ¢* > 2 when the
NTH has no 1-factor. This converse bound holds also when
we impose an additional privacy constraint.

2) Achievability for s < m/2, either g = 2,s # 2, or
g = 3: We show how to find the first message to transmit.
Then, all the users that do not have this message in their side
information sets must be satisfied by a second transmission.
We show how to find this second transmission in such a way
that the privacy constraint is met.

3) Achievability for s = m/2: The achievable scheme in
this case is the one proposed in [9], where only the case g = 1
was considered. For the cases where g > 1, the set of users in
the system is a proper subset of the set of users when g = 1.
Therefore the scheme for g = 1 is still valid for any g in that
both decoding and privacy constraints are met.

V. CONCLUSION

In this paper we gave both achievable and converse bounds
for the private PICOD(1) problem with circular side in-
formation sets. We proposed a linear achievable scheme is
information theoretically optimal for some parameters, or it
requires at most one more transmission compared to a converse
developed under the constraint that the sender is restricted



to use linear codes. Proving, or disproving, that our linear
codes are actually information theoretically optimal is subject
of current investigation.

This work was supported in part by NSF Award number
1527059. The opinion expressed in this paper are of the
authors and do not necessarily reflect those of the NSF.

APPENDIX A
PROOF OF PROPOSITION 1

Recall that, for g = 1, the side information sets are A; =
(iy...,i+s—1 (mod m)) for all i € [m], as here n = m.
The proof is by contradiction. Wlog assume that we have a
working system with e; € Span(FE), that is, every user can
decode message w; without even using its side information.
Then, all users u;,i € [2 : m — s + 1] (who do not have
wy in their side information sets) must have desired message
wi, in order to make sure that the privacy constraint is not
violated. This implies Fact 1: user u; can only have wy, =
wy41 as desired message. Fact 1 is true because us desires
wy, therefore Ay U {da} D A;. After decoding wy, user s
can mimic user u; and thus decode message do. Since user
uz can decode only one message, di € Ax\A; = {s + 1}.
Therefore d; = s+ 1. By taking dy = s+ 1, we conclude that
there must exist vector vy g, = V1,541 = C+ Qs11€541, Where
a € Far,a0 # 0 and ¢ € Span(A;), where with an abuse of
notation we let Span(A;) denote Span({e; : j € A;}).

Given Fact 1, let ;7 be the position of the fist non-zero
element in the so found vy 44q. Clearly, j < s + 1 since
the (s + 1)-th element of vy 441 18 a1 # 0. We have the
following cases:

1) If j = s+ 1, all the users who do not have w1 in their
side information sets can decode wgy1, since vy s41 =
aegq for this case. usy o can decode both wy and wgy 1.

2) If 1 < j < s+ 1, then user u;4; can decode w; since
s+ 1 e A;. But user u;; decodes w; by assumption.
Therefore, user u; can decode both w; and w;.

3) If j = 1, user us4o can decode both wgy; and wj.
Therefore, us12 can decode two messages.

In all the three above cases, there exists at least one user who
can decode at least two messages, thus violating the privacy
constraint. Therefore, the original assumption e; € Span(FE)
must be impossible in a working system. The same reasoning
applies to any e;, j € [m]. This proves the claim.

APPENDIX B
PROOF OF PROPOSITION 2

By Proposition 1, for all i € [k] there exists v; 4, = ajeq, +
¢i € Span(FE), where ¢; € Span(4;) and «; # 0. The side
information sets A; are assumed to be disjoint so the vectors
¢; are linearly independent. v; 4, is linearly dependent on the
vectors v; q4,,Vj # i only if d; € A; and d; € A; for some
i # j. In other words, there exists a “loop” between wu; and
u;. Note that since the side information sets are disjoint, one
user can be in at most one loop, and the number of loops is
at most |k/2|. Therefore the number of v; 4, that are linearly
dependent is at most |k/2|, and thus the number of linearly

independent v; 4, is at least k — |k/2| = [k/2]. Therefore, the
number of transmissions that is needed to satisfy k users with
disjoint side information sets must satisfy ¢ = rk(E) > [k/2].

APPENDIX C
PROOF OF PROPOSITION 3

Proposition 3. In a working system (where every user can
decode without violating the privacy condition) with g = s =
2 we must have e; ¢ Span(E) for all i € [m], where e; are
standard bases of m-dimensional linear space.

Similar to the proof of Proposition 1, Wlog assume e; is in
Span(E). All users u;,i € [2 : m — s+ 1] in this case need to
desire message wy. Let d; € A;, for some j # 1. There exists
a vector vy g, € Span(E) such that: 1) the dq-th element is
non-zero; 2) all elements with indices that are not 1,2 or d;
are zeros. We check the first and second elements of v; 4, and
have the following cases:

1) Both elements are zero, i.e., vi,q, = eq,. All users

without wg, in their side information sets decode wy; .

2) The first is zero and the second is non-zero. The user u;
is able decode wy since u; already decodes w; and has
wg, in its side information set.

3) The first is non-zero and the second is zero. All users can
decode w;, then decode wyq; .

4) Both are non-zero. u; decodes w; by assumption. It also
has wg, in its side information set. Therefore wu; can
decode wo.

All possible cases show that there exists at least one user that
can decode at least two messages. The assumption that e; is
in Span(E) is impossible. The reasoning applies to all e;, j €
[m]. Therefore we conclude that e; ¢ Span(E) for all i € [m].
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