
Generalized Fundamental Diagram with Implications of
Congestion Mitigation

Qianwen Li1 and Xiaopeng Li, Ph.D., M.ASCE2

Abstract: The classic triangular fundamental diagram describes the functional relationship between flow rate and traffic density for
longitudinal movements of homogeneous traffic. This study generalized the classic triangular fundamental diagram in the congestion regime
to consider lateral lane-changing and heterogeneous traffic. F-test results indicated that the generalized model fit and predicted flow rate better
than the classic model. The inconsistency in the literature regarding the impacts of lane changing was reconciled as follows. Lane changes
decreased flow rate when traffic was both slightly and severely congested but increased flow rate when traffic was moderately congested.
Motivated by this finding, a dynamic lane-changing management strategy was developed to mitigate congestion. Results showed that the
proposed strategy improved throughput by 10.3%, average speed by 9.7%, and average delay by 19.2%. The findings from this study advance
knowledge of the classic two-dimensional fundamental diagram, reveal the nonlinear effects of lane changes, and provide policy implications
for congestion mitigation. DOI: 10.1061/JTEPBS.0000658. © 2022 American Society of Civil Engineers.
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Introduction

The classic triangular fundamental diagram is the foundation of
traffic flow theory in transportation research (Eliasson 2021; Zheng
2021). It describes the relationship between traffic flow (or traffic
volume) and traffic density for longitudinal movements of traffic
comprising homogeneous vehicles (Newell 1993; Treiber and
Kesting 2013). It has been widely used to describe traffic dynamics
and to develop congestion control strategies (Qu et al. 2017; Zhang
et al. 2018). Despite its popularity, the classic triangular fundamen-
tal diagram may not always perfectly describe or predict real-world
traffic dynamics due to certain limitations, including the following
two major issues.

First, the classic triangular fundamental diagram only focuses
on vehicle longitudinal interactions (i.e., car-following dynamics)
without adequately addressing impacts from latitudinal interactions
(i.e., lane-changing behavior). However, it has been shown that
lane-changing behavior may significantly impact traffic flow and
that the impacts are inconsistent among existing studies (Aghabayk
et al. 2011; Li et al. 2021). On the one hand, several studies have
stated that lane-changing behavior deteriorates traffic flow by gen-
erating shock waves on upstream traffic (Zheng 2014; Zheng et al.
2013), causing capacity drops (Coifman et al. 2005; Laval and
Daganzo 2006; Zhang et al. 2019), and inducing traffic accidents
(Ali et al. 2019; Gu et al. 2019; van Winsum et al. 1999). On the
other hand, some studies have found that lane-changing behavior
increases flow rate. It has been found that a considerable number
of lane changes are triggered by the heterogeneity between lanes
(Jin 2010a; Laval and Chilukuri 2016). Lane changes can have

balancing effects by smoothing out differences between lanes. Such
balancing effects can be beneficial to the overall traffic system in
achieving better traffic efficiency, meaning greater flow rate (Cheu
et al. 2009; Li et al. 2006; Patire and Cassidy 2011; Shvetsov and
Helbing 1999). Overall, the inconsistent impacts of lane changing
on traffic flow need to be reconciled.

The studies mentioned qualitatively addressed either positive or
negative impacts of lane-changing behavior on traffic flow rate.
Only a few attempts have been made to quantitively assess those
impacts. Jin (2010a) proposed a lane-changing intensity variable.
They assumed that a lane-changing vehicle’s contribution to traffic
density was doubled and incorporated an intensity-density relation-
ship into the triangular fundamental diagram to capture the negative
impacts of lane changes. Jin (2010b) developed a new interpreta-
tion of lane-changing intensity following Edie’s definition of
traffic density. Traffic flow reduction rates caused by lane changes
in different time intervals, cell sizes, and locations were calculated,
respectively. Jin (2013) proposed a multicommodity Lighthill-
Whitham-Richards model for lane-changing traffic and derived a
corresponding fundamental diagram with lane changes reducing
traffic flow. While these studies provided reasonable explanations
as powerful tools to measure the negative impacts of lane changing,
possible positive impacts were not captured. The studies just de-
scribed lay solid foundations for analyzing traffic flow, but the in-
consistency between the positive and negative impacts of lane
changing on traffic flow from different studies was not reconciled.

Second, the classic triangular fundamental diagram deals with
homogeneous traffic of the same vehicle type (Laval and Chilukuri
2016; Qian et al. 2017) so that it is not directly applicable to hetero-
geneous traffic with various vehicle types, such as passenger cars,
trucks, and motorcycles. The passenger car equivalent (PCE) factor
has been used in the Highway Capacity Manual to convert hetero-
geneous traffic into homogeneous traffic (Pompigna and Rupi
2015). However, the effects of different vehicle types on traffic flow
vary with traffic situation and vehicle length, which cannot be well
addressed by the PCE factor (Khan and Maini 1999; Zhou et al.
2019). To address this issue, a variety of models have been pro-
posed to investigate heterogeneous traffic properties. These include
continuum models (Gupta and Katiyar 2007; Zhang and Jin 2002),

1Ph.D. Candidate, Dept. of Civil and Environmental Engineering, Univ.
of South Florida, Tampa, FL 33620. Email: qianwenli@usf.edu

2Associate Professor, Dept. of Civil and Environmental Engineering,
Univ. of South Florida, Tampa, FL 33620 (corresponding author). ORCID:
https://orcid.org/0000-0002-5264-3775. Email: xiaopengli@usf.edu

Note. This manuscript was submitted on October 10, 2021; approved on
December 9, 2021; published online on March 11, 2022. Discussion period
open until August 11, 2022; separate discussions must be submitted for
individual papers. This paper is part of the Journal of Transportation En-
gineering, Part A: Systems, © ASCE, ISSN 2473-2907.

© ASCE 04022021-1 J. Transp. Eng., Part A: Systems

 J. Transp. Eng., Part A: Systems, 2022, 148(5): 04022021 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

U
ni

ve
rs

ity
 o

f M
ic

hi
ga

n 
on

 1
1/

17
/2

2.
 C

op
yr

ig
ht

 A
SC

E.
 F

or
 p

er
so

na
l u

se
 o

nl
y;

 a
ll 

rig
ht

s r
es

er
ve

d.

https://doi.org/10.1061/JTEPBS.0000658
mailto:qianwenli@usf.edu
https://orcid.org/0000-0002-5264-3775
mailto:xiaopengli@usf.edu
http://crossmark.crossref.org/dialog/?doi=10.1061%2FJTEPBS.0000658&domain=pdf&date_stamp=2022-03-11


car-following models (Mason and Woods 1997; Peeta et al. 2005),
and cellular automata models (Qian et al. 2017; Yang et al. 2015).
Zhang and Jin (2002) used kinematic wave theory to propose an
extended speed-density relation for the triangular fundamental
diagram while considering passenger cars and trucks. Yang et al.
(2015) adopted the cellular automaton to model the triangular fun-
damental diagram for different car-truck following combinations.
Logghe and Immers (2008) developed a multiclass model where
vehicle classes interacted in noncooperative equilibrium. The inter-
action of classes was considered an assignment of road space to
these classes. Qian et al. (2017) generalized the classic cell trans-
mission model to develop a macroscopic heterogeneous flow-
density model. Road capacity split and perceived equivalent density
were proposed to model interactions among different vehicle types.
While these studies enabled flexible applications of the triangular
fundamental diagram to heterogeneous traffic, lane changing was
not explicitly incorporated. It is still unclear how lane changing and
traffic heterogeneity jointly impact traffic flow.

To bridge the research gaps, this study generalized the classic
triangular fundamental diagram (the classic model for short) in the
congestion regime to consider lateral lane-changing behavior and
heterogeneous traffic. The generalized fundamental diagram was
obtained by applying a generalized linear regression model with
interaction terms to the next-generation simulation (NGSIM)
US101 data set (Federal Highway Administration 2005b).

F-test results showed that the generalized model fit and pre-
dicted flow rate better than the classic model. With the interaction
terms, the nonlinear effect of lane-changing behavior on flow rate
was formulated into a quadratic function of traffic density. The re-
gression results revealed that lane changes decrease flow rate when
traffic is slightly and severely congested but increase flow rate
when traffic is moderately congested. This finding unifies both
positive and negative impacts of lane changing on traffic flow in
the same model structure. Further, the spatial transferability of the
generalized model was verified with the NGSIM I-80 trajectory
data set (Federal Highway Administration 2005a) through a like-
lihood ratio test.

Motivated by different impacts of lane changing on traffic flow,
a dynamic lane-changing management strategy was developed to
improve highway mobility, and the performance of the strategy
was tested by simulations. The findings advance knowledge of the
classic two-dimensional fundamental diagram, reveal the nonlinear
effects of lane changes, and shed light on ways to mitigate traffic
congestion.

The rest of this paper is organized as follows. The generalized
linear regression model with interaction terms is presented and then
the model performance measurements are modeled. Next, the
NGSIM trajectory data set is introduced, the data aggregation
process is described, and the variable statistics are presented. The
generalized fundamental diagram model results are next presented,
followed by an assessment of the generalized model’s spatial trans-
ferability using the NGSIM I-80 trajectory data set. Following are
tests of the performance of the dynamic lane-changing manage-
ment strategy with simulations and finally conclusions and future
research directions.

Methodology

The methodology is outlined in Fig. 1. The classic model was for-
mulated with flow rate and density. The generalized model was
formulated to include lane changes and vehicle types. The NGSIM
US101 data set was used to estimate these models and the estima-
tion results were evaluated. Model prediction accuracy was also

tested. Next, the NGSIM I-80 data set was used to assess spatial
transferability. Finally, it was concluded that the generalized fun-
damental diagram model better fits and predicts flow rate and is
spatially transferable.

Linear regression was adopted to model traffic flow rate in this
study. Because of its simplicity and superior interpretability, it is
an extensively used statistical approach to model the relationship
between one continuous response and one or more explanatory
variables. The typical linear regression model is formulated as
(Washington et al. 2020)

Yn×1 ¼ Xn×pβp×1 þ εn×1 ð1Þ

where Y, X, and β = response matrix, explanatory matrix, and
parameter matrix respectively; ε = disturbance term; n = number
of observations; and p = number of variables included in the model.

The typical linear regression model assumes that all explanatory
variables are independent of each other. This assumption does not
hold when the effect of one explanatory variable on the response
depends on the value of another explanatory variable. For example,
the effect of lane changing on flow rate is associated with density.
In this case, the typical linear regression model is not applicable but
needs to be generalized by adding interaction terms (Cortina 1993;
Karaca-Mandic et al. 2012) between the correlated variables. The
interaction term is constructed by computing the product of the in-
teracting explanatory variables—for example, xi × xj, where i ≠ j.
The generalized linear regression model with interaction terms can
be formulated as

Yn×1 ¼ Xn×pβp×1 þ Zn×qβ
0
q×1 þ εn×1 ð2Þ

where Y, X, β, Z, and β 0 = response matrix, explanatory matrix,
explanatory parameter matrix, interaction matrix, and interaction
parameter matrix, respectively; ε = disturbance term; n = number
of observations; p =number of explanatory variables included in
the model; and q = number of interaction terms included in the
model.

The marginal effect is used to determine the effect of a one-unit
change in an explanatory variable on the response. It is obtained by
calculating the partial derivative of the response with respect to the
explanatory variable while other explanatory variables are held
constant.

The adjusted R2 is used to evaluate model fitness and is formu-
lated as

Fig. 1. Methodology logic.

© ASCE 04022021-2 J. Transp. Eng., Part A: Systems

 J. Transp. Eng., Part A: Systems, 2022, 148(5): 04022021 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

U
ni

ve
rs

ity
 o

f M
ic

hi
ga

n 
on

 1
1/

17
/2

2.
 C

op
yr

ig
ht

 A
SC

E.
 F

or
 p

er
so

na
l u

se
 o

nl
y;

 a
ll 

rig
ht

s r
es

er
ve

d.



AdjustedR2 ¼ 1 − ð1 − R2ÞðN − 1Þ
N − p − 1

ð3Þ

where

R2 ¼ 1 −
P

N
i¼1 ðyi − y 0

i Þ2P
N
i¼1 ðyi − ȳÞ2 ð4Þ

where yi = observed value; ȳ = mean of all observed values; y 0
i =

predicted value; and N = number of observations. The root-mean
square error (RMSE) is used to measure model prediction accuracy.
It is calculated as

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

N
i¼1 ðy 0

i − yiÞ2
N

r
ð5Þ

where yi = observed value; y 0
i = predicted value; andN = number of

observations.

Empirical Settings

This section briefly introduces the NGSIM US101 trajectory data
set, describes the data aggregation process, and presents descriptive
statistics of the observation set.

NGSIM Trajectory Data Set

The NGSIM US101 trajectory data set used in this study was
collected on the Hollywood Freeway, in Los Angeles, California,
on June 15, 2005 (https://www.fhwa.dot.gov/publications/research
/operations/07030/07030.pdf). The study area is about 640 m long
consisting of 5 main lanes (Lanes 1–5), one auxiliary lane (Lane 6),
one on-ramp (Lane 7), and one off-ramp (Lane 8). Eight synchron-
ized digital video cameras were mounted on a building adjacent
to the freeway to record vehicles passing through the segment.
Vehicles’ trajectories were extracted from the video every 1=10 s.
The data set contains 45-min of trajectory data, divided into three
periods: 7:50 to 8:05 a.m.; 8:05 to 8:20 a.m.; and 8:20 to 8:35 a.m.
The current study focused on vehicle trajectories in the five main
lanes to capture lane changes from the segment start to the segment
end. Following previous literature, this study did not further
classify lane changes into mandatory and discretionary (Cheu et al.
2009; Jin 2010a, 2013; Li et al. 2006).

Data Aggregation

When vehicle trajectory data are available, Edie’s equations can be
used to calculate macroscopic traffic variables with a subset of
trajectories in an arbitrary time-space region (Knoop et al. 2012;
Laval 2011). Then traffic flow rate q, traffic density k, and average
space-mean speed v are formulated as follows, respectively:

q ¼
XI

i¼1

xi
jAj ð6Þ

k ¼
XI

i¼1

ti
jAj ð7Þ

v ¼ q
k
¼

P
I
i¼1

xi
jAjP

I
i¼1

ti
jAj

ð8Þ

where A = arbitrary region containing I vehicles, indexed from 1 to
I; jAj = area of region A; xi = distance vehicle i travels in region A;
and ti = time vehicle i spends in region A.

We divided the time-space diagram into parallelograms with a
base of 20 s and a height of 60 m. Each parallelogram denoted a
region A—that is, an observation—as illustrated in Fig. 2. Two op-
posite sides of the parallelogram had slopes of the shockwave speed
(18 km=h in this data set) and the other two sides were horizontal
with zero slopes. The parallelogram needed to be large enough to
accommodate lane changes. The dimensions were chosen because
they produced the most significant statistical results. Only parallel-
ograms filled with trajectories were included in the observation set.

Observation Set

In total, 837 observations (837 regions) were obtained from the
above data aggregation. The variables in Table 1 were extracted
correspondingly. Traffic flow rate and space-mean speed were de-
fined in the previous subsection. Truck percentage was calculated
as number of trucks/total number of vehicles in region A × 100%.
Motorcycle percentage was calculated as number of motorcycles/
total number of vehicles in region A × 100%. Lane-changing rate
was calculated as number of lane changes ðNLCÞ=total number of
vehicles ðNvehÞ in region A × 100%. Two consecutive lane changes
by the same vehicle were not counted when the vehicle switched

Fig. 2. Observation.
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back to its original lane shortly after its first lane change. These
were false lane changes probably due to identification errors
(Jin 2010b). Vehicle trajectories were plotted to exclude false lane
changes. Descriptive statistics of these variables are provided in
Table 1. The relationship of flow and density is plotted in Fig. 3.

Generalized Fundamental Diagram Model

This section first compares the performance of several generalized
fundamental diagram models with that of the classic model and
then presents detailed results.

Seventy percent of the observations (586 regions) were used to
estimate four fundamental diagram models. The model fitness re-
sults (i.e., the adjusted R2 values) are provided in Table 2. The four
estimated models were employed on the remaining 30% of the

observations (251 regions) to compare flow rate prediction accu-
racy (RMSE of flow rate in Table 2). We highlight two points here.

First, lane-changing rates in Models 3 and 4 were endogenous
variables affected by traffic density. In this case, ordinary least
squares could produce biased estimation results. One way to avoid
this is to identify instrumental variables; however, this approach
was difficult to apply to the investigated problem. As an alternative,
we opted to use interaction terms since it has been proven that the
functional form of an interaction model naturally leads to alterna-
tive instrumental variables (Bun and Harrison 2019).

Second, despite the inclusion of the first interaction term
lcr × k, the second interaction term lcr × k2 was introduced in
Models 3 and 4 to reconcile the inconsistency between the positive
and negative impacts of lane changing on traffic flow from different
studies. The statistically significant t statistics justified this inclu-
sion. Higher-order interaction terms were tested but were not stat-
istically significant.

It was shown that Models 2, 3, and 4 fitted and predicted
flow rate better than Model 1 (the classic fundamental diagram),
indicated by the higher adjusted R2 and the lower RMSE values.
Accounting for heterogeneous traffic slightly improved flow rate
fitness and prediction accuracy, as shown by the results of
Model 2. Considering lane-changing behavior greatly improved
flow rate fitness and prediction accuracy, as shown by the results
of Model 3. The best model performance was observed after incor-
porating both lane-changing behavior and heterogeneous traffic, as
shown by the results of Model 4. One could argue that including
more predictors leads to better model performance. Thus, we con-
ducted three hypothesis tests to test the superiority of Model 4.
Three null hypotheses (H01, H02, and H03) and three corresponding
alternative hypotheses (Ha1, Ha2, and Ha3) were proposed.
• Hypothesis test to compare Model 4 and Model 1:

H01: Model 4 does not fit flow rate statistically better than
Model 1.

Ha1: Model 4 fits flow rate statistically better than Model 1.
• Hypothesis test to compare Model 4 and Model 2:

H02: Model 4 does not fit flow rate statistically better than
Model 2.

Table 1. Descriptive statistics of variables

Variable Minimum Maximum Mean Standard deviation

Dependent variable
Traffic flow rate (veh=h= ln) 731 1,794 1,419 218

Independent variable
Density (veh=km= ln) 21 80 44 12
Truck percentage 0 6.08 2.02 1.26
Motorcycle percentage 0 6.76 0.76 1.35

Lane-changing rate

�
100% ×

NLC

Nveh

�
0 5.44 0.86 0.96

Source: Data from Federal Highway Administration (2005b).

Fig. 3. Flow and density relationship. (Data from Federal Highway
Administration 2005b.)

Table 2. Fundamental diagram model comparison

Model index Model formulation Adjusted R2 RMSE (veh=h= ln)

1 q ¼ cþ α1 × k 0.730 114.453
2 q ¼ cþ β1 × kþ β2 × ptruck þ β3 × pcycle 0.735 112.004
3 q ¼ cþ γ1 × kþ γ2 × lcrþ γ3 × lcr × kþ γ4 × k2 × lcr 0.768 106.780
4 q ¼ cþ μ1 × kþ μ2 × lcrþ μ3 × lcr × kþ μ4 × k2 × lcrþ μ5 × ptruck þ μ6 × pcycle 0.771 104.153

Source: Data from Federal Highway Administration (2005b).
Note: q = flow rate; k = traffic density; lcr = lane-changing rate; ptruck = truck percentage; pcycle = motorcycle percentage; c = constant; α, β, γ, μ = model
parameters; and lcr × k, lcr × k2 = interaction terms.
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Ha2: Model 4 fits flow rate statistically better than Model 2.
• Hypothesis test to compare Model 4 and Model 3:

H03: Model 4 does not fit flow rate statistically better than
Model 3.

Ha3: Model 4 fits flow rate statistically better than Model 3.
Since Model 4 (the full model) has more than one additional

term than do Models 1, 2, and 3 (the restricted models), the F-test
was adopted (Ludden et al. 1994)

F ¼ SSErestricted − SSEfull

SSEfull
×

N − Pfull

Pfull − Prestricted
ð9Þ

where SSErestricted = sum of squared residuals of the restricted
model; SSEfull = sum of squared residuals of the full model; N =
number of observations; Pfull = number of predictors in the full
model; and Prestricted = number of predictors in the restricted model.
The F-statistic for comparing Model 4 and Model 1 was 22.11, the
F-statistic for comparing Model 4 and Model 2 was 31.71, and the
F-statistic for comparing Model 4 and Model 3 was 5.72. After
looking up the F-distribution tables, we were 99% confident to
reject the null hypotheses H01 and H02, and 95% confident to reject
the null hypothesis H03. Thus, we concluded that Model 4 fit flow

rate statistically better than Models 1, 2, and 3. The detailed results
of Model 4 (the generalized fundamental diagram) are presented in
Table 3.

An adjusted R2 of 0.771 indicated great estimation results. All
independent variables and interaction terms were statistically sig-
nificant, as suggested by the t-test values. Thus, the generalized
fundamental diagram of the US101 data set was formulated as
Eq. (10). Fig. 4 plots the generalized fundamental diagram when
ptruck ¼ 2.02 and pcycle ¼ 0.76 (i.e., observation mean values). The
effect of each explanatory variable on flow rate is discussed below,
respectively

q ¼ 2,115.81 − 15.54 × k − 274.53 × lcrþ 12.49 × lcr × k

− 0.13 × k2 × lcr − 7.41 × ptruck þ 8.37 × pcycle ð10Þ

The marginal effect of traffic density on flow rate was formu-
lated as Eq. (11) and is plotted in Fig. 5

∂q
∂k ¼ −15.54þ 12.49 × lcr − 0.26 × k × lcr ð11Þ

The marginal effect of traffic density on flow rate in the gener-
alized fundamental diagram was no longer a constant as in the
classic fundamental diagram but became a function of lane-
changing rate and traffic density. When lane-changing rate equaled
zero, the marginal effect of traffic density on flow rate equaled
−15.54 veh=h= ln. Otherwise, when lane-changing rate was kept
at a nonzero constant value, the marginal effect of traffic density
on flow rate linearly decreased with a rate of 0.26 × lcp as traffic
density increased.

The marginal effect of lane changing on flow rate was formu-
lated as Eq. (12) and is plotted in Fig. 6

∂q
∂lcr ¼ −274.53þ 12.49 × k − 0.13 × k2 ð12Þ

The marginal effect of lane changing on flow rate was a
quadratic function of traffic density. This indicated that the effect
varied as congestion developed (i.e., as traffic density increased), as

Table 3. Generalized fundamental diagram estimation results

Variable description
Estimated
parameter t statistic

Constant, c 2,115.81 84.93
Traffic density, k ðveh=km= lnÞ −15.54 −33.19
Lane-changing rate, lcr

�
100% ×

NLC

Nveh

�
−274.53 −9.64

Lane-changing rate × traffic density, lr × k 12.49 8.91
Lane-changing rate × traffic density2, lcr × k2 −0.13 −8.05
Truck percentage, ptruck −7.41 −2.07
Motorcycle percentage, pcycle 8.37 2.41
No. of observations 586
Adjusted R2 0.771

Source: Data from Federal Highway Administration (2005b).

Fig. 4. Generalized fundamental diagram with fixed truck and motorcycle percentages. (Data from Federal Highway Administration 2005b.)
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shown in Fig. 6. Thus, the inconsistency among existing studies
regarding the impacts of lane changing on traffic flow (whether
increasing or decreasing flow rate) was reconciled as follows.
When traffic was slightly congested (traffic density less than
34 veh=km= ln), lane changing had a negative effect on flow rate,
probably because vehicles were traveling at a relatively high speed
(greater than 42.5 km=h in Fig. 7) while unoccupied spacing on
the road available for lane changes was somehow limited. Thus,
lane changes may have easily interfered with the movements of
upstream neighboring vehicles and caused backward shockwaves
and speed drops. As a result, flow rate dropped as lane changes
took place. It was noted that when traffic density was at the mini-
mum (20 veh=km= ln), flow rate drop induced by lane changes was
even greater. In this case, flow rate was around roadway capacity

and overall traffic flow was stable. The disturbance caused by lane
changes would easily break the stationary traffic state and result in a
great flow rate drop. As the congestion evolved, the magnitude of
flow rate drop decreased until traffic became moderately congested
(traffic density between 34 veh=km= ln and 62 veh=km= ln). In this
case, lane changing had a positive effect on flow rate. The corre-
sponding average speed was not as high as in the previous case:
between 20 km=h and 42.5 km=h in Fig. 7. In this speed range,
a number of vehicles that desired to travel faster were already held
in a platoon. They could thus take opportunities to change lanes
to escape from the current oscillated traffic and improve their speed
(Patire and Cassidy 2011). It was probable that the speed im-
provements of lane-changing vehicles offset the speed reductions
of upstream neighboring vehicles and created a positive impact on

Fig. 5. Marginal effect of traffic density on flow rate. (Data from Federal Highway Administration 2005b.)

Fig. 6. Marginal effect of lane changing on flow rate. (Data from
Federal Highway Administration 2005b.) Fig. 7. Observation speed distribution. (Data from Federal Highway

Administration 2005b.)
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overall traffic flow rate (Cheu et al. 2009; Li et al. 2006). None-
theless, when traffic was heavily congested (traffic density greater
than 62 veh=km= ln), lane changing again had a negative effect on
flow rate. In this case, average speed was less than 20 km=h as
shown in Fig. 7, and the unoccupied spacing for lane changes
was very limited. Thus, lane changes may not have much improved
the subject vehicles’ speeds; rather, they caused more speed drops
to upstream neighboring vehicles. As a result, collective flow rate
decreased as lane changing increased. Intuitively, as traffic became
more congested, flow rate dropped because lane changes became

greater. This interesting finding shed light on creating new dynamic
lane-changing management strategies to mitigate congestion. For
example, we may allow for lane changes when traffic is moderately
congested and restrict lane changes when traffic is slightly or se-
verely congested.

The marginal effect of truck percentage on flow rate was
−7.41 veh=h= ln. Thus, it was negatively correlated with traffic
flow rate, indicating that a higher presence of trucks likely de-
creased traffic flow rate (Yang et al. 2015). A 1% increase in truck
percentage would result in a decrease of 7.41 veh=h= ln in flow
rate. Given the definition of flow rate—the number of vehicles
passing through a given location on the roadway within a period
(Treiber and Kesting 2013)—the longer the vehicle length, the
smaller the flow rate. Fig. 8 shows the average vehicle lengths
of three types of vehicles in the data set. Trucks were much longer
than passenger cars, with an average length of 11.51 m (versus
4.53 m for cars), which supported the above explanation. Trucks’
limited acceleration/deceleration capability also contributed to their
negative impacts on traffic flow rate.

The marginal effect of motorcycle percentage on flow rate was
8.37 veh=h= ln. Thus, motorcycle percentage was positively related
to traffic flow rate compared with passenger cars. A 1% increase in
motorcycle percentage would increase flow rate by 8.37 veh=h= ln.
This was an expected finding since motorcycles are physically
shorter than cars, with an average length of 2.38 m and thus
consume less roadway space. Besides, motorcycles have better
acceleration/deceleration capabilities than passenger cars. There-
fore, the presence of motorcycles contributes to higher flow rate
(Meng et al. 2007; Minh and Sano 2003).

Model Spatial Transferability Assessment

This section assesses the spatial transferability of the generalized
fundamental diagram. Models 1–4 were reevaluated using the
NGSIM I-80 trajectory data set, which was collected in the San
Francisco Bay Area in Emeryville, California, on April 13, 2005
(https://www.fhwa.dot.gov/publications/research/operations/06137
/06137.pdf). The data aggregation strategy described earlier was
also used to generate the I-80 observation set. The same parallelo-
gram dimensions were used for consistency. The relationship of
flow and density is plotted in Fig. 9. In total, 651 observations were
obtained, 70% of which (456 regions) were used for model estima-
tion and 30% (195 regions) for testing model prediction perfor-
mance. The results are summarized in Table 4.

Similarly, accounting for heterogeneous traffic improved flow
rate fitness and prediction accuracy, as shown in the results of
Model 2. Considering lane-changing behavior also improved flow
rate fitness and prediction accuracy, as shown in the results of
Model 3. The best model performance was observed after incorpo-
rating both lane-changing behavior and heterogeneous traffic, as
shown in the results of Model 4.

Fig. 8. Average vehicle length. (Data from Federal Highway
Administration 2005b.)

Fig. 9. Flow and density relationship. (Data from Federal Highway
Administration 2005a.)

Table 4. Fundamental diagram model comparison

Model index Model formulation Adjusted R2 RMSE (veh=h= ln)

1 q ¼ cþ α1 × k 0.752 101.486
2 q ¼ cþ β1 × kþ β2 × ptruck þ β3 × pcycle 0.790 91.725
3 q ¼ cþ γ1 × kþ γ2 × lcrþ γ3 × lcr × kþ γ4 × k2 × lcr 0.774 94.745
4 q ¼ cþ μ1 × kþ μ2 × lcrþ μ3 × lcr × kþ μ4 × k2 × lcrþ μ5 × ptruck þ μ6 × pcycle 0.808 81.857

Source: Data from Federal Highway Administration (2005a).
Note: q = flow rate; k = traffic density; lcr = lane-changing rate; ptruck = truck percentage; pcycle = motorcycle percentage; c = constant; α, β, γ, μ = model
parameters; and lcr × k, lcr × k2 = interaction terms.
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Three hypothesis tests were conducted to test the superiority
of Model 4 using the F-test. The three null hypotheses and three
alternative hypotheses proposed in the previous section were used.
The F-statistic for comparing Model 4 and Model 1 was 27.24, the
F-statistic for comparing Model 4 and Model 2 was 14.87, and
the F-statistic for comparing Model 4 and Model 3 was 43.57.
After looking up the F-distribution tables, we were 99% confident
to reject the null hypotheses H01, H02, and H03. Thus, we concluded
that Model 4 fit flow rate statistically better than Models 1, 2, and 3.
The detailed estimation results of Model 4 (the generalized funda-
mental diagram) are presented in Table 5.

An adjusted R2 of 0.808 indicated great estimation results. All
independent variables and interaction terms were statistically sig-
nificant. Thus, the generalized fundamental diagram of the I-80
data set was formulated as Eq. (13). Fig. 10 plots the generalized
fundamental diagramwhenptruck ¼ 4.38 andpcycle ¼ 1.05 (i.e., ob-
servation mean values)

q ¼ 2,037.02 − 14.92 × k − 338.72 × lcrþ 12.61 × lcp × k

− 0.11 × k2 × lcr − 23.98 × ptruck þ 8.67 × pcycle ð13Þ

The marginal effect of traffic density on flow rate was formu-
lated as Eq. (14) and is plotted in Fig. 11

∂q
∂k ¼ −14.92þ 12.61 × lcr − 0.22 × k × lcr ð14Þ

The parameters in the marginal effect of traffic density on flow
rate in the I-80 model [Eq. (14)] were similar to those in the US101
model [Eq. (11)]. This indicated that the impact of traffic density on
flow rate was consistent across different freeway segments.

The marginal effect of lane changing on flow rate was formu-
lated as Eq. (15) and is plotted in Fig. 12

∂q
∂lcr ¼ −338.72þ 12.61 × k − 0.11 × k2 ð15Þ

While other parameters in the marginal effect of lane-changing
on flow rate in the I-80 model [Eq. (15)] were similar to those in the
US101 model [Eq. (12)], the constant terms in the two marginal
effect functions were quite different (−338.72 versus −274.53).
This was because US101 and I-80 had different congestion den-
sities due to factors such as roadway characteristics (Bonneson
et al. 2006) and driving behaviors (Toledo et al. 2007).

Based on the generated observations, US101’s congestion den-
sity ranged from 20 to 80 veh=km= ln; I-80’s congestion density
ranged from 30 to 90 veh/km/ln. Despite the difference in these
absolute values, the percentiles of the critical density values that
separate positive and negative impacts of lane-changing on flow
rate were similar between the two models. Thus; kUS1011 was at the
23rd percentile, kUS1012 was at the 70th percentile, kI801 was at the
22nd percentile, and kI802 was at the 70th percentile. This implied
that the impact of lane changing on flow rate was consistent. When
traffic density was relatively low or high, lane changing tended to
decrease flow rate. However, when traffic density was in the middle
range, lane changing tended to increase flow rate. These similar
density percentiles can be used as future references to set density
thresholds while developing dynamic lane-changing management
strategies to mitigate congestion.

Table 5. Generalized fundamental diagram estimation results

Variable description
Estimated
parameter t statistic

Constant, c 2,037.02 71.23
Traffic density, k (veh=km= ln) −14.92 −32.94
Lane-changing rate, lcr

�
100% ×

NLC

Nveh

�
−338.72 −6.49

Lane-changing rate × traffic density, lc × k 12.61 6.44
Lane-changing rate × traffic density2, lcr × k2 −0.11 −6.06
Truck percentage, ptruck −23.98 −9.33
Motorcycle percentage, pcycles 8.67 1.99
Number of observations 456
Adjusted R2 0.808

Source: Data from Federal Highway Administration (2005a).

Fig. 10. Generalized fundamental diagram with fixed truck and motorcycle percentages. (Data from Federal Highway Administration 2005a.)
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The marginal effect of truck percentage on flow rate in the I-80
model (− 23.98 veh=h= ln in Table 5) was quite different from that
in the US101 model (−7.41 veh=h= ln in Table 3). The presence of
trucks on I-80 decreased flow rate much more than that on US101.
Possible reasons follow. Traffic on I-80 was more congested than
that on US101. Thus, the presence of trucks on I-80 likely degraded
traffic performance more given trucks’ inferior kinematic capabil-
ity. Further, average truck length on I-80 was 14.78 m, as shown in
Fig. 13, which was more than 3 m longer than that on US101. The
longer the truck, the more roadway space it occupied and the worse
its acceleration/deceleration capability. Therefore, longer trucks
decreased flow rate more. This finding implied that not only
vehicle type but also vehicle length should be carefully treated

while modeling heterogeneous traffic flow dynamics, especially
for a vehicle type such as trucks with relatively dispersed vehicle
lengths. In this study, the number of trucks within a parallelogram
was not enough to further investigate the impact of truck length on
the fundamental diagram. This might be an interesting research
topic when more data sets containing various trucks are available.

Lastly, we saw that the marginal effect of motorcycle percentage
on flow rate in the I-80 model (8.67 veh=h= ln in Table 5) was sim-
ilar to that in the US101 model (8.37 veh=h= ln in Table 3). This
was probably because the average motorcycle lengths were similar
between US101 and I-80 (i.e., 2.14 versus 2.38 m).

Overall, the generalized fundamental diagram performed con-
sistently between the US101 and I-80 data sets. A likelihood ratio
test was conducted to assess the spatial transferability of the gen-
eralized fundamental diagram by calculating the X 2 statistic
(Washington et al. 2020)

Fig. 11. Marginal effect of traffic density on flow rate. (Data from Federal Highway Administration 2005a.)

Fig. 12. Marginal effect of lane changing on flow rate. (Data from
Federal Highway Administration 2005a.)

Fig. 13. Average vehicle length. (Data from Federal Highway
Administration 2005a.)
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X2 ¼ −2 × ½LLðβbothÞ − LLðβUS101Þ − LLðβI80Þ� ð16Þ
where LLðβbothÞ = log-likelihood at convergence of the model
estimated with both US101 and I-80 data sets; LLðβUS101Þ =
log-likelihood at convergence of the model estimated with the
US101 data set alone; and LLðβI80Þ = log-likelihood at conver-
gence of the model estimated with the I-80 data set alone. The X2

statistic was calculated as 59.84. The degree of freedom was com-
puted as the number of predictors in the US101 model plus that in
the I-80 model minus that in the combined data model, which was
equal to 7. After looking up at X2 distribution table, we were 99%
confident to claim that the generalized fundamental diagram was
spatially transferable.

Dynamic Lane-Changing Management Strategy

The analysis described in this paper indicates that lane changes can
decrease flow rate when traffic is slightly or severely congested but
increase flow rate when traffic is moderately congested. The critical
density values (k1 and k2) that separate positive and negative im-
pacts of lane changing on congested flow rate are used to devise a
dynamic lane-changing management strategy. When traffic is in a
free-flow state, meaning that density is less than k0, lane changes
are allowed. In this case, there is plenty of space in the roadway for
downstream vehicles to absorb possible disturbances induced by
lane changes. Thus, lane changes are not expected to affect traffic
performance much. When traffic is congested and density is be-
tween k1 and k2, lane changes are allowed, but when density is
between k0 and k1 or greater than k2, lane changes are restricted.
“Restricted” means “forbidden” unless they are mandatory such
that vehicles can merge into the mainstream or exit the roadway.
Variables k0, k1, and k2 are determined by calibrating the general-
ized fundamental diagram with observed data when lane changes
are not restricted.

To test the performance of the proposed strategy, a general
freeway segment with four main lanes and one off-ramp was con-
structed in PTV VISSIM, as shown in Fig. 14. The off-ramp was
added to generate congestion upstream, where the strategy was
tested. The overall segment was about 3 km, and the testing seg-
ment was about 2 km. The simulation time was set as 30 min, and
the vehicle input volume was time-dependent, increasing from
4,500 to 5,500 veh=h with a step size of 5 min. Referring to the
vehicle composition of US101, 0.8% was set as motorcycles, 2%
was set as trucks, and the remaining was set as passenger cars. The
desired speed was 100 km=h. The diverging rate was 10%. It was
assumed that diverging vehicles could make mandatory lane
changes in the downstream segment to exit the freeway. Thus, lane
changes in the testing segment were discretionary and could be

forbidden when necessary. The testing segment was configured
not to reproduce the traffic of US101 but to test the effectiveness
of the proposed strategy on a general freeway segment. The
assumption was that the critical density percentiles of the proposed
strategy would be generalizable at least with similar vehicle com-
position regardless of the specific fundamental diagram shape. This
assumption was validated by the simulation results.

Three simulation cases were tested. In Case A, lane changes
were forbidden at all times; in Case B, lane changes were allowed
at all times; in Case C, lane changes were allowed when traffic was
moderately (k1 ≤ density ≤ k2) congested and forbidden when traf-
fic was slightly (density < k1) or severely congested (density > k2);
k1 and k2 were set after calibrating the generalized fundamental
diagram of the testing segment. As expected, they were at the
22nd and 71st percentiles, respectively, given that the vehicle com-
position of the testing segment was similar to that of US101. Lane
changes were always allowed in the downstream segment. Traffic
throughput was measured at the end of the testing segment, as
shown in Fig. 14. Average speed and average delay were measured
across the management segment. Each case was simulated 10
times, and performance measurements were averaged out. The
simulation results are presented in Table 6.

The dynamic lane-changing management strategy produced
the best mobility performance; second best was allowing all lane
changes, and worst was restricting all lane changes. Specifically,
compared with allowing all changes, the dynamic strategy im-
proved traffic throughput, average speed, and average delay by
10.3%, 9.7%, and 19.2%, respectively. This finding suggests the
promising benefits of this strategy in mitigating traffic congestion.
The benefits are expected to increase as the study segment expands.
It is noteworthy that the percentiles of density values that separate
positive and negative impacts of lane changing may vary with some
factors. Specifically, if the traffic stream is composed of a large
number of trucks or motorcycles, the percentiles will be different
from those in this study. The differences will be more significant
when it comes to automated vehicles. Therefore, segment-specific
generalized fundamental diagram calibration is very helpful for
developing effective dynamic lane-changing management strate-
gies and policies.

Fig. 14. Simulation segment.

Table 6. Strategy performance

Case
Throughput
(veh=30 min)

Average speed
(km=h)

Average
delay (s)

A (no lane changes) 1,642 54.26 37.74
B (all lane changes) 2,047 73.35 23.17
C (dynamic strategy) 2,258 80.47 18.71
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Conclusion

The classic triangular fundamental diagram is a fundamental
theory to help understand traffic dynamics and so develop ways
to mitigate congestion. However, it only focuses on vehicle lon-
gitudinal movements and may not fully capture vehicle lane-
changing behavior. In addition, because it handles homogeneous
traffic it cannot be directly applied to heterogeneous traffic. To
address these limitations, this study generalized the diagram to
consider lane-changing behavior and heterogeneous traffic using
a generalized linear regression model. The NGSIM US101 trajec-
tory data set was used for model estimation after aggregation.
F-test results demonstrated that the generalized model fit and
predicted flow rate better than the classic model. The impacts
of lane-changing behavior on traffic flow varied as congestion
developed. Lane changes decreased flow rate when traffic was
slightly or severely congested but increased flow rate when traffic
was moderately congested. This variation was captured by intro-
ducing terms for interaction between lane-changing rate and
traffic density into the regression model.

The spatial transferability of the generalized model was verified
with the NGSIM I-80 trajectory data set through a likelihood
ratio test. It was shown that, although the congestion densities
on US101 and I-80 were different, the percentiles of the critical
density values that separated positive and negative impacts of lane
changing on flow rate were similar between the US101 and I-80
models. These similar density percentiles could be used as future
references to develop dynamic lane-changing management strate-
gies to mitigate congestion, such as by setting density thresholds. It
was also shown that the presence of trucks on I-80 decreased flow
rate more significantly than that on US101. This probably can be
attributed to trucks’ longer average length and worse acceleration/
deceleration capability relative to cars. It implies that not only
different vehicle types but also different vehicle lengths should
be carefully considered when modeling heterogeneous traffic flow
dynamics.

Motivated by the different impacts of lane changing on flow
rate, a dynamic lane-changing management strategy was proposed
to mitigate traffic congestion by restricting lane changes when
traffic is slightly or severely congested. Simulation tests showed
that the proposed strategy improves traffic throughput by 10.3%,
average speed by 9.7%, and average delay by 19.2%, compared
with the strategy of no restriction on lane changes. This exciting
finding reveals the promising benefits of the dynamic lane-
changing management strategy and provides implications for con-
gestion mitigation.

This work can be extended in the following directions. The
model results may be improved if we include more descriptive
data in model estimation, such as driver, roadway, and weather
characteristics. It might be interesting to investigate the impact
of truck length on the fundamental diagram using data sets con-
taining various trucks. Besides spatial transferability, the model’s
temporal transferability can be tested by comparing model estima-
tion results using data from the same location but in a different
period.
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