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Abstract—This paper studies the Pliable Index CODing prob-
lem (PICOD), which models content-type distribution networks.
In the PICOD(¢) problem there are m messages, n users and
each user has a distinct message side information set, as in the
classical Index Coding problem (IC). Differently from IC, where
each user has a pre-specified set of messages to decode, in the
PICOD(t) a user is “pliable” and is satisfied if it can decode any
t messages that are not in its side information set. The goal is to
find a code with the shortest length that satisfies all the users.
This flexibility in determining the desired message sets makes
the PICOD(¢) behave quite differently compared to the IC, and
its analysis even more challenging.

This paper mainly focuses on the complete—S PICOD(¢) with
m messages, where the set S — [m] contains the sizes of the
side information sets, and the number of users is n = > _o (TS"),
with no two users having the same side information set. Capacity
results are shown for: (i) the consecutive complete—S PICOD(¢),
where S = [Smin : Smax] for some 0 < Smin < Smax < M — 1,
and (ii) the complement-consecutive complete-S PICOD(¢), where
S =1[0:m—t]\[Smin : Smax], for some 0 < Smin < Smax < M—1.
The novel converse proof is inspired by combinatorial design
techniques and the key insight is to consider all messages that a
user can eventually decode successfully, even those in excess of
the ¢ required ones. This allows one to circumvent the need to
consider all possible desired message set assignments at the users
in order to find the one that leads to the shortest code length.
The core of the novel proof is to solve the critical complete-S
PICOD(t) with m = 2s + ¢ messages and S = {s}, by showing
the existence of a user who can decode s+t messages regardless
of the desired message set assignment. All other tight converse
results for the complete-S PICOD(¢) can be deduced from this
critical case. The converse results show the information theoretic
optimality of simple linear coding schemes. By similar reasoning,
all complete—S PICOD(¢) where the number of messages is m <
5 can be fully characterized. In addition, tight converse results are
also shown for the PICOD(1) with circular-arc network topology
hypergraph.

I. INTRODUCTION
A. Motivation

The broadcast channel with message side information at the
receivers has became a critical model to understand the full
potential of wireless communication networks as it models, for
example, the downlink of the two-way relay channel [2]. Not
even the capacity of the general broadcast channel without
receiver side information is known. Therefore, some practi-
cally motivated and reasonably simple models are of interest
when message side information at the receivers is considered.
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Index coding (IC) is one such model. First proposed in [4]
when considering satellite communication, the IC consists of
one transmitter with m independent messages to be delivered
to n users through an error-free broadcast link. Each user
has some messages as side information available to it and
needs to reliably decode some messages that are not in its
side information set; the desired messages for each user are
pre-determined. In IC, one asks what is the minimum number
of transmissions (i.e., minimum code length) such that every
user is able to decode its desired messages successfully [3].
Compared to the general broadcast channel with side infor-
mation at the users, the IC appears simple because: 1) the
channel is noiseless, and 2) the side information sets are
proper subsets of the whole message set. The IC focuses on
the benefits / transmitter encoding opportunities brought by
the different side information sets at the users. However, the
general IC is still open. When one restricts attention to linear
codes, the optimal code length is fully characterized by the so-
called minrank problem, which is NP-complete in general [3].
Interestingly, it has been shown that every unicast network
coding instance has an “equivalent” IC instance, meaning that,
the network coding instance is solvable if and only if its
corresponding IC instance is solvable [10], [1, Theorem 10.1].
This proves that the IC, which is a special network coding
problem, is in fact equivalent to the general unicast network
coding problem. This implies that for the IC, as for network
coding, linear schemes are not sufficient [9] and non-Shannon
type of inequality are necessary [13].

The IC problem models scenarios where the transmitter can
do encoding based on the side information sets and on fixed
desired message sets for the users. In practice, there may be
flexibility in choosing the desired message sets. For example,
in a music streaming service, users do not know which song
will be played next; they are usually only guaranteed that it
will be one from a certain group and not repeated. In online
advertisement systems, the clients do not require a specific
advertisement to see; it is the distributor who chooses what
will be put on the clients’ screens; the distributor might want
to avoid repeating the same advertisement at the same client, as
it might decrease the client’s satisfaction. These scenarios can
be modeled as a variant of the IC where the users are satisfied
by any message that is not in its side information set, instead
of a specific one as in the original IC setting. The transmitter
thus has the freedom to choose the messages conveyed to the
users so to minimize the transmission duration, or code length.

In this paper, we study this variant of IC known as Pli-
able Index CODing (PICOD), firstly proposed in [5]. The



PICOD(t) and the IC share many attributes. In the PICOD(¢),
one still has a single transmitter with m message and n
users with message side information. The transmitter and users
are connected via a shared noiseless rate-limited broadcast
channel. The only major difference is that for the PICOD(¢)
the desired message sets at the users are not pre-determined
and each user is satisfied whenever it can decode any t
messages not in its side information set. This provides the
transmitter more encoding opportunities, as it now encodes
based on its own choice of desired message sets for the users,
by knowing the message side information sets at each user.
The goal in the PICOD(¢) is to find the desired message set
assignment that leads to the smallest possible code length.

B. Past Work on PICOD

As one would expect, the extra freedom of choosing the
desired message sets in the PICOD(¢) significantly reduces
the number of transmissions / code length compared to the
classical IC with the same number of messages, number of
users, and message side information sets. In [5], when all side
information sets are of size s < m — t, it was shown that
there exits a code of length O(min{tlog(n),t +log*(n)}) for
the PICOD(¢). When there is no constraint on the size of side
information sets, and m = O(n?) for some constant positive
8, a code length of O(min{tlog?(n),tlog(n) + log®(n)}) is
achievable [5]. Recently in [12], a deterministic polynomial
time algorithm was proposed to achieve a code length of
O(log®(n)) for t = 1 and of O(tlog(n) +log®(n)) otherwise.

An interesting model proposed in [5] is the so-called
oblivious PICOD(t). In the oblivious PICOD(¢) the transmitter
does not know the specific side information sets at the users.
The transmitter only has knowledge of the sizes of the side
information sets. In [5], [7] the authors proved that for the
oblivious PICOD(t) at least a fraction 1/e of the remained
unsatisfied users can be satisfied at each new transmission.
This shows that there exists an achievable scheme where the
code length is the logarithm of the number of users in the
system, which is an exponential improvement in the number
of transmissions compared to the IC.

Known achievable schemes for the PICOD(¢) are based on
linear codes only, and very few converse results are available.
To the best of our knowledge, all converse proofs show
bounds under the constraint that the code used is linear. For
the oblivious PICOD(¢), the optimal code length under the
restriction that the transmitter can only use linear schemes
is shown in [5, Theorem 9]. In [12], the authors provide a
worst case instance that needs Q(log(n)) code length for linear
codes.

C. Contributions

In this paper we derive tight information theoretic converse
bounds for some PICOD(t) problems based on the structure
of the side information sets, namely: (i) the complete-S
PICOD(t), and (ii) the PICOD(t) with a circular-arc network
topology hypergraph.

The complete—S PICOD(t), where S is a subset of [0 :
m —t] (where m is the number of messages at the transmitter

and ¢ the number of messages to be decoded), is a system
where all side information sets / users with size indexed by .S
are present. We say that S is consecutive if S = [Smin : Smax]
for some 0 < Spin < Smax < M — ¢, which is also known as
the oblivious PICOD(¢) in [5]. In [5] the authors derived tight
converse bounds for the oblivious PICOD(¢) when the coding
scheme is restricted to be a linear code. In this work, we aim
to provide tight information theoretic converse bounds, i.e.,
without any restriction on the coding scheme being used, on
the same model. Our complete—S PICOD(t) setting actually
includes and expands on the oblivious PICOD(t) setting
studied in [5], and our results show the unrestricted optimality
of linear codes.

Our converse is based on showing the existence of at least
one special user who can decode a certain number of messages
outside its side information set.

The number of messages decoded by a user is a lower
bound on the code length (because it is related to the max-
imum entropy of the received signal). Therefore, finding the
maximum number of messages that a user must be able to
decode provides a converse bound on the optimal number of
transmissions. The stumbling block in previous approaches,
such as the one in [8], was how to find such a special user.
The problem of finding the special user can be approached
in two ways: 1) constructively finding such a special user for
each choice of desired messages, or 2) implicitly proving its
existence. In this work we use both methods.

Constructive Method: For the complement-consecutive
complete—S PICOD(t), which is the complete—S PICOD(¢)
with S = [0 : m — t]\[Smin : Smax] Where 0 < Spin <
Smax < m — t, we constructively find that the special user,
which is the one whose side information set is empty, can
always decode |S| + 2t — 2 messages.

Combinatorial Method: The constructive method is not
amenable for the consecutive complete—S PICOD(t), which
is the complete—S PICOD(¢) with S = [Smin : Smax| Where
0 < Smin < Smax < m — t, due to the large number of
sub-cases / different desired message set assignments that
must be considered separately. Therefore for this case we
propose a novel combinatorial proof to show the existence of
a special user that can decode a certain number of messages.
By not only focusing on the desired messages, but on all the
messages that a user is eventually able to decode, we consider
the messages that a user can eventually know as a block
cover for this user’s side information set; the terminology is
borrowed from the combinatorial design structure known as
Steiner systems [14]. We argue that the absence of a special
user leads to a contradiction to the property of the block
cover, and that therefore the special user must exist. This
new technique greatly reduces the complexity of the proof
compared to the constructive method and enables us to obtain
a converse bound for a very general class of complete—S
PICOD(t) problems. The keystone of the proof is to show that,
for the critical complete—S PICOD(¢) case with S = {s} and
m = 2s+t, there must exist at least one user who can decode
s + t messages. From this, the extension to the consecutive
complete—S PICOD(t) follows by enhancing the system to a
critical one. By similar reasoning, all complete—S PICOD(t)



where the number of messages is m < 5 can be solved.

The idea of showing the existence of a special user can also
be used for the following PICOD(¢) problem — for a detailed
definition please refers to Section VIII-A. For the case ¢t = 1
we show a tight converse for those PICOD(1) with circular-arc
network topology hypergraph. For this setting, when a 1-factor
does not exist, we show that the code length is at least two
by finding a user that can decode two messages.

D. Paper Organization

The rest of the paper is organized as follows: Section II
introduces the system model and related definitions; Section III
presents the main results of this paper; Sections IV-VII present
converse proofs for some complete—S PICOD(t) problems and
their optimality; Section VIII shows the optimal information
theoretic converse for the PICOD(1) with circular-arc network
topology hypergraph; Section IX concludes the paper and
discusses future work; some proofs can be found in the
Appendix.

E. Notation

Throughout the paper we use capital letters to denote sets,
calligraphic letters for family of sets, and lower case letters for
elements in a set. The cardinality of the set A is denoted by
|A|. For integers a1, as we let [ay : a2] := {a1,a1+1,...,a2}
for a1 < a2 and [az] := [1 : as] for as = 1. A capital letter
as a subscript denotes set of elements whose indices are in the
set, i.e., Wy := {w, : w € W,a € A}. For two sets A and B,
A\B is the set that consists all the elements that are in A but
not in B. Notations and nomenclature from graph theory will
be introduced in Section VIIIL.

II. SYSTEM MODEL

In a PICOD(t) system there is one server, or transmit-
ter, and n € N clients, or users; the user set is denoted
as U := {uj,us,...,u,}. The server is connected to all
users via a rate-limited noiseless broadcast channel. There
are m € N independent and uniformly distributed binary
messages of k € N bits each; the message set is denoted
as W = {wi,ws,...,w,}. User u; has a subset of the
message set as its side information set A; = [m], i € [n]
. The collection of all side information sets is denoted as
A:={A1,As,...  A,}; Ais assumed globally known at the
transmitter and all users.

The server broadcasts to the users a codeword of length
{k bits, which is a function of the message set W and the
collection of all side information sets A, i.e., for some function
ENC we have

' = ENC(W, A). (1)

Each user decodes based on the received xz%*, its own side
information set, and the collection of all side information sets

A; for user u;, j € [n], the decoding function is
(@7, 0} = DEC;(Wa,, 2", A). )

'Note that if m — | Uj;e[n] As| = ¢ the problem becomes trivial.

Every user must be able to reliably decode at least ¢
messages not in its side information set, i.e., the decoding error
probability for decoding functions {DEC;,Vj € [n]} satisfies

Pr [Hj €[n]:V{dj1,....dji} 0 Aj = O,
{@§j), . -a@t(j)} # {wa; - >wd.7‘,t}] Seéw, ()

for some ¢, € (0,1). For a reliable code, {@ij), . ,@P} =
{wq; ..., waq;,} is called the desired message set for user
uj, j € [n], and the indices of the desired messages are de-
noted as D; := {d;1,...,d;} where D;nA; = &,Vj € [n].
The choice of desired messages for the users is denoted as
D :={D1,Ds,... D,}. The goal is to find the shortest code-
length with vanishing-errorz, that is,

0¥ :=inf{f : 7 a reliable code of length {x
such that lin}/ €x = 0}. 4)

In the following we shall mainly focus on the complete—S
PICOD(t), for a given set S € [0 : m — t]. In this system,
there are n:= > o (") users, where no two users have the
same side information set. In other words, all possible users
with distinct side information sets that are subsets of size s of
the message set, for all s € .S, are present in the complete—S
PICOD(t).

III. MAIN RESULTS AND DISCUSSION

This section summarizes our main results and comments
on their proof techniques, their relationship with past work,
and their implications. We start with a simple achievable
scheme based on linear codes, in Section III-A. The main
contribution of the paper is converse bounds on the optimal
code length for the two broad families of PICOD(¢): (i) the
complete-S PICOD(¢), including complement-consecutive S,
consecutive S, and their extensions, in Section III-B, and (ii)
the PICOD(1) with circular-arc network topology hypergraph,
in Section III-C.

A. Achievability

We give next an achievable scheme for the general
complete—S PICOD(t) based on linear codes.

Proposition 1 (Achievable Scheme). Let S by a partition of
S, ie, S = UipsSi and S; 0 Sy = & for all i,j € [|S]]
such that i # j. The optimal code length for the complete—S
PICOD(t) with m messages is upper bounded by

x < . o
0 < ie{Z}gﬂ min {m Isrelgn{s}, Isréasx{s} + t} . 3)

2The zero-error setting, that is, where in (3) we impose that ¢, = 0 for
some K, is more restrictive than the vanishing-error setting used here. We note
that our converse bounds will be derived for the vanishing-error setting, but the
achievability bounds under the zero-error setting. We also note that in classical
information theory one defines a family of (2", n, e,) codes (indexed by the
block-length n) with "R codewords, each of length n channel uses, and with
probability of error €n; in the vanishing-error setting one is interested in the
largest rate R such that limp— 4 €, = 0. Our setting, as in [1], is the classical
information theoretical definition if one identifies K = nR and ¢ = 1/R.



By minimizing over all possible partitions S, we have

£ o : o
1 \mslnl(_:%']mm{m irel}gr}{s},rsré%ic{s}—i-t} (6)

The proof is simple and can be deduced from Remark 1.

Remark 1. Proposition 1 is a generalization of the scheme
proposed in [5] whose main idea is as follows. Let Smin
and smax denote the smallest and largest size of the side
information sets, respectively. Transmitting sy .x +t messages
one by one can satisfy all users since each user has at
Most Smax Messages in its side information set. Transmitting
M — Smin linearly independent linear combinations of the
m messages also satisfies all users, as each user has at
least smin messages in its side information set. Therefore
by choosing the best of these two linear codes, we have
0% < min{smax + £, M — Smin}-

We generalize this idea for the complete—S PICOD(t) by
partitioning S into the collection S and by satisfying the users
in each S; € S by using the above scheme. The total code
length is the sum of the length of the code used in each
partition. Finally, the shortest code length this scheme can
achieve is given by searching the best possible partition of S.

B. Converse for some complete—S PICOD(t) problems

We show that for two choices of S the achievability in
Proposition 1 is information theoretic optimal.

Theorem 1 (Converse for the complement-consecutive
complete—S PICOD(t)). For the complete—S PICOD(t) with
m messages and S = [0 : m — t]\[Smin : Smax] = [0 : Smin —
1] U [Smax + 1 : m — t] for some 0 < Spmin < Smax < M —
(note that the set S includes elements 0 and m—t), the optimal
code length is

0% = min{m,m 4+t + Smin — Smax — 2}
= min{m, |S| + 2t — 2}. (7
The proof of Theorem 1 can be found in Section IV.

Theorem 2 (Converse for the consecutive complete—S
PICOD(t)). For the complete—S PICOD(t) with m messages
and S = [Smin : Smax| for some 0 < Spin < Smax < M — ¢
(i.e., S contains consecutive integers, from Smin 10 Smax) the
optimal code length is

£* = min{smax + t,M — Smin }- (8)

The proof of Theorem 2 is broken down in several pieces.
The proof for the critical case, where m = 2s+t and S = {s},
can be found in Section V, while the general proof is presented
in Section VI

Remark 2. Theorems I and 2 show that the simple achievable
scheme in Proposition 1 is information theoretically opti-
mal for a class of PICOD(t). Specifically, the consecutive
complete—S PICOD(t) is the oblivious PICOD(t) studied
in [5]. Our Theorem 2 provides a tight information theoretic
converse for the achievability proposed in [5].

The basic idea in the proof of Theorem 1 is to prove the
existence of a user who can decode |S| messages by a method

referred to as layer counting. We partition all users in the
complete—S PICOD(t) into |S| layers. Each layer contains
the users with the same size of the side information set. A
layer is said to be “lower” than another if the size of the
side information set of the users is smaller. The intuition is
that a user in a lower layer, after having decoded its desired
messages, can mimic users in higher layers and thus decode
also the desired messages of those higher layer users.

In the complement-consecutive complete—S PICOD(t),
where S = [0 : Smin — 1] U [Smax + 1 : m — t] for some
0 < Smin < Smax < m—t, we show the user in the lowest layer
(with empty side information set) can mimic a user in each
higher layers and eventually decodes |S| + 2t — 2 messages.

However; this layer counting converse is not tight in general,
as explained in Remark 6 for the complete—S PICOD(1) with
S=[1:qlorS=][q:m—2]for some2<qg<m—2 To
improve on the layer counting converse, we propose a novel
converse technique in Theorem 2 for the consecutive complete—
S PICOD(t), where S = [Smin : Smax] for some 0 < Spin <
Smax < m—t. The critical case for this proof is the complete—S
PICOD(t) for

m = 2s + t messages and S = {s} (critical case). (9)

In Section V Proposition 6, we show that for this critical
case, regardless of the choice of desired messages and valid
code, there always exists at least one user who can decode
s+t messages. While the proof of Theorem 1 is constructive,
that is, we explicitly identify the user who can always decode
|S| + 2t — 2 messages (the one with empty side information
set), the proof of Proposition 6 is not. The problem with a
constructive argument for the critical case is that, for any
specific user, there exists an information theoretic optimal
choice of desired messages and a corresponding valid code
such that this user can decode only its desired t messages
and no more. In other words, showing that a certain user can
always decode more than t messages is impossible. Therefore,
in the proof of Proposition 6, we propose a combinatorial
method to show the existence of at a least a user with
some desired property, namely, the ability to decode a certain
number of messages. The new method involves the Maximum
Acyclic Induced Subgraph (MAIS) converse idea for the classic
IC [3], as well as a combinatorial design technique inspired
by Steiner systems [I14], which we shall refer to as block
cover. The existence proof does not indicate which user has
the desired property, but only shows its existence regardless
of the choice of desired messages at the users.

Theorem 2 can be further extended to cover other complete—
S PICOD(t). We have the following results.

Proposition 2 (Not a complete—S system, but all users are
below the critical case users in the layer representation). For
the complete—S PICOD(t) with m messages and Spmax =
maxses{s} < [mT_tJ, the optimal code length is (* = sy ax+t.

The proof can be found in Section VII.

Proposition 3 (Not a complete—S system, but all users
are above the critical case users in the layer representa-
tion). For the complete—S PICOD(t) with m messages and



Smin = Mingeg{s} = ["”Q_t

¥ = m — Spmin.

|, the optimal code length is

The proofs can be found in Section VII.

Proposition 4 (Not a complete—S system, but all users in
a band around the critical case users are present in the
layer representation). For the complete—S PICOD(t) with m
messages, let
. m—t, m-—t
0 :=min< $max — [—— |, |——1 — Smin ¢ (10)
2 2

where Smax = MaXges{s} and sSpmin = mingg{s}. If
(1% = 6: [252] + 6] < S then the optimal code length
is £* = min{smax + ¢, M — Smin }-

The proof can be found in Section VII.

Remark 3. Propositions 2, 3 and 4 show an interesting
fact: for these settings the only relevant layers in the layer
representation are the ones closest to the “critical” middle
layer ™=, or the layers in a band [|Z5%] — 6 : [51] + 6]
around the “critical” middle layer. The optimal code for the
users in these layers satisfies all the remaining users.

Finally, for those PICOD(%) problems with m < 5 messages
that are not covered by Propositions 2, 3, 4 and Theorem 1,
we have the following:

Proposition 5. For all complete—S PICOD(t) with m < 5
and non-empty S < [0 : m — 1], the achievable scheme in
Proposition 1 is information theoretic optimal.

The proof can be found in Section VII.

Remark 4. Proposition 5 is proved by checking one by one
all complete—S PICOD(t) problems with m < 5 messages not
covered by previous results. It may be possible to go beyond
five messages, but unfortunately we have not been able to find
a systematic way to prove the converse for general m.

C. Converse for the PICOD(1) with circular-arc network
topology hypergraph

The reader can find a refresher on graph theory terminology
in Section VIII-A. The critical complete—{s} PICOD(t) we
solved has a network topology hypergraph which is the dual
hypergraph of the complete (m —s)—uniform hypergraph. Here
we solve the PICOD(1) whose network topology hypergraph
is a special hypergraph, namely, a circular-arc hypergraph.

Theorem 3. For a PICOD(1) with m messages and with
circular-arc network topology hypergraph, the optimal code
length satisfies (* < 2. In particular, the optimal number
of transmissions is £* = 2 unless the network topology
hypergraph is a 1-factor hypergraph.

The proof can be found in Section VIIIL

Remark 5. The achievability part of Theorem 3 is based on
the following property of a circular-arc hypergraph: if two
vertices belong to an edge, then all vertices (cyclic) between
these two vertices must belong to the same edge. The converse
part of Theorem 3, which is in Proposition 8, is proved by

showing that there exists a user that can decode one more
message other than its desired message if a 1-factor does not
exist. By showing the existence of such a user, regardless of the
choices of desired messages and code sent by the transmitter,
we obtain a tight lower bound on the optimal code length.

The proofs of the converse results summarized in this
section will be given in the following sections.

IV. LAYER COUNTING CONVERSE: PROOF OF THEOREM 1

Recall that the complete—S PICOD(t), for a given set S €
[0 : m —t], comprises n = >, ¢ (") users where the side
information sets are all possible distinct subsets of size s of
m messages, for all s € .S. The proof of Theorem 1 relies on
idea of decoding chain, which gives a high level explanation
of the proof of the following lemma (see discussion after the
proof), namely, the number of messages decoded along this
chain provides a converse on £*.

Lemma 1. In a PICOD(t) with m messages and n users, for
any ordering of the users (i.e., up to relabeling the users) we
have

= 31 DA\ VI (45 0 D))l (11)
=1

Proof of Lemma 1: Since we have a working system, all
users are satisfied by the transmission of z** of length ¢. For
user u; we have

H (Wp, 2", Wa,) < ke, (12)

where lim,,_, €,, = 0 by Fano’s inequality. Similarly, for user
us we have

H (Wp,|z", Wa,) < Ke. (13)

Therefore we have

H (Wp,, W, 2™, Wa,, Wa,p,)

= H (Wp, |2, Wa,, Wap,)

+ H (Wp, |25 Wa,, WD, » Wp,)

=H (VVD1 |33ZK, WAl?WAQ\Dl)

+ H (WD2|99ZH7 WA27WA1UD1)

H (Wp, |2, Wa,) + H (Wp\(a, 00y |2, Wa,)

By continuing with the same reasoning, we get

H (Wor b, (14)

Ik
i <
1Dil ’”u;;xAi\u;:iDj)) S s



s =0 (layer 0)
s =1 (layer 1)
s =2 (layer 2)

m — 2 (layer m — 2)
m — 1 (layer m — 1)

Fig. 1: Layer representation of the complete—[0 :
PICOD(1) problem.

m — 1]

Since the messages are independent and uniformly distributed
with entropy & bits, and since the code is binary, we conclude

Z |D;\ u (A; U Dj)|r

= |U1:=1 (Dz\ Uj=11 (4; v Dj))|“

=H (Wv?zl(Di\Uj;ll(AjuDj)))

=H (W w(Da\viz (AJan)'Wu? 1<A»\uj—iD'>)

S I<W (DAUIZi(4;0D;) 2 W, L (AAUIZAD; ))

+ nKe,
L
<H ( W n n (AN 1D)>+m<;e,.€
< H(x™) + nre,
< UK + nkey,

which implies that

Z \U'Zh (450 D), (15)
for constant n, sufficiently large x, and any valid codes.
Therefore the bound in (15) must hold for the optimal code
length as well, thus proving (11). ]

The sequence of users uj,us,...,u, in Lemma 1 is the
decoding chain mentioned at the beginning of this section.
In fact, the converse in Lemma 1 can also be thought
of as the acyclic induced subgraph converse for the all
unicast IC problem [3], where each user desires multiple
messages, as opposed to a single message. The users with
|Di\ Ui_} (A; U Dj)| # 0 form an acyclic induced subgraph
in the graph representation of the IC. Therefore, in Lemma 1
the value of |U7, (D;\ u;;ll (A; U D;))| depends on the
choice of the order for the users, that is, we can relabel the
users in order to find the tighest bound provided by Lemma 1.
Finding such an order for Lemma 1 illustrates the intuition
for the converse proof of Theorem 1: finding the user that can
decode the largest number of messages.

To illustrate the method of finding the user who can decode
the largest number of messages, we introduce the layer rep-
resentation of the complete—S PICOD(t). As an example, the

layer representation for the complete—[0 : m — 1] PICOD(1)
problem is given in Fig. 1. In Fig. 1, all the users with the
same size of the side information set are said to form a layer,
and there are in total m layers; the i-th layer contains the users
whose side information set has size ¢ € [0 : m — 1], and the
number of users in the i-th layer is ("'). The key observation
is that, in a working system, a user u; in i-th layer can decode
a message wg, it does not have in its side information set A;.
After that, user u; is equivalent to a user w;; in the (i +1)-th
layer whose side information is A;11 = A; u {d;}. User u;
will thus be able to decode the message wyg,,, that is desired
by user ug,,,, in addition to its own desired message wy,.
But now user u; will have A; o = A; U {wg,, wq,,, }, which
is the side information of a user u;1 in the (i + 2)-th layer.
By continuing with the same reasoning, user u; will be able
to mimic one user per layer until the last layer. We apply
this argument to the user in the O-th layer (there is only one
such user). We see that the user in the O-th layer is able to
decode one message per layer without loss of optimality, that
is, the user in the 0-th layer decodes m messages in total. This
provides a decoding chain of length m. In this decoding chain
each user’s side information set and the desired message set
form the side information set of the next user. By having such
a decoding chain, we can use Lemma 1 to show that /* > m
for the complete—[0 : m — 1] PICOD(1) problem in Fig. 1.
We use this observation, and similar ones, in the following to
provide a lower bound on ¢* in terms of number of messages
a user can decode, which is the main idea in all our converse
proofs.

The proof of Theorem 1 directly follows this idea of
counting the layers in a layer representation of a decoding
chain. The key for the proof is the fact that each layer
in the layer representation for the complement-consecutive
complete—S, where S = [0 : m — t]\[Smin : Smax], contains
all users with side information set of the same size. After the
user has decoded its desired message(s), we can map this user
to another user in a higher layer. Such a mapping forms a
decoding chain, starting from the user in the O-th layer, and
provides a lower bound on ¢*.

We are now ready to prove Theorem 1 for the complement
complete—S with m messages and S = [0 : m — t]\[Smin :
Smax]-

Proof of Theorem 1: Consider the PICOD(t) where S =
[0:m—1t]\[Smin : Smax] = [0 : Smin — 1] U [Smax + 1 : m—t]
for some 0 < Spmin < Smax < m — t. We aim to find the
decoding chain that has the largest number of messages/users
along the chain. In each layer of the layer representation we
find a user for the decoding chain. Therefore the chain contains
|S| users which we shall indicate as {uy,us, ..., ug}, where

IS = Smin +m —t — (16)

Smax~

We first find sn,i, users, one user per layer for the layers
indexed by [0 : Smin — 1], as done in the example in Fig. 1.
Then, the user w;|j—s,..+1 is found in layer smax + 1 such
that |Aj]j—s,n+1] = Smax + 15 we want Ag . 11 2 A,
so user us,, +1 can be mimicked by user ug_, ; we want
|Ds,in N As,.i +1] to be as large as possible so the number of
messages decoded in the decoding chain can be maximized;



details on how this is done will be given next. Finally, we find
other |S| — Smin — 1 = m — t — Smax — 1 users to complete
the decoding chain, one user per layer for the layers indexed
by [Smax + 2 : m — t], as done in the example in Fig. 1.

Assume all users are satisfied by the transmission of x*.
Let u; be the user with empty side information set, i.e., A3 =
. Since all users are satisfied, u; can decode at least one
message not in its side information set; denote the index of
such a message as d;,;. Layer 1 contains the users with side
information set of size 1. There exists a user in layer 1, say uo,
with side information Ay = A; U {d11} = {d1 1} and desired
message do 1 ¢ As. By continuing with this reasoning we can
find users up to user us_, : user us_, has side information set
ASmin = Asmm,1 U {dsminfl’l} = {dl,h N 7d8min*1’1} and
desires message ds . 1 ¢ As,...-

We would be tempted to say that the (Syin + 1)th user in
the decoding chain, which is denoted as us_, +1, should have
side information set A, _, U D, . and be in layer sy, +t—1.
However |A;, ., v D =|A +|D 1+t
may be strictly less than the size of the side information of
the next layer of users present in the system; if so, a user with
side information set A5 , v D does not exist. For this
reason, we choose user us_, +1 in layer smax +1 as follows: if
Smin — 14+t < Smax+1, we choose as us,, +1 any user in layer
Smax + 1 that satisfies As_, +1 D A, v Ds . ,i.e., the user
that us_, can mimic by providing the messages indexed by
Asoin+1\(As,... W D5, ) as genie side information; otherwise
we choose ug,, +1 to be the user with A, , +1 S A, .,
Dy, .., ie., the user that u, , can mimic. With this choice
for user ug_, 41 we insure that user u,_, has all messages in
the side information set of the user us_, +1.

From this point onwards, the next users in the decod-
ing chain can again be chosen such that A; = A;_; U
{djfl-,l}v J € [Smin +2:|S]].

Note that in the decoding chain we have A; = A;_; u
{dj—l,l} for j € [|S|]\{1, Smin T+ 1}, A1 = @, and
Agoint1 D As,... These users satisfy A; > A;_4, for all
j € [2 : |S[]. Therefore we have |D;\ Ui_} (A4; U D;)| >
L for all 4+ € [|S|\{1,smin + 1}, |Dil;_, = t, and
|D¢\ u;;ll (45 v Dj)|i=s = min{t, Smax+14+t—(Smin—
14+ t)} = min{t, Smax —?I:ﬁn + 2}. Therefore, by Lemma 1
we have

Fs Y DA U (4,0 D))
ie[|S|]
1+ (s — 1)+ it 5 = 5+ 2
—i—(m—t_smax_l)

Z m+ Smin —

Smin

smm| Smin Smin| = Smin —

Smin

Smax — 2 + min{¢, Smax — Smin + 2}

= mln{m + 1t + Smin — Smax — 2, m}

The value £* = min{m + t + Smin — Smax — 2,M} can
be achieved as follows. By the scheme in Proposition 1 with
partition S = S; U Sy, with S7 := [0 : S$yin — 1] and Sy :=
[Smax + 1 : m — t], all users in group S; are satisfied with
(Smin — 1) + t transmissions, and all users in group So are
satisfied with m — (smax + 1) transmissions; therefore, we
have a code of length m + Spmin +t — Smax — 2. Also, we can
always transmit all m messages one by one, resulting in a code

of length m. Therefore, we can achieve the lower bound by
using the code among the above two with the shortest length.
This concludes the proof of Theorem 1. [ ]

Remark 6. The proof of Theorem 1 constructively builds a
decoding chain. The decoding chain starts from the user in the
lowest layer. The next user in the chain is chosen in the next
layer, based on the side information and desired message of the
previous one. The chain ends at the highest layer. However,
this construction, where each layer contributes at most one
user to the decoding chain, is not always tight.

As shown in [8], for the complete—S PICOD(1) where S =
[1:qlorS=[¢g:m—=2], 1< q< m—2, the optimal
code length is {* = |S| + 1. In other words, there exists a
decoding chain which includes two users with the same size
of side information, where one of the users can mimic the
other one.

The proof in [8] is a case-by-case reasoning, where the
different cases are for different choices of desired messages
of the users. For the complete—S PICOD(1) for general S =
[Smin © Smax), the number of cases becomes too large to be
tractable. Thus a method that does not relay on a case-by-case
study becomes necessary. This is what we are going to do in
the next section. The two cases considered in [8] are special
cases of Theorem 2 proved next.

V. CRITICAL CASE: COMPLETE—{s} PICOD(t) WITH
m = 2s + t MESSAGES

To overcome the limitation of the case-by-case reasoning
highlighted in Remark 6, we shall turn to an existence proof
technique for Theorem 2. Loosely speaking, when dealing
with general consecutive complete—S PICOD(¢) with S =
[Smin : Smax], We treat all users and all the various desired
message assignments at once. Before we prove Theorem 2 in
full generality, we consider the critical case in (9). We shall see
that all other consecutive complete—S cases can be deduced
from the critical one. Therefore, this section contains the proof
for the following key result:

Proposition 6. (The critical case) For the complete—{s}
PICOD(t) with m = 2s+t messages, the optimal code length
is {* = s+ t. Specifically, given a valid code, there always
exists a user that can decode {* = s + t messages.

As for the layer counting converse used in Theorem 1, we
shall show that under the assumption that all users can decode
at least one message outside their side information set, there
must exists a user that can mimic other users and decodes
* = s + t messages regardless of the desired messages of
all the users. Note that in the complete—S PICOD(t) where
|S| = 1, only one layer exists in the layer representation.
Thus by the constructive method in Theorem 1, we only obtain
the trivial bound ¢* > 1. However, we do need to find the
specific user that can decode /* = s + ¢t messages, but only
show its existence. So we turn to an existence proof, which
is largely based on combinatorics ideas. Specifically, for all
possible desired message set assignments for the users, given
a valid code that satisfies all users, we show that there exists
a user that can decode ¢* = s + t messages. We start by



introducing next the two main ingredients needed in the proof
of Proposition 6.

A. Proposition 6: Converse Main Ingredient 1: Block Cover

So far we used the idea of decoding chain to show that a
user can decode more than its set of desired messages. The
decoding chain depends on the choice of desired messages at
the users. Once the desired messages change, the decoding
chain may change as well. Here we are only interested in the
existence of such a decoding chain of a given length. In other
words, we show the existence of a decoding chain of a certain
length regardless of the choice of desired messages at the
users. We start with a simple example to showcase a problem
we faced when considering different message assignments.

Example 1. Consider the complete—{1} PICOD(1), i.e., s =
t =1, withm = 2s+1 = 3 messages for which {* = s+1 = 2
is the smallest number of transmissions needed to satisfy all
the n = (') = 3 users. Say that uy knows A; = {1} and
desires di = 2; us knows Ag = {2} and desires do = 1; and
uz knows Az = {3} and desires d3 = 1. By sending w1, users
ug and us are satisfied; by sending wo, user uy is satisfied.
By the decoding chain argument, user us is able to mimic u;
(because he decodes the message that is the side information
set of user uy) and therefore can also decode ws; on the
contrary, users us and us can not decode any more messages
other than the desired one. However, another choice of desired
messages can be di = 3,ds = 1,ds = 1; with this, users u,
and user uz can only decode their desired messages while user
ug can mimic user uy thus is able to decode two messages.

As Example 1 shows for the case ¢ = 1, for a specific user,
there is always an optimal choice of desired messages such
that this user cannot decode any message other the desired one.
However, we also note that for any choice of desired messages,
there always exists a user that can decode two messages. In
the critical case setting, we shall prove that regardless of the

choice of desired messages, there always exists a user who
2

s+t
can decode s-+t messages. Since there are (Sft)( ) (doubly
exponential in s) possible choices of desired messages, finding
explicitly such a user for every case is intractable. Therefore,
our converse shows the existence of such a user. The main
idea of the existence proof is as follows.

Instead of checking all possible different choices of desired
message sets at the users, we reason on the size of the decoding
chain for that user. By assumption, every user can decode ¢t
messages outside its side information set. Some users may
be able to decode more messages because they can mimic
other users. After receiving a valid code, we aim to show that
every user eventually knows at least s +¢ messages, including
the s messages in its side information set and the (at least)
t decoded ones. Say that user u;, with side information A;,
eventually can decode the messages indexed by B; 2 Dj.
One can think of the set C; := A; u B; as a block that
covers the side information set A;, by which we mean that
the set C; is a proper superset of A;. User u; can also mimic
any users uj, whose side information set satisfies A, < Cj.
Therefore the desired message sets for all users uj;, whose side

information A;, < C; satisfy Dy, c C;. For any set U’ C [n]
of the users we can find a collection C such that, for every side
information set A;, j € U’, there is a cover C; € C such that
C; = Aj u Bj, where B; is the largest set of the messages
that user u; can decode. By this definition, this block cover /
collection C satisfies the following properties:

1) [BlockCover-P1] For every s-element subset of [m],

there exists at least one C' € C that contains this subset.

2) [BlockCover-P2] s < |C| < m for all C € C.

3) [BlockCover-P3] For all P < [|C|], we have |njep C;| ¢

[s:s+t—1].

Proof of BlockCover Properties: Properties BlockCover-
P1 and BlockCover-P2 follow by the definition of block cover,
while property BlockCover-P3 holds because if we have |njcp
Cj|l € [s:s+t—1] for some P < [|C|], we can have a user
with side information set A’ € n;cpC; with corresponding
decoding set D’ and this leads to the following contradiction.
By definition of intersection A’ < C;, Vj € P; but also by
definition of block cover D' < C;, Vj € P; thus A’ v D' €
Cj, Vj € P, which implies | njep C;| = |A" v D'| = |A'| +
|D'| > s + ¢ that contradicts the starting assumption | N jcp
Cile[s:s+t—1]. [ |

This block cover idea was inspired by the so-called gen-
eralized Steiner systems in combinatorial design [14]. An
S(s, *,m) generalized Steiner system consists of blocks / sets
such that each subset of size s from the ground set of size
m is covered exactly once. In a critical PICOD(¢) setting, the
collection of blocks C also covers all s-element subsets of
[m] (.e., all users’ side information sets). But our problem
is not exactly a generalized Steiner system because an s-
element subset may be contained in more than one block
as long as it is not an exact intersection of the blocks—see
Property BlockCover-P3. Therefore, our block cover can be
seen as a relaxed generalized Steiner system. To the best of
our knowledge no results are available for this specific relaxed
generalized Steiner system.

For the critical case we aim to show that there is a user
who can decode s + ¢ messages (as in Example 1). We
argue it by contradiction. Assume no user can decode s + ¢
messages, that is, every user can decode at least ¢ and at most
s+t—1 messages by mimicking other users. In terms of block
cover, this indicates that we can have a block cover C with
maxcec{|C|} < (s+t—1)+s < m = 2s +t. Our argument
of showing that there always exists a user that can decode t+s
messages for the critical case is equivalent to showing that a
block cover with size at most 25 + ¢ — 1 cannot exist. Our
combinatorial proof shows that the existence of a choice of
desired messages such that t+s < |C;]| < 2s+t—1,VYj € [[C]]
leads to the existence of a user that can decode ¢+ s messages,
thus max |C;| = 2s + ¢, which is a contradiction. Therefore
must exists a user whose block cover has size m = 2s 4 ¢.

B. Proposition 6: Converse Main Ingredient 2: Maximum
Acyclic Induced Subgraph (MAIS) Bound

Recall that for a PICOD(t), each user chooses t desired
messages outside its side information set. The collection of
the desired message sets for all the users users is denoted as



D={D,,...,D,}, where n = (QS:t). Once D is chosen, the
PICOD(t) reduces to a multi-cast IC where each user requests
t messages; we can make one user to be ¢ users with the same
side information sets but each with a distinct single desired
message; the multi-cast IC with n users becomes a multi-cast
IC with tn users, each requesting one message.

Similarly to the classic all-unicast IC, we can represent in
a directed graph / digraph the side information sets and the
desired messages of a multi-cast IC where each user desires a
single message [3]. Pick a subset U < [tn] of users who desire
different messages and create a digraph G(U) as follows. The
vertices V(G) € W represent the desired messages by the
users in U. A directed arc (w;, w;) € E(G) exists if and only
if the user who desires w; has w; in its side information set.
G is called acyclic if it does not contain a directed cycle. The
size of G is the number of the vertices in it, i.e. |[V(G)| = |U]|.
For the all-unicast IC, the maximum size of U such that the
corresponding digraph G(U) is acyclic serves as a converse
bound on the optimal code length. This converse is known as
maximum acyclic induced subgraph (MAIS) bound [3].

For the PICOD(¢), a similar MAIS bound can be found,
which is the maximum size of the acyclic digraph G(U)
created by the choice of users U < [tn] such that they all
desire different messages. Since MAIS depends on the desired
message set D, we denote its size as [MAIS(D)|. Thus, for the
PICOD(¢) as for multi-cast IC, the size of MAIS is a converse
bound on ¢ [3], namely, ¢ > [MAIS(D)|.

Finding the MAIS for the all-unicast IC is known to be
an NP-hard problem [6] in general. Finding the MAIS for
the multi-cast IC appears to be more difficult since one needs
to check every possible choice of users with distinct desired
messages. Finding the MAIS for the PICOD(¢) problem
seems even more complicated since each choice of D in the
PICOD(t) corresponds to a multi-cast IC, and in addition one
needs to find the best D in terms of code length. Therefore,
finding the MAIS for the PICOD(t) by solving all possible
all-unicast IC problems appears intractable. Therefore, our ex-
istence proof does not find the exact MAIS for the PICOD(¢),
but only bounds on its size, i.e., maxp [MAIS(D)|. Towards
this goal, we have the following properties:

1) [MAIS-PI1] for the critical complete—{s} PICOD(¢) with
m = 2s + t messages, [MAIS(D)| = s + ¢ for certain
D if and only if there exists a user who decodes s + ¢
messages by mimicking other users.

2) [MAIS-P2] for the critical complete—{s} PICOD(¢) with
m = 2s + t messages, if there exists a D such that
IMAIS(D)| < s + ¢t — 1, there exists a D’ where
IMAIS(D')| = s+t — 1.

Proof of Property MAIS-PI: On the one hand, if
IMAIS(D)| = s +t, there are s + ¢ users who desire different
messages. These users form an acyclic induced subgraph.
We can obtain a decoding chain from the acyclic induced
subgraph, in which the first user has side information of all s
messages that are not desired by these s+ ¢ users. Since there
are in total m = 2s + ¢ messages in the system, the first user,
by decoding its desired message, can mimic all the other users
and eventually decode s + ¢ messages.

On the other hand, if there is one user who can decode s+t
messages, there are s + ¢ — 1 users that can be mimicked by
it with different desired messages. These s + ¢ users form an
acyclic induced subgraph of size s + ¢. Since all users have
side information set of size s, [MAIS(D)| < s + ¢t. We then
have [MAIS(D)| = s + t. [ |

Proof of Property MAIS-P2: We prove the claim by
showing that for a choice of desired messages D that has
a |[MAIS(D)| = a for some integer a < s + ¢, we can
always find another choice of desired messages D’ such that
IMAIS(D')| = a + 1.

Assume there exists a D such that, for some integer
a < s+ t, satisfies |MAIS(D)| = a. For this D, the
PICOD(t) can be seem as a unicast IC with [tn] users,
whose graph representation has an induced acyclic subgraph
of size a and all induced subgraphs of size strictly larger
than a are cyclic. Without loss of generality, let {uy,...,uq}
be the set of users that form this MAIS who have desired
messages {wq,,...,wq, } = [a]. By the definition of MAIS,
any user with side information A € [a + 1 : m] must have
desired message d € [a]; this is so because any user with
Ac[a+1:m]and de [a+1:m]can be added to the users
u1,...,Uuq to form an acyclic subgraph of size a + 1, which
would contradict to the assumption that [MAIS| = a.

Based on D we construct D’ such that [MAIS(D')| = a+1
as follows. Choose a user v’ with side information A’ € [a +
1 : m] and change its desired message to d’ € [a+1 : m]\A’ (it
was d' € [a] in D). Since a < s+t we have |[a+1 : m]| = s+1
and |[a + 1 : m]\A’| > 1, thus such a user ' and its desired
message d’ can be found. Moreover, by construction the users
in {u1,...,uq,u'} form an acyclic subgraph of size a + 1.

Next, we show that any induced subgraph of size strictly
larger than a + 1 in the IC represented by D’ is cyclic. This
can be seen as follows. Note that from D to D’ only the desired
message of u’ was changed, therefore any induced subgraph
in the IC represented by D’ that does not have u' also exists
in the IC represented by D. For any induced subgraph in the
IC represented by D’ with size strictly larger than a + 1, if
it does not contain v, this induced subgraph exists in the IC
represented by D. By the condition [MAIS(D)| = a we know
that this subgraph is cyclic. If the induced subgraph contains
u’, remove u’ so as to obtain an induced subgraph of size
strictly larger than a. This newly obtained subgraph exists in
the IC represented by D. Similarly the subgraph is cyclic by
IMAIS(D)| = a thus the original subgraph which contains v’
is also cyclic. This concludes that [MAIS(D')| = a + 1.

We show that we can always construct [ MAIS(D’)| = a+1
based on [MAIS(D)| = a < s + t. Therefore if there exists a
D such that [MAIS(D)| < s + t, by the construction we have
have a D’ such that [MAIS(D’)| = s+t — 1. [ |

We are now ready to prove Proposition 6.

C. Proof of Proposition 6

Our proof for Proposition 6 is by contradiction. Specifically,
we prove that, under the assumption that there exists D’ such
that [MAIS(D’)| = s+t — 1 (see Property MAIS-P2) and
given a valid code, there must exist a user that can decode
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Fig. 2: Side information sets and decoded messages for s + 1
users for Proposition 6.Case?2.

s+t messages. This however contradicts Property MAIS-P1.
Therefore D’ does not exist, which implies that there must
exists a user that can decode s+¢ messages and [MAIS(D)| =
s+t for all D. This proves that for the critical case the optimal
number of transmission is £* = s + ¢.

Specifically, the assumption that [MAIS(D')| = s +¢ — 1
implies that one can find a set of s+t —1 users, denoted by V,
who desire different messages and with a strict partial order
on V' given by: for distinct 4,j € V, if i < j then d; ¢ A;.
Without loss of generality, let [s + 2 : 2s + t] be the set of
the distinct s + ¢ — 1 desired messages by the users in V.
By the definition of MALIS, there is a user in V' such that its
side information set satisfies A c [s + 1]. This is the user
that has no incoming edges in the induced acyclic subgraph
of the MAIS. Thus, a user with side information including
the messages in [s + 1] (these messages are not desired by the
users in V) is able to decode all the messages in [s+2 : 2s+t].

Consider the following s + 1 users: for i € [s + 1] user u;
has side information A; = [s 4+ 1]\{¢}. The side information
sets and decoded messages of these users are illustrated in
Fig. 2 where columns are for messages and rows for users; a
0 (resp. 1) entry indicates the absence (resp. presence) of the
corresponding message in the side information set of the user.
We have one of two cases:

Proposition 6.Casel: Assume that for some k € [s + 1]
we have By n [s + 1] = [s + 1]\ Ax. Recall By, is the set of
messages that user uy, can decode and Ay, its side information,
this user will gain the knowledge of all messages Wi, 7. It
therefore can decode all the remaining messages Wi, 22544
Eventually this user decodes s + ¢ messages, therefore C), =
[2s + t].

Proposition 6.Case2: For every user i € [s + 1], we have
B; € [s+ 2 : 2s + t]-as shown in Fig. 2, where the side
information and decodable message sets are represented by
the rows of the matrix. The left part of the matrix indicates
the side information of the users, where 0, 1 entries show the
absence and existence of the corresponding messages in the
side information. By assumption B; € [s+2 : 2s+1¢] contains
the indices of the messages decoded by user w; and property
BlockCover-P3, we have |nepC;| ¢ [s : s+t—1] forany P <
[s +1]. Note that | nep A;| =s+1—|P|and A; n B; = &,
thus we have | nep Bi| ¢ [|P|—1: |P|+t—2],YP S [s+1].

In Proposition 6.Case2, all B;, ¢ € [s + 1] are non-empty
subsets of a ground set [s + 2 : 2s + t]; by Lemma 4 in
the Appendix, it is guaranteed that there is a P such that
[[s+2:2s+ 1] n (nepB;)| = |P| — 1; therefore we have
|niepBi| € [|P|—1:|P|+t—2] for some P C [s+1], which

contradicts what we just stated, thus this case in impossible.

Therefore only Proposition 6.Casel is possible. This shows
the existence of a user whose block cover is [m] = [2s + t].
This user can decode s + ¢ messages. But this contradicts the
assumption that the MAIS bound is [MAIS(D')| = s +¢ — 1.
Overall, this shows that for all possible choices of D one must
have |MAIS(D)| > s + ¢, which implies ¢* > s + ¢. This,
with the achievability in Proposition 1, concludes the proof of
Proposition 6.

D. Complete—S where |S| =1
With Proposition 6, we can prove a more general case.

Proposition 7. (The case |S| = 1.) For the complete—{s}
PICOD(t) with m messages, the optimal code length is {* =
min{s + t,m — s}.

Proof of Proposition 7: Proposition 6 solves the case
where S = {s} and m = 2s + t. Therefore, in the following
we study the remaining two cases: m < 2s+t and m > 2s+t¢.

Case m < 2s + t: Consider an integer o < s and split
the n = (’:) users in the system into two categories: users
u; with [a] € A;, and the other users. The users in the first
category do not decode any message in [«] (since they have
all these messages in their side information set); these users
together form a complete—{s — «} PICOD(t) with m — «
messages. Since this complete—{s — o} PICOD(¥) is a subset
of the original complete—{s} PICOD(t), its optimal number of
transmissions is a lower bound on the number of transmissions
in the original system. If we take m —a = 2(s —a) + t <=
o = 2s+t—m > 0 then, by Proposition 6, the optimal number
of transmissions for the complete—{s — o} PICOD(¢) with
m—a = 2(s—a)+t messages is (s—a)+t = m—s. Therefore
the original complete—{s} PICOD(¢) requires at least m — s
transmissions, i.e., £* > m — s = min{m — s, s + t}.

Case m > 2s-+t: The proof is by contradiction. Assume
there exists a D’ such that [MAIS(D’)| = s +¢ — 1 and,
without loss of generality, that the maximum acyclic induced
subgraph is formed by users with desired messages [s+t—1].
Specifically, we have users u;, € [s +t — 1] such that d; =i
and d; ¢ A; for any j,i € [s],j > i (by the definition of
MAIS and its induced partial order).

Let U’ index the users whose side information is a subset
of [s+t:m], ie., i€ U if A; c [s+t: m]. Apparently
1 € U'. We distinguish the following two cases.

Proposition 7.(m > 2s + t).Casel: If there is a user u; €
U’ with desired message d; € [s +t : m], we have d; ¢
Ay for all j € [s]. Thus users u;, uy,usg, ..., Usti—1 form an
acyclic induced subgraph of length s + ¢. This contradicts to
the assumption that [MAIS(D')| = s + ¢ — 1.

Proposition 7.(m > 2s+t).Case2: For all i € U’ we have d; €
[s]. By a similar reasoning as in proof of Proposition 6, we can
show that there exists a user who can decode s + ¢ messages.
This again contradicts the assumption that [MAIS(D)| = s +
t—1.

By combining Proposition 7.(m > 2s+t).Casel and Propo-
sition 7.(m > 2s+t).Case2, we conclude that [MAIS(D)| > s.
By Properties MAIS-P1 and MAIS-P2 we thus have ¢* >
s+t =min{m — s,s + t}.



The achievability follows directly the schemes in Proposi-
tion 1. Since |S| = 1, no partition is needed. |

VI. COMPLETE-S PICOD(¢) WHERE S IS CONSECUTIVE:
PROOF OF THEOREM 2

With Proposition 7, we are ready to prove Theorem 2 in
full generality. We consider the following three cases.

A. Case Smax < [(m —1)/2]: 0* = Spax + 1

5§ =0—
S
s= 12—
s:[mT_HH
s=m-—t

Fig. 3: smax < [(m —1)/2] — 1.

Drop all the users except those with side information set of
Size Smax, thereby obtaining a compete-{sy,ax } PICOD(t) with
m messages. The layer representation of this case is shown
in Fig. 3, where the red layer is the one left after dropping
users. For this system the optimal number of transmissions
is lower bound by min{m — Smax, Smax + t} = Smax + ¢
(because Smax < [(m + t)/2] in this case), which is a lower
bound on the number of transmissions in the original system.
By Proposition 1, we have £* = sy, + t.

B. Case Smin = [(m —1)/2]: 0* = m — Smin

s=0——»
-
S
s=m—1

Fig. 4: spmin = |(m —t)/2].

As for the case in Section VI-A, drop all the users except
those with side information of size sy, thereby obtaining
a compete-{smin} PICOD(t) with m messages and the op-
timal number of transmissions is lower bounded min{m —
Sminy Smin + £} = M — Spin (because Spyin = |(m —¢)/2] in

this case). By Proposition 1, we have ¢* = m — sp,. The
layer representation of this case is shown in Fig. 4, where red
layer is the one left after dropping users.

C. Case Spin < |(m—1)/2] =1 < [(m —1)/2] < Smax

s=0—————

-im
:(L*t]ﬂ
s=m—t

Fig. 5: $min < [(m —1)/2] =1 < [(m —t)/2] € Smax-

Define
. m—t, m—
§ := min {smax - [TL [TJ — Smin} , A7
m’:=m+25+[mT_t]—[—m2_tJ, (18)
o fym=ty o o m—t
S._[[ i ]+5]. (19)

Drop all users except those with side information of size s € S’
for S in (19), thereby obtaining a complete—S’ PICOD(t) with
m messages. The layer representation of this case is shown in
Fig. 5, where red layers are the ones left after dropping users.
Create dummy messages W[, 1./, Where dummy messages
will not be desired by any user. To every user who was not
dropped, with side information of size s € S’, give every
([™L]+6—s)-subset of [m+1 : m/] as extra side information
(where ¢ is deﬁned in (17) and m’ in (18)); each such user
generates ([ mTTt . 5 ,) new users. All the users created by this
procedure form a complete—{[ %] + §} PICOD(t) with m/
messages, whose optimal number of transmissions is

min{[m;t] +S4tm — ([mT_t] +5)}
= min{[m;t] +0 +1t,
=R,

:5+t+min{[m2_t],m—t—lm2_tJ}

[m—t

m+ 26+ 5 |

m—1
+t+[T]

= min {Smax + £, M — Smin}
=/.



Although the new system contains more users, any valid code
for the original system works for the new one. Therefore
the optimal code length ¢’ is a lower bound on the optimal
code length for the original system. This lower bound can
be attained by the scheme described in Proposition 1. This
concludes Theorem 2.

VII. SOME OTHER COMPLETE-S PICOD(t)

The proofs in Section V-D start by dropping some users in
the system. This shows that there exists non-critical users that
do not affect the optimal code length. Therefore, by adding
non-critical users, we can obtain a non-consecutive complete—
S PICOD(t) where the proof used for Theorem 2 can still
provide a tight converse.

A. Proof of Proposition 2

The converse depends only on the users with side informa-
tion of size spmax. The code that satisfies the complete—{$yax }
PICOD(t), i.e., transmit $y,,x + ¢ messages one at a time, also
satisfies all the users with smaller size of side information.

B. Proof of Proposition 3

The converse depends only on the users with side informa-
tion of size smin. The code that satisfies the complete—{s,in }
PICOD(t), i.e., transmit m — s, linearly independent linear
combinations of all messages, also satisfies all the users with
larger size of side information.

C. Proof of Proposition 4

The converse depends only on the users with side informa-
tion of size in [| %] —6 : ["%-£]+6]. The code that satisfies
the complete—[| £ | — 4 : [™-L] + ] PICOD(t) also satisfies
all the users with larger size of side information set. That is,
either transmit sy, + ¢ messages one at a time, or m — Spyin

linearly independent linear combinations of all messages.

D. Proof of Proposition 5

Proposition 5 states that the achievable scheme in Proposi-
tion 1 is information theoretically optimal for the complete—S
PICOD(¢) with m < 5. The main idea behind these proofs
follows the one in converse proof of Theorem 1: construct a
decoding chain by providing proper messages to the user as
genie, in a way that the user can mimic other users and decode
the desired number of messages. Table I lists the optimal code
length ¢* of all complete—S PICOD(¢) instances that are not
covered by Theorem 1 or Propositions 2, 3, 4.

Unfortunately, the converse proofs are based on a case-by-
case reasoning, i.e., constructively find a user that can decode
a certain number of messages. We could not straightforwardly
extended these proof to the complete—S PICOD(t) for general
m. Here we show proofs of two cases. The other cases can
be proved using the similar methods.

TABLE I: Complete—S PICOD(¢) that are not covered by
Theorem 1 or Propositions 2, 3, 4.

m— 4 S ={0,2} t=1,2 | (F=t+2

- S = {1,3} t=1 /% =3
S = {0,3} t=1,2 | (F=t+2

m=>5 S ={1,4} t=1 /% =3

S = {1,3} t=1,2 /% =4
S={0,1,3} | t=1,2 | £*=¢t+3

S ={1,3,4} t=1 0 =4
$=1{0,2,3} | t=1,2 | £*=¢t+3

S ={0,2,4} t=1 0 =4

S = {1,2,4} t=1 0 =4

a) Proposition 5.Casel: We show that for the complete—
S PICOD(1) where S = {1,3} and m = 5, the optimal code
has length ¢* = 4. We do so by proving the existence of a user
with one message in its side information set who can decode
the remaining 4 messages.

By Proposition 7, there exists a user, say uj, with side
information set of size 1, say A; = {1}, who can decode
2 messages, say By 2 {2, 3}. User u; thus can mimic user us
with side information A = {1,2,3} and decode its desired
message. Therefore user u; can decode at least 3 messages,
|B1] = 3.

Denote the last message that has not been decoded by user
uy as ws. Now, if ws is desired by some users, i.e., we have
a user uz with d3 = 5, user w; can mimic user u3 and decode
ws, since Az c [4]. Therefore user u; can decode 4 messages
and (* > 4.

Otherwise, ws is not desired by any users in the system.
Since the message that is not desired by any users does
not have any effect, by deleting it, the system becomes the
complete—[0 : 3] PICOD(1) with m = 4. By Theorem 1
we have the user with A = {5} can decode 4 messages and
0* = 4.

We apply the achievability for the complete—{1,2,3}
PICOD(1). This achievability works since {1,3} < {1,2,3}.
By Theorem 2 we have ¢* < 4. This proves the optimality of
0% = 4 transmissions.

Note: the existence proof based on block cover, as used for
Proposition 6, is also workable for Proposition 5 as well.

b) Proposition 5.Case2: We show that for the complete—
S PICOD(1) problem where S = {0,2,4} and m = 5, the
optimal code has length ¢* = 4. The following lemma, which
is a refined version of Proposition 7, is used in the proof.

Lemma 2. For a complete—{s} PICOD(t) with m messages,
let A" < [m], |A'| < s, Uar be the group of users who have A’
in their side information, i.e., u; € Uas if and only if A’ € A;.
For any A', there exists a user in U 4/ that can decode at least
min{m — s, s +t — | A’|} messages. Note: Proposition 7 is the
case A" = .

Proof of Lemma 2: The users in U4/ alone can be seen
as the users in a new complete—S’ PICOD(¢), where S’ =
{s = |A]}, m" = m — |A’|. By Proposition 7 we have that
there exists a user in this system that can decode min{s’ +
t,m' —s'} = min{s + ¢t — |A’|,m — s} messages. The above
argument holds for all A’ c [m], |A| < s. [ |



Back to the proof of Proposition 5.Case2. We show that
by giving one message as a genie, the user with no side
information can decode the other 4 messages.

Since every user can decode one message, user u; with
A1 = & can decode message wq,. By Lemma 2, we see that
there exists a user us € U{dl} that can decode 2 messages,
where Uyq,y is the group of users who have side information
sets of size 2 and wy, in their side information sets. Without
loss of generality let Ao = {d;,2} and the two messages that
ug can decode be ws,wy, di ¢ {2,3,4}. Therefore, giving
message ws to user up allows it to decode ws, wy. Also, there
exists a user with side information {d;,2,3,4} and decodes
wg, ¢ {d1,2,3,4}. So user u; can decode wg, as well.
Overall, user u; can decode 4 messages with the proper genie
ws. The code length is therefore lower bounded by ¢* > 4.

For the achievability, we split the users into two groups:
S; = {0,2} where users have side information of size 0
or 2; So = {4} where users have side information of size
4. By Proposition 2 we can satisfy all users in S; with 3
transmission; by Proposition 7 we can satisfy all users in
S5 with one transmission. In total we use 4 transmissions to
satisfy all users.

VIII. PROOF OF THEOREM 3

In this section, we prove a tight converse bound on the
optimal code length for PICOD(1) with circular-arc network
topology hypergraph. We start by introducing some graph
theory terminology.

A. Graph Preliminaries

Let H = (V,€) denote a hypergraph with vertex set V'
and edge set £, where an edge E € £ is a subset of V, i.e.,
E < V. The hypergraph is called r-uniform if all edges have
cardinality r, ie., |E| = r, VE € £ For R < [|V]]. the
hypergraph is called R-uniform if all edges have cardinality
of some r € R, ie., |[E| € R, VE € £. The hypergraph
is called complete r-uniform if all edges with cardinality r
exit, i.e., for all E such that |E| =r,E € V, we have F €
E. The hypergraph is called complete R-uniform if all edges
with cardinality » € R exist. The dual hypergraph H* =
(V*,E*) of H is a hypergraph where the vertices and edges
are interchanged, i.e., E* =V, V* = £,

The degree of a vertex v € V is the number of its incident
edges, i.e., §(v) = |[{E : v € E,E € £}|. The hypergraph is
called k-regular if the degree of all vertices is k. A factor of
H is a spanning edge induced subgraph of H, i.e., an edge
induced subgraph of H with the same vertex set of V. A k-
factor is a factor which is k-regular. A hypergraph H is called
an circular-arc hypergraph if there exists an ordering of the
vertices v1,v2,...,v, such that if v;,v;,7 < j, then the v,
for either all ¢+ < ¢ < j, or all ¢ < ¢ and ¢ = 7, are incident
to an edge E.

For a PICOD(t), its network topology hypergraph is a
hypergraph H = (V&) such that: i) V = {uq,...,u,}, i.e.,
vertices represent the users; ii) £ = {E1, ..., Ey,}, i.e., edges
represent the messages; iii) u; € E; if w; ¢ A;, i.e., a vertex
is incident to an edge if the user does not have the message

in the side information. This definition of network topology
hypergraph is a generalization of the network topology graph
in [15].

Note that the network topology hypergraph is defined solely
on user set U, message set W, and side information sets 4.
For the IC, the network topology hypergraph does not uniquely
define an instance of the problem, since it does not contain the
information about desired message sets of the users. However,
the network topology hypergraph uniquely defines a PICOD(¢)
due to the property that the PICOD(¢) does not specify the
desired messages for the users.

B. On the Optimality of a Single Transmission

We give the necessary and sufficient condition on the
network topology hypergraph of a PICOD(1) problem for
which one transmission is optimal. This result applies to all
PICOD(1) instances, thus serves as a general converse bound
for the PICOD(1).

Proposition 8. A PICOD(1) with m messages has {* = 1 if
and only if its network topology hypergraph has a 1-factor.
Otherwise £* = 2.

Proof of Proposition 8:

Achievability: The network topology hypergraph H has a 1-
factor if it has an edge induced sub-hypergraph whose vertices
are the same as the vertices of [ and all have degree one. In
other words, in this induced sub-hypergraph all vertices are
adjacent to one and only one edge. Since H is the network
topology hypergraph, its vertices represent users and edges
represent messages. A vertex is adjacent to an edge if and only
if the user does not have that message in its side information
set. For the PICOD(1), that message can be a desired message
by the incident users. Therefore, among all the messages
corresponding to the edges in the 1-factor, every user has one
and only one message that is not in its side information set.
Transmitting the sum of all these messages satisfies all users.
By this transmission scheme we achieve ¢* = 1, which is
clearly optimal.

Converse: We aim to show that if the network topology
hypergraph does not have a 1-factor hypergraph, then we
can construct a user that can decode two messages, thus two
transmissions are needed. For any valid code, consider the
sub-hypergraph induced by the edges corresponding to all the
desired messages by all users, i.e., the edge induced sub-
hypergraph of H where the edges correspond to the messages
that are decoded by at least one user. This sub-hypergraph is
always a factor, i.e., a spanning sub-hypergraph, since all users
can decode at least one message in a PICOD(1). Assume no 1-
factor exists in H, that is, there exists a vertex whose degree
is at least 2 in the sub-hypergraph. In other words, for all
choices of desired messages at the users, there exists a pair of
users u; and ug with desired messages wq, and wg, such that
dy ¢ A;. We therefore have A; € [m]\{d1,d2}. Given any
valid code, a user v’ with A’ = [m]\{d1,d2} can mimic user
u; then user ug, thus can decode wy, , wq,. By Lemma 1, we
conclude that ¢* > 2. ]



Fig. 6: Two transmissions scheme for circular-arc network
topology hypergraph PICOD(¢).

C. Proof of Theorem 3

We show a case where the converse proposed in Proposi-
tion 8 is tight by proposing an achievable scheme based on
the properties of a circular-arc hypergraph. First, in Lemma 3
we show the following fact: if two edges, say E; and £, are
“close” in £ with a nonzero gap between them, then there
exists an edge in & that “covers” the whole gap between E;
and E;. This fact will be used in Theorem 3 to design a two-
transmission achievable scheme.

Lemma 3. Assume a circular-arc hypergraph H without
isolated vertices and where the vertices are in a cyclic
order {vi,vs,...,v,}. Assume there exist two edges E; =
{viy,...,vi,} and E; = {vj,,...,v;,} that satisfy the follow-
ing two conditions: Conditionl) i, +1 < j1, and Condition2)
every edge that contains any vertices in {Uz‘p+1, Co U -1}
contains v;,. Then, there exists an edge E} such that
{'Uip+17 R ,Uj171} C FE.

Proof of Lemma 3: Since H does not have any isolated
vertices, there exists Ej € £ such that v;, _; € Ej. By the
Condition2 we have v;, € FEj. By the property of circular-
arc hypergraph (if v;, and v;, 1 are contained in Fj, all
the vertices between are contained in Fj as well) we have
{vi,,+1,-~-7vj1—1}(;Ek- |

Proof of Theorem 3: We propose an achievable scheme
that uses two transmissions to satisfy all users for all
PICOD(1) instances with circular-arc network topology hy-
pergraph. The scheme consists two steps.

a) Theorem 3.Stepl: Given a PICOD(¢) with network
topology hypergraphas a circular-arc hypergraph, we notice
that:

« No vertex is isolated.

» There might exists an edge that is as a proper subset of
another edge.

We drop those edges that are proper subsets of the union
of other edges, obtaining the edge set £. In other words,
|E\(Uj=iE;)| > 0,VE;, E; € £. The achievability scheme
based on £ will be valid for the original problem setting as
well (since we are restricted to use less messages to satisfy
all users). The edge induced subgraph by £ has no isolated
vertex as well.

Algorithm 1: Algorithm for finding £() in Stepl.

Data: User set: V' = {vq, ..
Result: Message set: £ = {E,q),..
Initialization: set i = 1, £V = @y.
while i < n do
Seek an edge that starts at v;, i.e., an edge that is
{vi, .. 1

if Such an edge is found then

Let £1) include be the edge found;

1 becomes the index of the vertex right after

the found edge, that is, the edge {...,v;—1} ;

else

1=1+1;
end

.,V }, message set: £.
. Ee(l)}.

end

In Stepl we find a set of messages £(1) < & by using
Algorithm 1. The blue solid arcs in Fig. 6 show an example
of £ found by Algorithm 1.

Denote the cardinality of £() as e := |€(})|. We claim that
EM has the following properties:

o By 0 Ejoy = &, for all 4,5 € [e], (i,7) # (1,¢e) and

(1,5) # (e, 1).

« For all i,j € [6 — 1], Ei(l) = {’Uigm,. . .,Uigi)}, Ej(l) =
{ngl),...,vje(z;)}, if zg) +1 < jfl), we have an edge
Ei(2) € &£ such that {Uigli)’ - 7Uj§1) }

The first property holds since the algorithm chooses adjacent
edges in £1) that are disjoint and there is possibly nonempty
intersection between E 1) and E.. The second property holds
by Lemma 3.

In the first transmission we send the sum of the messages
in €M, ie., Y5, w;. The users who are satisfied are in
U g,ee Ei\(E10) N E.). In the network topology hypergraph,
these are the users that are “spanned” by these edges, ex-
cluding the users whose vertices are in E ;1) n E. where
E,u n E, # . Therefore we are left with the users whose
corresponding vertices are contained in (U\(ugn) Eq))) U
(El(l) N Ee )

b) Theorem 3.Step2: The users who are not satisfied by
the first transmission are the users whose side information sets
contain either all the chosen messages in Theorem 3.Stepl, or
both w;) and we. In other words, in the network topology
hypergraph, they are the users who lie “in between” the edges,
or in the intersection of the first and last edges, in £(!) chosen
in the previous step.



As we have shown in the second property of £1) in
Theorem 3.Stepl, for the unsatisfied users between E;n) €
M) and Eit1ym € EM, there exists an edge E;(2) that
includes all those users. Therefore, we find a set of edges
@ = {E1(2)w~aE(ef1)(2>} such that U\(vgm) E;y) S
Up,ce ;. In Fig. 6 they are the edges represented by
the red dashed arcs. Note that all edges in £ are pair-
wise disjoint, since if E;2 n E; 12 # & then we have
E,ny S E,_ 10 U By, ie, Ei(l)\(Uj;ﬁi(l)Ej)| = 0. This is
forbidden since we dropped the messages at the beginning
of the Stepl. Moreover, (E;1) N E.1) n Ej2 = & and
(Eycy 0 Eet) 0 E(._1y2 = & by the same reasoning.

In the second transmission, we send the sum
(Z;;}wj(z)) + wjq). The users that are not satisfied
yet by the first transmission have all but one of the messages
in {wy,...,w,_y,wi} in their side information sets.
Therefore all the unsatisfied user after Theorem 3.Stepl can
be satisfied by the second transmission. All the users are
satisfied with two transmissions.

This, together with the converse in Proposition 8, concludes
the proof of Theorem 3. [ |

IX. CONCLUSION AND FUTURE WORKS

In this paper we provided tight information theoretic con-
verse bounds for some classes of PICOD(t) problems. The key
idea for our converse is to show that for the PICOD(¢) with
a certain structure of the side information sets, regardless of
the choice of desired message sets at the users, there exists a
user that can decode a certain number of messages beside its ¢
desired ones. We showed two methods to prove the existence
of such a user: constructive proof and existence proof. The
constructive proof works for the PICOD(t) with circular-
arc network topology hypergraph, and for the complement-
consecutive complete—S PICOD(t) with m messages where
S =10:m—t]\[Smin : Smax)s0 < Smin < Smax < M — 1.
The existence proof works for the consecutive complete—S
PICOD(t) with m messages where S = [Smin : Smax],0 <
Smin € Smax < m — L.

The key idea for the existence proof was inspired by the sim-
ilarity of the side information set structure of the consecutive
complete—{s} PICOD(t) to Steiner systems in combinatorial
design. Combinatorial design studies the properties of a family
of subsets, called blocks, that cover all s-element subsets of
the same ground set; the results are usually established on
the high symmetry of the structure of all s-element subsets.
We introduced the idea of block cover as a tool for the
converse proof, together with the classical MAIS for the IC
problem. We solved first the critical complete—{s} PICOD(¢)
with m = 2s + ¢t messages, where we showed that a block
cover with maximum block size strictly less than m = 2s + ¢
does not exist. For the other considered cases, we showed that
we can enhance the system to a critical one.

Open problems and future directions include:

» The main contribution of this work are methods to
prove the existence of a user that can decode a certain
number of messages: constructive and existence proofs.
While the latter shows an advantage over the former on

the complexity of the proof, it is based on the strong
symmetric structure of the side information set of the
users. Like combinatorial design, for the result to hold we
need exactly all the s-element subsets of ground set [m].
Therefore, this method suits the complete—{s} PICOD(¢).
For the other cases, we need some extra tools. We showed
the proof for the consecutive complete—S PICOD(¢) by a
reduction to the critical case. However, it appears that not
all the PICOD(t), even all complete—S PICOD(¢), can be
reduced in the same fashion without loss of optimality
in terms of the code length. Therefore we still lack an
efficient method to obtain a general optimal converse
bound for the general PICOD(¢). In Section VII-D we
showed the optimality of the proposed achievability up
to m = 5 for the complete—S PICOD(¢). The converse
is obtained by checking all the cases that are not covered
by the Theorem 1 or Propositions 2, 3, 4. Therefore the
method is not systematic and straightforwardly general-
izable to general m. The information theoretical optimal
code length for the general complete—S PICOD(t) with
m messages is still open.

We notice that in the complete—S PICOD(t) considered in
this work, removing/adding some users does not change
the optimal code length. In fact, in some cases (e.g.,
S = [0 : m/2]) roughly half of the users can be removed
without affecting ¢*. These users can be considered as
“non-critical”, in contrast to other “critical” users who
will change the optimal code length if removed/added.
The PICOD(t) is called “critical” if all of its users are
critical. We see the “critical” consecutive complete—S
PICOD(t) are those with m = Smin + Smax + ¢ In
other words, the ones with “small” size of side informa-
tion/number of desired messages. In this case the optimal
code length spy.x + t. For this setting, removing any
single user reduces the optimal code length by 1. If m <
Smin + Smax + 1, there are ZZ":‘“S’;M (m - (2;”1:22’:‘:11)
non-critical users. It is worth mention that due to the
symmetric structure of the complete—S PICOD(¢) where
|S] = 1, all users are essentially the same, i.e., all users
are critical if any user is critical. The question about the
critical users in the PICOD(¢) is interesting because it
shows the redundancy embedded in the system structure.
The condition for a complete—S PICOD(?) to be critical,
the number of its non-critical users, and in general, the
condition to be critical for the general PICOD(¢), are the
topics of future works for the PICOD(¢).

In the PICOD formulation adopted in this work, the
server broadcasts information to all users based on the
knowledge all messages in the database. Another practi-
cally motivated scenario includes peer-to-peer/distributed
models where users broadcast information based on their
side information set. The converse bounds developed
in this work are also converse bounds for peer-to-
peer/distributed model with the same parameters. The
open question is whether this “trivial” converse bound can
be achieved. Surprisingly, it appears that for the consecu-
tive and complement-consecutive complete—S PICOD(t)
that we have solved, as long as the problem is “pliable,”



i.e., there are indeed multiple choices of desired messages
that satisfy the users, then the tight results in this paper
are tight for the peer-to-peer/distributed model. One of
the open questions is to quantify the optimal code length
is the non-pliable cases for the complete—S PICOD(%),
where the problem reduces to a distributed index coding
problem [11].

APPENDIX

Lemma 4. For s + 1 arbitrary subsets B; from a ground set
of size s, there exists a set P C [s+1] such that | niep B;| =
|P|— 1.

The proof of Lemma 4 is based on induction on s (the size
of the ground set in this Lemma) and the following Lemma 5.

Lemma 5. Let By, B, ..., B, are non-empty subsets of set
{v1,v2,...,vy}, for some positive integers x,y. Let C; be the
collection of subsets that contain v, i.e., v; € B; if and only
ifi € C;. Let ¢c; = |C}|. There always exists a pair (i,j) such

o
that ﬁ > % and v; € B;.

Proof of Lemma 5: Construct a x x y matrix W. w;; =
1/|B,| if v; € B;, otherwise w;; = 0. Since |B;| # 0 for all
4, matrix W can be constructed. Note that the sum of each
row is one. We have the summation of all elements in W
1S D] jely] Wis = uiefa] (Zjefy) Wis) = @, which is the
number of rows. The summation of all elements in W can also
be obtained by adding up the summation of the columns. Since
there are y columns, there exists a column whose summation
is no less than the average, i.e., there exists j such that

1 T
Dlwgg= D> === (20)
ke[z] k:v;jeBy |Bk| Y
Let B; be the smallest subset that contains v;. We have
1 1 c
Y o S = TR @1
kv, € B | Bl kv, € By |Bil - |Bil
Therefore, for the pair (¢,j) we have v; € B; and
Cj X
T2 T (22)
|Bi Y
|

Proof of Lemma 4: When |B;| = 0 for some i, take
P = {i}, we have | nep B;| = 0 = |P| — 1. Lemma 4 is
proven. Therefore we just need to consider the case where all
B, are non-empty.
For the initial case s = 1 the statement in Lemma 4 is true.
It can be easily seen since By = By = {1} (this is the only
541 = 2 non empty subsets from a ground set of cardinality
s =1). Take P = [2]; we have | nycpg) Bi| =1=2~—1.
Assume the statement in Lemma 4 is true for all s <t —1.
We construct a P such that | nep B;| = |P| —1 for s = t.
In Lemma 5, substitute * by s + 1 and y by s, we have a
pair (i, j) such that j € B; and (5 > s+l where ¢; = |C}]
and C; < [s + 1] is the collection of subsets that contain j.
By reordering the labels, without loss of generality, let ¢+ = 1
and B; = By = [j]. Since |]§7’1| > % > 1, we have ¢; > j,
|C;\{1}| > j — 1. Consider B, := By n[j —1], i' € C;\{1}

where B], are subsets of [j — 1]. Since j — 1 < s, by the
inductive hypothesis there exists P’ such that | nyep Bl| =
|P'| — 1. Let P = P’ u {1}. Note that j € B, for all ¢ € P
and k ¢ ngepB, for all k€ [j + 1 : s]. We have ngepBy =
njpr U {j}. Then | ngep Byl = |P/|=1+1 = |P| -1 as
|P| = |P'| + 1.

Therefore we can always find a P such that | n;ep B;| =
|P| — 1 for all positive integer s. |
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