On Coded Caching with Correlated Files

Kai Wan*, Daniela Tuninetti’, Mingyue Jif, Giuseppe Caire*,
*Technische Universitit Berlin, Berlin, Germany, {kai.wan, caire}@tu-berlin.de
TUniversity of Illinois at Chicago, Chicago, USA, danielat@uic.edu
J;University of Utah, Salt Lake City, USA, mingyue.ji@utah.edu

Abstract—This paper studies the fundamental limits of the
shared-link caching problem with correlated files, where a server
with a library of N files communicates with K users who can
store M files. Given an integer r € [N], correlation is modelled
as follows: each r—subset of files contains one and one only
common block. The tradeoff between the cache size and the
average transmitted load is considered. First, a converse bound
under the constraint of uncoded cache placement (i.e., each user
directly caches a subset of the library bits) is derived. Then,
an interference alignment scheme is proposed. The proposed
scheme achieves the optimal average load under uncoded cache
placement to within a factor of 2 in general, and it is exactly
optimal for (i) users demand distinct files, (ii) large or small cache
size, namely KrM/N < 2 or KrM/N > K — 1, and (iii) large or
small correlation, namely r € {1,2,N — 1,N}. As a by-product,
the proposed scheme reduces the (worst-case or average) load of
existing schemes for the caching problem with multi-requests.

I. INTRODUCTION

Cache is a network component that leverages the device
memory to transparently store data so that future requests
for that data can be served faster. Two phases are included
in a caching system: i) cache placement phase: content is
pushed into each cache without knowledge of future demands;
ii) delivery phase: after each user has made its request and
according to the cache contents, the server transmits coded
packets in order to satisfy the user demands. The goal is to
minimize the number of transmitted bits (or load or rate).

Coded caching was proposed by Maddah-Ali and Niesen
(MAN) in [1] for a shared-link caching systems containing
a server with a library of N equal-length files, which is
connected to K users through a noiseless shared-link, each
of which can store M files in its cache. Each user demands
one file in the delivery phase. The MAN scheme uses a
combinatorial design in the placement phase so that during the
delivery phase multicast messages simultaneously satisfy the
demands of different users. Under the constraint of uncoded
cache placement the MAN scheme was first proved to be
optimal the worst-case load when N > K [2], and later in [3]
for any (N, K) and any kind of demands, as well as for average
load under the uniform demand distribution.

The above works assume that the N files in the library are
independent. However, in practice overlaps among different
files is possible (e.g., videos, image streams, etc.). Coded
caching with correlated files was considered in [4], where each
subset of files has an exclusively common part; a caching
scheme for two-file K—user system, and for three-file two-
user system, was proved to be near-optimal for worst-case
demands. In [5] the caching problem with correlated files,

where the length of the common part among each /¢ files
(referred to as a ‘/-block’) is the same, was considered; each
file contains ('2':11) ¢—blocks. The achievable scheme in [3]
contains N steps, and in step ¢ only ¢-blocks are transmitted;
there are ('2':11) rounds for the transmission of step ¢, where
each round is treated as a MAN caching problem.

The caching problem with correlated files is a special case
of the caching problem with multi-requests considered in [6],
where each user demands L files from the library. If the
problem is divided into L rounds, where in each round the
MAN scheme in [1] is used to let each user decode one file,
one can show the order optimality to within factors of 18 [6]
or 11 [7]. Instead of using the MAN scheme in each round,
one could use the scheme in [3] to leverage the multicast
opportunities, as done in [8]. There are two main limitations
in dividing the delivery into L rounds and use in each round a
caching scheme designed for single-request caching problem:
(1) a file may exist in different rounds and this round-division
method may lose some multicast opportunities, and (2) finding
the best division of the users’ demands into L groups is hard.

Contributions and Paper Organization: In this paper, we
consider a simplification of the model in [5]: we fix r € [N]
and assume each file only contains r-blocks (see Section II); In
Section III we derive a converse bound on the minimal average
load for any demand type under the constraint of uncoded
cache placement, by leveraging known index coding converse
bounds [9] as we pioneered in [2]. In Section IV we propose a
novel interference alignment scheme for the caching problem
with correlated files which jointly serves users’ multi-demands
(instead of the round-division method). The proposed scheme
achieves the optimal average load among all demands with
distinct requests under the constraint of uncoded cache place-
ment. For general demands, the scheme achieves the optimal
average load under the constraint of uncoded cache placement
for KrM < 2N or KrM > (K —=1)N or r € {1,2,N — 1,N}.
Our scheme can be also used to improve the state-of-the-art
for the caching problem with multi-requests [8].

Notation Convention: Calligraphic symbols denote sets,
bold symbols denote vectors, and sans-serif symbols denote
system parameters. We use | - | to represent the cardinality of
a set or the length of a vector; [a : b] := {a,a+1,...,b} and
[n] :=[L1,2,...,n]; ® represents bit-wise XOR.

II. SYSTEM MODEL

In an (N, K, M, r) shared-link caching problem with corre-
lated files, a server has access to a library of N files (each file

has B bits) denoted by {F},--- , Fn}. The server is connected
to K users through an error-free link. Each file F; where
i € [NJ, is composed of (N_!) independent and equal-length
blocks, F; = {Ws : S C[N],|S| =r,i € S}, where the block
Ws represents the exclusive common part of all files in S. So
in the library, there are ('?) independent blocks, each of which
has B /(':‘:11) bits. During the cache placement phase, user
k € [K] stores information about the N files in its cache of size
MB bits, where M € [0, N/r]. Denote the content in the cache
of user k£ € [K] by Zy and let Z := (Zy,..., Zk). During
the delivery phase, user k € [K] independently demands file
dr, € [N]. The demand vector d := (dy,...,dk) is revealed
to all nodes. Given (d,Z), the server broadcasts a message
X(d,Z) of BR(d,Z) bits to all users. User k € [K] must
recover its desired file Fy, from Zj and X (d, Z).

A demand vector d is said to be of type Dy, (q) if it has
Ne(d) := |{di : k € [K]}| distinct entries. Based on the
uniform demand distribution, the objective is to determine the
optimal average load among all demands of the same type

R*(M, s) := mzin Eaep,[R(d,Z)], Vs € [min{K,N}], (1)
and the optimal average load among all possible demands
R (M) = min Eqcne[R(d,)] @)

The cache placement is uncoded if each user directly copies
some bits into its cache. Under the constraint of uncoded cache
placement, we divide each block W where S C [N] and |S| =
r into sub-blocks, Ws = {Ws,y : V C [K]}, where Ws y
represents the bits of Ws which are exclusively cached by
users in V. The optimal loads under uncoded cache placement
R% (M, s) and R} (M) are defined as in (1) and (2), respectively.

Relation to the Coded Caching Problem with Multiple
Requests: If we identify the (') independent blocks as files
of the library, and allow each cache-equipped user to request
(T—_f) such blocks/files, the considered caching problem with
correlated sources can be thought of as the symmetric caching
problem with multiple requests considered in [6], where ‘sym-
metric’ means that each user requests the same number of
files. There is a subtle difference between our model and the
one in [6]: in our model one file corresponds to ('?') distinct
blocks, thus our model corresponds to the one in [6] under
the constraint that a user has multiple but distinct requests.
Moreover, we consider the average load as our performance
metric, while in [6] the worst-case load was considered.

III. MAIN RESULTS

Theorem 1 (Converse). For an (N,K,M,r) shared-link
caching problem with correlated files, R5(M,s) is lower
bounded by the lower convex envelope of the following
memory-load pairs

(M,Ry) = (N¢/K,¢}), Vt € [0: K], 3)

Sfor all s € [min{K, N}|, where
N—j\ (K—j
Zje[min{thLl,Kft,s}] (rflj)(tj)

(=) ()

“4)

s .
c; =

In addition, R5(M) is lower bounded by the lower convex
envelope of the following memory-load pairs

(M,Ry) = (NE/K, Eaeple*V]) , vt e 0: K. 5)

Proof: Inspired by [10], we use the “acyclic index coding
converse bound” from [9]. For a demand vector d demand
of type D, where s € [min{K,N}], choose s = N(d)
users with distinct demands. Generate a directed graph for
the delivery phase, where each sub-block demanded by each
of these N.(d) users represents one node in the graph. There
is a directed edge from node ¢ to node j if the user demanding
the sub-block represented by node j caches the sub-block
represented by node i. Consider a permutation of these N, (d)
users, denoted by u = (uy,us, ..., un,(q))- By [2, Lemma 1],
we can prove that the set of sub-blocks

U U U

FEIN(A)] SCINN{duyrerduy_} VEIKN {01,008}
| Sl=r,du, €S

Wsv,

does not contain a directed cycle. By the “acyclic index coding
converse bound”, the number of transmitted bits is not less
than total number of bits of the sub-blocks in this set. Consider
all the demands of type s € [min{K, N}], all sets of users with
different s distinct demands, and all permutations of those
users; by summing all the resulting “acyclic index coding
converse bound” inequalities, we obtain

K
RX(M,s) > chxh (62)
t=0
To+ 21+ ...+ =1, (6b)
1 + 2z + ... +txy + ... + Kax < KMr/N, (6¢)
>, > fWsyl/(NB) (6d)

SCINJ:|S|=r VC[K]:[V|=t

Ty =

where x; represent the fraction of all bits cached exactly by ¢
users. After Fourier-Motzkin elimination of the {x;} as in [10],
one obtains the converse bound in (3). |

We next propose a multi-round interference alignment
scheme (details in Section IV) which is optimal for the
three cases described in Theorem 2. Different from existing
round-division methods in [5]-[8], our scheme is designed to
jointly serve users’ multi-demands. The main ingredients of
the scheme are as follows. We pick a leader user among the
users demanding the same file; we then divide the delivery
phase into steps, and in each step we satisfy the demand of
one leader user after the construction of multicast messages
destined for all steps, each of the unsatisfied user can cancel
(or align) all non-intended ‘symbols’ (interferences) in all
multicast messages which are useful to it.

Theorem 2 (Optimality). For an (N,K,M,r) shared-link
caching problem with correlated files, we have

1) Case 1: When N > K, R%(M,K) is equal to the lower
convex envelops of c where t € [0 : K].

2) Case 2: When r € {1,2,N—1,N}, R%X(M, s) where s €
[min{K, N}] and R%(M) are equal to the lower convex

envelops of ¢; and of Ede[N]K[CiVC(d)] where t € [0 : K],
respectively.

3) Case 3: When M < 2N/(Kr) or M > (K — 1)N/(Kr),
R (M, s) where s € [min{K, N}] and R (M) are equal
to the lower convex envelops of c; and of Eq¢ [cévE(d)]
where t € {0,1,2,K — 1,K}, respectively.

Proof: Comparing the converse bound in Theorem 1 and
the achieved load of our scheme (given in the Performance
paragraph of Section IV-B), we have the optimality for Cases 1
and 2. The optimality for Case 3 is due to the fact that civ ()
is convex in terms of ¢, and when ¢ € {0,1,2,K — 1, K}, our

proposed scheme is optimal (more details in [11]).]

Remark 1. We can extend our scheme to general case and
derive an order optimality for any system parameters and any
demand type to within a factor of 2 under the constraint of
uncoded cache placement (more details in [11]).

Remark 2. For the caching problem with multi-requests
considered in [8] where each user demands L uncorrelated
and equal-length files, the scheme in [8] was proved to be
optimal under the constraint of the MAN placement for most
demands with K < 4 users, M = N/K, and L = 2, except one
demand for K = 3 and three demands for K = 4. We can use
the proposed scheme in this paper to achieve the optimality
for those four unsolved cases (more details in [11]).

Hence, the proposed results in this paper also shed light
in the very relevant and intricate problem of how to handle
optimally the case, where each user makes a sequence of
requests of independent files (blocks). The fact that there are
repeated elements in such sequence of requests is a ‘funda-
mental’ aspect of caching (also in practice), where one needs
to devise schemes that take advantage of previous requests and
do not send the same stuff multiple times.

Remark 3. The proposed caching scheme characterizes the
worst-case load under the constraint of uncoded cache place-
ment by setting s = min{K, N} in Theorem 2.

IV. NOVEL INTERFERENCE ALIGNMENT BASED SCHEME
A. Example

Consider an (N, K, M, r) shared-link caching problem with
correlated files with N = 3, K=5, M = 3/5 and r = 2. Here
M = 2N/(rK) as in Case 3 of Theorem 2. There are 3 blocks,
W{Lz}, W{173}, W{273}. The files are F1 = {W{LQ}, W{l,S}}v
Fy = {Wy1 2y, Wy 3y} and F3 = {Wyy 3y, Wya 33}

Placement phase: We use the MAN placement, as nat-
urally inspired by our converse bound. Here ¢t = KMr — 9
so we partition each block into () = 10 equal-length sub-
blocks, Ws = {Wsy : V C [K],|V| = t}. User k € [K]
caches Wy for all V C [K] of size |V| =t if k € V. Hence,
each sub-block contains B/ ((N_l) ('f)) = B/20 bits and each

user caches B(") ('j:ll)/((':':f;(?)) = 3B/5 bits.

Delivery Phase: Assume d = (1,2,3,1,2), which has
N.(d) = 3 distinct demanded files. Pick one user demanding
a distinct file, and refer to it as the “leader user” among those

demanding the same file. Assume here that the set of leaders
is {1,2,3}. Consider next a permutation of the leaders, say
(1,2, 3). Our proposed delivery scheme contains min{N —r+
1,K—t, No(d)} = 2 steps; after Step i, the i element/user in
the permutation can decode its desired file; after finishing all
steps, the remaining users can also decode their desired file.
We next describe the two steps in the delivery phase for this
example, where each step we send multicast messages of the
type for some 7 C [K] with |[T| =¢+ 1 and H C [N],

Crau:= & ® Ws 7\ (K} (7

kET SCN(T)UH:
|S|=r,HCS,deS
where NV (T) := Uger{di} is the set of demanded files by
the users in 7. In words, the multicast message C'r 3, in (7)
is the binary sum of each sub-block (from blocks Ws where
S C N(T)UH) desired by one user in 7 and known by all
the other users in 7. Note that, when r = 1 (in which case
our model reduces to the MAN caching system in [1]), C'r g
in (7) is equivalent to the MAN multicast message.

Delivery Phase Step 1 (to satisfy leader user u; = 1). Each
time we consider one set of users J C [K] where |J| =
t+1=3and u; € J (recall that u; =1, d,,, = 1), and one
set of files B C [N]\ {dy, } where |[B|=r—1=1.

Consider J = {1,2,3}. For B = {2} we transmit

Cri1,2,3),02y = Wi 21,4230 © W2y, 01,30 © Wias) 1.3}
© Wizsy.{1.2)- (8)

and for B = {3} we transmit

Cr1,2,3),13) = Wii3),02,3) @ Wiy 1,2y © Wiy, (1,3}
© Wiz3y.01.2)- 9)

By leveraging its cached content, user 1 decodes Wiy 2y (2.3}
from 0{172)3}7{2}, and W{173}7{2)3} from 0{1,273}7{3}. Sim-
ilarly, user 2 decodes first Wiz 3y 113y from Cyy 2 3) (3},
and then uses Wiz 3) 11,3y and its cached content to re-
cover Wy 2y 41,3y from Cy 2 3y g2} Similarly, user 3 decodes
Wia3y,q1,2) and Wiy 3y 11 0y. In other words, for the trans-
mitted C'7 5’s, each user in J can eventually recover each
not-cached sub-block in Cs 5.

In addition, C 7 5 is useful to other users whose demanded
file is in NV (J) U B (recal that N (J) := Uges{ds}), e.g.,
C{1,2,3,¢3} 1s useful to users 4 and 5, where Wy 3y 11,31 ©
Wia3y,q1,2) is an ‘interference’ to user 4, as well as
Wi 3y,02,3) @ Wi1,3},(1,2) is an ‘interference’ to user 5.

We then focus on J = {1,2,4}. For B = {2} we transmit

Ci1,2,4), 027 Wi 2y, 12,400 Wi 2y, 11,400 Wia 2y, (1,2, (10)

and f B = {3} we transmit

Ci1,2,41, 037 Wi 31,1200 Wi sy, 11,200 Wia sy 1,43 (11

From C{q 24y 423, users 1,2,4 can decode Wiy 9} 2.4},
Wii2y,q1,4), and Wyq 9y 110y, respectively. In addition,
C{1,2,4},2) is also useful to other user whose demanded

file is in N({1,2,4}) U B = {1,2}, i.e., user 5. Mean-
while, the remaining users (user 3 demanding F3), ne-
glect Cyy 243 {23- From Cyy 24y 3}, users 1,2, 4 can decode
Wii3).02.4)> Wi2,3),{1,4)> and Wiy 3y (1.9}, respectively. In
addition, C134; 3y is also useful to other users whose
demanded file is in V' ({1, 2,4})UB = {1, 2,3}, i.e., users 3, 5,
where Wiy 3y 12,4} © Wy 3y,41,2) is an interference to user 5.
Similarly, for J = {1,2,5}, we transmit

Cri251,27- Wit,2y,25)0 Wi 2y (1,50 Wia 23 1,23, (12)

Ci1,2,5), 037 W31, 2,500 W23y, 11,500 Wiz 3y, 11,2y (13)
For J = {1, 3,4}, we transmit

Ci13.41, 127 Wi1.2),13.4y0 Wi 2y (1,300 Wia 3y (1,4}, (14)

Cr13,41, 137 Wi1,33,13,4y0 Wi 3y (1,48 Wia 3y, 1,3+ (15)
For 7 = {1, 3,5}, we transmit

Cr1,35),02) = Wii2),43.5) © Wii2). 11,30 © Wiasy 11,5

& Wia3y.(1,3} (16)
Cr1,35),13) = Wii3),035) @ Winsyq.5) © Wiasy (1.5
& Wi231,{1,3}- (17

For J = {1,4,5}, we transmit

Ci1,a,5), 027 Wi 21,1450 Wi 2y, 11,500 Wi 2y, (1,43, (18)
Ci1,4,5), 37 Wi1,31,14,5y0 Wi 31, (1,500 Wi23y,(1,43- (19)

So user 1 can decode Wy 9y and Wy 3y in Step 1. In
addition, from (8) and (9), user 2 can decode Wiy 2y (13}
and Wiz 3y (1,3). From (10), user 2 can decode Wiy oy (1,4}-
From (11), user 2 can decode Wz 3} 11,4y. From (12),
user 2 can decode Wiy 9y 11,53. From (13), user 2 can
decode Wis 3y 11.5)- Since user 2 knows Wi 3y 11,43 and
Wi 2y,41,3), from (14) it can decode Wiy 2y (34;. Since
user 2 knows W{273}7{173}, W{2,3}7{175}, and W{1,2}7{173},
from (16) it can decode Wiy 2y (35). Finally, since user 2
knows Wiy 2y 11,53 and Wiy 23 11,43, from (18) it can decode
W1 2y,44,5)- So user 2 can decode Wy 2y and Wiy 33y where
1€V in Step 1.

Similarly to user 2, each user k € {2, 3,5} whose demanded
file is not F can recover Ws where {d,,,d;} C S, and can
also recover W, y, where dj, € S and uy € V4, after Step 1.
In addition, we can check that user 4 whose demanded file
is Fi, can recover Wiy 9y 119y from Cy 54y (2). Similarly,
each non-leader k; whose demanded file is qu1 , can recover
Ws,,v, where d,,, € Sy and u; € Vs.

Delivery Phase Step 2 (to satisfy leader user us = 2). Each
time we consider one set of users J C ([K] \ {u1}) where
|Jl =t+1 =3 and us € J, and one set of files B C
(INJ\ {du,,du,}) where |B| = r—1 =1 (recall that u; =
dy, = 1,u2 = dy, = 2). Here we only have B = {3}, and we
transmit

Cr2,3,4),13) = Wi23),13.4) © Wia3),12.4) © Wiz} 2.4)

& Wii31,{2,3} (20)

Ci2,3,5),13y = Wi2,3),43,51D Wya 3y, 42,510 Wia 3y 42,3}
2n

Cr2,4,5),13) = Wi2,3),14,5)D Wiz 3y, 12,4y D Wi1 3y 42,5
(22)

One can easily see that user 2 can decode Wyj 33 (343,
Wia3y,43,5), and Wi 3y 1457 from (20)-(22), respectively.
Hence, combining with what user 2 decoded in Step 1, user 2
can recover Wyy oy and Wys 3y.

Up to this point, we showed that two leader users are
satisfied. We now show that also the remaining leaders are
also satisfied (here only user ug = 3). User 3 can directly
recover W{2,3}7{2,5} from (21). Since user 3 has recovered
Wi1,3y in Step 1, it then can recover Wyg 3} 12 4) from (20).
Hence, user 3 can then recover Wyg 3 14,5 from (22).

Generally, at the end of Step 2, every user k € {3,4,5}
whose demanded file is neither F} nor F5 (here only user 3),
can recover Ws where di, € S, {dy,,dy,} NS # 0, and also
recover Ws, v, where d, € S and {uj,u2} NV # 0. In
addition, it can be checked that user 5 whose demanded file
is I, can recover W 3y 124y from Cya 4 5) 13} Similarly, at
the end of Step 2, each non-leader k; whose demanded file is
Fy,,, can recover W, v, where dy, € S and {u1,ua}NVs #
(), and also recover Ws, where d,, € Ss, {dy, } NS3 # 0 (as
shown at the end of Step 1).

Decoding for the leader users. In conclusion, at the end
of Step 2, each leader (here users 1,2 and 3) uses direct
decoding to decode each of its desired sub-block, meaning that
it does not use any linear combination/multicast message that
included ‘interference’ sub-blocks. For example, user 2 uses
C{1,3,5),12) in (16), but it does not use C; 3 5y,(3} in (17) be-
cause Cyy 35}, (3} contains Wiy 3y 1357 © W1 3y, (1,57 which
is an interference to user 2.

Decoding for non-leader users. Each non-leader user (here
users 4 and 5) uses direct decoding and interference align-
ment decoding. Let us focus on user 5 demanding F. It
has been shown that by direct decoding, user 5 can recover
W{1,2y from Step 1, and also W5 33,y where {1,2} NV # ()
at the end of Step 2. Up to this point, we further need
to show Wya 3y 134y transmitted in (20) can be recovered
by user 5 by interference alignment decoding. Notice that
in (20), W1 3y, 12,4y ©Wy1 31 {2,3} is the interference to user 5,
which should be cancelled (or aligned). In addition, in (9),
Wi1,3),12,3) © Wy13},{1,2} 1S an interference to user 5. Fur-
thermore, in (11), Wiy 3y 12,4y ® W1 3),11,2) 18 an interference
of user 5. We then sum (20),(9), and (11) such that the
interferences to user 5 are aligned (cancelled), and we obtain
Wia3y,(3,4) D Wiy, 12,41 © Wiazy 1,3y © Wia3y (1,2) @
Wi2.3},11,4)- Since user 5 has decoded W3 3y 11,3y from (17),
W{2,3},{1,2} from (13), W{2,3},{1,4} from (19), W{2,3},{2,4}
from (22), it then can decode W3 3y (3,43 This shows that
non-leader users can recovered all the desired sub-blocks.

Performance: Based on the above, all users are able
to decode their desired blocks. We sent (N_l) (K_l) +

r—1 t
(':':12) (K;2> = 15 linear combinations, each of length

B/(("-1) (%)) = B/20 bits. So the load is 3/4, which
coincides with the conversed bound in Theorem 1 for s = 3.
Note that the scheme in [5] only achieves a load of 9/10.

B. General Scheme

We focus on the cases where r € {1,2,N — 1,N}, or t =
KMr/N € {1,2,K—1,K}, or each user has a distinct request.
Placement Phase: Given an integer ¢, we partition each
block Wy into (?) equal-length sub-blocks, Ws = {Ws y :
V C [K],|V| = t}. For each block Wg, each user k € [K]

caches Wy, where V C [K] and |V| = ¢, if k£ € V. Each
sub-block contains B/ ((':':11) ('f)) bits and each user caches

B ()/((5) () = M8 bits

Delivery Phase: We consider a demand vector d; for
each demanded file in d, we pick a leader user and we let
u = (u1,us,...,un,(q)) be a permutation of this leader set.
Our scheme contains min{N —r + 1, K — ¢, N.(d)} steps.

In Step j € [min{Ne(d),N —r + 1,K — t}] we satisfy the
demand of leader user u; as follows. For each set of users
J C ([K]\{u1,...,uj-1}) where |J| =t+1and u; € J,
and for each set of files B C ([N] \ {du,,...,dy,}) where
|B] =r — 1, we transmit C; 3 as defined in (7).

We then focus on one multicast message C s s transmitted
in Step j. From its construction, C's g contains only one
sub-block desired by user w; (which is W{du].}uB, T\{u;})s
while all other sub-blocks are cached by user w;; this is
so because |[B|] = r — 1 and d,; ¢ B. Furthermore, it
is proved in the extended version of this paper [11] that,
for each user in J, the sub-blocks in C;y g which it has
not cached or decoded previously, are decodable from the
transmission in Step j. In addition, Cs 5 is also useful to
users in [K]\ (7 U{dy,,...,du,_, }), whose demanded file is
in M(J) U B. For each of these users (assumed to be k'),

v sy | STV
|S|=r,BCS,dxES

is an interference, and all other sub-blocks in C s 55 are desired.
Cyz 5 is treated as noise for each user in {d,,,...,d,_, } and
for each user whose demanded file is not in N () UB. More-
over, for each leader in {u;;1,...,un,)} Whose demanded
file is in N (J)UB, C'z 5 is also treated as noise if it includes
interference(s) to this leader. Decodability is formally stated
in the following Lemma (proved in [11]).

Lemma 1 (Decodability). In an (N,K,M,r) shared-link
caching problem with correlated files, in any of the three
cases described in Theorem 2, from our proposed interference
alignment scheme, for any user k € [K], we have:

1) if k is a leader, it can decode Ws and W, v, at the
end of Step j € [min{N —r + 1,K — ¢, No(d)}] by
direct decoding, where S C [N], |S| =1, {dy,, ..., dy,; }N
S 7£ @, di € S, 81 - [N], Sl‘ =1 d € Sl, ‘and
{’U,l, ey Uj} NV, # 0;

2) if k is not a leader and the leader demanding dy, is user
uy, by direct decoding user k can decode W at the end

—#— Caching scheme in [5,Yang and Gunduz, ICC 18]
—+— Proposed caching scheme in Section IV

_ .. Proposed converse bound under the constraint of
2t uncoded cache placement in Theorem 1 1

05

M

Fig. 1: (N, K, r) = (5,20, 2) caching problem with correlated files.

of Step j1 € [min{N—r+1,K—t, N.(d), f —1}], where
SCINL S| =1 {du,, -y du; } NS #0, dy, € S, and
also decode W, v, at the end of Step jo € [min{N—r+
1,K—t,Ne(d), f}], where S; C [N], |S1] =, di € S,
and {u1,...,uj,} N V1 # 0; in addition, it can decode
the remaining sub-blocks from the remaining steps by
direct decoding and interference alignment decoding.

Performance: After all steps, by Lemma 1, each user can

recover its desired blocks. In step j € [min{N —r + 1,K —
B N—lj) K:j

t, Ne(d)}] we transmit w bits. Summing the load of
r—1 t
C(

all steps, the total load is civ D in 5).

Numerical Evaluations: In Fig. 1, for demand type Dy,
we compare the average loads achieved by our proposed
scheme and the scheme in [5] for an (N,K,r) = (5,20, 2).
Our proposed scheme outperforms the existing scheme and
meet out the converse bound in Theorem 1.

REFERENCES

[1] M. A. Maddah-Ali and U. Niesen, “Fundamental limits of caching,”
IEEE Trans. Infor. Theory, vol. 60, no. 5, pp. 2856-2867, May 2014.

[2] K. Wan, D. Tuninetti, and P. Piantanida, “On the optimality of uncoded
cache placement,” in IEEE Infor. Theory Workshop, Sep. 2016.

[3] Q. Yu, M. A. Maddah-Ali, and S. Avestimehr, “The exact rate-memory
tradeoff for caching with uncoded prefetching,” in IEEE Int. Symp. Inf.
Theory, Jun. 2017.

[4] P. Hassanzadeh, A. M. Tulino, J. Llorca, and E. Erkip, “Rate-
memory trade-off for caching and delivery of correlated sources,”
arXiv:1806.07333, Jan. 2018.

[51 Q. Yang and D. Gunduz, “Centralized coded caching of correlated
contents,” in IEEE Intern. Conf. Commun (ICC 2018), May 2018.

[6] M. Ji, A. M. Tulino, J. Llorca, and G. Caire, “Caching and coded multi-
casting: Multiple groupcast index coding,” IEEE Global Conference on
Signal and Information Processing (GlobalSIP), pp. 881-885, 2014.

[71 A. Sengupta and R. Tandon, “Improved approximation of storage-rate
tradeoff for caching with multiple demands,” IEEE Trans. Commun.,
vol. 65, no. 5, pp. 1940-1955, May. 2017.

[8] Y. Wei and S. Ulukus, “Coded caching with multiple file requests,”
in 55th Annual Allerton Conf. on Commun., Control, and Computing
(Allerton), Oct. 2017.

[9] F. Arbabjolfaei, B. Bandemer, Y.-H. Kim, E. Sasoglu, and L. Wang, “On

the capacity region for index coding,” in IEEE Int. Symp. Inf. Theory,

Jul. 2013.

K. Wan, D. Tuninetti, and P. Piantanida, “On caching with more users

than files,” in IEEE Int. Symp. Inf. Theory, Jul. 2016.

K. Wan, D. Tuninetti, M. Ji, and G. Caire, “On coded caching with

correlated files,” available at arXiv:1901.05732, Jan. 2019.

[10]

[11]

	Introduction
	System Model
	Main Results
	Novel Interference Alignment Based Scheme
	Example
	General Scheme

	References

