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Abstract:

Catalysis from single active sites is analyzed using methods developed from single
molecule kinetics. Using a stochastic Markov state description, the observable
properties of general catalytic networks of reactions are expressed using an
eigenvalue decomposition of the transition matrix for the Markov process. By the
use of a sensitivity analysis, the necessary eigenvalues and eigenvectors are related
to the energies of controlling barriers and wells located along the reaction routes. A
generalization of the energetic span theory allows the eigenvalues to be computed
from several activation energies corresponding to distinct barrier-well pairings. The
formalism is demonstrated for model problems and for a physically realistic
mechanism for an alkene hydrogenation reaction on a single atom catalyst. The
spectral analysis permits a hierarchy of timescales to identified from the single
molecule signal which correspond to specific relaxation modes in the network.

I. Introduction

Computational methods have become increasingly essential in the study of heterogeneous
catalysis. In particular, the use of density functional theory (DFT) for the potential energy surface
(PES) in concert with transition state theory (TST) for kinetic rates has made it possible to
understand the detailed chemistry of a number of important processes.!” # These theoretical tools
assist in the elucidation of the underlying atomic mechanism and can help in the design and
optimization of the catalyst itself. While the DFT modeling of modestly sized mechanisms is
tractable kinetics on perfect crystal faces, problems exhibiting disordered catalytically active sites
can require extremely burdensome numbers of calculations. As an example, consider the important
case of single atom catalysts (SAC) where a diverse range of local environments of the catalytic
atom may strongly affect its activity.’ ® For atoms anchored to disordered supports, the number of

distinct PES required to represent the mechanism can be extremely large.” ® The local environment



of the SAC not only influences the rate coefficients of the catalytic mechanism but potentially also
catalytic pathway itself.” In this work, we explore some new methods to understand and predict
how catalytic observables respond to the energetic features in complex reaction networks. This
may greatly reduce the number of required calculations required to describe a catalytic process. If
certain key reaction steps are identified, it is possible to reduce the extensive modeling to such
essential reactions. Also, if the local environment is described by a set of structural parameters, it
might be possible to restrict the DFT calculations to certain optimal parameter ranges that most

strongly contribute to observed chemistry.

The most common observables modeled in theoretical studies of catalysts are bulk
quantities such as the turnover frequency (TOF) and product selectivity which average over sites.
We have recently suggested'® that microscopic level methods inspired by single molecule kinetics
(SMK)!""1* are of use for the study of SAC. In SMK, one probes the catalytic turnover at a single
site using spatially and temporally resolved measurements of reaction products or intermediates.
These methods were first developed for enzymatic reactions in the case of Michaelis-Menten
systems E + S & ES — E + P, where S is the substrate, P is the product, and E is the catalytic
enzyme.'®> Real time measurements of turnover from a single enzyme molecule could then be
characterized by a statistical probability distribution function (PDF) of turnover times. The
turnover time, ¢, was identified by waiting times between product release steps measurable via the
“on” and “off” intervals of a photolytic species and are represented by a normalized probability
distribution f{z). The statistical properties of this distribution then provided insight into the
mechanistic and conformational kinetics of the enzymatic reaction and significant progress has
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been made in the formal treatment of these systems.!'®- 26 Chen and coworkers, and other

groups®* ¥%have taken the SMK technology into the realm of heterogeneous catalytic systems. Xu
et al.*” developed a scheme to model turnover from a single nanoparticle using a Langmuir—
Hinschelwood expression that makes use of a steady state approximation for the adsorption-
desorption kinetics. For SAC, the methods of SMK make it possible to interrogate the kinetics at
single catalyst sites and to directly investigate the role of disorder. The underlying motivation of
many SMK studies is to address the difficult inverse problem where the kinetic observation is used

to deduce the underlying “hidden” mechanism. The SMK expands the range of observables to



include statistical fluctuations in the reaction that are not apparent in the highly averaged bulk

experiments.

In a single molecule view of steady state catalysis, we consider the passage of a molecule
through the network of transient chemical states occurring between sequential product release
steps. This gives a different perspective on the kinetics than accrues from conventional bulk
kinetics. Instead of focusing on the time evolution of species concentrations and their steady state
limits, we attempt to model the waiting time between product release events occurring at a single
catalytic site which is a product of the pathway experienced by a tagged molecule moving through
the chemical network. The most efficient way of representing the kinetics employs the Markov
state picture of a stochastic process.?**%4? The species concentrations are replaced with occupancy
probabilities that evolve according to a system of first order differential equations from which we
can extract the probability distribution function f{?) of waiting times from a given catalytic site.
The waiting time PDF obtained by experiment or modeling has shown a wide variety of behaviors.
The measured f{¢) has been represented by a sum of exponentials, stretched exponentials,*! gamma
distributions,'? or even power law expressions.*> We have found that in some cases f{?) may even
show bimodal behavior.!° It is common to characterize the PDF using moments, (t™). The first
moment is the mean first passage time through the network and gives a TOF that is identical to the
bulk quantity if all sites are identical, i.e.

(1.1)
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The first two moments of f{#) are often combined into the randomness parameter, 7,

(t%) — (t)?
.

o (t)?

(1.2)

that measures the deviation of the kinetics from pure Poisson statistics (7poisson=1). The behavior
of r versus substrate concentration for various catalytic motifs has been the subject of considerable
interest, and several closely related analytical expressions have been proposed for 7([S]).!¢ 172! 43-
46 The value observed for r constrains the complexity of the model required to model the kinetics
in terms of the minimal number of intermediate states (>1/r), the number of transition states (>1/r),

or the need for branching reaction pathways (7>1).



In the present work, we explore the behavior of the SMK observables from the standpoint
of computational chemistry. Thus, we compute the free energy for stationary structures, i.e.,
barriers and wells, using quantum chemistry which then immediately yield rate coefficients from
TST. The usual mechanism improvement strategy is to identify the key controlling reaction steps
which are then calculated at a higher level to improve the performance of the model. However, it
becomes difficult to identify the controlling energetic structures when the mechanism is complex
or when disorder requires very large numbers of independent DFT calculations. Furthermore,
passage through the catalytic network must necessarily involve sequences of elementary steps, i.e.,
chemical pathways, that induce simultaneous sensitivities to distant parts of the mechanism.*’ 48
We show that a spectral decomposition of a stochastic transition matrix allows the sensitivities to
be much easier understood. The eigenvalue spectrum is found as continuous functions of the
controllable variables such as concentration, temperature, and disorder parameters. The behavior
of the f{z) and its moments versus these parameters then assume a transparent mathematical
meaning. For example, maxima and minima in r are related to avoided crossings of the
eigenvalues. The eigenvalues themselves are accurately represented in terms of the energetics
along specific pathways embedded in the chemical network. ¥ Those pathways are found by a
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local sensitivity analysis and are consistent with traditional ideas in catalysis such as the
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energetic span theory>? and degree of reaction control.™® Understanding these effects is important

in strategies to design effective catalysts.>*

I1. Theoretical Methods

A. Rate expressions

As a kinetic general framework, we imagine a SAC that can convert one or more substrate
molecules (S) into product molecules (P) through a reaction network for an isolated SAC on a
support surface. The catalytic network consists of N distinct chemical species, X;, that carry the
catalytic atom and may consist of a bare catalytic site, a catalytic site with ligands attached, or any
intermediates involving chemically altered molecules attached to the SAC. These species
interconvert via the pseudo-first-order reactions, X;(+2) — X; with rates given k; [X j] where the
concentration of any substrate or inhibitor, Z, is assumed to be nearly constant in time and is

absorbed into k; ;. The rate expressions for the reaction step j—i is given by the Eyring form,



k'-=T€ kT . 7 (21)

where Z is either 1 or a concentration of a substrate or inhibitor depending on the reaction and
AGf}O is the standard free energy barrier for the reactionX;(+Z) — X;. The free energies are

provided by quantum chemistry which are computed including entropic effects. It is important to
emphasize that just one of the Xj-species can be occupied at a given time on a given SAC. In
Michaelis-Menten kinetics> this would correspond to the conservation of catalyst, E¢=[E]+[ES].
Thus, we can convert the concentrations [X j] to “state” probabilities normalized to unity, i.e., the
probability of species X; being occupied is P; with Z?’ P; = 1. The rate coefficients, ki; are
interpreted as the transition probability per unit time between state j and state i, i.e., j - i. This is

ij

the conventional Markov state model>®

often employed for enzymatic kinetics although more
general formulations are possible.? Finally, we note that in a disordered system the free energies
and thus the rate coefficients can depend on the particular site that this being probed. We shall
assume this site dependence can be modeled using a small number of continuous structural
parameters that characterize the local environment of the SAC. These parameter dependencies are

obtained from the quantum chemistry calculations.
B. Kinetic Model

We are interested in the steady-state kinetics of a catalytic network described a network of
pseudo-first-order processes. Recapitulating the method presented in ref. 10, we compute the state
occupancy probabilities P;(?) from time-evolution equations including all sources and sinks within
the network. The state probabilities evolve by the N first-order ordinary differential equations eq.

(2.2) using the probability vector PT=(P, ... ,Px) and the N X N rate generating matrix G are

PO _ ¢ P(t) 2.2
and
_k1 kl,N
6= : -~ (2.3)
k1 —kn



The diagonal elements G;; for i=1,...,N are the negative decay probabilities per unit time of state
L,k = Z?;i k; ;. In steady state, eq. (2.2) is G - Pg; = 0 which can be solved using the constraint
YiPssi = 1" - Pgg = 1 where 1 is the N-vector of 1°s. For any initial state P(0), P(z) will approach
P, at long times assuming the rate coefficients are static. The eq. (2.2) can be written in a form
more appropriate to a single molecule experiment to obtain waiting times. We imagine an
experiment designed to reveal the waiting time ¢ corresponding to the interval between successive
product release events. Thus, a SAC releases a product at time 0, which starts the clock for the
next cycle ending in the release of another product at a time ¢. There can be one or more release
reactions in the mechanism involving different reactions and different products. We make the
important restriction that the product forming reactions are effectively irreversible corresponding
to the initial rate, i.e the product concentration is zero. The “initial Markov state” following an
observed product formation event is one of the species formed by these irreversible steps and we
call that collection of states the “active sites”, AS’s. Many problems have just a single AS, but we
will assume that m such AS in the network exists. The conversion between different AS can model
non-renewal processes since a sequence of turnovers are not IID’s, i.e., independent and identically

distributed random variables.>* 37 *® For convenience, we label the active sites i=1,...,m. All the

transition rates into the m AS’s are collected into a matrix 7, which we term the absorption matrix

that has nonzero elements only for the one way transitions into the AS,

/k1,1 - k1,1v\

TNxN = kT(')"l kTg'N (2.4)

We can also define Nx1 absorption vectors, T;, with i=1,...,m, that describe transitions into one
specific AS i viat; = (ki1 .. kin)T and which combine to form Tyyy. In most cases, the

absorption matrix will contain only a few nonzero elements.

As we discussed previously,'” the continuous time Markov chain model theory permits a
matrix 7 to be defined restricted to transitions between transient states that determine the properties
of the single molecular experiment. The NxN matrix 7 is identical to G except that the transitions

to the active sites are subtracted, i.e.,



T=G-1 (2.5)

A single molecule experiment involves measuring the distribution of waiting times between
successive product measurements. This corresponds to the passage time from an active site through
the network to any final active site which is treated as an absorbing state. It was shown!? that the

PDF f{t) can be written as

f@® =17-(-T) - exp(Tt) - P(0) (2.6)
and the moments of the PDF are given by

(t")y =n11T - (-=T)™™- P(0) (2.7)

The turnover frequency of the SAC is thus given by

1 _ 1
(&) 17 (=T)~1-P(0)

v = (2.8)
We note that the initial probability vector P(0) corresponds to the steady state distribution of AS
developed after many turnover events. It is given by the projection of Pg onto the AS and is

normalized to unity, i.e., 17 - P(0) = 1. Often P(0) is often just 1 for a single AS.
C. Analytical Expressions

A great deal has been learned by studying specific catalytic scenarios using analytical
models of how the TOF or randomness parameters respond to changes in substrate concentration
or other controllable variables. The most commonly studied catalytic motif is the linear chain
shown in Fig. 1a which involves a single pathway and a single AS. The TOF for this special case
was first deduced by Christensen® in 1953 and has been written in various forms since then. For

future convenience, we give the inverse TOF expression for a chain of length N as

1 b 1 by_z - by— by_ 1
(t>:r_+( N )+< N-2 ON-1 No2 )+

N ™-1"Tn Tn-1 "™W—2"TN-1"TN TN-2'TN-1 Tn-2

+ .- + —
Tl - Tz T TN_1 " TN T'1 - rz T T'N_l Tl - rz T1

by b, ..."by_5 by_ by b, ...-by_ b 1
+<12 N-2 N1+12 N-2 1 ) (2.9)



In eq. (2.9) we define 7; as the forward rate of reaction j and b; as the backward rate of reaction j.
We emphasize that there are no terms involving by since the final product step is assumed to be
irreversible. The substrate concentrations enter as multiples of the appropriate forward rate but not
the reverse reaction. The concentration dependence for linear cycles with any number of substrates

can be expressed analytically using eq. (2.9). The usual TOF expression for the Michaelis Menten

scheme (E + S <> ES - E + P) fits N=2 case with K, = Eatke and
ki1 k2 ky
kz - S
MM — 2.10
S+ Ky (210)

If two substrates are added sequentially,® the general form of the TOF is

yTwosub — a- 515,

= 2.11
Slsz‘l‘b'Sl‘l‘C'Sz""d ( )

where the coefficients a-d can be read off from eq. (2.9).

The randomness parameter is more complicated to express than the TOF, although it is

possible to obtain a closed form expression for linear cycles.?! For the MM case, one has

) (S+1<M)2—2('l§—i)5

- (S+KM)2+2(%)S

T'MM

<1 (2.12)

For this simple example, a fit of (v, 7z4y) as functions of S provides a complete characterization
of the full steady state kinetics. The analytical formula for the randomness parameter becomes
quite a bit more complex for longer linear cycles. However, concentration dependence for one
substrate can be shown to take the form

2
d, (di) +2d, (di> +d,
. \ds 5 (2.13)

wa i ()]

where di-ds are elaborate, but known, functions of the rate coefficients k; ; for the nearest neighbor

transitions. Unfortunately, this impressive expression often breaks down for multiple pathway
reactions involving inhibitors and co-catalysts. It has been found that always <1 for linear path

problems, regardless of the concentration of substrate or number of intermediates. If the full



catalytic cycle were a pure Poisson process, then 7=1 since (t?) = (t)?. The minimum value of r
places limits on the number of states or TS’s in the cycle which correspond to multiple exponentials
in the waiting time distribution f{z). A common case to find rni»=1/2 which corresponds to two

equivalent TS’s occurring along the reaction path.
D. Energy Picture

Our primary focus here is to relate the behavior of the single molecule observables to
quantities obtained by a computational approach to catalysis. The computed free energies along
the reaction network are inputs into the rate coefficients which then are used to model the kinetics.
For single pathway catalytic cycles, the energetic span model suggested by Amatore and Jutand®!
and improved by Kozuch and Shaik®*%* provides a useful guide to approximating the solution to
eq. (2.9). The energetic span identifies two key structures, one TS and one INT, whose free energy
difference defines a maximum energy span. To emphasize a distinction from the terminology of
Kozuch and Shaik, since we are specializing to a case when the final step is irreversible, the highest
transition state, called HTS, and the lowest intermediate, called LINT, are identified. This pair is
chosen to maximize the energy of activation, AG, = AGyrs — AGnT, Subject to the constraint
that LINT must lie before the HTS. Approximating the expression eq. (2.9) for the case when
LINT and HTS are unique, we have

Vepan ~ kLTexp [_ (AGHTSI:?GLINT) (2.14)
When there are two energetically equal HTS’s along the path, it is clear that the TOF is then Y% its
value for a single HTS. Similarly, if there are two energetically equivalent LINT’s along the path

we get 72 the TOF obtained with a single LINT.

We point out that the concentration of a substrate, co-catalyst, or inhibitor, “X”, can be
included in this picture by including the affinity in the free energy
[X]

AG = AG® — kgT - In ([X_o]> (2.15)

From eq. (2.15) we see that we can effectively “adjust” the barrier height of X-addition steps by
changing [X]. For the simple MM mechanism, e.g., altering the substrate concentration [S]

changes the free energy for the addition step E+S—>ES. Interestingly, the minimum of 7, eq. (2.12),



s

- ]) = AGYs, which is where /S] =K.
0

occurs near the point where AG2s; — kgT - In (

Besides the HTS and LINT, the other barriers and wells along the linear path do not
significantly affect the TOF except when they lie close in energy to the critical HTS or LINT. The
standard free energies are obtained using quantum chemistry, and the energy span TOF requires
only an accurate determination of two quantities, AGY¢ and AG yy rather than the 2N free energies
along the route implicit in eq. (2.9). Once the HTS and LINT are identified, higher level QM

calculations could be restricted to these structures.

Expression (2.14) will apply when a single pathway dominates the kinetics, even if the
formal kinetic networks appear to be multiple branching. However, it is possible to generalize the
energetic span idea to the case of two parallel simply coupled pathways as shown in Fig. 2a. To
describe this case, we require three fundamental energies: the “left” and “right” highest TS’s,
HTSL and HTSR, and the lowest intermediate, LINT. As the name implies, the HTSL and HTSR
are the highest barriers before two product producing reactions, and LINT is the lowest

intermediate that is bracketed by HTSL and HTSR. The approximate TOF is thus

kBT (MIN(AGHTSL' AGHTSR) - AGLINT)
Vspan,parallel = Texp - T (2.16)

E. Spectral analysis of the T-matrix

A useful way of understanding the behavior of the SMK is through the use of an eigenvalue
analysis of the T-matrix. Assuming that 7 is a diagonalizable matrix, which is generally the case,

we can write the eigenvalue equation

T-q; = Aq; (2.17)
or

T-Q=A-Q (2.18)

where @ is the NxN matrix with columns being the normalized eigenvectors of 7 while A is the
diagonal matrix consisting of the eigenvalues. By assumption, 7 possesses a full set of independent
eigenvectors and 7 is well conditioned enough so that the eigenvalues and eigenvectors can be

extracted. The real parts of A; are all negative since the system probability must tend to zero at long



times if the network is connected. The eigenvalues and eigenvectors of T represent the transient

modes of the network with absorbing boundary conditions. The eigenvectors are different from

those for the matrix G which defines steady state. The waiting time PDF, eq. (2.6), is then
FO==Y ) > 0uif BO) | et == carel  (219)
k j i K
with

=) Y Qulii} BO) (2.20)

J

where O is the inverse of Q. Equation (2.19) immediately yields

N
(t) = —Z;—" (2.21)
k=1 k

and

=

<t2>=zic

k=1

(2.22)

S

with the randomness parameter given by

2
ZZkC—k— ch—k
ro_H ( Ak) (2.23)

(m5)

If it happens that a single eigenvalue dominates the behavior, i.e., that [A1| is much closer to zero

than the remaining N-1 eigenvalues, then »—1 and the process is nearly Poisson. Under most
circumstances, it is the lowest absolute eigenvalue that would then dominate the expansion of TOF
and r In that limit, normalization of f(#) gives c;=1 which then implies that the TOF is justv =
|A1] and =1 and thus the kinetics is dominated by a single bottleneck characterized by one
eigenvalue. When more eigenvalues contribute, the coefficients must also be calculated which

reflects the distribution of initial probability over the various eigenmodes of decay.

10



The eigenmodes of T physically correspond to pure decay modes in the manifold of

transient states. Thus, we expect at long times that an initial probability distribution will approach

P(t) — const x q, - e*1t (2.24)
t>>m
2

If the contribution of the ¢; mode is subtracted off from P(z), then the ¢> becomes dominant in the
remainder and so forth. This simple analysis overlooks how the actual initial probability
distribution overlaps the eigenvectors as represented by the coefficients cx, eq. (2.20). For the SMK
simulation, P(0) will be a normalized distribution over the AS, and for many problems this
corresponds to P;(0) = &; 1. It is possible, however, that the overlap of ¢; with P(0) is extremely

small so that a higher term dominates in the expansion. For the TOF, the key quantity that identifies

the dominant term is the ratio ;—k Interestingly, for the randomness parameter » we have two
k

different quantities of importance, ;—k and ;—é It is possible that two distinct eigenvalues dominate
k j

in the <> and <#*> terms. It is seen that this case can yield very large values of » when % >
J

(C—k )2 and then that r — IR
Ak ck A

F. Sensitivity Analysis

To connect the eigenvalue value analysis of 7-matrix to the energy picture of the catalytic
cycles, it is necessary to relate the A;’s and ¢;’s to the free energies of the barriers and wells
chemical network. The explicit formula for 7T of eq. (2.5) does this but that does not provide much
insight or schemes to simplify the mechanism. Instead, we identify the key barriers and wells that

65 66

control the eigenvalues using sensitivity analysis closely related to the degree of reaction

control. Thus, we can compute numerical sensitivity indices using

aIn(IAD

where AG; are well and barrier energies. In this way we identify which barriers and wells are

controlling each eigenvalue. Consider an example where a single pathway dominates the rate, and

the dominant lowest eigenvalue is well separated from the others. In this case, the energy span

11



model applies and the sensitivity indices are only appreciable for two terms, the HTS and the

LINT, i.e.,

S1,HTS = _kB_T (2.26)
1
S1,LINT = kB_T (2.27)

and is exponentially small for all other barriers and wells. Hence, if the sensitivity coefficients are
computed numerically for a complicated mechanism via eq. (2.25), the observation of dominant
negative/positive pairs (Si,HTs, S1,LINT) suggests a reaction route that includes that pair. If the
sensitivity analysis reveals more than one contributing pair of important coefficients, then a
multiple pathway mechanism is indicated. Most importantly, however, the sensitivity analysis
points to the parts of mechanism that require the most accurate treatment and improvement. We

find that many of the higher eigenvalues can also be related to unique pairs of eigenvalues, i.e.,

~ kB;T [_ (AGbarrier,i_AGwell,i)

the analog of eqgs. (2.26) and (2.27).

] for certain other pairs of states in the network identified by

II1. Examples

To illustrate the use of the eigenvalue analysis, we consider several examples of increasing
complexity. The first is the classic linear catalytic chain with a single active site and a single
product. This example exhibits the anticipated behavior where the TOF and the randomness
parameter are dominated by the lowest eigenvalue. Furthermore, the energetic span theory is
confirmed by the sensitivity analysis which associates the highest activation energy with the lowest
eigenvalue. The second example consists of two parallel catalytic cycles coupled at a single active
site. The case chosen illustrates that the smallest absolute eigenvalue may no longer control the
TOF. Instead, the reactive flux follows the pathway of “least resistance” which can follow the
second lowest eigenvalue for certain parameter ranges. Unlike for the linear chain, the randomness
parameter for this case can exceed unity if appreciable flux is distributed over both paths. The
energetic span theory is successfully generalized by including two barriers and one well as in eq.
(2.16). Finally, we consider the case of a realistic catalytic system, based on the hydrogenation

reaction of styrene on a SAC of vanadium.®”-%’ This example shows three intertwined reaction

12



routes, three AS, two substrates, an inhibitor, and a structural disorder parameter that affects all
the barriers and wells in the system. Despite the complexity of this model, we find that the
eigenvalue analysis combined with sensitivity analysis sorts out the reaction paths controlling the

observable TOF and r.

A. Linear cycles of length N

For a conventional single linear pathway catalytic cycle, as in Fig. 1a, the behavior of the
TOF and the randomness parameter is straightforward. We form the 7-matrix for a catalytic cycle
with N sequential reaction steps as the tridiagonal expression involving the forward and backward
rates, r; and b; respectively, where by=0. As an illustration, we choose an N=8 cycle with barrier
and well free energies given in Fig. 1b and a substrate concentration set at [S]=1 M. The initial
state, in this case, is simply Py = (1,0,0,0,0,0,0,0)7 since there is a single active site. As a
continuous parameter, we vary the well energy of the 4™ intermediate in units of kzT, e=Exa , over
the range from -10 to 1 while the remainder of the network remains unaltered. The value of k3T is

set to 0.5 and the rate is expressed in units of kg7 /h.

(a) P S (b) ArE L
/‘—'ASN TS 5
t 1 PI
/(B i s o, oA, 3 T3
o J— ' Vg /TS, p— /1Sg | V1 /TS
X7 /Xa 0./Ts;  TSio0: = 4“& /TS5 0/ % . 0 ‘LXB' B\‘
\ X4/ AS 2 3 Xs Xs X,
~x " X

Fig. 1. The linear cycle with eight species and eight reactions. In (a), the cycle is depicted showing that X is the active site following
the observed product release. In (b) the energies chosen for the barriers and wells where the well energy of X4 is called & and
allowed to vary.

In the energetic picture, a jump occurs at ¢ =-4 where the controlling features of the catalytic
network abruptly change. For £ <-4, the LINT is X4 and the HTS is TS7. For £-4, the LINT is X»
and the HTS is TS4. Furthermore, we note that the activation energy is constant for £> -4, E,=9,
while for € < —4 we have E,=9-(¢+4). The eigenvalue spectrum versus ¢is shown in Fig. 2a along

with the exact value of the TOF indicated with a dashed line. The two smallest eigenvalues are

seen to undergo an avoided crossing very near € = —4. The T-matrix remains diagonalizable even
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near the avoided crossing although the two eigenvectors do become close in direction. The exact
TOF follows closely the lowest eigenvalue, |Ai|, and only exhibits visible deviations near the
avoided crossing region. At the point € = —4 the randomness parameter » minimizes as seen in

Fig. 2¢c. To improve the representation near € = —4, we can include the lowest two eigenvalues,

ly_a_¢&
V~ 2.1 2.2 (3.1)

where the coefficients are obtained from eq. (2.20); eq. (3.1) is also plotted in Fig. 2a. As seen in
the expanded view, Fig. 2b, this approximation eliminates most of the error in both v and r.

Likewise, we can expand the full PDF f(?), in terms of the eigenvalue expansion via
f(t) = —cy A eMt—c et (3.2)
which gives excellent agreement with the exact expression even at the avoided crossing.

(=) (b {c)

1 -7
10-3 — 0 1.0 —— simulated randomness
0 0 reconstructed randomness
0.9 1 1
v 107° 7
2 é’ 0.8
>
g 1077 S
o 207
k7] Foiacs ©
10794 /‘g 061
1071 ; : : : 051 : . :
-6 -4 =2 0 -45 -4.0 -35 -3. -6 -4 -2 0
£ £ €
(d) 1st eigenvalue (e) 2nd eigenvalue
21— s, 21 — s
— 15 — TS
-] 1{—x 1{— %
g |—x X
Z 9 0
2
=
2
g -11 -1
-2 - -2
-8 -6 -4 -2 0 -8 -6 -4 =2 0
£ €

Fig. 2 Numerical application of the eigenvalue method to an eight species linear cycle. In (a) the lowest three absolute eigenvalues
of T are plotted versus the well depth of X4, & The TOF from eq. (2.8) is seen follow the lowest absolute eigenvalue except near the
avoided crossing at e=-4. The two term reconstruction of the TOF eq. 3.1 is shown in (a) and, in greater detail, in (b). In (c) the
randomness parameter versus &is shown along with the two term reconstruction. In (d) and (e) the largest sensitivity indices of the
lowest two eigenvalues with respect to the barrier and well energies are plotted versus &.

The controlling structures for this simple linear pathway problem can be directly guessed
from the energetic span theory. It is useful, however, to demonstrate that they can be also recovered

from sensitivity analysis of the T-matrix. The sensitivity indices of the two lowest eigenvalues,
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, versus the parameter ¢ are shown in Fig. 2d and 2e. The index for the lowest
eigenvalue, i=1, shown in Fig. 2d, is seen to be most sensitive to is X4 and TS7 for ¢ < —4. For
€ > —4 it is most sensitive to X» and TSa. Interestingly, we see that the sensitivity of the second
lowest eigenvalue exhibits precisely the reverse of this behavior. The numerical value of's; ; for
the sensitive structures are seen to be +2, consistent which the predictions of egs. (2.26) and (2.27),
while s; ; for the other structures are small. The sensitivity analysis thus correctly identifies the
HTS and LINT and explains the change in the global rate flux pattern versus continuously
changing parameters. It also helps identify the physical meaning of these two eigenmodes of 7.
Consider a “diabatic construction” where the eigenvalues are allowed to cross at e=-4. One mode,
with a constant eigenvalue corresponding to E.=9 everywhere in ¢, describes the flux as a most
probable state X» across the bottleneck TSs. The other diabatic state crosses the first at e=-4 with
a constant slope and corresponds to flux from the most probable (variable energy) state X4 with

TS7 being the flux bottleneck.

B. Multiple Pathways: Two Coupled Parallel Cycles

A simple multipath catalytic system consists of two N=4 cycles coupled at the active site,

thus having seven species and eight reactions, i.e.

AS + Py —B B B AS+S A A A; — AS+ P,
a3 kisp 2 kizp 1 kiip ki1a 1 ki2a 2 kiza 3 kea A
A schematic of the reaction is shown in Fig. 3a and the energies used are shown in Fig. 3b. The
probability vector is labeled according to (AS, A1, A2, Az, Bi, B2, B3) with the initial state P, =
(1,0,0,0,0,0,0). The product producing steps, A3 - AS + Pg and B4 - AS + Pg, are irreversible
4a 4b

and signify the end of the event time and the beginning of a new cycle. Hence, f{?) is the distribution
of waiting times regardless of the product identity, Pa or Ps. The 7T-matrix is 77 in this case and
is easily constructed from the mechanism using TST from the well and barrier energies. The
reaction may proceed along either along with pathway A or B with a branching ratio given
explicitly by (t§ - T~1-P,) : (z§ - T~1- P,) where ta and 1s are the absorption vectors into
product states of the A and B cycles. Assigning a particular event to a given pathway is not clean-

cut since it is possible for a molecule to backtrack from one path to the other before the final
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irreversible step to an absorbing state. This is a general characteristic of multi-pathway systems.
We investigate the behavior of the system as the energy of the barrier € = AEY,, is raised
continuously from 3 to 10. From the energetic profile, shown in Fig. 3b, we expect the process to
proceed along path A for low values of €, where AE2,4, = 6 is the rate limiting barrier, and then
will switch to path B when AE2s, = ¢ is the rate limiting barrier at high & The crossing point
should be at € =7. Notice the activation energy goes from E,=8 at low ¢ to E,=7 at high & The

objective here is to illustrate how the spectral analysis of the 7-matrix reveals the pathway behavior.

(a) 2 (b) AE €
7
"\ f = 6
Pa J OBy =
f3 2 a%‘ 2 3 3;'12 "r% : "TSME
Pl = s e
fop, = T, == MA L LA

Fig. 3 The parallel two path catalytic cycle. In (a) we show a schematic diagram of the reaction mechanism where a single active
site can catalyze a reaction along two independent pathways leading to two distinct products, P4 and Ps. In (b) we show the
energetic profile chosen for the numerical study where the barrier for reaction A1 A2 is selected as the independent variable .

In Fig. 4a we show the lowest three eigenvalues of 7 as a function of the barrier height €
along with the exact TOF carried out at kg7 =0.25 using time units of 4/kgT with unit substrate
concentrations. From this correlation diagram, it is seen that the lowest pair of eigenvalues undergo
a broad avoided crossing around &=7 where the highest transition state barriers cross, i.e., for
reactions ra2 and re4. We see that A; is nearly flat while 4> shows most of the curvature associated
with the crossing. Interestingly, the exact TOF, shown with the dashed line, effectively switches
from the lowest eigenvalue (at small &) to the second lowest eigenvalue (at large €). This
eigenvalue switching behavior is very accurately reproduced by a two term expansion of the TOF,
eq. (3.2), which is also shown in Fig. 4a. It is worth noting that the coefficient for the lowest
eigenvalue, c;, approaches zero at high ¢ and one at low &, while ¢ behaves oppositely since
cr+co=1. At the same time that the coefficients c¢; and c> are undergoing switching, the branching
ratio goes from dominantly A selective to dominantly B selective, shown in Fig. 4c.

Mathematically, the explanation of the eigenvalue switching phenomena of the TOF relates back

1

to the definition, v = T-1)-1p,

. The projection of the eigenvector unto the initial state Py
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determines the coefficients c;; the c; is very small at large ¢ since its eigenvector has a vanishing
small projection onto the initial state. The eigenvectors represent pure exponential decay modes

within the manifold of transient states and the modes need not involve the AS strongly.
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Fig. 4. Numerical application of the eigenvalue method to the two parallel path model system represented in Fig. 3. In (a) the
lowest three absolute eigenvalues of T are plotted versus the barrier height TSaz, & The TOF from eq. (2.7) is seen to resemble the
lowest absolute eigenvalue below £=7 whereafter it smoothly switches to resembling the second lowest eigenvalue. A two term
reconstruction of the TOF is also shown in (a) and is very close to the exact TOF. In (b) the randomness parameter versus & is
shown along with its term reconstruction. In (c) the branching fraction into the A and B paths is plotted versus . In (d) and (e) the
largest sensitivity indices of the lowest two eigenvalues with respect to the barrier and well free energies are plotted versus . In
(f) the sensitivity indices of the full TOF are shown.

The physical basis of the eigenvalue switching is revealed by a sensitivity analysis of the
barriers and wells. In Fig. 4f, we show the sensitivity index of the full TOF for the most important
barrier and well energies. The indices are positive for well energies and negative for barrier
energies. It is seen that at low ¢the TOF is most sensitive to the well energy for Az and the barrier
energy for TSas. At high ¢, the TOF is most sensitive to the wells AS and B2 (which have equal
energy and split the //kpT sensitivity evenly between them) and to barrier TSg4. Near the switching
point, &=7, there is a narrow region of positive sensitivity to barrier TSa>. Clearly as the barrier for
TSa2 increases, the flux switches from the A path (where TSg4 is the HTS and A; is the LINT) to
the B path (where TS and B are co-LINT’s and TSg4 is the HTS). The eigenvalue analysis gives

a clearer picture. As illustrated in Fig. 4d, the smallest absolute eigenvalue |A1| shows sensitivity
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to barrier TSa4 and well Az for all & The eigenvector shows the highest probability for well Az
and its decay flux passes dominantly over the barrier TSa4. This behavior determines the TOF for
low ¢ since v=|A1| for e<7. The second smallest eigenvalue shows the greatest sensitivity to the
equivalent wells AS and B; for all ¢ values. However, the barriers sensitivity of switches from
TSa2 for low £to TSgs at for high & This second eigenmode remains mostly located in the AS and
B> wells, but flux direction changes near &=7, i.e. pathway switching. Thus, the two eigenmodes
of T are seen to reflect the most probable resting sites and the two reaction pathways available in
this system. It may not always be the case that the eigenmodes clearly separate along chemical
pathways, but it often occurs. It does seem always the case that the flux pattern within the manifold

of transient states does change abruptly at a sharp avoided crossing.

Finally, we discuss the randomness parameter r as a function of &. In Fig. 4b we see a tall
peak in r vs. ¢slightly above the point of avoided crossing. We see that » becomes greater than 1
during the avoided crossing, signifying a narrowing of the PDF f{?). The two mode expansion of

gives a mathematical explanation of this behavior. From eq. (2.23) we have

200,26 (G, G
B (/11+/12)

G+ )

In the present case, the two eigenvalues are roughly constant versus ¢ over the interesting region

(3.4)

from & =7-9 with 1, = 254,. Since the normalization of f{#) demands that ¢; + ¢, = 1, we can

conclude that » will go up to about r~ %;—2 when cl~% in rough agreement with Fig. 4b which
1 2

shows a maximum of » ~ 14. Physically, 7>/ here corresponds to multiple pathway contributions.

The TOF is well approximated in this problem is described by the generalization of the
energetic span model that was presented in eq. (2.16). That model included two barriers going to
distinct product channels, the HTSL and HTSR, along with a single LINT that is bracketed by the
HTSL and HTSR. In the present case, at low gthe HTSL is TSg4, the HTSR 1s TSa4, and the LINT
is A2 which gives an activation energy of E,=8. At high gthe HTSL is TSg4, the HTSR is TSa2,
and the co-LINT’s are AS and B which gives an activation energy of £,=7. The TOF is controlled

—AEg /KT

. KT . .
by Es, 1.e. v = 7§ e where ¢ is a symmetry number for the number of equivalent LINT’s
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or HTS’s, or equal activation energies. In contrast, the parameter 7 is controlled by two activation

energies in regions where non-Poisson statistics apply and thus is more informative.

C. Styrene Hydrogenation by a Single Atom Catalyst With Static Disorder

The analysis of realistic catalytic problems can be much more challenging than the model
systems considered above and must be investigated without preconceived notions about the
kinetics. As an illustration of the use of the eigenvalue method for an experimentally motivated
example, we consider the styrene hydrogenation kinetics on an organovanadium SAC for which a
microkinetic model was developed in a previous study.’® ’! The system consists of single V(III)
atoms anchored to an amorphous silica support, assumed to be statically disordered, in contact
with styrene (ST), H, and tetrahydrofuran (THF) in a nonpolar solution phase. The hydrogenation
reaction, styrene+H>—>ethylbenzene, is mediated by three active sites, here denoted by C, D, and
E. The THF is present in the precatalyst and thereafter plays the role of an inhibitor. The active
sites correspond to three distinct ligand arrangements around the vanadium atom and can
interconvert by reversible attachment reactions from the solution. Each active site supports a
catalytic cycle, here denoted by path 5, path 6, and path 7 for consistency with previous work!?.
As shown in the schematic of Fig. 5a, the cycles are coupled both through the interconversion of
active sites and through shared steps of the different cycles. The free energy surface for the
mechanism was obtained using DFT calculations. A representative free energy landscape for a

particular choice of the disorder parameter is shown in Fig. 5b.

The DFT calculations of the free energies for the full catalytic network were obtained
explicitly as a function of the local disorder. The present work expands on the supported
organovanadium(III) catalyst model presented in our previous studies!® "' by introducing an
additional disorder parameter beyond the V-O(siloxane) distance (7y0), for site heterogeneity. This
parameter is the Euclidean O-O bond distance (ro0) between the two O atoms on the silica surface
excluding the siloxane donor, which can be changed by increasing the O-V-O bond angle. As the
Euclidean O-O bond distance on the surface has been shown to influence spectral features of X-
ray absorption spectra for the pre-catalyst model,”* this dimension is considered in tandem with
the V-O bond length. To generate the free energy surfaces for all intermediates and transition states
shown in Fig. 5, a 5x5 grid of structures was generated using the V-O(siloxane) bond distance of

2.1,22,23, 2.4, and 2.5 A and the O-O bond distance of 3.0, 3.3, 3.6, 3.9, and 4.2 A. These
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distances were chosen to adequately represent the effect of the donor siloxane and the surface

grafting site heterogeneity, respectively. Further details are in the supporting information.

(a)
+ST AS E
18b
path s Path 7 Path 6
19b ST
20* l23¢

190

Pathway 5 Pathway 6
AE , ?‘:—'3 AE 412 ",
! 6'2‘\1 F2 ! '&1 /1 8°¢“J2 23, 23
1867180 g4/ 22% 166/ 1oc oL /250
0.0/ 19b \ \5.6/
— 21 AS- —
AS- 24
Pathway 7 Active Sites
A A 16.2 15.6
: a2 27-6f‘3:é?= 23 F ASC  ASE
ﬂ" 1 Ba ‘1 5.7 I’E “‘ ',' 251:“‘ ,I' B B
AS'C 1ga ‘5—-6" 0 0 I,’
24 —’
AS-D

Fig. 5 The catalytic mechanism for ST+H:>ethylbenzene on a SAC. In (a) we show a schematic diagram of the reaction
mechanism. There are three distinct pathways and three active sites. In (b) we show the free energy profile in kcal/mol along the
pathway assuming the energy of AS-D is 0. The relative ordering of the AS’s is shown in the final panel of (b). The disorder
parameters are set to rvo=2.3 A and r,,=3.0 A. The other details of the model are described in ref. 10 and 65 and the supporting
information.
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and [THF], and two continuous structural disorder parameters ryo and roo. Since it is impossible
to visualize the five-dimensional behavior of the full kinetics, we restrict our analysis here to the
effect of two of these variables, ryo and [THF] and the other parameters (roo, [H2],[ST]) are fixed.
The [THF] variable controls the distribution of active sites through the attachment reaction of THF

and hence only one barrier of the mechanism is affected. On the other hand, ryo affects the stability
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The catalytic chemistry is parameterized by three continuous concentrations, [ST], [Hz],
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Fig. 6 Exact simulation results for
the ST+H>Pethylbenzene
reaction on the vanadium based
SAC. The results are computed for
the special case of roo=3.0 A4,
[ST]=1 M, [H:]=5 M, and
T=600K. In (a) the TOF in s is
computed using eq. (2.7) where
the inverse matrix T is found
using the INV command from
MATLAB. In (b) the randomness
parameter is computed from the
matrix inverse. In (c) the lowest
two eigenvalues are plotted
obtained using the MATLAB
command EIG and the location of
the avoided crossing is shown
with the dashed line which is close
to the minimum trough seen in r.
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of every barrier and well in the full chemical network. In Fig. 6a we show surface representation
of the TOF versus (ryo [THF]). In Fig. 6b the randomness parameter is plotted. In Fig. 6¢ the
lowest two absolute eigenvalues of T are shown together with the smallest two absolute
eigenvalues. The DFT calculations were carried out on a uniform two-dimensional grid in the
structural parameters (7yo, roo) and evaluated at the desired coordinate values using a tensor cubic
spline interpolator. The results shown in Fig. 6 were obtained using the INV and EIG routines of
the MATLAB suite. We find that TOF obtained using the general expression eq. (2.7) lies very
close to the smallest absolute eigenvalue, v =~ |4,| everywhere except very near the points of

eigenvalue avoided crossing where |/11(rVOI[THF])| ~ |/’12(rVO,[THF])|. We also see a

pronounced ridge in v(rVOI[THF ]) that describe optimal values of the TOF. The randomness
parameter shows a pronounced trough with a 90° elbow occurring in the (ryo, THF]) plane that
matches the position of the avoided crossing seen in Fig. 6¢. The plateau region of r lies near =1

while minimum of the through lies near the value »=0.5.
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Fig. 7. Numerical application of the eigenvalue method to the vanadium SAC system represented in Fig. 5 taken as a function of
[THF] at rvo=2.34. In (a) the absolute eigenvalues of T are plotted versus the [THF] in M units. The TOF from eq. (2.8) is seen
Jollowing the lowest absolute eigenvalue for all concentrations of THF. The small deviation of the TOF from |14| is modeled
accurately by the two term expansion seen in (b). A two term of the TOF is also shown in (a) and is very close to the exact TOF. In
(c) the randomness parameter versus & is shown along with the two term reconstruction. In (c) the branching fraction into the A
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and B paths is plotted versus . In (d) and (e) the largest sensitivity indices of the lowest two eigenvalues with respect to the barrier
and well energies are plotted versus ¢. In (f) the prediction of the energetic span theory is shown with solid lines for two choices of
HTS and LINT along with the two lowest eigenvalues. The eigenvalues are well modeled by the energetic span theory.

To obtain a more detailed view of the kinetic behavior of this system, we look at several
one-dimensional cuts of the functions v(ry [THF]) and 7(ry [THF]) holding one of the
arguments fixed. In Fig. 7, we show the results as a function of [THF] at ry0=2.3 A. It should be
borne in mind that the THF concentration effectively stabilizes the active site AS-D (i.e. V-THF)
by a factor of kg7 -In[THF] and changes the free energy barrier for AS-D—>AS-C by negative a
similar factor. The energies of the other structures in the model are unaffected by variations in
[THF]. In Fig. 7a, we show the eigenvalue spectrum along with the TOF. We see that many of the
eigenvalues are nearly constant versus [THF], however, the lowest two absolute eigenvalues show
a sharp avoid crossing near [THF]=2x10"* M. One other pair of much larger eigenvalues similarly
undergoes avoided crossing at that point. The exact TOF mirrors the lowest eigenvalue except in
the vicinity of the avoided crossing. As seen in the expanded view of the crossing region, Fig. 7b,
the TOF nearly perfectly coincides with the two term reconstruction given by eq. (3.2). The
randomness parameter exhibits a minimum r~0.52 at THF value slightly above the avoid crossing
but yet completely consistent with the two eigenvalue formula eq. (3.4). Interestingly, » does not
asymptote to 1 at low [THF] but goes to about 7~0.88. This reflects the numerical proximity of the

lowest two eigenvalues and is predicted accurately by formula (3.2).

A second slice of v(ryo [THF]) and (7,0 [THF]) is made as a function of rvo at
[THF]=10"7 M which is summarized in Fig. 8. In Fig. 8a we show the eigenvalue spectrum and the
TOF versus ryo. Since the structural variable ryo affects all the barriers and wells in the mechanism,
the eigenvalues exhibit a much more intricate dependence on ryo than previously seen for [THF].
Again, however, the most important feature is an avoided crossing of the lowest two absolute
eigenvalues at o =2.23A. The exact TOF, shown with a dashed line, closely follows |A1| except
very near the avoided crossing while the two term expansion for the TOF, eq. (3.2), very closely
approximates the exact answer even there as seen in the expanded view presented in Fig. 8b. The
randomness parameter, presented in Fig. 8c, minimizes at #=0.5 at a slightly larger value of ryo
than the crossing of the eigenvalues. The two term expansion of 7, eq. (3.4), accurately represents
its behavior. The other avoided crossings seen in Fig. 8a involving higher eigenvalues in the

spectrum have little influence on the observables TOF and r. Physically, the corresponding higher
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eigenmodes describe rapid relaxation processes within the manifold of transient states that quickly

damp out as the system approaches steady state.
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Fig. 8. Numerical application of the eigenvalue method to the vanadium SAC system represented in Fig. 3 taken as a function of
rvo at [THE]=107 M. In (a) the absolute eigenvalues of T are plotted versus rvo. The TOF from eq. (2.8) is seen to follow the
lowest absolute eigenvalue for all rvo. The small deviation of the TOF from |A,| near the avoided crossing is modeled accurately
by the two term expansion seen in (b). In (c) the exact randomness parameter versus rvo is shown along with the two term
reconstruction. In (d) and (e) the largest sensitivity indices of the lowest two eigenvalues with respect to the barrier and well
energies are plotted versus rvo. In (f) the prediction of the energetic span theory is shown with solid lines for four choices of HTS
and LINT along with the three lowest eigenvalues.

Finally, we use sensitivity analysis to determine the pathways and key steps that control
the catalytic kinetics shown in Figs. 7 and 8. In Fig. 7d, we show the largest sensitivity indices of
the wells (positive) and barriers (negative) for |Ai| versus [THF] at ry0=2.3A. We see an abrupt
transition occurring at [THF]=2x10*M where the avoided crossing between |Ai| and |\2| occurs.
At low [THF], [A1] is sensitive to well 24 and barrier 25' (see Fig. 5a) corresponding to adjacent
states along pathway 7. For high [THF], [A1| becomes sensitive to the active sites AS-C and AS-D
and to the barrier 23'. We note that the pair of active sites lie in a quasi-equilibrium since the
process V+THF->V-THF is barrierless, and thus their sensitivity moves in tandem. These

sensitivity steps correspond to a non-sequential configuration along pathway 7. The sensitivity of
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|\2|, Fig. 7e, shows the reverse of this process, thus being sensitive to wells AS-C and —D and
barrier 23! below the crossing and to 24 and 25' above the crossing. We note that for very low
[THF] values the |A;| begins to interact with higher eigenvalues adding further sensitivity to other
structures. However, for the determination of the TOF and r, the two pairs are sufficient to explain

the results.

The sensitivity analysis identifies a clear LINT and HTS pair along a reaction pathway that
can be used to predict the overall TOF. Specifically, we know that energetic span theory of single
path reactions predicts k(T) =~ kTTeXp(—(AGHTS — AGyn7)/kT). In Fig. 71, we use two possible
pairings (HTS,LINT)=(25'24) and (23',AS-D) to compute the TOF from this energetic span
approximation; these are shown with the two solid lines. The exact eigenvalues are shown with
dashed lines. It is seen that the energetic span theory is a very accurate representation of |4, ]
everywhere except very close to the avoided crossing and as is |1, |. However, the energetic span
theory gives a diabatic representation of the eigenvalues allowing them to actually cross and retain
their identification with specific structures. Since the TOF ~ |4 | corresponds to adiabatic avoided
crossing the energetic span theory requires redefinition of HTS and LINT at the avoided crossing.
The analysis thus reveals that the reaction is dominated by a single reaction pathway for all [THF]
although the structures determine the activation energy change versus [THF]. Furthermore, the
randomness parameter never rises above 1 and shows a minimum at 0.5 when the two activation
barriers become equal AGA3; — AG{}?V_TC/ F= AG23; — AGEr corresponding to two TS’s acting
sequentially. Pathway 7 shown in Fig. 5a is clearly dominant in the kinetics and the [THF]
dependence reflects the change in the rate limiting process as the free energy barrier for V-

THF->V+THEF is systematically altered.

A similar sensitivity analysis has been carried out for Fig 8, the ryo coordinate. In Fig. 8d
|A1] is seen most sensitive to barrier 25' and to well 24 above the avoided crossing with |A,],
rvo>2.23A. Below the crossing, it is most sensitive to barrier 23" and to well AS-C. The second
lowest eigenvalue |A,| shows the reverse of this behavior. Interestingly, |A,| also shows a second
abrupt transition occurring near ry0=2.38A where |1,| and |A5| undergo avoided crossing. The
structures involved there are barrier 22! and well 21 with the barrier 23' and well 19a. The analysis

again suggests a single pathway dominates the TOF chemistry, pathway 7 from Fig. 5, but the
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controlling structures along with that path change as a function of ryo. We again applied the
energetic span model using the three pairs of (HTS, LINT) structures identified by the sensitivity

analysis with one additional pairing included for comparison. In Fig. 8f, the approximation |1]| =
kh—Texp(—(AGHTS — AGynr)/KT) is seen to be a good representation of the |44] , |A,| and |A5] in

the relevant ranges of 7yo. In particular, it closely matches |4, | which models the TOF. It is quite
interesting that the energetic span theory can be applied with some accuracy to higher eigenvalues

which goes beyond the initial formulation of the theory.

IV. Conclusions

We have found that the single molecule view of catalysis that emphasizes the waiting time
distribution between product formation events has yielded new insight into the general catalytic
kinetics which may be of use in the analysis of SAC. In particular, we found that an eigenvalue
decomposition of the transition matrix, 7, can explain a variety of behaviors of both the TOF and
the randomness parameter observables. The advantage of the spectral approach is that the kinetics
can be decomposed into a hierarchy of timescales. The longest times, i.e. the smallest |A|, often
yields the TOF for the network. The next longest time allows us to compute the randomness
parameter. The third longest timescale gives the skew of the PDF, f{z). The challenge to the
experimentalist is to extract trajectory data over a wide enough range to accurately extract the
timescales. Like all kinetics problems, the slowest timescale process is rate limiting and the most
important. Faster processes rapidly go quickly into steady state and are harder to observe. The

spectral decomposition allows the cleanest separation of these processes.

The relationship between the eigenvalues of T and the energetic structure of the chemical
network was revealed clearly through a conventional sensitivity analysis. The eigenvalues were

shown to be related to specific barriers and wells along the dominant reaction pathways that could
be quantified using the energetic span method, i.e [1;| = R%T . exp(—(AG,i,TST - AGLi,NT) /kBT)
which reflects rate limiting barriers and most stable points along chemical pathways. It is obvious
that such expressions develop because of the cancelation of common terms in effective rate
expressions along the chemical pathway. What is exciting about the present analysis is that the
higher eigenvalues also seem to satisfy this formula. Can an energetic span theory be developed

for the higher moments of f(t) and hence the randomness parameter itself? This question is under
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investigation. We have found that the observable quantities in the SAC experiment are generally
responsive to two eigenvalues of the transition matrix, and in turn, those eigenvalues are controlled
by a few key barriers and wells in the catalytic network. Therefore, we expect that a reasonable
mechanism improvement strategy would involve more extensive calculations of the free energies
that focus on those structures. The points at which 7 exhibits minima or maxima versus a
controllable parameter are usually associated with avoided crossings of eigenvalues. Those
avoided crossings were demonstrated to correlate with the crossing of activation energies
somewhere in the network. This behavior could signal the change in the HTS or LINT along a

single path or even the switching of the pathway itself.”®
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