
 

Computational Aspects of Single Molecule Kinetics 

for Coupled Catalytic Cycles: A Spectral Analysis  

Suming An1, Prajay Patel2, Cong Liu*2, and Rex T. Skodje*1 

1) Department of Chemistry, University of Colorado, Boulder, CO 80309 

2) Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, 

IL 60639 

Abstract:  
Catalysis from single active sites is analyzed using methods developed from single 

molecule kinetics. Using a stochastic Markov state description, the observable 

properties of general catalytic networks of reactions are expressed using an 

eigenvalue decomposition of the transition matrix for the Markov process. By the 

use of a sensitivity analysis, the necessary eigenvalues and eigenvectors are related 

to the energies of controlling barriers and wells located along the reaction routes. A 

generalization of the energetic span theory allows the eigenvalues to be computed 

from several activation energies corresponding to distinct barrier-well pairings. The 

formalism is demonstrated for model problems and for a physically realistic 

mechanism for an alkene hydrogenation reaction on a single atom catalyst. The 

spectral analysis permits a hierarchy of timescales to identified from the single 

molecule signal which correspond to specific relaxation modes in the network.  

 

I. Introduction 

Computational methods have become increasingly essential in the study of heterogeneous 

catalysis. In particular, the use of density functional theory (DFT) for the potential energy surface 

(PES) in concert with transition state theory (TST) for kinetic rates has made it possible to 

understand the detailed chemistry of a number of important processes.1- 4 These theoretical tools 

assist in the elucidation of the underlying atomic mechanism and can help in the design and 

optimization of the catalyst itself. While the DFT modeling of modestly sized mechanisms is 

tractable kinetics on perfect crystal faces, problems exhibiting disordered catalytically active sites 

can require extremely burdensome numbers of calculations. As an example, consider the important 

case of single atom catalysts (SAC) where a diverse range of local environments of the catalytic 

atom may strongly affect its activity.5 6 For atoms anchored to disordered supports, the number of 

distinct PES required to represent the mechanism can be extremely large.7 8 The local environment 
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of the SAC not only influences the rate coefficients of the catalytic mechanism but potentially also 

catalytic pathway itself.9 In this work, we explore some new methods to understand and predict 

how catalytic observables respond to the energetic features in complex reaction networks. This 

may greatly reduce the number of required calculations required to describe a catalytic process. If 

certain key reaction steps are identified, it is possible to reduce the extensive modeling to such 

essential reactions. Also, if the local environment is described by a set of structural parameters, it 

might be possible to restrict the DFT calculations to certain optimal parameter ranges that most 

strongly contribute to observed chemistry.  

The most common observables modeled in theoretical studies of catalysts are bulk 

quantities such as the turnover frequency (TOF) and product selectivity which average over sites. 

We have recently suggested10 that microscopic level methods inspired by single molecule kinetics 

(SMK)11-14 are of use for the study of SAC. In SMK, one probes the catalytic turnover at a single 

site using spatially and temporally resolved measurements of reaction products or intermediates. 

These methods were first developed for enzymatic reactions in the case of Michaelis-Menten 

systems 𝐸 + 𝑆 ↔ 𝐸𝑆 → 𝐸 + 𝑃, where S is the substrate, P is the product, and E is the catalytic 

enzyme.15 Real time measurements of turnover from a single enzyme molecule could then be 

characterized by a statistical probability distribution function (PDF) of turnover times. The 

turnover time, t, was identified by waiting times between product release steps measurable via the 

“on” and “off” intervals of a photolytic species and are represented by a normalized probability 

distribution f(t). The statistical properties of this distribution then provided insight into the 

mechanistic and conformational kinetics of the enzymatic reaction and significant progress has 

been made in the formal treatment of these systems.16- 26 Chen and coworkers,27- 32and other 

groups33- 36have taken the SMK technology into the realm of heterogeneous catalytic systems. Xu 

et al.37 developed a scheme to model turnover from a single nanoparticle using a Langmuir–

Hinschelwood expression that makes use of a steady state approximation for the adsorption-

desorption kinetics. For SAC, the methods of SMK make it possible to interrogate the kinetics at 

single catalyst sites and to directly investigate the role of disorder. The underlying motivation of 

many SMK studies is to address the difficult inverse problem where the kinetic observation is used 

to deduce the underlying “hidden” mechanism. The SMK expands the range of observables to 
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include statistical fluctuations in the reaction that are not apparent in the highly averaged bulk 

experiments. 

 In a single molecule view of steady state catalysis, we consider the passage of a molecule 

through the network of transient chemical states occurring between sequential product release 

steps. This gives a different perspective on the kinetics than accrues from conventional bulk 

kinetics. Instead of focusing on the time evolution of species concentrations and their steady state 

limits, we attempt to model the waiting time between product release events occurring at a single 

catalytic site which is a product of the pathway experienced by a tagged molecule moving through 

the chemical network. The most efficient way of representing the kinetics employs the Markov 

state picture of a stochastic process.25,38-40 The species concentrations are replaced with occupancy 

probabilities that evolve according to a system of first order differential equations from which we 

can extract the probability distribution function f(t) of waiting times from a given catalytic site. 

The waiting time PDF obtained by experiment or modeling has shown a wide variety of behaviors. 

The measured f(t) has been represented by a sum of exponentials, stretched exponentials,41 gamma 

distributions,19 or even power law expressions.42 We have found that in some cases f(t) may even 

show bimodal behavior.10 It is common to characterize the PDF using moments, 〈𝑡𝑛〉. The first 

moment is the mean first passage time through the network and gives a TOF that is identical to the 

bulk quantity if all sites are identical, i.e. 

𝜈 =
1

〈𝑡〉
                             (1.1)  

The first two moments of f(t) are often combined into the randomness parameter, r,  

𝑟 =
〈𝑡2〉 − 〈𝑡〉2

〈𝑡〉2
                                  (1.2)  

that measures the deviation of the kinetics from pure Poisson statistics (rpoisson=1). The behavior 

of r versus substrate concentration for various catalytic motifs has been the subject of considerable 

interest, and several closely related analytical expressions have been proposed for r([S]).16 17 21 43-

46 The value observed for r constrains the complexity of the model required to model the kinetics 

in terms of the minimal number of intermediate states (>1/r), the number of transition states (>1/r), 

or the need for branching reaction pathways (r>1). 
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In the present work, we explore the behavior of the SMK observables from the standpoint 

of computational chemistry. Thus, we compute the free energy for stationary structures, i.e., 

barriers and wells, using quantum chemistry which then immediately yield rate coefficients from 

TST. The usual mechanism improvement strategy is to identify the key controlling reaction steps 

which are then calculated at a higher level to improve the performance of the model. However, it 

becomes difficult to identify the controlling energetic structures when the mechanism is complex 

or when disorder requires very large numbers of independent DFT calculations. Furthermore, 

passage through the catalytic network must necessarily involve sequences of elementary steps, i.e., 

chemical pathways, that induce simultaneous sensitivities to distant parts of the mechanism.47 48  

We show that a spectral decomposition of a stochastic transition matrix allows the sensitivities to 

be much easier understood. The eigenvalue spectrum is found as continuous functions of the 

controllable variables such as concentration, temperature, and disorder parameters. The behavior 

of the f(t) and its moments versus these parameters then assume a transparent mathematical 

meaning. For example, maxima and minima in r are related to avoided crossings of the 

eigenvalues. The eigenvalues themselves are accurately represented in terms of the energetics 

along specific pathways embedded in the chemical network. 49 Those pathways are found by a 

local sensitivity analysis50 51 and are consistent with traditional ideas in catalysis such as the 

energetic span theory52 and degree of reaction control.53  Understanding these effects is important 

in strategies to design effective catalysts.54 

II. Theoretical Methods 

A. Rate expressions 

As a kinetic general framework, we imagine a SAC that can convert one or more substrate 

molecules (S) into product molecules (P) through a reaction network for an isolated SAC on a 

support surface. The catalytic network consists of N distinct chemical species, 𝑋𝑖, that carry the 

catalytic atom and may consist of a bare catalytic site, a catalytic site with ligands attached, or any 

intermediates involving chemically altered molecules attached to the SAC. These species 

interconvert via the pseudo-first-order reactions, 𝑋𝑗(+𝑍) → 𝑋𝑖 with rates given 𝑘𝑖,𝑗[𝑋𝑗] where the 

concentration of any substrate or inhibitor, Z, is assumed to be nearly constant in time and is 

absorbed into 𝑘𝑖,𝑗. The rate expressions for the reaction step j→i is given by the Eyring form, 
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𝑘𝑖,𝑗 =
𝑘𝐵𝑇

ℎ
𝑒
−
∆𝐺𝑖,𝑗

‡,0

𝑘𝐵𝑇 ∙ 𝑍                                    (2.1)  

where Z is either 1 or a concentration of a substrate or inhibitor depending on the reaction and 

∆𝐺𝑖,𝑗
‡,0

  is the standard free energy barrier for the reaction𝑋𝑗(+𝑍) → 𝑋𝑖.  The free energies are 

provided by quantum chemistry which are computed including entropic effects. It is important to 

emphasize that just one of the Xi-species can be occupied at a given time on a given SAC. In 

Michaelis-Menten kinetics55 this would correspond to the conservation of catalyst, E0=[E]+[ES]. 

Thus, we can convert the concentrations [𝑋𝑗] to “state” probabilities normalized to unity, i.e., the 

probability of species 𝑋𝑖  being occupied is 𝑃𝑗  with ∑ 𝑃𝑗 = 1𝑁
𝑗  . The rate coefficients, ki,j are 

interpreted as the transition probability per unit time between state j and state i, i.e., 𝑗
𝑘𝑖,𝑗
→ 𝑖. This is 

the conventional Markov state model56  often employed for enzymatic kinetics although more 

general formulations are possible.23 Finally, we note that in a disordered system the free energies 

and thus the rate coefficients can depend on the particular site that this being probed. We shall 

assume this site dependence can be modeled using a small number of continuous structural 

parameters that characterize the local environment of the SAC. These parameter dependencies are 

obtained from the quantum chemistry calculations. 

B. Kinetic Model 

We are interested in the steady-state kinetics of a catalytic network described a network of 

pseudo-first-order processes. Recapitulating the method presented in ref. 10, we compute the state 

occupancy probabilities Pi(t) from time-evolution equations including all sources and sinks within 

the network. The state probabilities evolve by the N first-order ordinary differential equations eq. 

(2.2) using the probability vector PT=(P1, … ,PN) and the 𝑁 × 𝑁 rate generating matrix G are 

𝑑𝑷(𝑡)

𝑑𝑡
= 𝑮 ∙ 𝑷(𝑡)                                                    (2.2)  

and  

𝑮 = (

−𝑘1 … 𝑘1,𝑁
⋮ ⋱ ⋮

𝑘𝑁,1 … −𝑘𝑁

)                                                   (2.3)  
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The diagonal elements Gi,i for i=1,…,N are the negative decay probabilities per unit time of state 

i, 𝑘𝑖 = ∑ 𝑘𝑗,𝑖
𝑁
𝑗≠𝑖 . In steady state, eq. (2.2) is 𝑮 ∙ 𝑷𝒔𝒔 = 0 which can be solved using the constraint 

∑ 𝑃𝑠𝑠,𝑖𝑖 = 𝟏𝑇 ∙ 𝑷𝒔𝒔 = 1 where 1 is the N-vector of 1’s. For any initial state P(0), P(t) will approach 

Pss at long times assuming the rate coefficients are static. The eq. (2.2) can be written in a form 

more appropriate to a single molecule experiment to obtain waiting times. We imagine an 

experiment designed to reveal the waiting time t corresponding to the interval between successive 

product release events. Thus, a SAC releases a product at time 0, which starts the clock for the 

next cycle ending in the release of another product at a time t. There can be one or more release 

reactions in the mechanism involving different reactions and different products. We make the 

important restriction that the product forming reactions are effectively irreversible corresponding 

to the initial rate, i.e the product concentration is zero. The “initial Markov state” following an 

observed product formation event is one of the species formed by these irreversible steps and we 

call that collection of states the “active sites”, AS’s. Many problems have just a single AS, but we 

will assume that m such AS in the network exists. The conversion between different AS can model 

non-renewal processes since a sequence of turnovers are not IID’s, i.e., independent and identically 

distributed random variables.23 57 58  For convenience, we label the active sites i=1,…,m. All the 

transition rates into the m AS’s are collected into a matrix , which we term the absorption matrix 

that has nonzero elements only for the one way transitions into the AS, 

𝝉𝑵×𝑵 =

(

 
 
 

𝑘1,1
⋮

𝑘𝑚,1

…
⋱
…

𝑘1,𝑁
⋮

𝑘𝑚,𝑁

0
⋮
0

…
⋱
…

0
⋮
0 )

 
 
 
                          (2.4)   

We can also define N×1 absorption vectors, 𝝉𝑖, with i=1,…,m, that describe transitions into one 

specific AS i via 𝝉𝒊 = (𝑘𝑖,1 … 𝑘𝑖,𝑁)𝑇  and which combine to form 𝝉𝑵×𝑵.   In most cases, the 

absorption matrix will contain only a few nonzero elements. 

As we discussed previously,10 the continuous time Markov chain model theory permits a 

matrix T to be defined restricted to transitions between transient states that determine the properties 

of the single molecular experiment. The N×N matrix T is identical to G except that the transitions 

to the active sites are subtracted, i.e., 
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𝑻 = 𝑮 − 𝝉                                                (2.5)  

A single molecule experiment involves measuring the distribution of waiting times between 

successive product measurements. This corresponds to the passage time from an active site through 

the network to any final active site which is treated as an absorbing state. It was shown10 that the 

PDF f(t) can be written as 

 

𝑓(𝑡) = 𝟏𝑇 ∙ (−𝑻) ∙ exp(𝑻𝑡) ∙ 𝑷(0)                                         (2.6)  

and the moments of the PDF are given by 

〈𝑡𝑛〉 = 𝑛! 𝟏𝑇 ∙ (−𝑻)−𝑛 ∙ 𝑷(0)                                           (2.7)  

The turnover frequency of the SAC is thus given by 

𝜈 =
1

〈𝑡〉
=

1

𝟏𝑇 ∙ (−𝑻)−1 ∙ 𝑷(0)
                                             (2.8)  

We note that the initial probability vector P(0) corresponds to the steady state distribution of AS 

developed after many turnover events. It is given by the projection of Pss onto the AS and is 

normalized to unity, i.e., 𝟏𝑇 ∙ 𝑷(0) = 1.  Often P(0) is often just 1 for a single AS. 

C. Analytical Expressions 

A great deal has been learned by studying specific catalytic scenarios using analytical 

models of how the TOF or randomness parameters respond to changes in substrate concentration 

or other controllable variables. The most commonly studied catalytic motif is the linear chain 

shown in Fig. 1a which involves a single pathway and a single AS. The TOF for this special case 

was first deduced by Christensen59 in 1953 and has been written in various forms since then. For 

future convenience, we give the inverse TOF expression for a chain of length N as 

〈𝑡〉 =
1

𝑟𝑁
+ (

𝑏𝑁
𝑟𝑁−1 ∙ 𝑟𝑁

+
1

𝑟𝑁−1
) + (

𝑏𝑁−2 ∙ 𝑏𝑁−1
𝑟𝑁−2 ∙ 𝑟𝑁−1 ∙ 𝑟𝑁

+
𝑏𝑁−2

𝑟𝑁−2 ∙ 𝑟𝑁−1
+

1

𝑟𝑁−2
) + ⋯ 

+(
𝑏1 ∙ 𝑏2 ∙ … ∙ 𝑏𝑁−2 ∙ 𝑏𝑁−1
𝑟1 ∙ 𝑟2 ∙ … ∙ 𝑟𝑁−1 ∙ 𝑟𝑁

+
𝑏1 ∙ 𝑏2 ∙ … ∙ 𝑏𝑁−2
𝑟1 ∙ 𝑟2 ∙ … ∙ 𝑟𝑁−1

+⋯
𝑏1

𝑟1 ∙ 𝑟2
+
1

𝑟1
)             (2.9)  
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In eq. (2.9) we define rj as the forward rate of reaction j and bj as the backward rate of reaction j. 

We emphasize that there are no terms involving bN since the final product step is assumed to be 

irreversible. The substrate concentrations enter as multiples of the appropriate forward rate but not 

the reverse reaction. The concentration dependence for linear cycles with any number of substrates 

can be expressed analytically using eq. (2.9). The usual TOF expression for the Michaelis Menten 

scheme (𝐸 + 𝑆
𝑘±1
↔ 𝐸𝑆

𝑘2
→𝐸 + 𝑃 ) fits N=2 case with 𝐾𝑀 =

𝑘−1+𝑘2

𝑘1
 and 

𝜈𝑀𝑀 =
𝑘2 ∙ 𝑆

𝑆 + 𝐾𝑀
                                 (2.10)  

If two substrates are added sequentially,60 the general form of the TOF is 

𝜈𝑇𝑤𝑜𝑆𝑢𝑏 =
𝑎 ∙ 𝑆1𝑆2

𝑆1𝑆2 + 𝑏 ∙ 𝑆1 + 𝑐 ∙ 𝑆2 + 𝑑
                                     (2.11)  

where the coefficients a-d can be read off from eq. (2.9).  

The randomness parameter is more complicated to express than the TOF, although it is 

possible to obtain a closed form expression for linear cycles.21 For the MM case, one has 

𝑟𝑀𝑀 =
(𝑆 + 𝐾𝑀)

2 − 2(
𝑘2
𝑘1
) 𝑆

(𝑆 + 𝐾𝑀)2 + 2(
𝑘2
𝑘1
) 𝑆

≤ 1                                              (2.12)  

 For this simple example, a fit of (𝜈, 𝑟𝑅𝐴𝑁) as functions of S provides a complete characterization 

of the full steady state kinetics. The analytical formula for the randomness parameter becomes 

quite a bit more complex for longer linear cycles. However, concentration dependence for one 

substrate can be shown to take the form 

𝑟 =
𝑑1 (

𝑆
𝑑5
)
2

+ 2𝑑2 (
𝑆
𝑑5
) + 𝑑3

𝑑1𝑑3 [1 + (
𝑆
𝑑5
)]

2                                         (2.13)  

where d1-d5 are elaborate, but known, functions of the rate coefficients 𝑘𝑖,𝑗 for the nearest neighbor 

transitions. Unfortunately, this impressive expression often breaks down for multiple pathway 

reactions involving inhibitors and co-catalysts. It has been found that always r≤1 for linear path 

problems, regardless of the concentration of substrate or number of intermediates. If the full 
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catalytic cycle were a pure Poisson process, then r=1 since 〈𝑡2〉 = 〈𝑡〉2. The minimum value of r 

places limits on the number of states or TS’s in the cycle which correspond to multiple exponentials 

in the waiting time distribution f(t). A common case to find rmin=1/2 which corresponds to two 

equivalent TS’s occurring along the reaction path. 

D. Energy Picture 

Our primary focus here is to relate the behavior of the single molecule observables to 

quantities obtained by a computational approach to catalysis. The computed free energies along 

the reaction network are inputs into the rate coefficients which then are used to model the kinetics. 

For single pathway catalytic cycles, the energetic span model suggested by Amatore and Jutand61 

and improved by Kozuch and Shaik62-64 provides a useful guide to approximating the solution to 

eq. (2.9). The energetic span identifies two key structures, one TS and one INT, whose free energy 

difference defines a maximum energy span. To emphasize a distinction from the terminology of 

Kozuch and Shaik, since we are specializing to a case when the final step is irreversible, the highest 

transition state, called HTS, and the lowest intermediate, called LINT, are identified. This pair is 

chosen to maximize the energy of activation, ∆𝐺𝑎 = ∆𝐺𝐻𝑇𝑆 − ∆𝐺𝐿𝐼𝑁𝑇, subject to the constraint 

that LINT must lie before the HTS. Approximating the expression eq. (2.9) for the case when 

LINT and HTS are unique, we have 

𝜈𝑠𝑝𝑎𝑛 ≈
𝑘𝐵𝑇

ℎ
𝑒𝑥𝑝 [−

(∆𝐺𝐻𝑇𝑆−∆𝐺𝐿𝐼𝑁𝑇)

𝑘𝑇
]                                   (2.14)

When there are two energetically equal HTS’s along the path, it is clear that the TOF is then ½ its 

value for a single HTS. Similarly, if there are two energetically equivalent LINT’s along the path 

we get ½ the TOF obtained with a single LINT.  

We point out that the concentration of a substrate, co-catalyst, or inhibitor, “X”, can be 

included in this picture by including the affinity in the free energy 

∆𝐺 = ∆𝐺0 − 𝑘𝐵𝑇 ∙ 𝑙𝑛 (
[𝑋]

[𝑋0]
)                                        (2.15)  

From eq. (2.15) we see that we can effectively “adjust” the barrier height of X-addition steps by 

changing [X]. For the simple MM mechanism, e.g., altering the substrate concentration [S] 

changes the free energy for the addition step E+SES. Interestingly, the minimum of r, eq. (2.12), 



9 

occurs near the point where ∆𝐺𝑇𝑆1
0 − 𝑘𝐵𝑇 ∙ 𝑙𝑛 (

[𝑆]

[𝑆0]
) = ∆𝐺𝑇𝑆2

0  which is where [S]=KM. 

Besides the HTS and LINT, the other barriers and wells along the linear path do not 

significantly affect the TOF except when they lie close in energy to the critical HTS or LINT. The 

standard free energies are obtained using quantum chemistry, and the energy span TOF requires 

only an accurate determination of two quantities, ∆𝐺𝑇𝑆
0  and ∆𝐺𝐼𝑁𝑇

0  rather than the 2N free energies 

along the route implicit in eq. (2.9). Once the HTS and LINT are identified, higher level QM 

calculations could be restricted to these structures. 

Expression (2.14) will apply when a single pathway dominates the kinetics, even if the 

formal kinetic networks appear to be multiple branching. However, it is possible to generalize the 

energetic span idea to the case of two parallel simply coupled pathways as shown in Fig. 2a. To 

describe this case, we require three fundamental energies: the “left” and “right” highest TS’s, 

HTSL and HTSR, and the lowest intermediate, LINT. As the name implies, the HTSL and HTSR 

are the highest barriers before two product producing reactions, and LINT is the lowest 

intermediate that is bracketed by HTSL and HTSR. The approximate TOF is thus 

𝜈𝑠𝑝𝑎𝑛,𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙 ≈
𝑘𝐵𝑇

ℎ
𝑒𝑥𝑝 [−

(𝑀𝐼𝑁(∆𝐺𝐻𝑇𝑆𝐿, ∆𝐺𝐻𝑇𝑆𝑅) − ∆𝐺𝐿𝐼𝑁𝑇)

𝑘𝑇
]                (2.16)  

E. Spectral analysis of the T-matrix 

A useful way of understanding the behavior of the SMK is through the use of an eigenvalue 

analysis of the T-matrix. Assuming that T is a diagonalizable matrix, which is generally the case, 

we can write the eigenvalue equation 

𝑻 ∙ 𝒒𝑖 = 𝜆𝑖𝒒𝑖                                           (2.17)  

or 

𝑻 ∙ 𝑸 = 𝚲 ∙ 𝑸                                          (2.18)  

where Q is the N×N matrix with columns being the normalized eigenvectors of T while  is the 

diagonal matrix consisting of the eigenvalues. By assumption, T possesses a full set of independent 

eigenvectors and T is well conditioned enough so that the eigenvalues and eigenvectors can be 

extracted. The real parts of i are all negative since the system probability must tend to zero at long 
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times if the network is connected. The eigenvalues and eigenvectors of T represent the transient 

modes of the network with absorbing boundary conditions. The eigenvectors are different from 

those for the matrix G which defines steady state. The waiting time PDF, eq. (2.6), is then 

𝑓(𝑡) = −∑(∑∑𝑄𝑖𝑘𝑄𝑘𝑗
−1

𝑖𝑗

𝑃𝑗(0))𝜆𝑘𝑒
𝜆𝑘𝑡

𝑘

= −∑𝑐𝑘𝜆𝑘𝑒
𝜆𝑘𝑡

𝑘

           (2.19)  

with  

𝑐𝑘 =∑∑𝑄𝑖𝑘𝑄𝑘𝑗
−1

𝑖𝑗

𝑃𝑗(0)                                                             (2.20)  

where Q-1 is the inverse of Q. Equation (2.19) immediately yields 

〈𝑡〉 = −∑
𝑐𝑘
𝜆𝑘

𝑁

𝑘=1

                                                  (2.21)  

and  

〈𝑡2〉 = 2∑
𝑐𝑘

𝜆𝑘
2

𝑁

𝑘=1

                                            (2.22)  

with the randomness parameter given by 

𝑟 =

2∑
𝑐𝑘
𝜆𝑘
2𝑘 − (∑

𝑐𝑘
𝜆𝑘

𝑘 )
2

(∑
𝑐𝑘
𝜆𝑘

𝑘 )
2                                 (2.23)  

If it happens that a single eigenvalue dominates the behavior, i.e., that |1| is much closer to zero 

than the remaining N-1 eigenvalues, then r→1 and the process is nearly Poisson. Under most 

circumstances, it is the lowest absolute eigenvalue that would then dominate the expansion of TOF 

and r. In that limit, normalization of f(t) gives c1=1 which then implies that the TOF is just 𝜈 =

|𝜆1|  and r=1 and thus the kinetics is dominated by a single bottleneck characterized by one 

eigenvalue. When more eigenvalues contribute, the coefficients must also be calculated which 

reflects the distribution of initial probability over the various eigenmodes of decay. 
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The eigenmodes of T physically correspond to pure decay modes in the manifold of 

transient states. Thus, we expect at long times that an initial probability distribution will approach  

𝑷(𝑡)
𝑡≫

1

|𝜆2 |

→    𝑐𝑜𝑛𝑠𝑡 × 𝒒1 ∙ 𝑒
𝜆1𝑡                                     (2.24)

 

If the contribution of the q1 mode is subtracted off from P(t), then the q2 becomes dominant in the 

remainder and so forth. This simple analysis overlooks how the actual initial probability 

distribution overlaps the eigenvectors as represented by the coefficients ck, eq. (2.20). For the SMK 

simulation, P(0) will be a normalized distribution over the AS, and for many problems this 

corresponds to 𝑃𝑖(0) = 𝛿𝑖,1. It is possible, however, that the overlap of q1 with P(0) is extremely 

small so that a higher term dominates in the expansion. For the TOF, the key quantity that identifies 

the dominant term is the ratio 
𝑐𝑘

𝜆𝑘
 . Interestingly, for the randomness parameter r we have two 

different quantities of importance, 
𝑐𝑘

𝜆𝑘
 and 

𝑐𝑗

𝜆𝑗
2. It is possible that two distinct eigenvalues dominate 

in the <t> and <t2> terms. It is seen that this case can yield very large values of r when 
𝑐𝑗

𝜆𝑗
2 ≫

(
𝑐𝑘

𝜆𝑘
 )
2

 and then that 𝑟 →
𝑐𝑗

𝑐𝑘
2 ∙

𝜆𝑘
2

𝜆𝑗
2 − 1. 

F. Sensitivity Analysis 

To connect the eigenvalue value analysis of T-matrix to the energy picture of the catalytic 

cycles, it is necessary to relate the i’s and qi’s to the free energies of the barriers and wells 

chemical network. The explicit formula for T of eq. (2.5) does this but that does not provide much 

insight or schemes to simplify the mechanism. Instead, we identify the key barriers and wells that 

control the eigenvalues using sensitivity analysis65 66  closely related to the degree of reaction 

control. Thus, we can compute numerical sensitivity indices using 

𝑠𝑖,𝑗 =
𝜕 ln(|𝜆𝑖|)

𝜕 ΔG𝑗
                                      (2.25)  

where ΔG𝑗  are well and barrier energies. In this way we identify which barriers and wells are 

controlling each eigenvalue. Consider an example where a single pathway dominates the rate, and 

the dominant lowest eigenvalue is well separated from the others. In this case, the energy span 
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model applies and the sensitivity indices are only appreciable for two terms, the HTS and the 

LINT, i.e., 

𝑠1,𝐻𝑇𝑆 = −
1

𝑘𝐵𝑇
                                         (2.26)  

𝑠1,𝐿𝐼𝑁𝑇 =
1

𝑘𝐵𝑇
                                         (2.27)  

and is exponentially small for all other barriers and wells. Hence, if the sensitivity coefficients are 

computed numerically for a complicated mechanism via eq. (2.25), the observation of dominant 

negative/positive pairs (s1,HTS, s1,LINT) suggests a reaction route that includes that pair. If the 

sensitivity analysis reveals more than one contributing pair of important coefficients, then a 

multiple pathway mechanism is indicated. Most importantly, however, the sensitivity analysis 

points to the parts of mechanism that require the most accurate treatment and improvement. We 

find that many of the higher eigenvalues can also be related to unique pairs of eigenvalues, i.e., 

|𝜆𝑖| ≈
𝑘𝐵𝑇

ℎ
𝑒𝑥𝑝 [−

(∆𝐺𝑏𝑎𝑟𝑟𝑖𝑒𝑟,𝑖−∆𝐺𝑤𝑒𝑙𝑙,𝑖)

𝑘𝐵𝑇
] for certain other pairs of states in the network identified by 

the analog of eqs. (2.26) and (2.27). 

III. Examples 

To illustrate the use of the eigenvalue analysis, we consider several examples of increasing 

complexity. The first is the classic linear catalytic chain with a single active site and a single 

product. This example exhibits the anticipated behavior where the TOF and the randomness 

parameter are dominated by the lowest eigenvalue. Furthermore, the energetic span theory is 

confirmed by the sensitivity analysis which associates the highest activation energy with the lowest 

eigenvalue. The second example consists of two parallel catalytic cycles coupled at a single active 

site. The case chosen illustrates that the smallest absolute eigenvalue may no longer control the 

TOF. Instead, the reactive flux follows the pathway of “least resistance” which can follow the 

second lowest eigenvalue for certain parameter ranges. Unlike for the linear chain, the randomness 

parameter for this case can exceed unity if appreciable flux is distributed over both paths. The 

energetic span theory is successfully generalized by including two barriers and one well as in eq. 

(2.16). Finally, we consider the case of a realistic catalytic system, based on the hydrogenation 

reaction of styrene on a SAC of vanadium.67-69 This example shows three intertwined reaction 
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routes, three AS, two substrates, an inhibitor, and a structural disorder parameter that affects all 

the barriers and wells in the system. Despite the complexity of this model, we find that the 

eigenvalue analysis combined with sensitivity analysis sorts out the reaction paths controlling the 

observable TOF and r. 

A. Linear cycles of length N 

For a conventional single linear pathway catalytic cycle, as in Fig. 1a, the behavior of the 

TOF and the randomness parameter is straightforward. We form the T-matrix for a catalytic cycle 

with N sequential reaction steps as the tridiagonal expression involving the forward and backward 

rates, rj and bj respectively, where bN=0. As an illustration, we choose an N=8 cycle with barrier 

and well free energies given in Fig. 1b and a substrate concentration set at [S]=1 M. The initial 

state, in this case, is simply 𝑷𝟎 = (1,0,0,0,0,0,0,0)𝑇  since there is a single active site. As a 

continuous parameter, we vary the well energy of the 4th intermediate in units of kBT, =EX4 over 

the range from -10 to 1 while the remainder of the network remains unaltered. The value of kBT is 

set to 0.5 and the rate is expressed in units of kBT /h.  

 

Fig. 1. The linear cycle with eight species and eight reactions. In (a), the cycle is depicted showing that X1 is the active site following 

the observed product release. In (b) the energies chosen for the barriers and wells where the well energy of X4 is called  and 

allowed to vary. 

 In the energetic picture, a jump occurs at  =-4 where the controlling features of the catalytic 

network abruptly change. For  <-4, the LINT is X4 and the HTS is TS7. For >-4, the LINT is X2 

and the HTS is TS4. Furthermore, we note that the activation energy is constant for > -4, Ea=9, 

while for 𝜖 < −4 we have Ea=9-(+4). The eigenvalue spectrum versus  is shown in Fig. 2a along 

with the exact value of the TOF indicated with a dashed line. The two smallest eigenvalues are 

seen to undergo an avoided crossing very near 𝜖 = −4. The T-matrix remains diagonalizable even 
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near the avoided crossing although the two eigenvectors do become close in direction. The exact 

TOF follows closely the lowest eigenvalue, |1|, and only exhibits visible deviations near the 

avoided crossing region. At the point 𝜖 = −4 the randomness parameter r minimizes as seen in 

Fig. 2c. To improve the representation near 𝜖 = −4, we can include the lowest two eigenvalues, 

1

𝜈
≈ −

𝑐1

𝜆1
−

𝑐2

𝜆2
       (3.1)   

where the coefficients are obtained from eq. (2.20); eq. (3.1) is also plotted in Fig. 2a. As seen in 

the expanded view, Fig. 2b, this approximation eliminates most of the error in both  and r. 

Likewise, we can expand the full PDF f(t), in terms of the eigenvalue expansion via 

𝑓(𝑡) ≈ −𝑐1𝜆1𝑒
𝜆1𝑡−𝑐2𝜆2𝑒

𝜆2𝑡       (3.2)  

which gives excellent agreement with the exact expression even at the avoided crossing.  

 

Fig. 2 Numerical application of the eigenvalue method to an eight species linear cycle. In (a) the lowest three absolute eigenvalues 

of T are plotted versus the well depth of X4, . The TOF from eq. (2.8) is seen follow the lowest absolute eigenvalue except near the 

avoided crossing at =-4. The two term reconstruction of the TOF eq. 3.1 is shown in (a) and, in greater detail, in (b). In (c) the 

randomness parameter versus  is shown along with the two term reconstruction. In (d) and (e) the largest sensitivity indices of the 

lowest two eigenvalues with respect to the barrier and well energies are plotted versus . 

The controlling structures for this simple linear pathway problem can be directly guessed 

from the energetic span theory. It is useful, however, to demonstrate that they can be also recovered 

from sensitivity analysis of the T-matrix. The sensitivity indices of the two lowest eigenvalues, 
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𝑠𝑖,𝑗 =
𝜕𝑙𝑛|𝜆𝑖|

𝜕∆𝐸𝑗
 , versus the parameter  are shown in Fig. 2d and 2e. The index for the lowest 

eigenvalue, i=1, shown in Fig. 2d, is seen to be most sensitive to is X4 and TS7 for 𝜀 < −4. For 

𝜀 > −4 it is most sensitive to X2 and TS4. Interestingly, we see that the sensitivity of the second 

lowest eigenvalue exhibits precisely the reverse of this behavior. The numerical value of 𝑠𝑖,𝑗 for 

the sensitive structures are seen to be ±2, consistent which the predictions of eqs. (2.26) and (2.27), 

while 𝑠𝑖,𝑗 for the other structures are small. The sensitivity analysis thus correctly identifies the 

HTS and LINT and explains the change in the global rate flux pattern versus continuously 

changing parameters. It also helps identify the physical meaning of these two eigenmodes of T. 

Consider a “diabatic construction” where the eigenvalues are allowed to cross at =-4. One mode, 

with a constant eigenvalue corresponding to Ea=9 everywhere in , describes the flux as a most 

probable state X2 across the bottleneck TS4. The other diabatic state crosses the first at =-4 with 

a constant slope and corresponds to flux from the most probable (variable energy) state X4 with 

TS7 being the flux bottleneck. 

B. Multiple Pathways: Two Coupled Parallel Cycles 

A simple multipath catalytic system consists of two N=4 cycles coupled at the active site, 

thus having seven species and eight reactions, i.e. 

𝐴𝑆 + 𝑃𝐵
𝑘4𝐵
↔ 𝐵3

𝑘±3𝐵
↔  𝐵2

𝑘±2𝐵
↔  𝐵1

𝑘±1𝐵
↔  𝐴𝑆 + 𝑆

𝑘±1𝐴
↔  𝐴1

𝑘±2𝐴
↔  𝐴2

𝑘±3𝐴
↔  𝐴3

𝑘4𝐴
→ 𝐴𝑆 + 𝑃𝐴 

A schematic of the reaction is shown in Fig. 3a and the energies used are shown in Fig. 3b. The 

probability vector is labeled according to (AS, A1, A2, A3, B1, B2, B3) with the initial state 𝑷0 =

(1,0,0,0,0,0,0)𝑇. The product producing steps, 𝐴3
𝑘4𝑎
→ 𝐴𝑆 + 𝑃𝐵 and 𝐵3

𝑘4𝑏
→ 𝐴𝑆 + 𝑃𝐵, are irreversible 

and signify the end of the event time and the beginning of a new cycle. Hence, f(t) is the distribution 

of waiting times regardless of the product identity, PA or PB. The T-matrix is 7×7 in this case and 

is easily constructed from the mechanism using TST from the well and barrier energies. The 

reaction may proceed along either along with pathway A or B with a branching ratio given 

explicitly by (𝝉𝐴
𝑇 ∙ 𝑻−1 ∙ 𝑷0)  : (𝝉𝐵

𝑇 ∙ 𝑻−1 ∙ 𝑷0)  where A and B are the absorption vectors into 

product states of the A and B cycles. Assigning a particular event to a given pathway is not clean-

cut since it is possible for a molecule to backtrack from one path to the other before the final 
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irreversible step to an absorbing state. This is a general characteristic of multi-pathway systems. 

We investigate the behavior of the system as the energy of the barrier 𝜀 = ∆𝐸𝑇𝑆𝐴2
0   is raised 

continuously from 3 to 10. From the energetic profile, shown in Fig. 3b, we expect the process to 

proceed along path A for low values of , where ∆𝐸𝑇𝑆𝐴4
0 = 6 is the rate limiting barrier, and then 

will switch to path B when ∆𝐸𝑇𝑆𝐵4
0 = 𝜀 is the rate limiting barrier at high . The crossing point 

should be at  =7. Notice the activation energy goes from Ea=8 at low  to Ea=7 at high . The 

objective here is to illustrate how the spectral analysis of the T-matrix reveals the pathway behavior. 

Fig. 3 The parallel two path catalytic cycle. In (a) we show a schematic diagram of the reaction mechanism where a single active 

site can catalyze a reaction along two independent pathways leading to two distinct products, PA and PB. In (b) we show the 

energetic profile chosen for the numerical study where the barrier for reaction A1A2 is selected as the independent variable . 

In Fig. 4a we show the lowest three eigenvalues of T as a function of the barrier height  

along with the exact TOF carried out at kBT =0.25 using time units of h/kBT with unit substrate 

concentrations. From this correlation diagram, it is seen that the lowest pair of eigenvalues undergo 

a broad avoided crossing around =7 where the highest transition state barriers cross, i.e., for 

reactions rA2 and rB4. We see that 1 is nearly flat while 2 shows most of the curvature associated 

with the crossing. Interestingly, the exact TOF, shown with the dashed line, effectively switches 

from the lowest eigenvalue (at small ) to the second lowest eigenvalue (at large ). This 

eigenvalue switching behavior is very accurately reproduced by a two term expansion of the TOF, 

eq. (3.2), which is also shown in Fig. 4a. It is worth noting that the coefficient for the lowest 

eigenvalue, c1, approaches zero at high  and one at low , while c2 behaves oppositely since 

c1+c2≈1. At the same time that the coefficients c1 and c2 are undergoing switching, the branching 

ratio goes from dominantly A selective to dominantly B selective, shown in Fig. 4c. 

Mathematically, the explanation of the eigenvalue switching phenomena of the TOF relates back 

to the definition, 𝜈 =
1

𝟏𝑻∙(−𝑻)−1∙𝑷𝟎
 . The projection of the eigenvector unto the initial state P0 
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determines the coefficients ci; the c1 is very small at large  since its eigenvector has a vanishing 

small projection onto the initial state. The eigenvectors represent pure exponential decay modes 

within the manifold of transient states and the modes need not involve the AS strongly.  

 

Fig. 4. Numerical application of the eigenvalue method to the two parallel path model system represented in Fig. 3. In (a) the 

lowest three absolute eigenvalues of T are plotted versus the barrier height TSA2, . The TOF from eq. (2.7) is seen to resemble the 

lowest absolute eigenvalue below =7 whereafter it smoothly switches to resembling the second lowest eigenvalue. A two term 

reconstruction of the TOF is also shown in (a) and is very close to the exact TOF. In (b) the randomness parameter versus  is 

shown along with its term reconstruction. In (c) the branching fraction into the A and B paths is plotted versus . In (d) and (e) the 

largest sensitivity indices of the lowest two eigenvalues with respect to the barrier and well free energies are plotted versus . In 

(f) the sensitivity indices of the full TOF are shown. 

The physical basis of the eigenvalue switching is revealed by a sensitivity analysis of the 

barriers and wells. In Fig. 4f, we show the sensitivity index of the full TOF for the most important 

barrier and well energies. The indices are positive for well energies and negative for barrier 

energies. It is seen that at low  the TOF is most sensitive to the well energy for A2 and the barrier 

energy for TSA4. At high , the TOF is most sensitive to the wells AS and B2 (which have equal 

energy and split the 1/ kBT sensitivity evenly between them) and to barrier TSB4. Near the switching 

point, =7, there is a narrow region of positive sensitivity to barrier TSA2. Clearly as the barrier for 

TSA2 increases, the flux switches from the A path (where TSB4 is the HTS and A2 is the LINT) to 

the B path (where TS and B2 are co-LINT’s and TSB4 is the HTS). The eigenvalue analysis gives 

a clearer picture. As illustrated in Fig. 4d, the smallest absolute eigenvalue |1| shows sensitivity 
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to barrier TSA4 and well A2 for all . The eigenvector shows the highest probability for well A2 

and its decay flux passes dominantly over the barrier TSA4. This behavior determines the TOF for 

low  since ≈|1| for <7. The second smallest eigenvalue shows the greatest sensitivity to the 

equivalent wells AS and B2 for all  values. However, the barriers sensitivity of switches from 

TSA2 for low  to TSB4 at for high . This second eigenmode remains mostly located in the AS and 

B2 wells, but flux direction changes near =7, i.e. pathway switching. Thus, the two eigenmodes 

of T are seen to reflect the most probable resting sites and the two reaction pathways available in 

this system. It may not always be the case that the eigenmodes clearly separate along chemical 

pathways, but it often occurs. It does seem always the case that the flux pattern within the manifold 

of transient states does change abruptly at a sharp avoided crossing.  

Finally, we discuss the randomness parameter r as a function of . In Fig. 4b we see a tall 

peak in r vs.  slightly above the point of avoided crossing. We see that r becomes greater than 1 

during the avoided crossing, signifying a narrowing of the PDF f(t). The two mode expansion of r 

gives a mathematical explanation of this behavior. From eq. (2.23) we have 

𝑟 ≈  

2𝑐1
𝜆1
2 +

2𝑐2
𝜆2
2 − (

𝑐1
𝜆1
+
𝑐2
𝜆2
)
2

(
𝑐1
𝜆1

+
𝑐2
𝜆2
)
2                                    (3.4)  

In the present case, the two eigenvalues are roughly constant versus  over the interesting region 

from =7-9 with 𝜆2 ≈ 25𝜆1. Since the normalization of f(t) demands that 𝑐1 + 𝑐2 = 1, we can 

conclude that r will go up to about 𝑟~
1

2

𝜆2

𝜆1
 when 𝑐1~

𝜆1

𝜆2
 in rough agreement with Fig. 4b which 

shows a maximum of r ~ 14.  Physically, r>1 here corresponds to multiple pathway contributions. 

The TOF is well approximated in this problem is described by the generalization of the 

energetic span model that was presented in eq. (2.16). That model included two barriers going to 

distinct product channels, the HTSL and HTSR, along with a single LINT that is bracketed by the 

HTSL and HTSR.  In the present case, at low  the HTSL is TSB4, the HTSR is TSA4, and the LINT 

is A2 which gives an activation energy of Ea=8. At high the HTSL is TSB4, the HTSR is TSA2, 

and the co-LINT’s are AS and B1 which gives an activation energy of Ea=7. The TOF is controlled 

by Ea, i.e. 𝜈 ≈
𝑘𝑇

ℎ

1

𝜎
𝑒−∆𝐸𝑎/𝑘𝑇 where  is a symmetry number for the number of equivalent LINT’s 
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or HTS’s, or equal activation energies. In contrast, the parameter r is controlled by two activation 

energies in regions where non-Poisson statistics apply and thus is more informative. 

C. Styrene Hydrogenation by a Single Atom Catalyst With Static Disorder 

The analysis of realistic catalytic problems can be much more challenging than the model 

systems considered above and must be investigated without preconceived notions about the 

kinetics. As an illustration of the use of the eigenvalue method for an experimentally motivated 

example, we consider the styrene hydrogenation kinetics on an organovanadium SAC for which a 

microkinetic model was developed in a previous study.70 71 The system consists of single V(III) 

atoms anchored to an amorphous silica support, assumed to be statically disordered, in contact 

with styrene (ST), H2, and tetrahydrofuran (THF) in a nonpolar solution phase. The hydrogenation 

reaction, styrene+H2ethylbenzene, is mediated by three active sites, here denoted by C, D, and 

E. The THF is present in the precatalyst and thereafter plays the role of an inhibitor. The active 

sites correspond to three distinct ligand arrangements around the vanadium atom and can 

interconvert by reversible attachment reactions from the solution. Each active site supports a 

catalytic cycle, here denoted by path 5, path 6, and path 7 for consistency with previous work10. 

As shown in the schematic of Fig. 5a, the cycles are coupled both through the interconversion of 

active sites and through shared steps of the different cycles. The free energy surface for the 

mechanism was obtained using DFT calculations. A representative free energy landscape for a 

particular choice of the disorder parameter is shown in Fig. 5b.  

The DFT calculations of the free energies for the full catalytic network were obtained 

explicitly as a function of the local disorder. The present work expands on the supported 

organovanadium(III) catalyst model presented in our previous studies10 71 by introducing an 

additional disorder parameter beyond the V-O(siloxane) distance (rVO), for site heterogeneity. This 

parameter is the Euclidean O-O bond distance (rOO) between the two O atoms on the silica surface 

excluding the siloxane donor, which can be changed by increasing the O-V-O bond angle. As the 

Euclidean O-O bond distance on the surface has been shown to influence spectral features of X-

ray absorption spectra for the pre-catalyst model,72 this dimension is considered in tandem with 

the V-O bond length. To generate the free energy surfaces for all intermediates and transition states 

shown in Fig. 5, a 5x5 grid of structures was generated using the V-O(siloxane) bond distance of 

2.1, 2.2, 2.3, 2.4, and 2.5 Å and the O-O bond distance of 3.0, 3.3, 3.6, 3.9, and 4.2 Å. These 
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distances were chosen to adequately represent the effect of the donor siloxane and the surface 

grafting site heterogeneity, respectively.  Further details are in the supporting information. 

 

Fig. 5 The catalytic mechanism for ST+H2ethylbenzene on a SAC. In (a) we show a schematic diagram of the reaction 

mechanism. There are three distinct pathways and three active sites. In (b) we show the free energy profile in kcal/mol along the 

pathway assuming the energy of AS-D is 0.  The relative ordering of the AS’s is shown in the final panel of (b). The disorder 

parameters are set to rvo=2.3 Å and roo=3.0 Å.  The other details of the model are described in ref. 10 and 65 and the supporting 

information. 
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The catalytic chemistry is parameterized by three continuous concentrations, [ST], [H2], 

and [THF], and two continuous structural disorder parameters rVO and rOO. Since it is impossible 

to visualize the five-dimensional behavior of the full kinetics, we restrict our analysis here to the 

effect of two of these variables, rVO and [THF] and the other parameters (rOO, [H2],[ST])  are fixed. 

The [THF] variable controls the distribution of active sites through the attachment reaction of THF 

and hence only one barrier of the mechanism is affected. On the other hand, rVO affects the stability 

Fig. 6 Exact simulation results for 

the ST+H2ethylbenzene 

reaction on the vanadium based 

SAC. The results are computed for 

the special case of rOO=3.0 Å, 

[ST]=1 M, [H2]=5 M, and 

T=600K. In (a) the TOF in s-1 is 

computed using eq. (2.7) where 

the inverse matrix T-1 is found 

using the INV command from 

MATLAB. In (b) the randomness 

parameter is computed from the 

matrix inverse. In (c) the lowest 

two eigenvalues are plotted 

obtained using the MATLAB 

command EIG and the location of 

the avoided crossing is shown 

with the dashed line which is close 

to the minimum trough seen in r. 

 



22 

of every barrier and well in the full chemical network. In Fig. 6a we show surface representation 

of the TOF versus (𝑟𝑉𝑂,[𝑇𝐻𝐹]). In Fig. 6b the randomness parameter is plotted. In Fig. 6c the 

lowest two absolute eigenvalues of T are shown together with the smallest two absolute 

eigenvalues. The DFT calculations were carried out on a uniform two-dimensional grid in the 

structural parameters (rVO, rOO) and evaluated at the desired coordinate values using a tensor cubic 

spline interpolator. The results shown in Fig. 6 were obtained using the INV and EIG routines of 

the MATLAB suite. We find that TOF obtained using the general expression eq. (2.7) lies very 

close to the smallest absolute eigenvalue, 𝜈 ≈ |𝜆1| everywhere except very near the points of 

eigenvalue avoided crossing where |𝜆1(𝑟𝑉𝑂,[𝑇𝐻𝐹])| ≈ |𝜆2(𝑟𝑉𝑂,[𝑇𝐻𝐹])| . We also see a 

pronounced ridge in 𝜈(𝑟𝑉𝑂,[𝑇𝐻𝐹]) that describe optimal values of the TOF. The randomness 

parameter shows a pronounced trough with a 90° elbow occurring in the (rVO, THF]) plane that 

matches the position of the avoided crossing seen in Fig. 6c. The plateau region of r lies near r=1 

while minimum of the through lies near the value r=0.5.  

 

Fig. 7. Numerical application of the eigenvalue method to the vanadium SAC system represented in Fig. 5 taken as a function of 

[THF] at rVO=2.3Å. In (a) the absolute eigenvalues of T are plotted versus the [THF] in M units. The TOF from eq. (2.8) is seen 

following the lowest absolute eigenvalue for all concentrations of THF. The small deviation of the TOF from |𝜆1| is modeled 

accurately by the two term expansion seen in (b). A two term of the TOF is also shown in (a) and is very close to the exact TOF. In 

(c) the randomness parameter versus  is shown along with the two term reconstruction. In (c) the branching fraction into the A 
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and B paths is plotted versus . In (d) and (e) the largest sensitivity indices of the lowest two eigenvalues with respect to the barrier 

and well energies are plotted versus . In (f) the prediction of the energetic span theory is shown with solid lines for two choices of 

HTS and LINT along with the two lowest eigenvalues.  The eigenvalues are well modeled by the energetic span theory. 

To obtain a more detailed view of the kinetic behavior of this system, we look at several 

one-dimensional cuts of the functions 𝜈(𝑟𝑉𝑂,[𝑇𝐻𝐹])  and 𝑟(𝑟𝑉𝑂,[𝑇𝐻𝐹])  holding one of the 

arguments fixed. In Fig. 7, we show the results as a function of [THF] at rVO=2.3 Å. It should be 

borne in mind that the THF concentration effectively stabilizes the active site AS-D (i.e. V-THF) 

by a factor of kBT ·ln[THF] and changes the free energy barrier for AS-DAS-C by negative a 

similar factor. The energies of the other structures in the model are unaffected by variations in 

[THF]. In Fig. 7a, we show the eigenvalue spectrum along with the TOF. We see that many of the 

eigenvalues are nearly constant versus [THF], however, the lowest two absolute eigenvalues show 

a sharp avoid crossing near [THF]=2×10-4 M. One other pair of much larger eigenvalues similarly 

undergoes avoided crossing at that point. The exact TOF mirrors the lowest eigenvalue except in 

the vicinity of the avoided crossing. As seen in the expanded view of the crossing region, Fig. 7b, 

the TOF nearly perfectly coincides with the two term reconstruction given by eq. (3.2). The 

randomness parameter exhibits a minimum r≈0.52 at THF value slightly above the avoid crossing 

but yet completely consistent with the two eigenvalue formula eq. (3.4). Interestingly, r does not 

asymptote to 1 at low [THF] but goes to about r≈0.88. This reflects the numerical proximity of the 

lowest two eigenvalues and is predicted accurately by formula (3.2). 

A second slice of 𝜈(𝑟𝑉𝑂,[𝑇𝐻𝐹])  and 𝑟(𝑟𝑉𝑂,[𝑇𝐻𝐹])  is made as a function of rVO at 

[THF]=10-7 M which is summarized in Fig. 8. In Fig. 8a we show the eigenvalue spectrum and the 

TOF versus rVO. Since the structural variable rVO affects all the barriers and wells in the mechanism, 

the eigenvalues exhibit a much more intricate dependence on rVO than previously seen for [THF]. 

Again, however, the most important feature is an avoided crossing of the lowest two absolute 

eigenvalues at rVO =2.23Å. The exact TOF, shown with a dashed line, closely follows |1| except 

very near the avoided crossing while the two term expansion for the TOF, eq. (3.2), very closely 

approximates the exact answer even there as seen in the expanded view presented in Fig. 8b. The 

randomness parameter, presented in Fig. 8c, minimizes at r=0.5 at a slightly larger value of rVO 

than the crossing of the eigenvalues. The two term expansion of r, eq. (3.4), accurately represents 

its behavior. The other avoided crossings seen in Fig. 8a involving higher eigenvalues in the 

spectrum have little influence on the observables TOF and r. Physically, the corresponding higher 
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eigenmodes describe rapid relaxation processes within the manifold of transient states that quickly 

damp out as the system approaches steady state. 

 

Fig. 8. Numerical application of the eigenvalue method to the vanadium SAC system represented in Fig. 3 taken as a function of 

rVO at [THF]=10-7 M. In (a) the absolute eigenvalues of T are plotted versus rvo. The TOF from eq. (2.8) is seen to follow the 

lowest absolute eigenvalue for all rvo.  The small deviation of the TOF from |𝜆1| near the avoided crossing is modeled accurately 

by the two term expansion seen in (b). In (c) the exact randomness parameter versus rvo is shown along with the two term 

reconstruction. In (d) and (e) the largest sensitivity indices of the lowest two eigenvalues with respect to the barrier and well 

energies are plotted versus rvo.  In (f) the prediction of the energetic span theory is shown with solid lines for four choices of HTS 

and LINT along with the three lowest eigenvalues. 

Finally, we use sensitivity analysis to determine the pathways and key steps that control 

the catalytic kinetics shown in Figs. 7 and 8. In Fig. 7d, we show the largest sensitivity indices of 

the wells (positive) and barriers (negative) for |1| versus [THF] at rVO=2.3Å. We see an abrupt 

transition occurring at [THF]=2×10-4 M where the avoided crossing between |1| and |2| occurs. 

At low [THF], |1| is sensitive to well 24 and barrier 25ⱡ (see Fig. 5a) corresponding to adjacent 

states along pathway 7. For high [THF], |1| becomes sensitive to the active sites AS-C and AS-D 

and to the barrier 23ⱡ. We note that the pair of active sites lie in a quasi-equilibrium since the 

process V.+THFV-THF is barrierless, and thus their sensitivity moves in tandem. These 

sensitivity steps correspond to a non-sequential configuration along pathway 7. The sensitivity of 



25 

|2|, Fig. 7e, shows the reverse of this process, thus being sensitive to wells AS-C and –D and 

barrier 23ⱡ below the crossing and to 24 and 25ⱡ above the crossing. We note that for very low 

[THF] values the |2| begins to interact with higher eigenvalues adding further sensitivity to other 

structures. However, for the determination of the TOF and r, the two pairs are sufficient to explain 

the results.  

The sensitivity analysis identifies a clear LINT and HTS pair along a reaction pathway that 

can be used to predict the overall TOF. Specifically, we know that energetic span theory of single 

path reactions predicts 𝑘(𝑇) ≈
𝑘𝑇

ℎ
exp (−(∆𝐺𝐻𝑇𝑆 − ∆𝐺𝐿𝐼𝑁𝑇)/𝑘𝑇). In Fig. 7f, we use two possible 

pairings (HTS,LINT)=(25ⱡ,24) and (23ⱡ,AS-D) to compute the TOF from this energetic span 

approximation; these are shown with the two solid lines. The exact eigenvalues are shown with 

dashed lines. It is seen that the energetic span theory is a very accurate representation of |𝜆1| 

everywhere except very close to the avoided crossing and as is |𝜆2|. However, the energetic span 

theory gives a diabatic representation of the eigenvalues allowing them to actually cross and retain 

their identification with specific structures. Since the TOF ~ |𝜆1| corresponds to adiabatic avoided 

crossing the energetic span theory requires redefinition of HTS and LINT at the avoided crossing. 

The analysis thus reveals that the reaction is dominated by a single reaction pathway for all [THF] 

although the structures determine the activation energy change versus [THF]. Furthermore, the 

randomness parameter never rises above 1 and shows a minimum at 0.5 when the two activation 

barriers become equal ∆𝐺𝐻𝑆𝑇
23 − ∆𝐺𝐿𝐼𝑁𝑇

𝐴𝑆−𝐶/𝐸
= ∆𝐺𝐻𝑆𝑇

25 − ∆𝐺𝐿𝐼𝑁𝑇
24  corresponding to two TS’s acting 

sequentially. Pathway 7 shown in Fig. 5a is clearly dominant in the kinetics and the [THF] 

dependence reflects the change in the rate limiting process as the free energy barrier for V-

THFV+THF is systematically altered. 

A similar sensitivity analysis has been carried out for Fig 8, the rVO coordinate. In Fig. 8d 

|𝜆1| is seen most sensitive to barrier 25ⱡ and to well 24 above the avoided crossing with |𝜆2|, 

rVO>2.23Å. Below the crossing, it is most sensitive to barrier 23ⱡ and to well AS-C. The second 

lowest eigenvalue |𝜆2| shows the reverse of this behavior. Interestingly, |𝜆2| also shows a second 

abrupt transition occurring near rVO=2.38Å where |𝜆2| and |𝜆3| undergo avoided crossing. The 

structures involved there are barrier 22ⱡ and well 21 with the barrier 23ⱡ and well 19a. The analysis 

again suggests a single pathway dominates the TOF chemistry, pathway 7 from Fig. 5, but the 
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controlling structures along with that path change as a function of rVO. We again applied the 

energetic span model using the three pairs of (HTS, LINT) structures identified by the sensitivity 

analysis with one additional pairing included for comparison. In Fig. 8f, the approximation |𝜆| ≈

𝑘𝑇

ℎ
exp (−(∆𝐺𝐻𝑇𝑆 − ∆𝐺𝐿𝐼𝑁𝑇)/𝑘𝑇) is seen to be a good representation of the |𝜆1| , |𝜆2| and |𝜆3| in 

the relevant ranges of rVO. In particular, it closely matches |𝜆1| which models the TOF. It is quite 

interesting that the energetic span theory can be applied with some accuracy to higher eigenvalues 

which goes beyond the initial formulation of the theory. 

IV. Conclusions 

We have found that the single molecule view of catalysis that emphasizes the waiting time 

distribution between product formation events has yielded new insight into the general catalytic 

kinetics which may be of use in the analysis of SAC. In particular, we found that an eigenvalue 

decomposition of the transition matrix, T, can explain a variety of behaviors of both the TOF and 

the randomness parameter observables.  The advantage of the spectral approach is that the kinetics 

can be decomposed into a hierarchy of timescales.  The longest times, i.e. the smallest ||, often 

yields the TOF for the network.  The next longest time allows us to compute the randomness 

parameter.  The third longest timescale gives the skew of the PDF, f(t).  The challenge to the 

experimentalist is to extract trajectory data over a wide enough range to accurately extract the 

timescales.  Like all kinetics problems, the slowest timescale process is rate limiting and the most 

important.  Faster processes rapidly go quickly into steady state and are harder to observe. The 

spectral decomposition allows the cleanest separation of these processes. 

 The relationship between the eigenvalues of T and the energetic structure of the chemical 

network was revealed clearly through a conventional sensitivity analysis. The eigenvalues were 

shown to be related to specific barriers and wells along the dominant reaction pathways that could 

be quantified using the energetic span method, i.e |𝜆𝑖| ≈
𝑘𝐵𝑇

ℎ
∙ exp (−(∆𝐺𝐻𝑇𝑆𝑇

𝑖 − ∆𝐺𝐿𝐼𝑁𝑇
𝑖 )/𝑘𝐵𝑇) 

which reflects rate limiting barriers and most stable points along chemical pathways. It is obvious 

that such expressions develop because of the cancelation of common terms in effective rate 

expressions along the chemical pathway.  What is exciting about the present analysis is that the 

higher eigenvalues also seem to satisfy this formula.  Can an energetic span theory be developed 

for the higher moments of f(t) and hence the randomness parameter itself?  This question is under 
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investigation. We have found that the observable quantities in the SAC experiment are generally 

responsive to two eigenvalues of the transition matrix, and in turn, those eigenvalues are controlled 

by a few key barriers and wells in the catalytic network. Therefore, we expect that a reasonable 

mechanism improvement strategy would involve more extensive calculations of the free energies 

that focus on those structures. The points at which r exhibits minima or maxima versus a 

controllable parameter are usually associated with avoided crossings of eigenvalues. Those 

avoided crossings were demonstrated to correlate with the crossing of activation energies 

somewhere in the network. This behavior could signal the change in the HTS or LINT along a 

single path or even the switching of the pathway itself.73 
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