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ABSTRACT ARTICLE HISTORY
Car-following safety is related to both observed driving charac- Received 13 October 2021
teristics (e.g. car-following behaviour) and unobserved driver het-  Accepted 13 March 2022

erogeneity (e.g. drivers’ psychological features). Two major issues
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remain in the existing literature, i.e. limiting to longitudinal char- Car-following safety; driver
acteristics and not addressing the confounding effects of unob-  heterogeneity; longitudinal

served driver heterogeneity. This study takes a matched case-control and lateral movements;
approach to model car-following safety with both longitudinal and trajectory data; automated
lateral driving characteristics. Unobserved driver heterogeneity is vehicle safety warning
controlled by matching preceding and following vehicle IDs. Results

show that unstable lateral movements of preceding vehicles and fol-

lowing vehicles contribute to higher crash risks. Comparison results

on two datasets with different congestion levels reveal that it is safer

in more congested traffic when the following vehicle maintains more

stable longitudinal and lateral behaviours, and greater speed differ-

ence, headway, and spacing regarding its preceding vehicle. This

study provides insights in enhancing roadway safety management

and benefiting the automated vehicle development by warnings on

associated risks.

Introduction

The World Health Organization (WHO) reported on 21st June 2021 that approximately 1.3
million people die each year because of road traffic crashes. Especially for children and
young adults aged 5-29 years, road traffic crashes are the leading cause of death (WHO
2021). To reduce road traffic crashes, great efforts have been made to model roadway
safety and investigate contributing risk factors. This not only enhances traffic safety man-
agement by guiding stakeholders and policymakers to devise proper safety guidelines
and regulations but also facilitates automated vehicle development by warning on risky
situations.

Automated vehicle technology has witnessed substantial development in the past
decades. It was predicted that there would be 20.8 million automated vehicles in opera-
tions in the US by 2030 (Statista 2017). Despite the promising growth, most people still
hold concerns about the safety performance of automated vehicles (Koopman and Wag-
ner 2017), especially given the increasing number of automated vehicle crashes (Blanco
et al. 2016; Song, Chitturi, and Noyce 2021). To facilitate automated vehicle development,
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safety concerns must be addressed first. Enabled by various onboard sensors (e.g. Lidar,
Radar, and cameras), automated vehicles percept the movements of the surrounding traffic
(e.g. vehicle speeds and positions). With these perceptions, automated vehicles can eval-
uate the current safety performance and respond correspondingly to avoid any potential
crashesifany, i.e.adopt a deceleration. With the hardware ready, the next necessary compo-
nent to develop a real-time automated vehicle safety warning system is an effective safety
evaluation model based on the sensed surrounding vehicle motions.

In the past, vehicle motion data have been widely used to assess crash risks when histor-
ical crash data is not available. Various safety surrogate measures (SSMs) were developed
in the past, e.g. time to collision (TTC), deceleration rate to avoid crash (DRAC), and stop
distance index (SDI), to measure traffic safety with vehicle trajectory data (Peng, Lyu, and
Wu 2020; Shi et al. 2018).

With these efficient SSMs, researchers have studied the crash risks of two main driving
behaviours. The first one is lane-changing behaviour, which yields a high crash risk due to
the complicated vehicle interactions (Chen et al. 2021a, 2021b; Gu et al. 2019; Park et al.
2018). Another one is car-following behaviour, which is the most common action in a traffic
stream and might cause rear-end crashes due to traffic flow instability (Behbahani, Nadimi,
and Naseralavi 2015; Li et al. 2020; Przybyla et al. 2015; Xue et al. 2019; Zhao and Lee 2018).
This paper focuses on the crash risks of car-following behaviour. While the existing car-
following studies laid a solid foundation for understanding risky traffic scenarios, two main
issues are still unaddressed. First, most of them focused on longitudinal characteristics, e.g.
longitudinal speed and position. Lateral characteristics have not been paid much atten-
tion, despite their non-neglectable impacts. Yu, Han, and Zhang (2021) only considered
the maximum lateral acceleration of the preceding vehicle in high-risk events prediction.
Since vehicles with difficulties in lane-keeping, deviating from the lane centre frequently,
are less stable and are expected to have a greater possibility to experience unsafe scenar-
ios (Zhang, Dong, and Du 2008), more lateral characteristics should be investigated for a
comprehensive understanding of car-following safety.

Most importantly, the existing literature did not properly handle the safety impacts
of the unobserved driver heterogeneity (e.g. mental characteristics) when investigating
observed driving characteristics (e.g. car-following). As confirmed by the existing literature,
driver heterogeneity significantly pertains to rear-end crash risks because different drivers
respond to traffic scenarios differently (James et al. 2019; Xie et al. 2019; Yu, Han, and Zhang
2021; Zhang, Wang, and Lu 2019). In this case, unobserved driver heterogeneity is a con-
founding variable of other driving characteristics when modelling car-following safety. It is
necessary to control it to derive unbiased estimation results of the safety effects of other risk
factors that can be easily observed and thus readily implemented in safety management.

The matched case—control is a promising solution to address the confounding effects
of unobserved driver heterogeneity. It has been widely used in epidemiological research
(Breslow 1996; Breslow et al. 1978; Ingram et al. 1997; Wey et al. 1989). It has also wit-
nessed substantial development in roadway safety modelling crashes (Gjerde et al. 2011;
Gross 2013; Hijar et al. 2000; Khoda Bakhshi and Ahmed 2021). It categorises entities into
two groups, i.e. cases (unsafe entities) and controls (safe entities). Each case is randomly
matched to several controls by the confounding variable to form a stratum. In this study,
each entity is a trajectory segment, and unobserved driver heterogeneity is controlled
by matching preceding vehicle ID and following vehicle ID. We assume that unobserved
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driver-specific characteristics are the same in a stratum based on the premise that these
characteristics do not change much within a short travel period. After matching, the con-
founding effects of unobserved driver heterogeneity are eliminated and thus unbiased
safety effects of observed driving characteristics can be investigated. A conditional logis-
tic regression model is estimated on the matched data to quantify the safety effects of
observed driving characteristics on car-following safety.

The contributions of this study are summarised as follows.

(1) For the first time, this study uses the matched case—control method to control the con-
founding effects of unobserved driver heterogeneity and quantify the car-following
safety effects of observed driving characteristics.

(2) This study assesses the car-following safety impacts of both lateral and longitudinal
driving characteristics.

(3) This study compares the model results of two trajectory datasets with different conges-
tion levels (one severely congested and one slightly congested).

The study structure is depicted in Figure 1. Vehicle car-following trajectories are
extracted and segmented from original trajectory datasets. The safety performance of each
car-following segment is assessed by SSM. A segment is labelled as a case if it experiences
crash risks and labelled as a control if it does not experience crash risks. After labelling,
each case is randomly matched to several controls by preceding vehicle ID and follow-
ing vehicle ID to eliminate the confounding effects of unobserved driver heterogeneity. A
group of one case and several matched controls is named a stratum. The conditional logis-
tic regression model is estimated on the matched strata to quantify the safety effects of

Original trajectory data

|

Trajectory segmentation

!

Car-following

| safety assessment |
P s st s i

N
I’ Case: Control: \
I Unsafe segment Safe segment :
: l | I Matched
| v : Case-Control
| Randomly I
| Matched Strata 1

Figure 1. Study structure.
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observed driving characteristics after controlling the confounding effects of unobserved
driver heterogeneity.

The rest of this paper is organised as follows. Section 2 introduces the car-following
safety assessment, the matched case-control study, and the conditional logistic regression.
Section 3 describes empirical settings including two trajectory datasets (one severely con-
gested and one slightly congested) and the data processing. Section 4 discusses the model
estimation results. Section 5 concludes this study with ending remarks.

Methodology

This section introduces the car-following safety index, describes the matched case-control
study, and reviews the conditional logistic regression.

Car-following safety assessment

The stopping distance index (SDI) is adopted to assess car-following safety in this study.
It compares the safe stopping distances of two vehicles for risk assessments (Chen et al.
2021a; Oh and Kim 2010; Park et al. 2018).

First, the safe stopping distances at time t are calculated for the preceding vehicle (SSDp)
and the following vehicle (SSDg).

2
ssDp(t) = 2 (1)
2ap
2
SSDE(t) = ve(t) x 7 + FO. 2)
2ar

where vp(t) and ve(t) are the speeds of the preceding vehicle and the following vehicle at
time t; 7 is the perception reaction time of the following vehicle and set as 1.5 s (Chen et al.
2021a;0hand Kim 2010; Park et al. 2018); and ap and af are the maximum deceleration rates
of the preceding vehicle and the following vehicle (3.4 m/s? for passenger cars, 2.4 m/s? for
trucks, and 4.5 m/s? for motorcycles) (AASHTO 2001; Chen et al. 2021b; Huertas-Leyva et al.
2019; Kweon 2011; Wu et al. 2018a). The SDI of the following vehicle is calculated.

0, ifSSDp(t) + sp(t) — SSDg(t) > O,
1, otherwise.

SDI(t) = { 3)
where sp(t) is the spacing between the preceding vehicle’s rear bumper and the following
vehicle’s front bumper at time t.

Other popular SSMs can also be adopted to evaluate car-following safety, e.g. TTC,
DRAC, and post encroachment time (PET). The methodology proposed below remains valid
regardless of the specific SSM. It should be highlighted that the SSM selection in terms of
devising a vehicle safety warning system should be carefully decided after extensive test-
ing on various SSMs. The warning system should be neither too aggressive (missing certain
risky situations) nor too conservative (warning ‘fake’ risky situations). The trade-off between
the system effectiveness (not missing any risks) and accuracy (reporting only ‘true’ risks)
should be balanced per application needs when selecting SSMs and setting thresholds for
continuous SSMs (e.g. TTC) in differentiating risky from safe.
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For example, if the warning system is designed for human-driven vehicles or automated
vehicles of lower automation levels (SAE Level 3 and below), a less conservative SSM should
be considered because too frequent warnings may irritate the driver who is (partially) oper-
ating the vehicle. As a result, he/she might just turn off the system, resulting in safety
concerns (Jamson, Lai, and Carsten 2008). However, if the warning system is intended for
automated vehicles of higher automation levels (SAE Level 4 and up), it can be more con-
servative for a higher level of safety. Since the vehicle is operating itself instead of a driver,
the warning messages will be sent to the vehicle in silence instead of irritating the rider
who is enjoying the onboard time with activities other than driving. In this paper, except
for the SDI-based results reported in Section 4, the TTC-based results are also presented in
Appendix.

Matched case-control method

The matched case—control method has been well established in epidemiology to inves-
tigate risk factors to disease since decades ago (Breslow 1996; Breslow et al. 1978; Ingram
etal. 1997; Wey et al. 1989). It has also been used in transportation to study the contributing
factors to traffic crashes (Gjerde et al. 201 1; Gross 2013; Hijar et al. 2000). The following three
steps are required when conducting a matched case-control study (Schlesselman 1982).

(1) Defining cases and controls. Cases are unsafe car-following segments that experience
crash risks and controls are safe car-following segments that do not experience crash
risks.

(2) Randomly matching cases and controls. Each case is randomly matched to several
controls to form a stratum based on confounding variables (i.e. unobserved driver
characteristics) that are related to both risk factors of interest (i.e. observed driving char-
acteristics) and the outcome (i.e. unsafe car-following). After matching, the impacts of
confounding variables on the outcome are eliminated and thus unbiased associations
between risk factors of interest and the outcome can be estimated. As the matching
ratio (i.e. control to case) increases, the analysis power of the matched case-control
study increases. Yet, the number of resulting strata decreases. Thus, the matching ratio
shall be carefully chosen by balancing the two aspects.

(3) Conducting analysis. Conditional logistic regression was developed to fit matched data
in case—control studies. It is an extension of logistic regression (Breslow et al. 1978).

Conditional logistic regression

The probability in the jth observation of the jth stratum being a case (i.e. unsafe car-
following segment) is calculated as follows.

_ exp(a; + BXj)
1+ exp(e; + BXij)

Priy; = 1) (4)

where Xj; is the vector of explanatory variables (i.e. risk factors) associated with yj;; B is the
vector of coefficients corresponding to Xjj; ai is the stratum-specific interpretation term
reflecting the different combination effects of confounding variables for different strata.
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The conditional likelihood of stratum i is calculated as follows.

J

j=1

_ _ exp(BXin) (5)

Zjej eXp(,BX,,)
where yj; is the case observation of the ith stratum; y;; when j > 1 are the matched controls
of the ith stratum; Xijj is the vector of explanatory variables associated with y;. When the
strata are independent of each other, the conditional log-likelihood function (Y|8) over |
strata is calculated in Equation (6) (Schlesselman 1982).

I
LLYIB) == > In {1+ > explBXij — Xin)] (6)

i=1 jeJ

The Maximum Likelihood Estimation is used to maximise LL(Y|B) with respect to .

The fitted conditional logistic regression model yields the odds ratio. It is measured to
assess the effects of one unit change in unmatched risk factors on unsafe car-following. The
odds ratio (OR) for a continuous factor x,, is computed as in Equation (7).

Pr(yin = 1|xm = X, Z)/11 — Pr(yj1 = 1|xm = X', Z)]

ORm) = B = Thm = X' £ A,2)/1 — Priyin = 1m =% + A,2)] ~ PPm) ()

where Z is the vector of risk factors other than x; x” is the old value of xp; A is the changes
in xm; and B, is the estimated parameter for xp,.

Empirical settings

This section first introduces two vehicle trajectory datasets and then describes the data
processing.

Trajectory dataset

Two vehicle trajectory datasets are adopted in this study. The first dataset is the widely used
next generation simulation (NGSIM) data collected by the Federal Highway Administration
on a segment of U.S. Highway 101 in Los Angeles, California between 7:50 am to 8:05 am
on June 15, 2005 (FHWA 2008). Video data were collected with eight cameras. The US101
segment is 2100 feet long with five main lanes, an auxiliary lane, an on-ramp, and an off-
ramp. The data frequency is 10 Hz.

The second one is the high-granularity highway simulation (HIGHSIM) vehicle trajectory
dataset collected by the Federal Highway Administration. Aerial videos were recorded by
three 8 K cameras on three helicopters from 4:15 pm to 6:15 pm on May 14, 2019 (Tuesday)
on a segment of the Interstate 75 (I-75) in Florida, USA, shown in Figure 2. The I-75 segment
is 8000 ft long with three main lanes and an off-ramp. The Video-Based Intelligent Road Traf-
fic Universal Analysis Tool (VIRTUAL) developed by the University of South Florida was used
to extract trajectories from aerial videos (Shi et al. 2021). The format of the HIGHSIM 1-75
datasetis similar to that of the NGSIM US101 dataset, including vehicle ID, time, longitudinal
position, lateral position, width, length, speed, acceleration, lane number, space headway,
and vehicle class (i.e. truck, passenger car, or motorcycle). The data frequency is 30 Hz. To
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3 mainline lanes

Figure 2. Data collection segment on the I-75 freeway.

be consistent with the NGSIM US101 dataset, the HIGHSIM I-75 dataset is resampled to the
10 Hz data frequency. For more information, please refer to Shi et al. (2021).

To illustrate the traffic operations of the two datasets, the flow-density diagrams are
constructed. When car-following trajectory data is available, Edie’s equations (Edie 1963)
can be used to calculate macroscopic traffic variables (e.g. flow and density) with a subset
of trajectories in an arbitrary time—space region. For more information about the detailed
calculation, please refer to (Knoop et al. 2012; Laval 2011).

The flow-density diagrams of the two datasets are plotted in Figure 3. It is clearly shown
that the US101 traffic is more congested. All data points are located in the congested region
with the density ranging from 20 vehicles per kilometre per lane to 90 vehicles per kilometre
per lane, shown in Figure 3(a). The I-75 traffic is less congested and the density is less than
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Figure 3. Flow-density diagrams; (a) US101 dataset; (b) I-75 dataset.
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Table 1. Basic statistics of the original datasets.

Speed (m/s) Spacing (m) Observation period of car-following pairs (s)
Dataset Min Max Mean Min Max Mean Max Mean
NGSIM (US101) 0 29.39 9.36 0 239.85  20.78 12340 35.85
HIGHSIM (I-75) 0 46.26 18.26 0.004 734.06 57.78 368.93 36.30

45 vehicles per kilometre per lane, shown in Figure 3 (b). A significant number of data points
are located in the free flow region. Table 1 presents some basic statistics of the two original
datasets. The less congested |-75 traffic from the HIGHSIM I-75 dataset has higher speed and
longer spacing than the US101 traffic from the NGSIM US101 dataset. Both two datasets
have similar observation periods of car-following pairs, i.e. around 36 s. The car-following
pair refers to the combination of a preceding vehicle and the following vehicle. As long
the two consecutive vehicles remain the same, the car-following pair exists; otherwise, the
car-following pair disappears.

Data processing

Since vehicles in ramps usually have different car-following behaviour (e.g. slower because
of the road geometry design and mandatory lane changes) and much shorter observation
periods compared with those in mainline, we only consider vehicle trajectory data in the
mainline to investigate the car-following behaviour.

Risk factors are extracted as follows. First, longitudinal speed, longitudinal acceleration,
lateral position, spacing, and headway are extracted from datasets directly. The longitudinal
speed difference is calculated as the longitudinal speed of the preceding vehicle minus that
of the following vehicle. The following vehicle average deviation from the lane centre is
calculated as the absolute value of the difference between the vehicle lateral position and
the lane centre. The following vehicle and preceding vehicle lateral speeds are computed as
the absolute values of the first-order differential of their lateral positions. Greater deviation
or greater lateral speed means more laterally unstable. Descriptive statistics of risk factors
are provided in Table 2.

Next, car-following safety observations are decided. Vehicle trajectories of each car-
following pair are segmented by a length of 5s. Each segment represents an observation.
The length of 5 is chosen for the following reasons. This segment can neither be too long
nor too short. If itis too long, given the short overall car-following period (see Table 3, about
355 on average), the resulting sample size would greatly decrease. For example, when the
segmentation length is extended from 5s to 10s, the resulting sample size of the NGSIM
US101 is reduced to only 25%. Further, 5-s of trajectory data has captured a relatively stable
car-following behaviour like the 10-s data. Testing results reveal that the OR values when
5-s data are used are similar to those when 10-s data are used.

On the other hand, if the segment is too short, it would not be able to characterise a
stable car-following behaviour (Lu, Varaiya, and Horowitz 2009). The limited car-following
trajectory data is not enough to capture the vehicle movement variation. The risk factor
values of cases are similar to the values of controls, resulting in insignificant factors. For
example, when the segment is set as only 1s, the z statistic of diff_vstd in the I-75 model is
as low as 0.73 and the corresponding P value is as high as 0.464; the z statistic of FV_vstd
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Table 2. Descriptive statistics of explanatory variables.

us101 I-75

Case(n = 4564) Control(n = 9128) Case(n = 2157)  Control(n = 4314)

Variable description Mean S.D. Mean S.D. Mean S.D. Mean S.D.
Interaction risk factors
diff_vmn: Longitudinal average —0.45 1.03 0.66 1.08 -1.29 2.13 0.31 1.55

speed difference between the
preceding vehicle and following
vehicle (m/s)

diff_vstd: Longitudinal speed 0.88 0.47 0.73 0.37 0.48 0.52 0.29 0.32
difference standard deviation
(m/s)
sp_mn: Average spacing (m) 14.71 7.21 18.39 10.34 36.54 23.37 38.10 31.00
hw_mn: Average headway (s) 2.08 2.01 333 3.81 1.78 0.81 3.04 233
Individual vehicle risk factors-longitudinal factors
FV_vmn: Following vehicle 8.57 3.47 7.39 4.21 21.70 9.61 15.53 11.23
longitudinal average speed
(m/s)
PV_amax: Preceding vehicle 1.64 0.93 1.94 0.88 2.04 0.99 2.51 0.74

longitudinal maximum
acceleration (m/s?)
FV_vstd: Following vehicle 0.82 0.50 0.73 0.47 0.81 0.77 0.45 0.40
longitudinal speed standard
deviation (m/s)

Individual vehicle risk factors-lateral factors

FV_xmn: Following vehicle average 0.37 0.22 033 0.22 0.31 0.22 0.35 0.24
deviation from the lane centre
(m)

FV_vx_mn: Following vehicle 1.17 0.82 0.87 0.72 0.49 0.64 0.38 0.37
average lateral speed (0.1 m/s)

PV_vx_mn: Preceding vehicle 1.16 0.83 0.93 0.75 0.42 0.49 0.39 0.43

average lateral speed (0.1 m/s)

in the US101 model is as low as 0.59 and the corresponding P value is as high as 0.558. This
loses the opportunity to identify some intuitive risk factors, e.g. speed oscillation.

We also want to note that the segment length is dataset sensitive. Values are valid as
long as they characterise a stable car-following behaviour while guaranteeing the sample
size.

Segments satisfying the following criteria (1)-(2) are excluded. After selecting suitable
car-following segments, a linear interpolation is conducted to complete trajectories with
missing data points. And the Savitzky-Golay filter is used on speed and acceleration to
reduce noises.

(1) Maximum deceleration goes beyond the SSD calculation thresholds, i.e. 3.4 m/s? for
passenger cars, 2.4 m/s? for trucks, and 4.5 m/s? for motorcycles (Chen et al. 2021b).

(2) The average spacing is greater than 300 m. In this case, the following vehicle is not
much affected by the preceding vehicle and thus the concept of car-following does
not exist.

The safety of each car-following segment is assessed as follows. If the SDI value, cal-
culated in Equation (3), is always equal to 0, this segment is defined as safe (i.e. control).
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Otherwise, itis defined as unsafe (i.e. case), indicating there are risks that the following vehi-
cle collides with the preceding vehicle. According to Equation (3), the SDI value is calculated
at each time step (i.e. 0.1 s). Considering a 5-s car-following segment, there are 50 SDI val-
ues. A safe car-following segment is identified when all 50 SDI values are 0. Risks exist when
at least one SDI value equals 1, and thus this car-following segment is unsafe.

To control unobserved driver-specific characteristics, each case is randomly matched to
two controls by preceding vehicle ID and following vehicle ID to form a stratum. The match-
ing ratio of two is chosen after balancing the sample size and the analysis power. With two
controls matched to each case, the analysis power reaches about 96% (Woodward 2013).
By conducting such matching, the confounding impacts of unobserved driver heterogene-
ity can be eliminated because the driver is the same in each stratum. The premise is that in
a short travel period, unobserved driver characteristics (e.g. psychological features) remain
unchanged. Thus, unbiased associations between the observed driving characteristics and
car-following safety can be established. It is noted that this premise may not stand when it
comes to relatively longer travel during which drivers’ psychological features may vary a lot.
This demands future studies with further matching (e.g. reaction time) when long-distance
trajectory data is available. Finally, 4,564 cases and 9,128 controls are identified from the
US101 dataset. 2,157 cases and 4,314 controls are identified from the |-75 dataset.

Results

Pearson'’s correlation tests are conducted on both datasets before modelling to avoid the
multiclonality issue. Test results are plotted in Figure 4 (a) and (b), respectively. Most vari-
ables are weakly correlated with others (i.e. coefficient less than 0.40) and only a few are
moderately correlated with others (i.e. coefficient slightly greater than 0.40). Thus, the
multiclonality issue will not raise (Kumari 2008; Shrestha 2020).

STATA 16 (Stata 2021) is used to estimate the conditional logistic model on the matched
case—control data. The model estimation results are given in Table 3. The OR, confident

i+ & & > &
~\°}b & & fo&{o &£ &£ 4*'§ Ry & & & & &
3
& & & &R 1

dif_vmn -0.02 0.08 -0.02 0.44 012 -0.01 -0.06 0.07 i diff_ vmn = -0.27 -0.1 0.21 -0.31  0.02 -0.02

diff_vstd 0.07 0.04 0.6 0.38 0.02 002 [|o6 06
diff vstd 049 01 | 042 009 022
04
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interval (Cl) of OR, and standard error (SE) of OR are also presented. All variables are
statistically significant at a Cl of 95%.

Interaction risk factors

The longitudinal speed difference between the preceding vehicle and the following vehicle
is found to be negatively associated with unsafe car-following. One unitincrease in the lon-
gitudinal speed difference decreases the possibility of unsafe car-following to 0.209 times in
the US101 model and 0.483 times in the I-75 model. This is intuitive since the faster the pre-
ceding vehicle travels, the smaller the possibility is that the following vehicle collides with
it (Gu etal. 2019; Xu, Wang, and Liu 2013). This is also consistent with the data statistics pre-
sented in Table 2. The mean value of the longitudinal speed difference for all cases is only
—0.45 m/s but 0.66 m/s for all controls in the US101 dataset, —1.29 m/s versus 0.31 m/s in
the I-75 dataset. It is interesting to notice that the crash risk reduction magnitude is greater
in the US101 model than in the I-75 model. This new finding suggests that it is safer if the
following vehicle maintains a smaller speed than the preceding vehicle in more congested
traffic.

The longitudinal speed difference standard deviation is positively associated with unsafe
car-following. If the speed difference standard deviation increases by 1 m/s, the possibility
of unsafe car-following increases to 5.493 times in the US101 model and 1.388 times in the
I-75 model. This suggests that as the traffic becomes more oscillated, the crash risk greatly
increases, which aligns with the existing literature (Pirdavani et al. 2015; Wang, Abdel-Aty,
and Lee 2017; Wu, Abdel-Aty, and Lee 2018b). As shown in Table 2, the mean value of the
longitudinal speed difference standard deviation for all cases is 0.88 m/s while itis only 0.47
for all control in the US101 dataset, 0.48 m/s versus 0.29 m/s in the I-75 dataset. Apart from
consistent findings as in the existing literature, the impact magnitude of the longitudinal
speed difference standard deviation is found to be greater in the US101 model than in the
I-75 model. The possible reason is that the US101 traffic is more oscillated and congested,
and thus it is more likely to expose to traffic crashes.

As expected, the average spacing is negatively associated with unsafe car-following. If
the car-following spacing increases by 1 m, the possibility of unsafe car-following becomes
0.848 times in the US101 model. This highlights the significance of maintaining a long
enough spacing to assure safety (Ni, Kang, and Andersen 2010; Yeung and Wong 2014).
This is also reflected in Table 2 that the mean value of the average spacing for all cases is
14.71 m while it is 18.39 m for all controls in the US101 dataset. The average headway is
also negatively associated with unsafe car-following in the US101 model. If the headway
increases by 1, the possibility of unsafe car-following decreases to 0.517 times. However,
such crashrisk reductionis not observed in the I-75 model, i.e. the average spacing and aver-
age headway are not statistically significant. This indicates a new insight that the benefit of
increasing the spacing and headway is more like to manifest in more congested traffic.

Individual vehicle risk factors

Longitudinal factors
The following vehicle longitudinal average speed is positively associated with unsafe car-
following. If the average speed increases by 1 m/s, the corresponding possibility of unsafe
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car-following increases to 1.157 times in the I-75 model. The faster the following vehicle
operates, the greater the crash risk is (Aarts and Van Schagen 2006). As shown in Table 2,
the mean value of the following vehicle average longitudinal speed for all cases is 21.70 m/s
yet it is only 15.53 m/s for all controls in the |-75 dataset. However, the safety effects of
increasing the following vehicle longitudinal average speed are not statistically significant
in the US101 model. This is probably because there is no significant difference between
the following vehicle longitudinal average speed for all cases and controls, as indicated in
Table 2, a mean of 8.57 m/s versus a mean of 7.39 m/s, in the congested traffic.

The preceding vehicle longitudinal maximum acceleration is negatively related to unsafe
car-following. One unit increase in the maximum acceleration of the preceding vehicle is
associated with 0.916 times unsafe car-following possibility in the US101 model and 0.834
times in the I-75 model. With a greater maximum acceleration, the preceding vehicle can
travel faster, and consequently the crash risk decreases (Gu et al. 2019; Xu, Wang, and Liu
2013). Also, a new finding is yielded that the crash risk reduction magnitude is greater in
the I-75 model. Since the I-75 traffic is less congested, a greater maximum acceleration is
expected to result in an even greater preceding vehicle longitudinal speed than the US101
traffic. Consequently, crash risks are much reduced.

Thefollowing vehicle longitudinal speed standard deviation is positively associated with
unsafe car-following. One unit increase contributes to 1.925 times unsafe car-following
probability in the US101 model and 2.264 times in the I-75 model. As the following vehi-
cle becomes less longitudinally stable, the crash risks increase (Pirdavani et al. 2015). The
magnitude of the threatening effects is greater in the I-75 model than in the US101 model,
which is probably accounted for by the apparently greater speed of the I-75 traffic. This
new finding illustrates the importance of keeping longitudinally stable, i.e. avoiding fre-
guent acceleration and/or deceleration, in assuring car-following safety especially when
the operating speed is relatively great.

Lateral factors
When considering the individual vehicle lateral risk factors, more interesting and novel
findings are drawn as follows.

First, the following vehicle average deviation from the lane centre is found to increase
the possibility of unsafe car-following. If the average deviation increases by 1 m, the unsafe
car-following possibility is expected to increase to 2.712 times in the US101 model and
1.627 times in the I-75 model. Similarly, the following vehicle average lateral speed is also
positively associated with the unsafe car-following possibility. If the lateral speed increases
by 0.1 m/s, the corresponding possibility of unsafe car-following increases to 1.566 times in
the US101 model and 1.226 times in the |-75 model. Both the above factors are indicators
of unstable lane-keeping behaviour. When the following vehicles are more laterally unsta-
ble, it is of great possibility that the drivers are distracted. This would contribute to higher
crashrisks. Itis also noticed that the threatening effects of unstable lane-keeping behaviour
of the following vehicle on unsafe car-following are greater in the US101 model. The crash
risks are much greater when vehicles are more laterally unstable in more congested traffic.

The preceding vehicle average lateral speed is also positively related to the unsafe car-
following possibility. If the average lateral speed increases by 0.1 m/s, the associated unsafe
car-following possibility increases to 1.764 times in the US101 model. As the preceding vehi-
cle becomes more laterally unstable, the crash risks are expected to climb. However, this
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variable is not significant in the I-75 model. The laterally unstable behaviour of the preced-
ing vehicles is less likely to increase the crash risks when the traffic is less congested and
the car-following spacing is longer.

It should be noted that the above explanation does not contradict the discussion regard-
ing the threatening effects of the preceding vehicle longitudinal speed standard deviation,
i.e. longitudinally unstable behaviour indicator. Because the impacts of the preceding vehi-
cle longitudinal speed standard deviation on the unsafe car-following probability are direct
while the impacts of the preceding vehicle average lateral speed are indirect that are related
to unobserved driver heterogeneity which cannot be controlled by matching vehicle IDs,
e.g. whether a driver is distracted or not. It may be possible to control such driver hetero-
geneity by additionally matching the drivers’ reaction time based on the premise that a
driver’s reaction time is longer when he/she is distracted. Given the short car-following
duration of each preceding-following vehicle pair in the two datasets, i.e. mean values
around 36, further matching the drivers’ reaction time would result in an extremely
small sample size. Thus, we list this as a future research direction when long-duration car-
following trajectory data is available. It is interesting to investigate the car-following safety
impacts of the lateral characteristics after the further matching.

Conclusion

This study adopts a matched case-control approach to quantify the safety effects of
observed driving characteristics on car-following safety. The confounding effects of unob-
served driver heterogeneity are controlled by matching preceding vehicle ID and following
vehicle ID. The NGSIM US101 and HIGHSIM I-75 datasets are processed and matched. The
conditional logistic regression model is estimated on the matched data to estimate the
safety effects of both longitudinal (e.g. car-following) and lateral (e.g. lane-keeping) driving
characteristics.

Some findings are found to be consistent with the existing studies. The longitudinal
average speed difference, average spacing, average headway, and preceding vehicle longi-
tudinal maximum acceleration are negatively related to car-following crash risks. The longi-
tudinal speed difference standard deviation, following vehicle longitudinal average speed,
and following vehicle longitudinal speed standard deviation are positively associated with
car-following crash risks.

Several key conclusions and new insights are drawn. (1). The following vehicle aver-
age deviation from the lane centre, following vehicle average lateral speed, and preceding
vehicle average lateral speed are found to increase the possibility of unsafe car-following,
indicating that unstable lateral movements contribute to higher crash risks. Therefore, a
stable and efficient lane-keeping technology is essential in autonomous vehicle develop-
ment. Regarding human drivers, distracted driving (e.g. texting, eating, and drinking while
driving) that causes unstable lateral movements should be avoided. Advanced driver assis-
tance systems with an unstable lateral movement warning function should be developed.
Unlike the widely deployed lane marking detection that only warns drivers when the vehicle
touches the lane marking, this function can be configured to alert drivers when the vehicle
has a lateral speed greater than a threshold. (2). When traffic is more congested, there is
less room on the roadway surface that can be used to maneuver a risky car-following sce-
nario, i.e. the traffic system is fragile and even a small change can easily increase crash risks.
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Therefore, the following vehicle is suggested to maintain a greater speed difference, spac-
ing, and headway from the preceding vehicle in more congested traffic. Besides, vehicles
are encouraged to keep laterally as stable as possible to reduce more crash risks in more
congested traffic.

The above findings enable a more comprehensive and accurate understanding of car-
following risk factors with unobserved driver-specific characteristics controlled. These
findings are valuable in enhancing traffic safety management and in helping develop a
real-time car-following safety warning system for automated vehicles to facilitate their safe
operations.

Yet, limitations exist in this study due to the short car-following duration of each vehicle
pair in the two datasets. In the future, it is worthy to further control driver heterogeneity
by additionally matching the drivers’ reaction time when long-duration car-following tra-
jectory data is available based on the premise that even the same driver could respond
differently. Further, this study does not classify cases into different risk levels. This is a stan-
dard treatment of matched case—control study but may lose the information of the possible
crashrisks. In a future study, the car-following safety indicator can be formulated as an ordi-
nal variable instead of a binary variable to address this limitation. It would be valuable to
investigate the relationship between actual crashes and risk factors in the future when rel-
evant data is available. The car-following risk model spatial transferability can be tested
on car-following data collected at the same time (probably the same year) but at a different
location, when available. The model temporal transferability can be tested on car-following
data collected at the same location but at a different time, when available. Last, although
some seeming risk factors (e.g. vehicle type and lane number) are not significant in the
investigated two datasets, their impacts on car-following risks shall be tested when new
datasets are available.
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Appendix

This appendix presents the model results when TTC is adopted to measure the car-following safety.
The threshold of differentiating risky car-following from safe car-following is set as 4 s by referring to
the existing literature (Aksan et al. 2016). Within the car-following segment, the TTC value is calculated
for each time step. If all TTC values are greater than 4 s, the segment is labelled as a control (i.e. safe).
If at least one TTC value is smaller than 4 s, the segment is labelled as a case (i.e. risky).

The detailed model fitting results are provided in Table A1.Itis observed that the effects of risk fac-
tors on car-following safety when TTC is used with a threshold of 4 s are consistent with those when
SDl is used (Table 3) qualitatively. Specifically, the longitudinal average speed difference and average
spacing are negatively related to car-following crash risks. The longitudinal speed difference standard
deviation, following vehicle longitudinal speed standard deviation, and following vehicle average
lateral speed are positively related to car-following crash risks. The comparison results between the
NGSIM US101 and HIGHSIM I-75 when TTC is used with a threshold of 4 s are also consistent with those
when SDI is used (Table 3) qualitatively. It is safer when the following vehicle maintains a smaller
speed than the preceding vehicle in more congested traffic and when the following vehicle stays
longitudinally stable especially when the overall traffic speed is great.

Some significant risk factors in Table 3 are not significant anymore when TTC is used as the safety
measurement. Yet, there are also new significant factors observed. The following vehicle longitudinal
maximum acceleration and preceding vehicle longitudinal speed standard deviation are found to be
positively related to car-following risks.

It should be noted that different SSMs (e.g. SDI and TTC) and even the same SSM with different
threshold values differentiating risky and safe situations (e.g. TTC = 4sand TTC = 7 s) are expected
to yield different model estimation results in terms of specific model parameter values. This is intuitive
because the values of the response variable (i.e. either safe [0] or risky [1]) have changed. However,
the qualitative impact of each risk factor remains the same, as discussed above.
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