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A B S T R A C T   

Emerging autonomous modular vehicle (AMV) technology allows vehicle units to physically dock 
on or split from each other en route to form vehicles of different lengths. This technology has 
great potential in roadway logistics where platoons/long trains are formed to transport goods and 
passengers, i.e., freight and transit systems. AMV docking is an extreme case of autonomous 
vehicle (AV) platooning in that AMVs are physically connected with zero gaps. This paper for
mulates the AMV docking and AV platooning trajectory planning problem into a two-stage 
optimization problem. A feasible cone method is proposed to reveal the theoretical properties 
of solution feasibility and solve the first-stage problem analytically. This method provides the 
basics for a parsimonious heuristic approach to design trajectories specified as several quadratic 
segments. A heuristic alternative solution based on Pontryagin’s maximum principle is proposed 
to solve a special case of the original problem to the exact optimum. Then an exact solution 
approach based on quadratic programming is proposed to optimize the trajectories. The feasible 
cone method is used to construct valid cuts to expedite the exact solution efficiency. Numerical 
experiments show that the parsimonious heuristic approach can achieve near-optimal solutions 
and greatly reduce the solution time compared with the exact solution approach, appealing to 
real-time engineering applications. The results also demonstrate the superiority of the parsimo
nious heuristic approach in optimizing AMV docking and AV platooning trajectories compared 
with traditional platooning methods. Sensitivity analysis results shed insights into advising 
parameter selections of platoon-related logistics to balance the tradeoff between operational ef
ficiency and cost.   

1. Introduction 

For decades, traffic growth outpaced investment in road infrastructure. Traffic congestion ensues and substantially compromises 
society’s economic well-being and long-term sustainability. Emerging autonomous modular vehicle (AMV) technology provides 
promising mitigation to congestion. The AMV technology allows multiple vehicles to flexibly dock on and split from each other en 
route with advanced control and communication technologies. This technology is expected to improve the service rate of roadway 
logistics where long trains/platoons are formed, such as transit and freight transport (Chen et al., 2019). 

AMV docking is an extreme case of autonomous vehicle (AV) platooning (Chen et al., 2021; Feng et al., 2019; Li et al., 2021). This 
technology eliminates car-following gaps via physical connections between multiple vehicles and thus maximizes space efficiency. It 
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further smooths vehicle motion trajectories via automated control, particularly during transition stages such as docking and split 
operations. Trajectory smoothing and improved aerodynamic efficiency by eliminating gaps between docked vehicles result in less 
congestion, superior energy efficiency, and fewer environmental footprints. Inspired by this technology, various experiments have 
been proposed and tested recently. Pilot experiments on autonomous rail rapid transit with adjustable train lengths, i.e., different 
numbers of AMV, are going on in Zhuzhou, China (Lambert, 2017). AMVs designed by Next Future Transportation Inc. are being tested 
in Dubai (Tarek, 2018) and Singapore (Ackerman, 2016). 

Despite such great potential, the trajectory planning of AMVs has not been investigated to the best of our knowledge. If connections 
need to be drawn from the existing literature, physically connected AMVs can be viewed as an extreme adaption of platooned AVs, i.e., 
reducing vehicle gaps to zero. AV platooning has drawn much attention from researchers in recent years due to its potential to improve 
the safety, stability, and efficiency of traffic systems (Li and Wang, 2007; Liu et al., 2021). Research on AV platooning can be traced 
back more than 50 years (Levine and Athans, 1966; Melzer and Kuo, 1971). Most existing studies on AV platooning focus on operations 
of vehicles that are already in a platoon, such as string stability (Ploeg et al., 2013), inter-vehicle communication (Tank and Linnartz, 
1997), control strategies (Horowitz and Varaiya, 2000; Stankovic et al., 2000) and safety issues (Alam et al., 2014). In addition to 
passenger cars (Lee and Tomizuka, 2003; Ma et al., 2012; Tan et al., 1998), platooning has been well investigated for heavy-duty 
vehicles (HDV) for their greater potential for energy consumption reduction (Alam, 2014; Bishop et al., 2014; Bonnet and Fritz, 
2000; Larsen et al., 2019; Noruzoliaee et al., 2021; W. Zhang et al., 2017). Examples of recent undertakings on HDV platooning include 
PATH (Lu and Shladover, 2014), CHAUFFEUR (Bonnet and Fritz, 2000), KONVOI (Kunze et al., 2011), and Energy ITS (Tsugawa, 
2013). 

Research on transitions between separated vehicles and connected platoons is relatively recent. Research has been conducted 
regarding how vehicles enter or leave a platoon for better safety performance (Baskar et al., 2008; Milanés et al., 2010). Virtual 
controllers placed at major intersections in a road network were used to coordinate approaching vehicles to form platoons with 
appealing energy efficiency (Larson et al., 2014). Liang et al. (2013) addressed a single HDV increasing speed to catch other vehicles or 
platoons. They proposed a coordination algorithm to platoon several vehicles by coordinating neighboring vehicles pairwise (Liang 
et al., 2015). Cooperative adaptive cruise control (CACC) has been used to manage vehicle platoon (Amoozadeh et al., 2015; Liu et al., 
2018). Morales and Nijmeijer (2016) controlled vehicle trajectories to join the existing platoons without much disturbance to the 
vehicles already in the platoon. Bang and Ahn (2017) adopted swarm intelligence to control platoon formation and evolution with the 
spring constant and damping coefficient. Wei et al. (2017) adapted Newell’s car-following model to approximate AV platooning by 
varying the reaction time. Heinovski and Dressler (2018) developed both centralized and distributed platooning models from the 
perspective of vehicles seeking to join platoons. More recently, a few studies investigated the vehicle platoon formation in a decen
tralized fashion (Zhuang et al., 2020), i.e., solving every single vehicle’s trajectory respectively, or in a receding centralized fashion 

Fig. 1. Methodology framework.  
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(Firoozi et al., 2021), i.e., solving vehicles’ trajectories in a time horizon shorter than the actually needed horizon and repeating this 
until the platoon is formed. Despite these successes, detailed trajectory planning for multiple vehicles to form platoons simultaneously 
in a coordinated and optimal manner has been neglected, which limits the efficiency and performance of platooning operations. 

Some efforts have been made to optimize trajectories of scattered vehicles to pass roadway segments efficiently in a manner similar 
to platooning, i.e., the ending speeds and gaps are not strictly the same (Jiang et al., 2017; Jin et al., 2013; Yao et al., 2018). However, 
little effort has been made to reveal the analytical properties of problem and solution structures, which impedes our understanding of 
and insights into trajectory planning problems. Li and Li (2019) formulated a general vehicle trajectory optimization problem without 
regulating the ending speed and car-following distance and analyzed solution feasibility conditions. Yet, without the final platooning 
conditions, Li and Li (2019) assumed that the operation time horizon was fixed and given rather than a variable to be minimized, as in 
this paper. When the time horizon is set too long, operational efficiency was not maximized (i.e., the operation could have finished 
earlier to reduce the potential impedance on traffic and thus enhance mobility), and the platooning benefits were not maximized (i.e., 
vehicles could have stayed in the platoon for the longest duration after the operation to reduce energy consumption and improve 
mobility). An arbitrary time horizon could easily lead to infeasibility such that platoons cannot form when the time horizon is too short 
and thus it must be chosen appropriately, which requires extra effort. Further, Li and Li (2019) did not propose any customized solution 
approach but only used an off-the-shelf standard solver. A standard solver without customization to the specific problem structure 
often takes a long time to solve a problem instance, and the solution time is expected to increase significantly with the problem size. A 
long solution time would disqualify the solution approach from serving real-time vehicle trajectory applications on the time scale of at 
least a sub-second. Last but not the least, without regulating the final speed and final car-following distance, the solution quality in Li 
and Li (2019) remains uncertain, especially the final states can be chaotic. To achieve the best objective (i.e., the smoothest trajec
tories), the final speed in Li and Li (2019) can be rather small, which would seriously impede the mobility of both subject vehicles and 
surrounding traffic. More importantly, the following vehicle may inevitably collide with the preceding vehicle right after the opti
mization because the following speed is greater while the distance is short. 

Motivated by the above research gaps, this paper proposes an AMV Docking and AV Platooning Trajectory Planning Problem (DP- 
TPP) on simultaneous docking and platooning operations of multiple vehicles with general initial conditions (e.g., locations and 
speeds). We first model the investigated problem into a two-stage nonlinear program. Due to its complex structure, existing methods or 
solvers cannot solve this model efficiently to satisfy its needs for assisting real-time operations. To tackle this challenge, we propose a 
methodology framework for devising an efficient heuristic solution approach and verifying its performance with an exact solution 
counterpart approach, as illustrated in Fig. 1. We first analyze the theoretical properties of solution feasibility by extending the time 
geography theory. This also yields the optimal solution to the investigated first-stage problem for solving the minimum docking time. 
The minimum docking time and feasible region structure from the theoretical analysis enable the development of a parsimonious 
heuristic trajectory planning approach that obtains near-optimal solutions to the DP-TPP as a small number of simple quadratic 
segments in milliseconds. A heuristic alternative solution based on Pontryagin’s maximum principle is also proposed to solve a special 
case of the DP-TPP to the exact optimum. Further, these theoretical properties enable the formulation of an exact solution approach 
with quadratic programming and expedite its solution speed with feasibility cuts. Numerical experiments are conducted to show the 
superior efficiency of the heuristic approach while verifying the near-optimality of the solutions compared to the exact optima. 
Another set of numerical experiments is conducted to demonstrate the superiority of the heuristic approach compared with traditional 
platooning methods in optimizing AMV docking and AV platooning trajectories. Finally, sensitivity analyses are conducted to draw 
managerial insights into platoon-related logistics. 

The contributions of this paper are summarized as follows. First, a trajectory planning problem for AMV docking and AV platooning 
(DP-TPP) is proposed to fill the gap of AMV and AV operations. Second, theoretical properties of the solution feasibility are analyzed to 
enhance an in-depth understanding of the investigated problem. Third, the minimum docking time and feasible region structure from 

Fig. 2. Problem demonstration.  
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the theoretical analysis lead to the development of a parsimonious heuristic trajectory planning approach to solve the DP-TPP to near- 
optima in real-time, appealing to realistic vehicle control. Fourth, A heuristic alternative solution based on Pontryagin’s maximum 
principle is also proposed to solve a special case of the DP-TPP with safety constraints relaxed. 

The paper is organized as follows. Section 2 briefly describes the investigated trajectory planning problem. Section 3 analyzes 
theoretical properties by extending the time geography theory, which leads to the analytical solution to the first-stage problem, i.e., the 
minimum docking time, and derives the feasible region structure. Section 4 proposes a parsimonious heuristic trajectory planning 
approach to obtain near-optimal trajectories. Section 5 presents an exact approach to optimizing AMV docking and AV platooning 
trajectories. Section 6 runs instances to compare the performance of the heuristic approach with the exact solution approach. Nu
merical experiments prove the superiority of the proposed approach in optimizing vehicle trajectories compared with the existing 
benchmark, i.e., the CACC. Sensitivity analysis is also conducted to investigate the impacts of key parameters. Last, Section 7 concludes 
this paper and discusses potential future research directions. 

2. Problem statement 

This section presents the basic settings of the trajectory planning optimization problem, as illustrated in Fig. 2. The investigated 
system contains I AMVs/AVs on the same lane, indexed by i ∈ I = {1, 2, ⋯, I} from downstream to upstream. The length of each 
vehicle is denoted by li. Each vehicle could also be a short platoon that consists of multiple vehicles. The vehicle-to-everything (V2X) 
communication is assumed to be instantaneous with no lags. These AMVs/AVs send platooning requests to the operation center (e.g., 
the leading vehicle or a roadside unit). After receiving these requests, the operation center decides whether to approve them based on 
the current traffic situation (Maiti et al., 2017). For example, if vehicles are within a rather oscillated bottleneck, their platooning 
requests are unlikely to be approved since the platooning process may dampen the overall oscillation. If platooning requests are 
approved, the operation center will collect initial vehicle conditions, i.e., speed and location, and plan the corresponding trajectories. 
How to deal with vehicle operation requests is an interesting research topic yet not the subject of this paper. Readers are referred to 
other relevant studies (Amoozadeh et al., 2015; Hall and Chin, 2005; Valente et al., 2014). This paper investigates the trajectory 
planning problem when I platooning requests are approved. The operation center collects AMV/AV i’s initial location s−

i and speed v−
i 

at time 0 and plans their platooning trajectories. At time T, all AMVs are docked with bumper-to-bumper connection, or all AVs are 
platooned with the same platoon gap Δgap and cruise at speed vd. vd and Δgap are application parameters that shall be set by prac
titioners per application needs, e.g., roadway speed limit and traffic congestion situation. AMV docking is an extreme case of AV 
platooning with zero platoon gaps. With properly designed docking devices, the physical connections between vehicles can be finished 
instantaneously and smoothly. Vehicle docking can be easily generalized to AV platooning by adding positive platoon gaps (i.e., 
equivalent to extending the vehicle effective length). To be specific, if the AMV length is set as Δgap +li where li is the AV length and 
Δgap is the platoon gap, AMV docking is the same operation as AV platooning. Thus, hereafter, we use AMV-related terminology for 
expression simplicity. The decision variables are the trajectories for all vehicles at all time points, i.e., χ := {xi(t)}t∈[0,T],i∈I where xi(t)
denotes the location of vehicle i at time t. Without loss of generality, the location of a vehicle is measured at its front bumper, and it is 
set to increase from upstream to downstream. These variables are subject to the following constraints. 

1. The speed of each AMV, formulated as the first order derivate of the corresponding location, should be less than the speed limit v. 
Also, the speed should be greater than 0 since we assume all AMVs cannot move backward on the road, which yields the following 
speed constraints: 

0 ≤ ẋi(t) ≤ v, ∀i ∈ I , t ∈ [0, ∞). (1) 

2. The acceleration (or deceleration) rate of each AMV, formulated as the second-order derivative of the corresponding location, is 
bounded as follows: 

a ≤ ẍi(t) ≤ a, ∀i ∈ I , t ∈ [0, ∞), (2) 

where a denotes the minimum acceleration rate and a denotes the maximum acceleration rate. |a | is assumed to be equal to |a|. 
3. The safety constraints require that the separation between two consecutive AMVs is always no less than the preceding AMV 

length (since an AMV’s location is measured at its front bumper) during the docking operation: 

xi−1(t) − xi(t) ≥ li−1, ∀i ∈ I \{1}, t ∈ [0, ∞). (3) 

The initial boundary conditions are defined as follows. AMV i starts at its initial location s−
i and speed v−

i at time 0. 

xi(0) = s−
i , ẋi(0) = v−

i , ∀i ∈ I . (4) 

5. Finally, the following final boundary conditions shall be satisfied. AMV i cruises at a speed vd after being docked (i.e., xi−1(T) and 
xi(T) are separated by AMV i −1’s length) at final time T: 

ẋi(T) = vd, ∀i ∈ I , xi−1(T) − xi(T) = li−1, ∀i ∈ I \{1}. (5) 

The investigated trajectory planning problem (i.e., DP-TPP) aims to identify the most appealing trajectory shapes for efficiently 
implementing the docking operation while improving mobility, riding comfort, and energy efficiency. To capture these factors, we 
propose the following two-stage model. The first-stage problem (FP) minimizes the docking operation time T for operational efficiency. 
The reason for selecting this objective is two-fold. First, it is beneficial to mobility because the potential impact of the docking 

Q. Li and X. Li                                                                                                                                                                                                         



Transportation Research Part E 166 (2022) 102886

5

operation on subject vehicles and other vehicles is minimized. Second, the minimum docking operation time suggests that vehicles stay 
in the platoon for the longest duration after the docking operation. This reduces energy consumption and improves mobility (Hall and 
Chin, 2005; Van De Hoef et al., 2015). 

FP : minT
T∈[0,∞)

.

The FP is subject to the feasibility of the second-stage trajectory optimization problem (SP) described below. The SP aims to 
determine the trajectory shapes to reduce the sum of squared acceleration, an indicator commonly used for riding comfort (Xu et al., 
2019) and energy consumption (Y. Zhang et al., 2017), and maximize the travel distance, an indicator of mobility (Litman, 2003). This 
yields the following formulation: 

SP : min
{xi(t)}

∑I

i=1

∫ T

0
ẍi

2(t)dt + c ×
∑I

i=1

∫ T

0
[t × v − (xi(t) − xi(0) )]dt,

subject to constraints (1)-(5). Note that in the second term of the objective, we reformulate maximizing the cumulative travel 
distance into minimizing the cumulative uncovered travel distance from each AMV’s actual travel distance (xi(t) − xi(0) ) to its ideal 
travel distance t × v at the speed limit. This term is illustrated as the blue shaded area in Fig. 3. The reasons for such a formulation 
follow. First, it maximizes mobility along with the whole operation time horizon. Vehicles are encouraged to travel as fast as possible 
during the docking operation. This is valuable for improving upstream traffic mobility. For example, consider a case where another 
vehicle, traveling behind the operation platoon, intends to exit the current roadway. This vehicle could diverge sooner if the platoon 
operation mobility is maximized all the time. Second, this formulation pushes vehicles to platoon with their preceding vehicles as soon 
as possible, thus improving energy efficiency. Coefficient c ∈ R+ denotes the weight of the accumulative uncovered travel distance 
relative to the sum of squared acceleration. For the convenience of the following analysis, let td denote the optimal solution to T. 

It is worth noting that minimizing the operation time (FP) does not necessarily lead to substantial acceleration and deceleration in 

SP. Sizable speed adjustment can always be avoided by setting a smaller range of vehicle acceleration (i.e., 
[

a , a
]

). Decreasing the 

acceleration range leads to an extended operation time and smoother trajectories. 
The above-formulated problem is a trajectory planning problem that devises ideal trajectories to guide vehicles to form a tight 

platoon. Whereas, in real-world implementations, the planning problem is followed by a vehicle control problem, which regulates 
vehicle movements (e.g., throttle/brake) in the presence of various disturbances to follow the planned trajectories as much as possible. 
Various optimal control techniques have been proposed to reduce the control error (i.e., the difference between the vehicle actual 
trajectory and the planned target) such that the intended operation can be finished with expected performance. However, due to the 
unpredicted nature of the environment, it is possible that the control error is too big to be mitigated by the controller, or vehicles must 
decelerate hard to avoid collisions with certain objects. In real-world implementations, trajectory planning and vehicle control must be 
conducted in a rolling manner. In the beginning, vehicle trajectories are planned and followed in the presence of disturbances. When it 
is not feasible to follow the originally planned trajectories, new trajectories should be devised when appropriate and then followed, 
and so on until the intended operation is completed. The integrated trajectory planning and control has witnessed substantial 
development in robotics (De Luca and Oriolo, 2002; Liu et al., 2020) and has started attracting attention in the field of intelligent 
transportation systems (Turri et al., 2017; Wang et al., 2020). More advancements are expected in the future. 

After the problem is formulated, the standard method first discretizes the model and then solves it with a solver. Yet, it is impossible 
to utilize an existing solver for the FP as it is subject to the feasibility of the SP. Thus, theoretical property analysis of the problem 
structure and solution structure is demanded. Even though the FP is solved, and the SP is formulated, it can take a rather long solution 

Fig. 3. Illustration of the accumulative uncovered travel distance.  
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time for the existing solver to solve the non-linear SP with differential equations as the problem size increases, i.e., the number of 
vehicles and the optimization time horizon length. In this case, the solution efficiency cannot meet the requirement of real-time vehicle 
control, which is usually executed at the sub-second level. Motivated by the above issues, we conduct theoretical property analysis in 
Section 3 that analytically solves the FP and adds valid cuts to the original feasible region to expedite the solution time of the existing 
solver. More importantly, theoretical properties enable the development of a fast heuristic (Section 4) that solves the SP significantly 
faster with an average solution time at the milli-second level without much loss of the solution optimality. 

3. Theoretical properties 

This section reveals the theoretical properties of the DP-TPP through feasibility analysis, which leads to an analytical solution to the 
FP. Also, the feasible region of the SP can be greatly reduced by introducing the global feasible cone obtained from feasibility analysis. 
These properties provide a foundation for the following heuristic and exact solution approaches. Section 3.1 revisits the definition of a 
set of trajectories merging operations from (Li and Li, 2019) as the basic terms for the following analysis. Section 3.2 investigates local 
feasibility for an individual AMV without considering conflicts with others. Section 3.3 analytically solves the FP by extending the time 
geography theory. Section 3.4 analyses the feasible region of the SP by considering other AMVs’ impacts. 

3.1. Merging operations 

The following merging operations (Li and Li, 2019) are dedicated to smooth trajectories by avoiding kinks that violate the kine
matic constraints. 

3.1.1. Simple merging operation 
The simple merging operation adds a transitional segment between two trajectory segments. The two trajectory segments are 

generated based on two different states (i.e., location, speed, time, and acceleration) of the same vehicle in the time–space diagram. 
This transitional segment enables the resulted trajectory to satisfy kinematic constraints (1) - (2). 

Definition 1. We define a quadratic trajectory qsvta(t’) for a given original state (s, v, t) using an acceleration rate a as follows: 

qsvta(t’) := s + v(t’ − t) + 0.5a(t’ − t)2
, ∀t’.

All quadratic functions in the following sections should satisfy constraints (1) - (2), i.e., ∈ [0, v], a ∈

[

a ,a
]

. 

Definition 2. The simple merging operation between two quadratic trajectories is defined as follows. One trajectory qs1v1 t1a1 (or q1 for short) 
shoots forward from the initial point (s1, v1, t1) with an acceleration rate of a1. Another trajectory qs3v3 t3a3 (or q3 for short) shoots backward 
from the initial point (s3, v3, t3) with an acceleration rate of a3. The merging trajectory qqs3v3 t3a3 (t2) q̇s3v3 t3a3 (t2 ) t2a2 (or q2 for short) shoots backward 
from its initial point, sliding along the trajectory q3 at t2 and merges with q1 at tm. As illustrated in Fig. 4, the merging trajectory q2 is tangent to 
both trajectories q1 and q3. This indicates that the location and speed of q1 at time tm are equal to the location and speed of q2 at time tm. Also, 
the location and speed of q2 at time t2 are equal to the location and speed of q3 at time t2. 

With the above two conditions, starting time t2 can be solved as follows: 

Fig. 4. An illustration of the simple merging operation.  

Q. Li and X. Li                                                                                                                                                                                                         



Transportation Research Part E 166 (2022) 102886

7

t2 =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−
B
2A

−

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
B2 − 4AC

√

2|A|
, ifA > 0anda1 − a3 > 0;

−
B
2A

+

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
B2 − 4AC

√

2|A|
, ifA > 0anda1 − a3 < 0;

−
C
B

, ifA = 0,

A = (a1 − a3)(a2 − a3), B = 2(a2 − a3)(v1 − v3 − a1t1 + a3t3), C

= (v1 − v3 − a1t1 + a3t3)
2

− 2(a1 − a2)

(
a1t1

2

2
−

a3t3
2

2
+ t3v3 − v1t1 + s1 − s3

)

Based on this, the merging point between q1 and q2, denoted by tm, also can be analytically solved as follows: 

tm =
v3 − v1 + a1t1 − a2t2 + a3(t2 − t3)

a1 − a2
.

3.1.1.1. Upper-bound merging operation. The upper-bound merging operation creates a trajectory satisfying kinematic constraints (1) 
and (2) as a tight upper bound to a set of trajectories. The resulting upper-bound trajectory will be used to construct the upper bound of 
a vehicle’s feasible region to avoid collisions when considering the impacts from other vehicles. 

Definition 3. We define the upper-bound merging operation (UMO) for a series of trajectories s := {s1, s2, ⋯, sL} as follows. 

Step 0: Set su as an empty trajectory set and set starting time t− = 0, the number of trajectory segments k = 1. 
Step 1: Find the lowest trajectory segment from s at the right side of t− and use s’

k to denote this trajectory segment, i.e. s’
k(t) ≤ sl(t),

∀l = 1,2,⋯,L,t ∈ [t−, t− +δ],∃δ > 0. Find t+ = supt∈(t−,∞)s’
k(t) ≤ sl(t),∀l = 1,2,⋯,L. If there is more than one trajectory segment, select 

the one with the largest t+. Append s’
k(t− : t+) to su, i.e.,su : = [su, s’

k(t− : t+)], and set tk− = t−, tk+ = t+. 
Step 2: If t+ < ∞, set t− = t+ and k = k + 1, and go to Step 1. Otherwise, if t+ = ∞, set K = k, and go to Step 3. 
Step 3: In the case of su has kinks that violate constraints (1) and (2), the simple merging operation is used to smooth these kinks. 

Set k = 1 and k’ = k + 1. 
Step 4: Set s’

k as q1, s’
k’ as q3 and a as a2 to solve the starting point t2 and the merging point tm. If t2 > tk’

+, replace q3 with the next 
trajectory segment, i.e., set k’ = k’ + 1. If tm < tk−, replace q1 with the front trajectory segment, i.e., set k = k −1. Repeat this step until 
tm ∈ [tk−, tk+] and t2 ∈ [tk’

−, tk’
+] are found. 

Step 5: Use the smoothed segment [sk(tk−, tm), q2(tm, t2), sk’ (t2, tk’
+)] to replace the unsmoothed segment [sk(tk−, tk+), sk’ (tk’

−, tk’
+)] in 

su. If k’ < K, set k = k’ and k’ = k + 1, go to Step 4. Otherwise, go to the next step. 
Step 6: Return the trajectory of s after UMO, denoted by sUMO(s) : = su. 
Fig. 5 (a) is an illustration of UMO for three trajectories s = {s1,s2,s3}, shown in the black curves. We see that the blue dashed curve 

has a kink marked by the blue stars violating constraints (1) and (2). After UMO, sUMO is smoothed and becomes the highest trajectory 
satisfying the aforementioned constraints and bounds these three trajectories from below. 

3.1.1.2. Lower-bound merging operation. Opposite to the previous section, the lower-bound merging operation creates a trajectory 
satisfying kinematic constraints (1) and (2) as a tight lower bound to a set of trajectories. The resulting lower-bound trajectory and the 

Fig. 5. An illustration of UMO and LMO.  
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previous upper-bound trajectory will be used to construct an envelope of a vehicle’s feasible region to avoid collisions when 
considering the impacts from other vehicles. 

Definition 4. The lower-bound merging operation (LMO) for a series of trajectories s := {s1, s2, ⋯, sL} is defined as follows. The major 
difference is that we use a maximum acceleration segment to do the simple merging operation. 

Step 0: Set sl as an empty trajectory set and set starting time t− = 0, the number of trajectory segments k = 1. 
Step 1: Find the highest trajectory segment from s on the right side of t− and use s’

k to denote this segment, i.e. s’
k(t) ≤ sl(t),∀l = 1,

2,⋯,L,t ∈ [t−, t− +δ],∃δ > 0. Find t+ = supt∈(t− ,∞)s’
k(t) ≥ sl(t),∀l = 1,2,⋯,L. If there is more than one trajectory segment, the one with 

the largest t+ is selected. Append s’
k(t− : t+) to sl, i.e.,sl : = [sl, s’

k(t− : t+)], and set tk− = t−, tk+ = t+. 
Step 2: If t+ < ∞, set t− = t+ and k = k + 1, and go to Step 1. Otherwise, if t+ = ∞, set K = k, and go to the next step. 
Step 3: In the case of sl has kinks that violate constraints (1) and (2), the simple merging operation is used to smooth these kinks. Set 

k = 1 and k’ = k + 1. 
Step 4: Set s’

k as q1, s’
k’ as q3 and a as a2 to solve the starting point t2 and the merging point tm. If t2 > tk’

+, replace q3 with the next 
trajectory segment, i.e., set k’ = k’ + 1. If tm < tk−, replace q1 with the front trajectory segment, i.e., set k = k −1. Repeat this step until 
tm ∈ [tk−, tk+] and t2 ∈ [tk’

−, tk’
+] are found. 

Step 5: Use the smoothed segment [sk(tk−, tm), q2(tm, t2), sk’ (t2, tk’
+)] to replace the unsmoothed segment [sk(tk−, tk+), sk’ (tk’

−, tk’
+)]

in sl. If k’< K, set k = k’ and k’ = k + 1, go to Step 4. Otherwise, go to the next step. 
Step 6: Return the trajectory of s after LMO, denoted by sLMO(s) : = sl. 
Fig. 5 (b) is an illustration of LMO for another set of trajectories s = {s1,s2,s3}. Again, we see that sl, shown in the blue dashed curve, 

may have kinks violating the kinematic constraints before smoothing. But after the LMO, sLMO satisfies the kinematic constraints and 
bounds these trajectories from above. 

3.2. Local feasibility analysis 

The local feasibility analysis pertains to an individual AMV without considering impacts from other AMVs (i.e., only subject to 
constraints (1), (2), and (4) without considering constraints (3) for conflicts of multiple vehicles). 

3.2.1. Local feasible cone 

Definition 5. We define a local feasible cone for each AMV in the time–space diagram as the region between the maximum acceleration 
trajectory and the maximum deceleration trajectory. The maximum acceleration trajectory is the furthest trajectory that the AMV can reach 
subject to its initial boundary conditions (4) without exceeding the speed and acceleration upper limits (i.e., v and a). In contrast, the maximum 
deceleration trajectory is the nearest trajectory that the AMV can maintain subject to its initial boundary conditions (4) without exceeding the 
speed and acceleration lower limits (i.e., 0 and a ). With this definition, all feasible trajectories for the AMV will be always within the local 
feasible cone. 

Let ssivitiai (si for short) denote the acceleration trajectory of AMV i that starts at state (siviti) with a positive acceleration rate (ai > 0)

and ssivi tiai (si for short) denote the deceleration trajectory that starts at state (siviti) with the negative acceleration rate (ai < 0). With 
the positive acceleration rate, the trajectory will accelerate to the speed v and then cruise at the maximum speed. If the acceleration 
rate is negative, the trajectory will decelerate to speed 0 and stop for the rest of the time. ssivitiai (t) and ssivitiai (t) can be formulated as 
follows: 

Fig. 6. Illustration of a local feasible cone.  
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ssivi tiai (t) =

{
si + vi(t − ti) + 0.5ai(t − ti)

2
, ∀t ∈

[
ti, ti

acrit],

ssivi tiai

(
ti

acrit) + v
(
t − ti

acrit), ∀t > ti
acrit,

ifai ≥ 0;

ssivi tiai (t) =

{

si + vi(t − ti) + 0.5ai(t − ti)
2
, ∀t ∈

[
ti, ti

dcrit],

ssivi tiai

(
ti

dcrit), ∀t > ti
dcrit,

ifai < 0, (6) 

where the critical time between the quadratic acceleration segment and the linear segment is defined as: 

ti
acrit := ti +

v − vi

ai
, ifai ≥ 0.

And the critical time between the quadratic deceleration segment and the linear segment is defined as: 

ti
dcrit := ti +

−vi

ai
, ifai < 0.

When ai equals a or a , the above equation yields the maximum acceleration trajectory ssivi tia (sa
ifor short) or the maximum decel

eration trajectory ssivi tia (s a
ifor short). The region between these two trajectories in red thin curves in Fig. 6 is the local feasible cone of 

the AMV. 

3.2.2. Local docking feasible cone 

Definition 6. We define a local docking feasible cone for each AMV in the time–space diagram as the region where this AMV can reach the 
docking speed. The local feasible cone specifies the region for all possible space–time points for the AMV to complete the docking operation with 
the neighboring AMV(s). It can be obtained based on the corresponding local feasible cone. 

We let each point on the upper bound of local feasible cone sa
i with a speed greater than vd decelerate at maximum deceleration rate 

a until it reaches vd, which yields the upper bound of the docking feasible cone si
d. Similarly, let each point on lower bound s a

i with a 
speed less than vd accelerate at the maximum acceleration rate a until it reaches vd , which yields us the lower bound of the docking 
feasible cone si

d. Fig. 6 illustrates a local docking feasible cone, shown in blue bold curves when the original speed is less than the 
docking speed. The key parameters of the local docking feasible cone are formulated as follows. τi(t) denotes the time duration needed 
to decelerate from the point on sa

i at time instant t to vd. ṡa
i is the first order derivative of the position sa

i and it denotes the corre
sponding speed. tidocrit is the earliest time point that AMV i reaches docking speed vd.

ti
docrit =

vd − ṡa
i(0)

a
.

τi(t) =
vd − ṡa

i(t)
a

, ∀t ≥ ti
docrit.

di(t) denotes the distance traveled to decelerate from the point on sa
i at time instant t to vd. 

di(t) =
(vd)

2
− (ṡa

i(t))
2

2a
, ∀t ≥ ti

docrit.

si
d denotes the upper bound to the local docking feasible cone. 

si
d(t + τi(t)) = sa

i(t) + di(t), ∀t ≥ ti
docrit. (7) 

τ i(t’) denotes the time duration needed to accelerate from the point on s a
i at time instant t’ to vd. ṡa

i is the first-order derivative of 
the position s a

i and it denotes the corresponding speed. 

τi(t’) =
vd − ṡa

i(t’)

a
, ∀t’ ≥ 0.

di(t’) denotes the distance traveled to accelerate from the point on s a
i at time instant t’ to vd. 

di(t’) =

(vd)
2

−

(

ṡa
i(t’)

)2

2a
, ∀t’ ≥ 0.

si
d denotes the lower bound to the local docking feasible cone. 

si
d
(

t’ + τi(t’)
)

= s a
i(t’) + di(t’), ∀t’ ≥ 0. (8)  
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3.3. Minimum docking time 

This section shows that the above feasibility cones yield a lower bound to the docking time T, i.e., the optimal solution to the FP. 

Definition 7. We define a local docking feasible shadow cone DSCi for AMV i in the time–space diagram. It is obtained by moving AMV i’s 
docking feasible cone downwards by the cumulative distance of its upstream AMV lengths. DSCi is defined to reduce each AMV as a dimen
sionless point by eliminating the vehicle length. The upper bound and lower bound are denoted by DSCi (the red dashed curve in Fig. 7) and 
DSC i (the blue solid curve in Fig. 7). 

DSCi = si
d −

∑I−1

j=i
lj, ∀i ∈ I .

DSC i = si
d −

∑I−1

j=i
lj, ∀i ∈ I . (9)  

Definition 8. We define an intersection point denoted by Xjk, ∀j, k ∈ I and j < k, between the upper bound DSCj of vehicle j’s local docking 
feasible shadow cone and the lower bound DSCk of vehicle k’s local docking feasible shadow cone in the time–space diagram, as marked in the 
green dots in Fig. 7. Xjk is formulated as: 

Xjk := DSCj ∩ DSCk, j, k ∈ I and j > k. (10) 

The minimum docking time td is obtained as the time value of the rightmost intersection point, marked as the black star in Fig. 7. 

td := max
j,k∈I andj>k

{
t|(t, x) ∈ Xjk

}
. (11) 

The two critical AMV indexes j and k are denoted as i* and i′ . 

{i*, i′

} := argmax
j,k∈I and j>k

{
t|(t, x) ∈ Xjk

}
. (12)  

Theorem 1. tdis the minimum feasible docking time for the DP-TPP. 

Proof: We can assume that a docking time t′ smaller than td exists, as shown in Fig. 7. There is no common area of all AMVs’ local 
docking feasible shadow cones, indicating that not all AMVs can dock together at t′ . Thus, a docking time smaller than td does not exist. 
Later analysis (see Theorem 3 in Section 4) shows that td is feasible to the DP-TPP. This completes the proof. 

Theorem 2. When T = td, the final locations of all AMVs are fixed. 

Proof: td is the time value of the rightmost intersection point Xi* i′ . Thus, when T = td, AMV i′ will decelerate the most, stop if 
needed, and then accelerate the most to reach vd by T. The final location of AMV i′ is: 

Fig. 7. Illustration of the minimum docking time.  
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xi’
(
td)

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

s−
i’ + v−

i’ tc +
1
2

a ×(tc)
2

+

(

v−
i’ + a tc

)

×
(
td − tc)

+
1
2

a ×
(
td − tc)2

, if v−
i’ ≥

a vd − a atd

a
;

s−
i’ + v−

i’ tc1 +
1
2

a ×
(
tc1)2

+ v ×
(
tc2 − tc1)

+ v ×
(
td − tc2)

+
1
2
a ×

(
td − tc2)2

, otherwise.

where tc =
vd−v−

i’
−atd

a −a , tc1 =
−v−

i’
a , and tc2 = td −vd

a . 
Then all AMVs’ final locations can be formulated as follows: 

xi
(
td)

=

⎧
⎨

⎩

xi*
(
td)

+ (i* − i) × l, ifi < i*;

xi*
(
td)

, ifi = i*;

xi*
(
td)

− (i − i*) × l, if i > i*.

(13) 

This completes the proof. 

3.4. Feasible region analysis 

The feasible region analysis enables the development of a parsimonious trajectory planning approach considering other AMVs 
instead of only focusing on the object AMV. It also helps improve the solution efficiency of the discrete-time optimization model by 
greatly cutting the feasible region. 

3.4.1. Quasi-global feasible cone 

Definition 9. A quasi-global feasible cone for AMV i is defined in the time–space diagram, which is based on its local feasible cone but 
considering the impact from other AMVs’ local feasible cones. Apply UMO to a set of bounds s := {sj − (i − j)*l }j∈[1,i] to get the upper bound of 

AMV i’s quasi-global feasible cone, denoted by si
qg. Similarly, use LMO to another set of bounds s :=

{

sj + (j − i)*l
}

j∈[i,I]
to get the lower 

bound of AMV i’s quasi-global feasible cone, denoted by si
qg. Fig. 8 (a) illustrates a quasi-global feasible cone shown in the blue region. 

3.4.2. Global feasible cone 

Definition 10. A global feasible cone for each AMV is defined in the time–space diagram that further cuts the feasible region compared with 
the above quasi-global feasible cone. One acceleration trajectory si

td 
using the maximum acceleration rate a and one deceleration trajectory si

td 

using the maximum deceleration rate a are anchored at AMV i’s final location xi(td) with docking speed (i.e., ẋi(td) = vd) and shooting 
backward, shown in Fig. 8 (b). Kinks exist at the intersection of the quasi-global feasible cone upper bound si

qg (or lower bound si
qg) and the 

acceleration trajectory si
td

(or deceleration trajectory si
td ), marked as blue star in Fig. 8 (b). Thus, the simple merging operation is used to merge 

si
qg (or si

qg) and si
td

(or si
td ) to yield a smoother global feasible cone upper bound si

g (or lower bound si
g), shown in Fig. 8 (b). The yellow grid 

region between si
g and si

g is AMV i’s global feasible cone. 

It is noteworthy that only regions in the time–space diagram where vehicles cannot reach due to their kinematic limits and collision 
avoidance needs are cut out. Thus, all feasible solutions, including the optimal solution, must reside in the global feasible region. 

If initial boundary conditions {si, vi} are not properly set, si
g may not always be above si

g. Thus, the global feasible cone could be 
empty (or the DP-TPP instance does not have a feasible solution). We call a set of boundary conditions that yields si

g(t) ≥ si
g(t), ∀t ∈

Fig. 8. Illustrations of feasible cones.  

Q. Li and X. Li                                                                                                                                                                                                         



Transportation Research Part E 166 (2022) 102886

12

[0, T] “admissible”. If the boundary conditions are inadmissible, the AMVs will collide inevitably, and it is impossible to complete the 
docking operation. Thus, this paper only considers admissible boundary conditions. For further explanation about admissible 
boundary conditions, see Theorem 4 in Section 4. 

4. Parsimonious heuristic trajectory planning 

The theoretical property analysis enables the development of a parsimonious heuristic trajectory planning algorithm solving the 
DP-TPP that obtains near-optimal trajectories as a small number of simple quadratic segments and significantly improves solution 
efficiency compared with commercial optimization solver. The basic idea of the algorithm is to let AMV i’ follow its global feasible cone 
lower bound. For AMVs ahead of i’, we plan vehicle trajectories from upstream to downstream by letting each of them merge into the 
following vehicle’s shadow trajectory. For AMVs behind i’, we plan vehicle trajectories from downstream to upstream by letting each of 
them merge into the preceding vehicle’s shadow trajectory. Further, a parsimonious heuristic alternative solution that obtains the 
exact optimal trajectories is proposed based on Pontryagin’s maximum principle to solve a special case of the DP-TPP with safety 
constraints relaxed. 

4.1. Algorithm description 

We let AMV i’ follow its global feasible cone lower bound si’
g, and its trajectory is formulated as follows: 

XP⋅td
i’ (t) = si’

g (14)  

Definition 11. We define an upstream shadow trajectory and a downstream shadow trajectory of Xi(t), respectively. 

Xi
s−(t) = XP⋅td

i (t) − li∀i, t,

Xi
s+(t) = XP⋅td

i (t) + li∀i, t,

where li is the AMV length. 
For AMVs behind i’, vehicle trajectories are solved from downstream to upstream. AMV i, i > i’, follows the upper bound ssivitiafw i 

(short as si) with a certain acceleration afw
i to intersect with the preceding AMV’s upstream shadow trajectory Xi−1

s−. This way, the 
trajectory may not satisfy acceleration constraints (2). Thus, the simple merging operation is used to smooth the trajectory. When i > i’, 
the trajectory of one AMV can be solved with Algorithm 1. 

To smooth vehicle trajectories, a binary search is conducted to find the minimum feasible acceleration rate afw
i, i > i’, for each 

upstream AMV after i’’s trajectory is obtained based on equation (14). All upstream AMVs’ trajectories can be solved with Algorithm 
2, a parsimonious heuristic approach.  

Algorithm 1. The algorithm for solving the trajectory of one upstream AMV,i > i’ 

Step 0: If i = i’ + 1, go to Step 1; otherwise, go to Step 2. 

Step 1: If tc ≤ ti’ dcrit, set T =
{

0, tc, td}
, A =

{

a , a, 0
}

, S =
{

Xi’
s−(0), Xi’

s−(tc), Xi’
s−

(
td) }

, and V =

{

Ẋi’ (0), Ẋi’ (tc), vd
}

; otherwise, set T =
{

0, ti’ dcrit, tc, td}
,

A =

{

a , 0, a, 0
}

, S =
{
Xi’

s−(0), Xi’
s−

(
ti’ dcrit), Xi’

s−(tc), Xi’
s−

(
td) }

andV = {Ẋi’ (0),0, 0, vd}. j = 1, j ∈ J \{J}, J = length(T ). 

Step 2: First, we assume si(t) is a quadratic trajectory and conduct the merging operation with ssivi ti afw i (t) being q1(t), Xi−1
s−(t) being q3(t) (a3 = A {j}, v3 = V {j},

t3 = T {j} ands3 = S {j}) and −afw
i being a2 when t ∈ [T {j}, T {j + 1}]. Solve the starting point t2 and merging point tm. We use ti 2 and ti m to denote the 

starting point t2 and merging point tm of AMV i. 
Step 3: If ti 2 ∈ [T {j}, T {j + 1}] and ti m ≤ tiacrit go to Step 4; otherwise, set j = j + 1, and go to Step 2 until j = J −1. When j = J −1, if ti 2 ∈ [T {j}, T {j + 1}] and 

ti m ≤ tiacrit go to Step 4. Otherwise, go to Step 5. 
Step 4: Set T ’ = {ti, ti m, ti 2}, T ’’ = T {j +1 : length(T )};A ’ =

{
afw

i, −afw
i, A (j)

}
, A ’’ = A {j +1 : length(A )}; S ’

= {si, si(ti m), Xi−1
s−(ti 2)}, S

’’
=

S {j +1 : length(S )}; V ’ =

{

vi, ṡi(ti m), Ẋi−1
s−

(ti 2)

}

, V ’’ = V {j +1 : length(V )}. And update T = [ T ’, T ’’],A = [ A ’, A ’’ ],S = [ S
’
, S

’’
] −l,V = [ V ’,

V ’’]. Go to Step 8. 
Step 5: Now, we assume that si(t) is a compound function and reset j = 1, j ∈ J \{J}, J = length(T ). 
Step 6: We conduct the merging operation with the linear part of si(t) being q1(t), Xi−1

s−(t) being q3(t) (a3 = A {j},v3 = V {j},t3 = T {j} ands3 = S {j}) and −afw
i 

being a2 when t ∈ [T {j}, T {j + 1}]. Solve the starting point ti 2 and merging point ti m. 
Step 7: If ti 2 ∈ [T {j}, T {j + 1}] and ti m ≥ tiacrit , set T ’ =

{
ti, tiacrit , ti m, ti 2

}
,T ’’ = T {j +1 : length(T )}; A ’ =

{
afw

i, 0, −afw
i, A (j)

}
,A ’’ = A {j +1 : length(A )}; 

S
’

=
{

si, si
(
tiacrit), si(ti m), Xi−1

s−(ti 2)
}

, S
’’

= S {j +1 : length(S )}; V ’ =

{

vi, v, v, Ẋi−1(ti 2)

}

, V ’’ = V {j +1 : length(V )}. And update T = [ T ’, T ’’],

A = [ A ’, A ’’], S = [ S
’
, S

’’
] −l, V = [ V

’, V ’’ ]. Go to Step 8; otherwise, set j = j + 1, and go to Step 6 until j = J −1. 
Step 8: AMV i’s trajectory XP⋅td

i ,i > i’, can be formulated as: 

XP⋅td

i (t) =

⎧
⎨

⎩

si(t), ∀t ∈ [0, ti m],

si(ti m) + ṡi(ti m) × (t − tim ) − 0.5afw
i × (t − ti m)

2
, ∀t ∈ [ti m, ti 2],

Xi−1
s−(t), ∀t ∈ [ti 2, T].

(15) 
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For AMVs ahead of i’, vehicle trajectories are solved from upstream to downstream. AMV i, i < i’, follows the lower bound ssivi ti(−afw i)

(short as si) with a certain acceleration −afw
i to intersect with the following AMV’s downstream shadow trajectory Xi+1

s+. The al
gorithm follows the same procedure as in Algorithm 2 and thus is omitted here. 

The PH is constructed so that both the squared acceleration and the mobility terms in the SP are accounted for. Specifically, the 
binary search of the acceleration rate makes sure that the value of the square acceleration term is not too large. Further, letting a 
vehicle follow the acceleration trajectory (or the deceleration trajectory) to merge into its preceding vehicle’s shadow trajectory (or its 
following vehicle’s shadow trajectory) ensures that mobility is considered. While it is difficult to theoretically prove the optimality 
performance of the PH in solving platooning trajectories given the numerical nature of the binary search, extensive numerical ex
periments with a wide range of key parameter settings are conducted in Section 6 to compare the solution performance of the PH with 
that of the solver. For all the instances tested, the PH solutions have a near-zero optimality gap, which validates the quality of the PH 
solutions. 

4.2. Theoretical properties 

This section analyzes the feasibility and optimality properties of the proposed PH algorithm. Theorem 3-Theorem 5 show that the 
feasibility of the PH output is equivalent to the feasibility of the DP-TPP. The following analysis proposes a heuristic alternative so
lution based on Pontryagin’s maximum principle to solve a special case of the DP-TPP. 

Theorem 3. If the DP-TPP is feasible, T = td exists, and trajectories XP⋅td

i’ and
{

XP⋅td

i

}

i∈I {i’}
obtained from Algorithm 1 with afw

i = a, 
i∊I \{i’} exist and are feasible to constraints (1) - (5). 

Proof: When T = td, shown as the black star in Fig. 9, AMV i’ follows its global feasible cone lower bound. The shadow trajectory of 
XP⋅td

i’ is shown in the green bold dashed curve in Fig. 9. When i > i’, the shadow of AMV i’s local feasible cone upper bound ssivitia will 
intersect with its preceding vehicle’s shadow trajectory before time td. An illustrative intersection is marked as the black dot. This 
means each upstream AMV can dock with its preceding AMV if it follows the local feasible cone upper bound; i.e., {XP⋅td

i }i>i’ exist. 
Similarly, when i < i’, the shadow of AMV i’s local feasible cone lower bound ssivitia will intersect with its following vehicle’s shadow 
trajectory before time td. An illustrative intersection is marked as the black square. This means each downstream AMV can dock with its 
following AMV if it follows the local feasible cone lower bound; i.e., {XP⋅td

i }i<i’ exist. 
AMV i’’s trajectory is its global feasible cone lower bound si’

g that must satisfy constraints (1) - (5) according to Definition 10. When 
i > i’ AMV i’ speed can be derived from equation (13) as: 

ẊP⋅td

i (t) =

⎧
⎪⎪⎨

⎪⎪⎩

ṡi(t), ∀t ∈ [0, ti m],

ṡi(ti m) − at, ∀t ∈ [ti m, ti 2],

Ẋi−1
s
(t), ∀t ∈ [ti 2, T].

(16) 

And the acceleration is derived as: 

Fig. 9. An illustration of the minimum docking time feasibility.  
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ẌP⋅td

i (t) =

⎧
⎪⎨

⎪⎩

a, ∀t ∈ [0, ti m],

−ai, ∀t ∈ [ti m, ti 2],

Ẍi−1
s
(t), ∀t ∈ [ti 2, T].

(17) 

According to equations (16) and (17), XP⋅td

i’+1 first follows AMV i’ + 1’s local feasible cone upper bound si’+1
a and then merges into 

XP⋅td

i’ shadow. Therefore, XP⋅td

i’+1 satisfies constraints (1) - (5). Follow this logic, we can conclude that XP⋅td

i , i > i’, follows AMV i’s local 
feasible cone upper bound si

a and then merges into XP⋅td

i−1 shadow. The same conclusion can be drawn when i < i’. Thus, XP⋅td

i , ∀i ∈ I 

satisfies constraints (1) - (5). This completes the proof. 

Theorem 4. The DP-TPP is feasible if and only if the initial boundary conditions are admissible. 

Proof: For the necessity, when AMV i’s global feasible cone lower bound si
g (green thin curve in Fig. 10) is above its upper bound si

g 

(red bold curve in Fig. 10), AMV i +1 will collide with AMV i inevitably even if AMV i uses the maximum acceleration rate a to 
accelerate while AMV i +1 using the minimum acceleration rate a to decelerate. Constraints (3) is violated and thus the DP-TPP is not 
feasible. On the other hand, Theorem 3 proves that when the initial boundary conditions are admissible feasible solutions satisfying 
constraints (1) - (5) exist. This proves the sufficiency. 

Theorem 5. If the DP-TPP is feasible, we can find a feasible solution with the PH algorithm when T = td. 

Proof: The PH algorithm seeks the minimum feasible acceleration rate for each AMV using a binary search within 
[

a , a
]

. If the 

current acceleration rate is too small to be feasible, a larger one will be used instead. And if the current acceleration rate is large and 
feasible, a smaller one will be tested until the minimum feasible rate is found to obtain smoother trajectories. The first AMV’s trajectory 
XP⋅td

1 will follow its global feasible cone lower bound. And the following AMVs’ trajectory {XP⋅td

i }i∈I \{1} will accelerate and merge into 
the preceding AMVs’ shadow trajectories with the minimum feasible acceleration rates. Similar to the proof of Theorem 3, we can 
easily show that XP⋅td

1 and {XP⋅td

i }i∈I \{1} obtained from the PH algorithm are also feasible to constraints (1) - (5) when T = td. This 
completes the proof. 

After the above feasibility analysis, we explore the optimality properties of the DP-TPP by constructing heuristic alternative so
lutions x̃i,∀i ∈ I , to solve a special case of the DP-TPP to the exact optimum when c = 0. With td derived in Equation (11), the SP with 
c = 0 is reformulated as follows. 

SP : min
ai(t)

1
2

∑I

i=1

∫ td

0
ai

2(t)dt,

subject to constraints (1)-(5), where ai(t) = v̇i(t) denotes the acceleration (or deceleration) rate of AMV i at time t, and vi(t) = ẋi(t)
denotes the speed of AMV i at time t. Consider the SP for only one AMV i,∀ i ∈ I , safety constraints (3), are relaxed. Thus, the relaxed 
SP (RSP) is decomposed as follows. 

RSP : min
ai(t)

∫ td

0
ai

2(t)dt, ∀i ∈ I 

Fig. 10. An illustration of inadmissible initial boundary conditions.  
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subject to constraints (1), (2), (4), and (5). 
With {ai} as control inputs and {vi, xi} as state variables, the Hamiltonian equation is given as follows. 

Hi(t, xi(t), vi(t), ai(t) ) = ai
2(t) + λi,1(t)vi(t) + λi,2(t)ai(t).

The Pontryagin’s maximum principle costate equation yields Equations (18)-(19), and the necessary condition for optimality yields 
Equation (20). 

∂Hi(t)
∂xi(t)

+ λ̇i,1(t) = 0 + λ̇i,1(t) = 0. (18)  

∂Hi(t)
∂vi(t)

+ λ̇i,2(t) = λi,1(t) + λ̇i,2(t) = 0. (19)  

∂Hi(t)
∂ai(t)

= 2ai(t) + λi,2(t) = 0 (20) 

Equations (18)-(20) yield ai(t) = −
λi,2(t)

2 = mit + ni. When acceleration and speed constraints are not violated, AMV i’s acceleration 
is a linear function of time t. Speed is a quadratic function of time t. Location is a cubic function of time t. 

ãi(t) = mit + ni.

ṽi(t) =
1
2

mit2 + nit + ki,

x̃i(t) =
1
6

mit3 +
1
2

nit2 + kit + qi,

where mi =
12×xi(td)−12×v−

i ×td−12×s−
i +6×td×v−

i −6×td×vd

−td3 , ni =
2×vd−2×v−

i −mi×td2

2×td , ki = v−
i and qi = s−

i . 
If acceleration constraints are violated, the segment(s) with the acceleration equal to the boundary value(s) must be added at the 

start and/or the end of the acceleration function. 

Fig. 11. Heuristic alternative acceleration solutions.  
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ãi(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

a, if −
λi,2(t)

2
> a;

a , if −
λi,2(t)

2
< a ;

mit + ni, if a < −
λi,2(t)

2
< a.

It is noted that the jerk is always equal to 0 or a constant value −λ̇i,2(t)
2 =

λi,1(t)
2 . If speed constraints are violated, Equation (19) does not 

hold. The segment with zero acceleration must be added in the middle of the acceleration function, where the speed boundary value is 

reached. Specifically, if the slope of the original acceleration (or jerk) −
λ̇i,2(t)

2 is greater than 0, λi,1(t) must be greater than 0 so that 
Equation (19) holds. Adding the segment with the acceleration equal to 0 in the middle leads to λi,1(t) + λ̇i,2(t)〉0. In this case, AMV i’s 
speed shall be revised to v . If the original jerk is less than 0, λi,1(t) must be less than 0 so that Equation (19) holds. Adding the segment 
with the acceleration equal to 0 in the middle would lead to λi,1(t) + λ̇i,2(t)〈0. In this case, AMV i’s speed shall be revised to v. 

ṽi(t) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

v , if λi,1(t) + λ̇i,2(t)〉0;

v, if λi,1(t) + λ̇i,2(t)〈0;

1
2
mit2 + nit + vc, if λi,1(t) + λ̇i,2(t) = 0.

There are 16 possible heuristic alternative solutions for each AMV, i.e., 16 acceleration functions, 16speed functions, and 16 
location functions. Given the space limit, only the acceleration functions are plotted for illustration. 

Fig. 11 (m) shows that two horizontal segments are added at the beginning and end of the acceleration function. The two critical 
points are marked as A and B. The speed of A vA

i and location of A xA
i are calculated as follows. 

vA
i = vi(0) + a × tA  

xA
i = xi(0) + vc × tA +

1
2

× a ×
(
tA)2 

The PMP analysis shows that the acceleration, speed, and location functions between A and B are linear, quadratic, and cubic, 
respectively. 

ai(t) = m’ ×
(
t − tA)

+ n’  

vi(t) =
1
2

× m’ ×
(
t − tA)2

+ n’ ×
(
t − tA)

+ vA  

xi(t) =
1
6

× m’ ×
(
t − tA)3

+
1
2

× n’ ×
(
t − tA)2

+ vA ×
(
t − tA)

+ xA 

where n = a and m =
a−a

tA−tB. 
The speed of B vB

i and location of B xB
i are calculated as follows. 

vB
i =

1
2

× m’ ×
(
tB − tA)2

+ n’ ×
(
tB − tA)

+ vA  

xB
i =

1
6

× m’ ×
(
tB − tA)3

+
1
2

× n’ ×
(
tB − tA)2

+ vA ×
(
tB − tA)

+ xA 

The speed vi
(
td

)
and location xi

(
td

)
by the end of the operation are calculated as follows. 

vi
(
td)

= vB + a ×
(
td − tB)

xi
(
td)

= xB + vB ×
(
td − tB)

+
1
2

× a ×
(
td − tB)2 

With the above two equations, tA and tB can be easily computed. For other cases in Fig. 11, the computation follows similar logic 
and thus is omitted here. 

Although safety constraints are not explicitly included in the RSP, the above-proposed heuristic alternative solution can be feasible 
when the initial boundary conditions are properly set so that the consecutive vehicles do not collide (Malikopoulos et al., 2018). Yet, 
the PH algorithm is still needed for solving general DP-TPP instances to near-optimal trajectories in real-time. To test the performance 
of the PH algorithm, Section 5 discretizes the DP-TPP into a quadratic programming model to obtain the exact optimal solution for 
comparison. 
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5. Discrete modeling and analysis 

With the minimum docking time td obtained above (which is the optimal solution to the FP), we discretize the DP-TPP (or the SP by 
fixing T = td) into a quadratic programming model (QPM) to obtain the exact optimal solution to the SP and compare the solution with 
the PH solution to test the PH performance. The feasible region of the QPM is greatly reduced after adding valid cuts derived from the 
global feasible cone. 

We use unit time interval δ (e.g., 0.1 s) to discretize the time horizon [0, td + δ] into J +2 points indexed by J = [0, 1, 2, ⋯, J +1]

where J =
⌈
td/δ

⌉
such that an integer time j represents the actual time point jÂ ⋅ δ. Let decision variables X = {xij}∀i∈I ,j∈J denote the 

position of AMVs at all time points. With this, the QPM is formulated as: 

QPM : min
xij∈X

∑I

i=1

∑J

j=0
δ ×

⎛

⎝
xi(j+2)−xi(j+1)

δ −
xi(j+1)−xij

δ

δ

⎞

⎠

2

+ c ×
∑I

i=1

∑J

j=1
δ ×

(
j × δ × v −

(
xij − xi0

))
,

subject to the following constraints (21) - (25) corresponding to constraints (1) - (5): 

0 ≤
xi(j+1) − xij

δ
≤ v∀i ∈ I , j ∈ J \{J + 1}. (21)  

a ≤

xi(j+2)−xi(j+1)

δ −
xi(j+1)−xij

δ

δ
≤ a, ∀i ∈ I , j ∈ J \{J, J + 1}. (22)  

x(i−1)j − xij≥ l∀i ∈ I \{1}, j ∈ J . (23)  

xi0 = si
−,

xi1 − xi0

δ
= vi

−, ∀i ∈ I ,

xi(J+1) − xiJ

δ
= vd, x(i−1)J − xiJ = l ∀i, I \{1}.

The global feasible cone yields another constraint set as the following valid cuts: 

sij
g ≤ xij ≤ sij

g, ∀i ∈ I , j ∈ J . (26) 

sij
g is equal to si

g(t) where t = jÂ ⋅ δ and denotes the global feasible cone lower bound of AMV i. Similarly, sij
g is the global feasible 

cone upper bound. Note that as δ goes to an infinitesimal value, the QPM solution converges to the optimal DP-TPP solution. 

Theorem 6. The objective function of the QPM is convex. 

Proof: Let F(X) denote the objective function of the QPM. Define W1 := {xij
1}∀i∈I ,j∈J , W2 := {xij

2}∀i∈I ,j∈J and W3 : =
[(

{xij
1}∀i∈I ,j∈J + {xij

2}∀i∈I ,j∈J

)/
2

]
. Proving function F(X) is convex is equivalent to proving 0.5F(W1) + 0.5F(W2) ≥ F(W3). 

0.5F(W1) + 0.5F(W2) − F(W3)

= 0.5

[
∑I

i=1

∑J

j=0
δ ×

(
xi(j+1)

1 − xij
1

δ

)2

+ c ×
∑I

i=1

∑J

j=1
δ ×

(
j × δ × v −

(
xij

1 − xi0
1))

]

+ 0.5

[
∑I

i=1

∑J

j=0
δ ×

(
xi(j+1)

2 − xij
2

δ

)2

+ c

×
∑I

i=1

∑J

j=1
δ ×

(
j × δ × v −

(
xij

2 − xi0
2))

]

−
∑I

i=1

∑J

j=0
δ ×

(
xi(j+1)

1 + xi(j+1)
2

2*δ
−

xij
1 + xij

2

2*δ

)2

− c ×
∑I

i=1

∑J

j=1
δ ×

(

j × δ × v

−

(
xij

1 + xij
2

2
−

xi0
1 + xi0

2

2

))

= 0.25

[
∑I

i=1

∑J

j=0
δ ×

(
xi(j+1)

1 − xij
1

δ

)2

+
∑I

i=1

∑J

j=0
δ ×

(
xi(j+1)

2 − xij
2

δ

)2

− 2
∑I

i=1

∑J

j=0
δ ×

(
xi(j+1)

1 − xij
1

δ

)

×

(
xi(j+1)

2 − xij
2

δ

) ]

= 0.25
∑I

i=1

∑J

j=0
δ ×

[(
xi(j+1)

1 − xij
1

δ

)

−

(
xi(j+1)

2 − xij
2

δ

) ]2  

≥ 0 

This completes the proof. 
The convexity of the objective function ensures that the exact optimal solution can be obtained. Since the objective is just a second- 

order function of the decision variables, this model is a convex quadratic programming model and can be solved to the exact optimum 
by commercial solvers. 
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6. Numerical experiments 

This section first tests the performance of the near-optimal PH algorithm with that of the exact QPM approach. The QPM instances 
are solved by a commercial optimization solver, Gurobi. Further, numerical experiments compare the PH algorithm results with the 
CACC model results to test the superiority of optimizing the AMV docking trajectories with the proposed approach. Finally, sensitivity 
analysis is conducted on key parameters to draw some insights. These numerical examples are conducted on a PC with Windows 10 
operating system with a 2.6 GHz CPU and 16 GB RAM. The code is programmed in MATLAB. 

We test the approaches on a number of instances with different parameter settings. In the default instance, we set = 10, v = 30m/s, 
vd = 28m/s, a = 2m/s2, a = −2m/s2, li = 4m and δ = 0.1s. Further, set c = 0.1 to have the accumulative uncovered travel distance 
and squared acceleration cost components comparable, and making different cost components comparable in an objective with 
multiple components is a standard modeling treatment in the literature (Wei et al., 2016). We also randomly generate initial speeds 
with an average vavg = 24m/s and initial locations with an average car-following gap gapavg = 12m, and select the ones that are ad
missible as the initial boundary conditions. 

6.1. Comparison with the QPM 

The optimality comparison results of the PH and the QPM are shown in Table 1, where FQPM is the SP exact optimal objective from 
the QPM solution, fQPMUTD the accumulative uncovered travel distance component of the SP exact optimal objective from the QPM 
solution, fQPMSA the squared acceleration component of the SP exact optimal objective value from the QPM solution, FPH the SP near- 
optimal objective from the PH algorithm, fPHUTD the accumulative uncovered travel distance component of the SP near-optimal 
objective from the PH algorithm, fPHSA the squared acceleration component of the SP near-optimal objective from the PH algo
rithm, E =

FPH−FQPM
FQPM

× 100% the SP optimality gap between these two objectives, E UTD =
fPH UTD−fQPM UTD

fQPM UTD
× 100% the optimality gap 

between these two uncovered travel distance components, and E SA =
fPH AS−fQPM AS

fQPM AS
× 100% the optimality gap between these two 

squared acceleration components. From Table 1, the E values indicate that the SP objective of the PH is only 5.2% worse than that of 
the QPM on average, and the performance of the PH is relatively robust, with E values less than 7% across all instances. The E UTD 

values are even smaller, with a mean of 3.3%, indicating that the PH’s mobility component solution is very close to the true optimum. 
The E SA values are relatively high, with an average of 9.8%. Note that some E SA values are negative, which indicates that the PH 
solution may have better riding comfort performance than the QPM solution in certain instances. Yet the maximum E SA value is close 
to 22% when v = 36 m/s. This is because the sum of the squared acceleration term tends to be dominated by trajectory segments with 
relatively high acceleration values. Thus its value is sensitive to acceleration differences in a small portion of trajectory segments. To 
illustrate this point, the trajectories from the PH and the QPM when v = 36 m/s are plotted in Fig. 12. The two sets of trajectories have 
similar shapes across most segments. The last few AMVs from the PH merge into preceding AMVs’ shadow trajectories earlier than the 
QPM. Further, we want to point out that this squared acceleration is relatively subjective (or not exactly accurate) in reflecting riding 
comfort or energy consumption, and it comprises a relatively small portion of the total objective value. Thus, its difference from the 
true optimum is relatively acceptable. Overall, these results suggest that the PH solution is near-optimal and acceptable for engineering 
practice. 

After comparing the solution optimality, Table 2 shows the solution times for these different approaches. TimeQPM is the QPM 

Table 1 
The PH and the QPM optimality comparison.  

Parameter value td(s) FQPM fQPM UTD fQPM SA FPH fPH UTD fPH SA E (%) E UTD(%) E SA (%) 

I = 5 veh  9.4 154 94 60 162 97 65  5.2  3.2  8.3 
I = 10 veh (default)  14.1 876 708 168 918 722 196  4.8  2.0  16.7 
I = 15 veh  19.4 2173 1831 342 2287 1937 350  5.2  5.8  2.3 
I = 30 veh  27.9 11,398 9944 1454 12,083 10,942 1141  6.0  10.0  −21.5 
vavg = 18 m/s  15.2 1290 1074 216 1351 1105 246  4.7  2.9  13.9 
vavg = 22 m/s  14.5 929 751 178 974 770 204  4.8  2.5  14.6 
vavg = 26 m/s  13.7 808 619 189 849 626 223  5.1  1.1  18.0 
gapavg = 4 m  10.6 434 306 128 460 310 150  6.0  1.3  17.2 
gapavg = 20 m  17.8 1383 1151 232 1460 1196 264  5.6  3.9  13.8 
gapavg = 36 m  24.5 2670 2311 359 2809 2498 311  5.2  8.1  −13.4 
vd = 20m/s  13.5 828 674 154 853 677 176  3.0  0.4  14.3 
vd = 26m/s  14.4 781 619 162 819 625 194  4.9  1.0  19.8 
vd = 30m/s  15.1 907 717 190 960 730 230  5.8  1.8  21.1 
v = 28m/s  16.0 833 646 187 888 670 218  6.6  3.7  16.6 
v = 32m/s  13.3 854 693 161 901 707 194  5.5  2.0  20.5 
v = 36m/s  11.6 840 674 166 880 677 203  4.8  0.4  22.3 
a = 1m/s2  18.4 957 875 82 1006 937 69  5.1  7.1  −15.9 
a = 1.5m/s2  15.3 905 787 118 934 817 117  3.2  3.8  −0.8 
a = 2.5m/s2  13.5 757 554 203 805 564 241  6.3  1.8  18.7 
Average  15.7        5.2  3.3  9.8  
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Fig. 12. Trajectories from the PH and the QPM.  

Table 2 
The PH and the QPM solution time comparison.  

Parameter value td(s) TimeQPM(s) TimeQPM Cone(s) TimePH(s)

I = 5 veh  9.4  0.180  0.144  0.003 
I = 10 veh (default)  14.1  0.351  0.193  0.005 
I = 15 veh  19.4  0.714  0.335  0.008 
I = 30 veh  27.9  3.249  0.856  0.022 
vavg = 18 m/s  15.2  0.317  0.204  0.006 
vavg = 22 m/s  14.5  0.327  0.195  0.006 
vavg = 26 m/s  13.7  0.328  0.198  0.006 
gapavg = 4 m  10.6  0.252  0.181  0.005 
gapavg = 20 m  17.8  0.428  0.227  0.006 
gapavg = 36 m  24.5  0.608  0.277  0.005 
vd = 20m/s  13.5  0.237  0.175  0.006 
vd = 26m/s  14.4  0.311  0.198  0.006 
vd = 30m/s  15.1  0.319  0.199  0.005 
v = 28m/s  16.0  0.351  0.193  0.005 
v = 32m/s  13.3  0.287  0.187  0.006 
v = 36m/s  11.6  0.275  0.181  0.006 
a = 1m/s2  18.4  0.479  0.245  0.008 
a = 1.5m/s2  15.3  0.519  0.257  0.006 
a = 2.5m/s2  13.5  0.340  0.193  0.006 
Average  15.7  0.519  0.244  0.007  
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Table 3 
The PH and the CACC optimality comparison.  

Parameter value td
CACC(s) FCACC fCACC UTD fCACC SA td

PH(s) FPH fPH UTD fPH SA E time(%) E (%) E UTD(%) E SA(%) 

I = 10 veh (default) 20.3 2107 1162 945  14.1 876 708 168  44.0  140.5  64.1  462.5 
I = 30 veh 70.1 51,269 46,878 4391  27.9 11,398 9944 1454  151.3  349.8  371.4  202.0 
vavg = 18 m/s 25.5 3221 2459 762  15.2 1290 1074 216  67.8  149.7  129.0  252.8 
vavg = 26 m/s 24.5 2218 1488 730  13.7 808 619 189  78.8  174.5  140.4  286.2 
gapavg = 4 m 20.1 1763 1240 523  10.6 434 306 128  89.6  306.2  305.2  308.6 
gapavg = 20 m 28.2 3669 2701 968  17.8 1383 1151 232  58.4  165.3  134.7  317.2 
vd = 20m/s 22.3 3469 2404 1065  13.5 828 674 154  65.2  319.0  256.7  591.6 
vd = 26m/s 23 2808 1956 852  14.4 781 619 162  59.7  259.5  216.0  425.9 
v = 32m/s 21.6 2599 1865 734  13.3 854 693 161  62.4  204.3  169.1  355.9 
v = 36m/s 21.7 3353 2760 593  11.6 840 674 166  87.1  299.2  309.5  257.2 
a = 1m/s2 27.9 2556 2292 264  18.4 957 875 82  51.6  167.1  161.9  222.0 
a = 1.5m/s2 21.7 1992 1559 433  15.3 905 787 118  41.8  120.1  98.1  266.9 
Average 27.2     15.5     71.5  221.3  196.3  329.1  
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solution time without the global feasible cone constraints (26), TimeQPM Cone the QPM solution time with the global feasible cone 
constraints (26), and TimePH the solution time of the PH algorithm. We see that, on average, the PH solution time is only 0.007 s, and 
the QPM solution times are 0.519 s and 0.244 s without and with cutting the feasible region, respectively. First, it is noted that the 
solution time of the QPM can be greatly reduced by around 53% after introducing the global feasible cone cuts. This demonstrates the 
power of using analytical properties to expedite the solution efficiency of a numerical solution approach, which is helpful for appli
cations that require absolute optimality or just to solve the true optimum as a benchmark for comparison. Further, if real-time ap
plications require even greater solution efficiency, the results indicate that the PH is a suitable approach. As AMV fleet size I increases, 
the solution time of the QPM increases significantly. However, the solution time of the PH is kept within 0.1 s. For the other instances, 
the solution time of the QPM ranges from 0.175 s to 0.277 s with cutting the feasible region, yet the solution time of the PH can still be 
within 0.008 s. Overall, with slight sub-optimality yet millisecond-level solution efficiency, the PH is an appealing approach for real- 
time AMV applications. 

6.2. Comparison with the CACC 

To show the advantage of the proposed heuristic approach in terms of planning vehicle trajectories over the existing benchmark, we 
adapt the CACC model proposed by Milanés and Shladover (2014) to solve a basic docking problem without the FP optimization, i.e., 
the minimum docking time limitation. In the benchmark case, we let the first vehicle follow the same trajectory generated by the PH 
algorithm and populate the following trajectories with the CACC model. The comparison results between the benchmark and the PH 
solution are presented in Table 3 and Fig. 13. td

CACC is the docking time needed in the benchmark solution, td
PH the docking time 

needed in the PH solution, E time = td
CACC−td

PH
td PH

× 100% the FP optimality gap between these two objectives, FCACC the SP objective value 
in the benchmark solution, fCACC UTD the uncovered travel distance component in the benchmark SP objective, fCACC SA the squared 
acceleration component in the benchmark SP objective, E = FCACC−FPH

FPH
× 100% the SP optimality gap between these two objectives, 

Fig. 13. Trajectories from the PH and the CACC.  
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E UTD =
fCACC UTD−fPH UTD

fPH UTD
× 100% the optimality gap between these two accumulative uncovered travel distance components, and E SA =

fCACC AS−fPH AS
fPH AS

× 100% the optimality gap between these two squared acceleration components. 
As shown in Table 3, the FP and SP optimality gaps between the CACC and the PH are significant, with an average of 71.5% and 

221.3%, respectively. Across all instances with different settings, the UTD optimality gap is significant with an average of 196.3%, and 
the SA optimality gap is even greater with an average of 329.1%. This clearly shows that the proposed trajectory optimization 
approach yields better performance in docking (or platooning) vehicles than the existing benchmark. Further, we see that at greater I, 
vavg, v and l values and at a lower gapavg, vd and a values optimality gap E is greater. This indicates that the advantage of the proposed 
method will be further articulated when the fleet (or platoon) size is large, the initial speeds are high (which is likely on the freeway), 
the speed limit is high (which is also likely on the freeway), the initial car-following gaps are small (when AMVs are close to each 
other), the vehicle power is low (so is the acceleration limit), and the docking (or platooning) speed is low (which is likely in the early 
stage of the technology for safety reasons). As illustrated in Fig. 13 (b), the benchmark trajectories have substantially longer tails 
adjusting AMV speeds to dock (or platoon) them despite considerable speed adjustment at the early stage. In contrast, the proposed 
approach adjusts trajectory speeds at a relatively homogeneous pace throughout the docking operation. This explains why the pro
posed approach is superior in docking time and riding comfort. 

6.3. Sensitivity analysis 

This subsection conducts sensitivity analysis on key parameters. A number of instances are constructed, each varying only one 
parameter value and keeping the others the same as the default case. Fig. 14 plots how the optimal objective and its two components 

Fig. 14. Optimal objectives evolving trends.  
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vary as each parameter changes. From Fig. 14 (a), we notice that the optimal objective FQPM and its components fQPM UTD and fQPM SA 

all increase super-linearly as the fleet size I increases while fQPM SA increases at a milder pace. The super-linear growth indicates that 
the cost and complexity for each AMV in the docking operation increase as the AMV fleet size grows, which implies the need for 
rigorous optimization for docking a relatively large AMV fleet. Also, the increasing td suggests that a bigger AMV fleet can be separated 
into several sub-fleets with a smaller number of AMVs. Thus, the proposed docking operation can be implemented into each sub-fleet, 
and then each sub-fleet can be viewed as a longer AMV that needs to be docked with other sub-fleets to reduce the docking time as well 
as cost. Fig. 14 (b) shows that as the average initial speed vavg increases, FQPM and fQPM UTD decrease and td is also decreasing slightly. 
This is intuitive since high initial speeds indicate less speed difference from the docking speed and enable the following AMVs to catch 
up with their preceding AMVs quickly with less loss of mobility. fQPM SA is relatively stable, suggesting that riding comfort can be well 
guaranteed under different initial speed conditions. In Fig. 14 (c), td, FQPM, fQPM UTD and fQPM SA increase with the average initial car- 
following gap gapavg, as shown. It is intuitive that an increase in the initial gap gapavg means a longer distance to catch up with so that it 
will lead to a longer docking time and traveled distance and thus fQPM UTD as well. As the initial car-following gap gets larger, the first 
few AMVs need to adjust their speed more (even stop for a while when it is necessary) to wait for the following AMVs, which leads to a 
larger fQPM SA. Fig. 14 (d) shows that when the docking speed is close to the average initial speed (i.e., 24 m/s), the cost of the docking 
operation is the minimum for both the FP and the SP shown as the dents. As the difference between the docking speed and the average 
initial speed increases, td, FQPM and fQPM UTD increase. Because more speed adjustments are needed when the speed difference is larger, 
thus leading to a longer docking time and more loss of mobility. Riding comfort can still be kept relatively constant even with large 
speed differences. To achieve greater docking efficiency and lower cost, choosing a docking speed close to AMVs’ average initial speed 
is better. In Fig. 14 (e), as the maximum speed v increases, mobility and riding comfort, indicated by fQPM UTD and fQPM SA remain 
relatively constant yet td slightly decreases as shown. It is intuitive that an increase in maximum speed v will lead to a decrease in the 
docking time tdbecause following AMVs can travel faster to catch up. This suggests that a greater speed limit is appealing to improve 
docking efficiency without increasing cost when safety is guaranteed in the future. In Fig. 1 (f), as the maximum acceleration a in
creases, fQPM SA increases while fQPM UTD, FQPM and td decrease. The increasing fQPM SA indicates that as the range of acceleration 
expends, riding comfort during the docking operation becomes worse because bigger acceleration rates can be adopted. This indicates 
that docking efficiency and mobility can be improved as the acceleration range expands with the cost of sacrificing riding comfort. 

Considering the needs of different application scenarios, we also conduct several instances using different weights for the accu
mulative uncovered travel distance, i.e., c. The results are shown in Table 4. As the weight of the accumulative uncovered travel 
distance c decreases, i.e., putting less emphasis on mobility performance, the discrepancy between the PH and the QPM can be sig
nificant due to the increasing E SA. However, the absolute value of E UTD can still be kept within 0.07 on average, indicating that the PH 
yields the near-optimal mobility component solution under different application scenarios. The negative value of E UTD suggests that 
the PH can achieve even better mobility performance under some circumstances. However, the increasing E SA suggests that the PH 
should be used with caution as c decreases, and the tradeoff between solution efficiency and solution quality should be more carefully 
balanced according to specific application needs. 

7. Conclusion 

This paper proposes a docking (or platooning) trajectory planning problem (DP-TPP) commonly in roadway logistics where long 
trains/platoons are formed. The DP-TPP docks multiple AMVs (or platoons) with general initial conditions simultaneously while 
improving mobility, riding comfort, and energy efficiency. Theoretical properties of solution feasibility are analyzed by constructing 
feasible cones (i.e., local docking feasible cones and global feasible cones) via extending the time geography theory to a second-order 
version. The theoretical property analysis yields an analytical solution to the minimum docking time. It leads to the development of a 
parsimonious heuristic trajectory planning algorithm (PH) solving the DP-TPP that achieves near-optimal trajectories specified as a 
small number of simple quadratic segments. A heuristic alternative solution solving a special case of the DP-TPP is also proposed to 
obtain the exact optimal trajectories as cubic segments. Then, an exact optimization model (QPM) with a convex objective consisting of 
riding comfort and mobility performance is proposed. Theoretical properties are used to cut the feasible region of the QPM to improve 
its solution efficiency. 

Numerical experiments are conducted to compare the results of the QPM with and without cuts and the PH. The results show that 
the PH can achieve a near-optimal solution (with a 5.2% optimality gap on average) yet with a much shorter solution time (0.007 s on 
average as opposed to the solution time of the QPM). It is appealing for real-time engineering applications that emphasize solution 
efficiency than solution optimality. It is also noteworthy that the introduction of global feasible cones and optimization starting point 
save the solution time about 53% on average for those applications that require the exact optimal solutions. Another set of experiments 
is conducted to compare the PH algorithm with an existing benchmark, i.e., the CACC model. The significant performance gap between 
the PH solution and the benchmark solution verifies the superiority of optimizing the trajectories in the vehicle docking (or platooning) 
process with the proposed approach compared with the classic benchmark. According to the sensitivity analysis on the QPM objective, 
it is better to separate a large AMV fleet into several sub-fleets and dock each sub-fleet at first and then dock sub-fleets together instead 
of docking all vehicles simultaneously to achieve lower docking costs. Also, a smaller difference between vehicles’ average initial speed 
and docking speed is beneficial in increasing docking efficiency and decreasing costs. A greater maximum speed is appealing to 
improve docking efficiency in the future when the technology allows. Docking cost and efficiency can be improved at the price of 
sacrificing riding comfort. 

This work provides useful insights into roadway logistics in which platoons/long trains are usually formed, such as transit and 
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freight transport. It is suggested to use the proposed docking/platooning operations to improve mobility, riding comfort, and energy 
efficiency. Further, based on the sensitivity analysis results, logistic managers can select operation parameters properly (e.g., operation 
speed and the number of vehicles) to balance the tradeoff between operational efficiency and cost. 

This work can be extended in several directions in future research. While this study investigates a light traffic condition where there 
are almost no disruptions from the downstream traffic, it is of great significance to incorporate the impacts of downstream vehicles in 
denser traffic. This study investigates platooning/docking operations in a pure CAV environment for single-lane traffic. The proposed 
theoretical properties and solution methods should be modified to suit more complex and realistic environments with multiple lanes 
and mixed traffic, including human-driven vehicles. Trajectory prediction is necessary if the surrounding vehicle is human-driven/only 
autonomous without connectivity (Xie et al., 2020). If the surrounding vehicle is connected and autonomous, trajectory prediction is 
not needed because the intended trajectory can be shared with the platoon via vehicle-to-vehicle technology. Further, the benefits (e. 
g., fuel efficiency and mobility) yielded from adopting the proposed two-stage docking/platooning operations shall be tested in a large- 
scale environment, e.g., a corridor. It would be interesting to study vehicle platoon operations at intersections with and without traffic 
signals where multiple lanes exist and to incorporate lane-changing behaviors. Finally, field experiments can be conducted to test the 
model feasibility in the real world. Trajectory planning and vehicle control should be properly integrated to ensure safety and 
guarantee operation performance. 
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