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High-granularity vehicle trajectory data can help researchers develop traffic simulation models, understand traffic
flow characteristics, and thus propose insightful strategies for road traffic management. This paper proposes a
novel vehicle trajectory extraction method that can extract high-granularity vehicle trajectories from aerial
videos. The proposed method includes video calibration, vehicle detection and tracking, lane marking identifi-
cation, and vehicle motion characteristics calculation. In particular, the authors propose a Monte-Carlo-based lane
marking identification approach to identify each vehicle's lane. This is a challenging problem for vehicle tra-
jectory extraction, especially when the aerial videos are taken from a high altitude. The authors applied the
proposed method to extract vehicle trajectories from several high-resolution aerial videos recorded from heli-
copters. The extracted dataset is named by the High-Granularity Highway Simulation (HIGH-SIM) vehicle tra-
jectory dataset. To demonstrate the effectiveness of the proposed method and understand the quality of the HIGH-
SIM dataset, we compared the HIGH-SIM dataset with a well-known dataset, the NGSIM US-101 dataset,
regarding the accuracy and consistency aspects. The comparison results showed that the HIGH-SIM dataset has
more reasonable speed and acceleration distributions than the NGSIM US-101 dataset. Also, the internal and
platoon consistencies of the HIGH-SIM dataset give lower errors compared to the NGSIM US-101 dataset. To

benefit future research, the authors have published the HIGH-SIM dataset online for public use.

1. Introduction

Naturalistic vehicle trajectories have significant values in studying
various traffic phenomena, such as car-following (Pei et al., 2016) and
lane-changing behaviors (Li et al., 2021; Soleimaniamiri et al., 2020;
Wang et al., 2019), traffic oscillation propagation (Li et al., 2012), and
traffic capacity drops (Shi and Li, 2021a). As specified in Zhao and Li
(2019), existing vehicle trajectory datasets can be classified into four
categories, such as lidar-based trajectory datasets (Coifman et al., 2016;
Zhao et al.,, 2017), radar-based trajectory datasets (Victor, 2014),
GPS-based trajectory datasets (Milanés and Shladover, 2014; Shi and Li,
2021b), and aerial video-based trajectory datasets (Babinec et al., 2014;
Kim et al., 2019; Xu et al., 2017). Due to the emergence of unmanned
aerial vehicle (UAV) technology, which facilitates the collection of flex-
ible, economical, and unbiased aerial videos (Kim and Cao, 2010), the
investigation of aerial video-based trajectory datasets has attracted wide
attention from researchers in both industry and academia (Apeltauer
et al., 2015; Azevedo et al., 2014; Ke et al., 2019; Kim et al., 2019; Xu
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et al., 2017).

In the literature, well-known aerial video-based trajectory datasets
include the Next Generation Simulation dataset (Federal Highway
Administration [FHWA], 2006), the HighD dataset (Krajewski et al.,
2018), and the pNEUMA dataset (Barmpounakis and Geroliminis, 2020).
For the NGSIM dataset, FHWA extracted the vehicle trajectory data from
videos taken by multiple digital video cameras installed at different lo-
cations near the freeway segments of interest (Kim and Malik, 2003). A
feature-based vehicle detection algorithm detected vehicles in these
videos, and a zero-mean cross-correlation matching algorithm tracked
the detected vehicles (Kim et al., 2009). Researchers identified lane
markings manually to provide lane numbers to the vehicles. However,
based on the result analysis of the dataset, the process failed to suc-
cessfully detect more than 10 percent of the vehicles, and vehicle
tracking could fail for several consecutive frames. Because of the vehicle
detection errors, after accounting for vehicle length, the trajectories in
the dataset often overrun their leaders, seemingly resulting in “collisions
of trajectories”. Moreover, many researchers revealed that the speed and
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acceleration of the trajectories in the dataset often exhibit unrealistic
results (Coifman and Li, 2017; Montanino and Punzo, 2015; Punzo et al.,
2011). Obviously, these errors degrade the effectiveness of using the
NGSIM dataset to study and validate various traffic phenomena.

In comparison with the NGSIM dataset, the HighD dataset (Krajewski
et al., 2018) collected by the Ika team in the RWTH Aachen University
provides a more accurate highway vehicle trajectory dataset. They
adopted the U-Net (Cicek et al., 2016), a common neural network ar-
chitecture, to detect and track vehicles in aerial videos. UAVs hovering
next to the German highways recorded the aerial videos and captured
traffic from a bird's-eye view of the road sections. Results showed that the
HighD dataset has higher detection accuracy than the NGSIM dataset,
because of the advanced detection algorithm and high video resolution.
Despite the success of the HighD dataset, the trajectory extraction
method used in the HighD dataset might not always be applicable to
videos shot at a high altitude (e.g., from a helicopter) where small on-
board cameras' rotations or vibrations would cause drastic shifts of ve-
hicles across the video frames. Moreover, lane markings were also
identified manually, which will be tedious and unreliable when the video
is long, and the coverage range is wide. Lane marking identification is
critical for vehicle trajectory extraction because vehicles' lane numbers
are calculated based on the locations of the lanes. The wrong classifica-
tion of a vehicle's lane number may easily cause the “collisions of tra-
jectories” issue. Most existing lane marking identification algorithms
were proposed for automated driving (Chen and Wang, 2006; Kreucher
et al., 1998; Lee and Moon, 2018; Yim and Oh, 2003; Zhao et al., 2017).
The lane marking identification for automated driving is completely
different from the investigated problem. For example, for the investi-
gated problem, the background of aerial videos is almost static but that of
the automated driving is dynamic. Also, since the videos are shot at a
high altitude, the investigated problem has a much higher requirement
on the accuracy of the lane marking identification. Due to these reasons,
the algorithms for automated driving cannot be utilized by the investi-
gated problem. Thus, there is still a need to propose an efficient lane
marking identification method to cluster vehicle trajectories while
extracting the trajectories from aerial videos.

Unlike the two aforementioned highway datasets, researchers
collected the pNEUMA dataset (Barmpounakis and Geroliminis, 2020)
over multiple days, using UAVs hovering over the Athens central business
district. The UAVs recorded traffic streams in a congested 1.3 km? area
with more than 100 km-lanes of the road network and close to half a
million trajectories, which allow the deep investigation of several critical
traffic phenomena. Despite the contribution of the study, we would like
to state that the vehicle trajectories in the pNEUMA dataset are not
temporally continuous. That is, the flight time of the UAVs is constrained
by the battery capacity, and the aerial videos were missed while the UAVs
were changing batteries and returning to the hovering point. Further, the
investigated road facilities are mostly urban arterials with short blocks.
Thus, the recorded aerial videos may not capture the comprehensive life
cycle of certain traffic phenomena, e.g., bottleneck development and
dissipation on freeways.

To fill out the aforementioned gaps, this paper proposes an advanced
vehicle trajectory extraction method that integrates a Monte-Carlo-based
lane marking identification approach. The paper proposes a multi-point
feature-matching-based video calibration algorithm to circumvent the
camera rotation and shifting issues. Then, the proposed method utilizes
an efficient object detection deep learning neural network YOLOV3 to
detect vehicles, and a feature-based vehicle tracking method to track
vehicles according to their features and vehicle kinematics. The authors
applied the proposed method to extract vehicle trajectories from several
high-resolution aerial videos recorded by helicopters. Collaborating with
a car-following-based trajectory connection method (Shi et al., 2021), we
generated a 2-h 30fps vehicle trajectory dataset with 8000 ft coverage,
which is named the High-Granularity Highway Simulation (HIGH-SIM)
vehicle trajectory dataset. To demonstrate the effectiveness of the pro-
posed method and understand the quality of the HIGH-SIM dataset, we
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compared the HIGH-SIM dataset with a well-known dataset, the NGSIM
US-101 dataset, regarding the accuracy and consistency aspects. The
result showed that the HIGH-SIM dataset has more reasonable speed and
acceleration distributions than the NGSIM US-101 dataset. Also, the in-
ternal and platoon consistencies of the HIGH-SIM dataset give lower
errors compared to the NGSIM US-101 dataset. To benefit future
research, the authors published the generated HIGH-SIM dataset online.
Researchers can find the data sharing link at both the Federal Highway
Administration, U.S. Department of Transportation (https://highways
.dot.gov/), and at the GitHub page of Connected and Autonomous
Transportation Systems Lab, University of South Florida (https://gith
ub.com/CATS-Lab-USF). Further, the authors encapsulated all code
files into a package named the Video-Based Intelligent Road Traffic
Universal Analysis Tool (VIRTUAL), which is available for download at
https://github.com/CATS-Lab-USF.

The disposition of this paper is as follows. Section 2 describes the
proposed vehicle trajectory extraction method, including the video
calibration, vehicle detection and tracking, Monte-Carlo-based lane
marking identification algorithm, and vehicle motion characteristics
calculation. Also, we describe the criteria for analyzing the extracted
trajectories. Section 3 explains where we extracted the HIGH-SIM dataset
and compares the quality of the HIGH-SIM dataset with the NGSIM US-
101 dataset. Section 4 concludes the paper and discusses future
research directions.

2. Methodology
2.1. Vehicle trajectory extraction method

Fig. 1 shows the steps of the proposed vehicle trajectory extraction
method. With the given aerial videos and camera parameters (camera
height, resolution, and angle), Step (a) calibrates all frames in the video,
and calculates the rotation and shifting parameters. With the rotation and
shifting parameters, Step (a) obtains the aerial videos with the static
background. Then, Step (b) identifies and tracks vehicles in each frame.
To identify vehicles' lane numbers, we propose a Monte-Carlo-based lane
marking identification approach in Step (c). With the vehicles' positions
(obtained by Step (b)) and lane numbers (obtained by Step (c)), Step (d)
calculates the vehicles’ motion characteristics at each time point,
including location, speed, and acceleration. In the end, the method out-
puts the extracted trajectory dataset.

2.1.1. Step (a): camera rotation and shifting correction

Since disturbances such as camera shake, rotation, and shifting will
cause the drift of a reference point across frames, finding rotation and
shifting variations between any two consecutive frames are critical for
vehicle trajectory extraction. To calculate the rotation and shifting pa-
rameters between the two consecutive frames, we applied the ORB
feature matching algorithm (Rublee et al., 2011) to obtain the perspec-
tive transformation.

According to the ORB feature matching algorithm, we firstly extract
the FAST features (Rosten and Drummond, 2006) of the two consecutive
frames, e.g., frames f;,f;;1, where i and i + 1 are the indices of the frames,
as shown in Fig. 2. We define S;, S; ;1 as the sets of feature points extracted
from frames f;, fi1, respectively. With the extracted features, the BRIEF
descriptors (Calonder et al., 2010) can be calculated based on the
detected features. We define B;, B;;; as the BRIEF descriptors of the set of
feature point S;, S;;1. With the BRIEF descriptors of the two frames, the
perspective transformation is obtained with the RANSAC algorithm
(Fischler and Bolles, 1981) as described in OpenCV (https://docs.op
encv.org). We define M;;;; as the perspective transformation from

frames f;1 to f;. Therefore, the transformation between the iy frame f; to
the very first frame f; will be M;; = ]_[;;1 M;j;1, where we let My, =1.

Thus, the j th point P;; in frame f; can be matched to frame f; with the
transformation matrix: Pj; = M;;*P;;, where we define P;; as the
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position of the pixel point P;; in frame f;.

With the ORB feature matching algorithm, we can form a relatively
static background with the perspective transformation Mj;, i< [1, I].
However, since the perspective transformation matrix is calculated with
the multiplication of the perspectives of every two consecutive frames,
there will be cumulative errors as the frame number i increases. There-
fore, we applied a lane detection and tracking algorithm in Step (b) to
further correct the cumulative error.

2.1.2. Step (b): vehicle detection and tracking

To identify and track vehicles in each frame in Step (a) efficiently and
correctly, we propose to locally train the YOLOv3 (Redmon and Farhadi,
2018) and apply the model to detect vehicles in each frame of the aerial
videos. To train the YOLOv3 locally, we generate a training dataset from
the aerial video using a background extraction algorithm. We first apply
the Gaussian mixture-based background/foreground segmentation al-
gorithm (KaewTraKulPong and Bowden, 2002) to extract the background
and foreground of each frame. Since the vehicles are moving across the
frames, the contours of the vehicles will be extracted by the algorithm
with noise. Therefore, we match the contours in two consecutive frames
by their distances and sizes. Otherwise, we will discard the contours if no
feasible matching of the contours is found. In this manner, a portion of
vehicles in the video will be detected. We extract the contours of these
detected vehicles and create training data for vehicles. Afterward, we
train the YOLOv3 with the training data. With the locally trained
YOLOvV3, we are able to detect vehicles in the video accurately.
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connected lane markings on the same lane is consistent. The algorithm
assumes that the locations of lane markings in images are the perspective
transformation of their locations on any other images. We first detect
lane marking locations loc; with a locally trained YOLOv3 detector D :
Li[i] = D(fi.j), where [;[j] is the detected location of lane marking j in frame
fi, 1 € [0,N]. We then select a subset of indices r € Rc{1,...,j,...,J} for
the locations of the detected lane markings. With an initial lane marking
locations [* distributed following the mentioned distribution properties
and the perspective transformation matrix calculation function T, which
is introduced in OpenCV (https://docs.opencv.org/3.4/d7/dff/tutor
ial_feature_homography.html), we are able to calculate the perspective
transformation matrix M; = T(I'[r],L[r]),r € R with index r. The
perspective transformation matrix M; is then used to calculate the ex-
pected locations of all lane markings in frame f;, [; = Mil,,. The sum of the
Euclidean distance S =)

jer
detected locations loc; is calculated to estimate the correctness of the
perceptive transformation matrix. The random selection of index r will be
repeated several times to find the optimal perceptive transformation
matrix. With the optimal perceptive transformation matrix, the expected

;L. j ‘ for all expected locations I, and

lane marking location can be calculated by I, = M;1".

Algorithm 1. Monte-Carlo-based lane marking identification method

Algorithm 1 Monte-Carlo-based lane marking identification method

Frames f;, i € [1, N], detector D: [;[j] = D(f;,j), the initial distribution of lane markings L,

perceptive transformation matrix calculation M; = T (1", [;), perceptive transformation M;, optimal

perceptive transformation M;, threshold p, random index selected r € R, a large number n

Required:

Ensure: detection rate of detector p(D) = 90%

1: for each frame f;,i € [1, N] do

2: S =nb9,M; = 1,loc}

3: for k € [0,M] do

4 J=10,141]

S: for j € ] do

6: Lilj] = D(fi.})

7: end for

8: TER

9 M, = T[], LIr])

10: =Ml

“» § = Y11= Ll
J€]

12: if § < S; then

13: Si=SM =M,l; =1

14: end if

15: if S < p then

16: break

17: end if

18: end for

19: end for

big

2.1.3. Step (c¢) lane marking identification

In Step (c), we propose a Monte-Carlo-based lane marking identifi-
cation method to help position vehicles and find lane numbers of vehi-
cles. The proposed method is described in Algorithm 1. The algorithm
takes advantage of the distribution properties of lane markings, i.e., the
lane markings of different lanes are parallel, and the distance of any two

2.1.4. Step (d) vehicle motion characteristics calculation

With the detected vehicles (Step (b)) and lane markings (Step (c)), the
vehicle positions can be calculated. Denote the position of vehicle j
in frame i as p;. With the perspective transformation matrix M; ob-
tained from Step (c), the vehicle position in the static background can be
calculated as p; = M;*M (02,52)*py, where M(0,S) is the transform ma-
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trix with rotation parameter ¢ and shifting parameter S. With the lane
marking positions, the lane label can be calculated throughout the image
with a polynomial regression method. We define Ly = {(x§,yk), ...,
(xk,¥k)} as the lane markings® positions of lane k € [1,K] in an image
with K lanes. As shown in Algorithm 2, by applying a polynomial
regression method to the location array (https://en.wikipedia.org/wiki
/-Polynomial_regression), we can obtain a polynomial function xk =
S (Y¥). Considering a position of a vehicle p§ = (x7.y;), the lane number
of the position can be determined by the regressed lane marking function
f?. With the vehicle positions, the speed and acceleration of the vehicle
trajectories can be calculated as well.

Algorithm 2. Lane number calculation based on the detected lane
marking

Communications in Transportation Research 1 (2021) 100014

t

&=3 — §0+/v,dz ,

0

where §; is the observed location of a vehicle and v, is the observed speed
of the vehicle at time t. Similarly, the internal consistency of speed, ¢/, is
calculated as:

t
DS ~ .
g =V, — v,+/a,dt
‘0

where a, is the observed acceleration of a vehicle at time t.

2.2.2. Platoon consistency

Algorithm 2 Lane number calculation based on the detected lane marking

Required:

lane marking positions of lane k, L, = {(x(’)‘,yé‘), - (x,’&,y,’\‘,)}, k €[1,K]

vehicle j’s position in image i pfj,i e[0,1],j €[0,]]

polynomial regression function 8: [X, Y]
lane number of vehicle position L(xfj) =-1

Ensure: |Ly| > 3 for polynomial regression
1: for each lane k € [1,K] do

2: calculate polynomial regression parameter f3

obtain function x* = £ ()
End for
for each lane k € [1,K] do

Rl = f O

if x < 25 do

L(xfy) = ke

end if

: end for

D N A AN g

Return lane number of vehicle position L(xfl- ==—-1?K: L(xl-si)

2.2. Trajectory analysis method

To evaluate the performance of the proposed vehicle trajectory
extraction method, we adopt the trajectory accuracy analysis method
proposed by Punzo et al. (2011). The trajectories are analyzed from the
following aspects.

2.2.1. Internal consistency
The internal consistency analysis aims to check the consistency of the
differentiation of vehicle trajectory with its speed and acceleration. The

internal consistency of space, &, is calculated as:

Table 1
Format of the HIGH-SIM dataset.

The platoon consistency is adopted to estimate the consistency of
trajectories of vehicle pairs in vehicle trajectory data. The platoon con-
sistency of space can be calculated as:

t t

€51 = (50— T) + / Dyudi — / Bt |,

0 0

where n,p denote the ID of the subject vehicle and its following vehicle,
respectively. Similarly, the speed platoon consistency can be calculated
as:

t t

PV ~ ~ .
Enpr © = (Vﬂo - VPO) + / andt — /amdf

0 0

The measurement of the bias (¢ : &/, €/, eby, eny,) in a vehicle trajec-

Column Name

Explanation

Vehicle ID

Global Time

Frame ID

Local X (ft)

Local Y (ft)

Global X (Longitude)
Global Y (Latitude)
Width (ft)

Length (ft)

Class (1 motor; 2 auto; 3 truck)
Speed (ft/s)
Acceleration (ft/s%)
Lane Num

Space Highway (ft)

ID number for each vehicle

Time in seconds from 12:00:00 am of the day
Frame number in the corresponding video
Position in the direction perpendicular to the road
Position in the direction along the road

Vehicle's GPS longitude location

Vehicle's GPS latitude location

Vehicle width

Vehicle length

Vehicle class

Vehicle speed

Vehicle acceleration

Lane number

Distance between this vehicle's front bumper to its following vehicle's front bumper
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Input: Aerial Videos & Camera Parameters

v

Step (a)
Camera Rotation and Shifting Correction

Step (b) Step (©)
Vehicle Detection and Tracking Lane Mark]ng Identification

Step (d)
Vehicle Motion Characteristics Calculation

|

Output: Extracted Trajectory Dataset

Fig. 1. Vehicle trajectory extraction method.

tory data is summarized as follows: (1) the minimum bias: min(¢); (2) the
maximum bias: max(¢); (3) the mean bias: mean(e) = > ¢/N; (4) root

mean square error (RMSE): /> (¢2)/N.

3. HIGH-SIM dataset
3.1. Experiment settings

In the experiments, we applied the proposed vehicle trajectory
extraction method to a series of aerial videos. As shown in Fig. 3, the

Featur Featur

points S;

points S; 4

Frame f;

Frame f;;,

Fig. 2. ORB feature matching algorithm.
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aerial video data were collected by three 8K cameras in a helicopter from
4:15-6:15 p.m. on Tuesday (May 14, 2019) over an 8000 ft long segment
of the I[-75 freeway in Florida (28°08'37.2"N 82°22'58.8"W to
28°10'16.2"N 82°23'38.0"W), United States. A set of detected vehicles
are highlighted in Fig. 3 in red (in the Web version) rectangle boxes. Note
that the proposed method extracted the trajectories from different aerial
videos sequentially. To connect the extracted trajectories from different
aerial videos and thus generate a long-coverage dataset, we adopted a
car-following-based trajectory connection method proposed in Shi et al.
(2021). The method successfully connected the trajectories extracted
from the aerial videos shot by different cameras. The newly generated
long-coverage dataset is named the HIGH-SIM dataset. The dataset con-
tains vehicle trajectories from three regular lanes and one off-ramp with a
frequency of 30 Hz. The format of the HIGH-SIM dataset is shown in
Table 1, which is consistent with the NGSIM dataset for the convenience
of further trajectory analysis and future public use. The trajectories are
plotted in Fig. 4. As shown in Fig. 4, there is traffic congestion on lane
0 and the off-ramp. In comparison, the trajectories on lane 1 and lane 2
are much smoother.

3.2. HIGH-SIM dataset analysis

To illustrate the effectiveness of the proposed method and help
readers understand the quality of the HIGH-SIM dataset, we compare the
HIGH-SIM dataset with a well-known publicly available dataset, the
NGSIM US-101 dataset, which was collected on southbound US 101 in
Los Angeles, CA. According to Punzo et al. (2011), the NGSIM US-101
dataset is the one with the best quality among all NGSIM datasets. The
study area includes five mainline lanes and an auxiliary lane between the
on-ramp at Ventura Boulevard and the off-ramp at Cahuenga Boulevard.
The duration of the dataset is 45 min, which is separated into three
15-min periods, including 7:50 a.m. to 8:05 a.m., 8:05 a.m. to 8:20 a.m.,
and 8:20 a.m. to 8:35 a.m. The data set covers a road segment of 2100
feet. The data record frequency is 10 Hz per frame.

3.2.1. Speed and acceleration distributions

We first compare the distributions of speed and acceleration within
the two datasets. As shown in Fig. 5, the distribution of the speed of the
HIGH-SIM dataset is more uniform than the NGSIM US-101 dataset.
There are mainly three flat speed peaks (or modes) in the HIGH-SIM
dataset, e.g., O ft/s, 25 ft/s, 100 ft/s, which correspond to the traffic
jam, traffic congestion, and free flow scenarios plotted in Fig. 4. In
comparison, there is only one speed peak in the NGSIM US-101 dataset at
35 ft/s, which indicates that the NGSIM US-101 dataset contains rela-
tively homogeneous traffic scenarios. Also, the speed range of the HIGH-
SIM dataset is [0, 150] ft/s ([0, 45.72] m/s or [0, 165] km/h), which is
significantly wider than that of the NGSIM US-101 dataset, as shown in
Fig. 5.

The distributions of the acceleration of the two datasets are shown in
Fig. 6. The acceleration of the HIGH-SIM dataset is in the range of [-20,
20] ft/s? ([-6.10, 6.10] m/sz), and the acceleration of the NGSIM US-
101 dataset is in the range of [~12.5, 12.5] ft/s? ([—3.81, 3.81] m/s?).
We can observe that the HIGH-SIM dataset also has a wider acceleration
range than that of the NGSIM US-101 dataset. One possible reason for
this result is that the HIGH-SIM dataset contains the trajectories with
extreme operating conditions, e.g., emergency acceleration and decel-
eration. The incorporation of the trajectories with these extreme oper-
ating conditions definitely can provide more hints for researchers to
study the characteristics of the traffic flow. The other reason for this
wider acceleration range may be because the adopted car-following-
based trajectory connection algorithm (Shi et al., 2021). We connect
two broken trajectories by considering vehicle kinematics constraints,
e.g., maximum and minimum acceleration. It is possible that the optimal
transition trajectory for connecting the two broken trajectories is the
trajectory with the maximum or minimum acceleration. Interested
readers can refer to Section 3.2 in Shi et al. (2021) for more details about
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Fig. 3. The study area of the HIGH-SIM dataset.

the adopted trajectory connection algorithm.

3.2.2. Internal and platoon consistencies

We also compare the two datasets in terms of internal and platoon
consistencies (Punzo et al., 2011). Table 2 shows the results of the
space/speed internal consistency, and Table 3 shows the results of the
speed/acceleration internal consistency of the two datasets, respectively.

We can observe that the maximum bias, minimum bias, and mean
bias for the HIGH-SIM dataset are close to zero, which are much lower
than those of the NGSIM US-101 dataset. In particular, the percentage of
bias greater than 1 for both the internal space/speed (shown in Table 2)
and speed/acceleration consistencies (shown in Table 3) of the HIGH-
SIM dataset are 0, while those of the NGSIM US-101 dataset are 29.2%
and 65.2%, respectively. Also, the HIGH-SIM dataset has a much lower
value in terms of the RMSE than the NGSIM US-101 dataset. The superior
performance of the HIGH-SIM dataset on these criteria indicates that the
HIGH-SIM dataset has much higher internal space/speed and speed/ac-
celeration consistencies than the NGSIM US-101 dataset.

The platoon consistencies of the space/speed and speed/acceleration
of the HIGH-SIM and NGSIM US-101 datasets are shown in Table 4 and
Table 5, respectively. The results are similar to the results of the internal
consistencies analysis. That is, the HIGH-SIM dataset has much lower
values on the maximum bias, minimum bias, mean bias, percentage of
bias greater than 1, and RMSE than the NGSIM US-101 dataset.

Despite the fairly good performance of the HIGH-SIM dataset on both
the internal and platoon consistencies, we would like to point out one
flaw of the dataset. That is, due to the wrong detections and classifica-
tions, there still are some unreasonable trajectories in the HIGH-SIM
dataset. As shown in Table 4, the number of vehicle pairs with nega-
tive inter-vehicle spacing for the HIGH-SIM dataset is 1232. However,
due to a large number of vehicle pairs in the HIGH-SIM dataset (i.e.,
7,057,678 vehicle pairs), the HIGH-SIM dataset has a much lower

percentage of vehicle pairs with negative inter-vehicle spacing
comparing to the NGSIM US-101 dataset, as shown in Table 4.

Overall, based on the superior performance of the HIGH-SIM dataset
in terms of these criteria, we can conclude that the HIGH-SIM dataset
outperforms the NGSIM US-101 dataset regarding internal and platoon
consistencies. Thus, the HIGH-SIM dataset has a much higher data quality
than the NGSIM US-101 dataset, which is expected to provide a more
accurate representation of real traffic and thus facilities future traffic
flow-related studies.

4. Conclusions

In this paper, we proposed an advanced vehicle trajectory extraction
system to extract longer and more accurate vehicle trajectory data from
aerial videos. The proposed system applied YOLOvV3 for vehicle detection
and a feature matching method for vehicle tracking. In addition, a novel
Monte-Carlo-based lane marking identification method was proposed to
track lane markings across frames. By implementing the proposed sys-
tem, we developed a vehicle trajectory tool called VIRTUAL and
extracted a new and long trajectory dataset — HIGH-SIM. We analyzed the
quality of HIGH-SIM and compared the internal and platoon consistency
of HIGH-SIM and the NGSIM US-101 dataset. Results show that the new
dataset HIGH-SIM provides much higher quality trajectory data. It not
only indicates the efficiency of the proposed vehicle extraction method,
but also provides a high-quality trajectory dataset for trajectory-related
research activities. The HIGH-SIM dataset can help the theoretical
development of new behavioral models, estimate model parameters, and
validate them.

The proposed trajectory extraction method can be generally applied
to extracted vehicle trajectories from aerial videos. The process will help
build maps of areas of interest with higher accuracy. The accuracy of
object detection and location extraction can be improved by applying



Position (m)

Position (m)

2500 4 50 2500 A
2000 - 40 2000 -
1500 0@ E 15004
E C
- L
(] E=4
1000 Q2 1000 -
202 Q
500 - 500 -
10
o - o .
. . . . . 0 . . ’ . ;
0 500 1000 1500 2000 0 500 1000 1500 2000
Time (s) Time (s)
(a) Lane 0 (b) Lane 1
2500 o 2500 4
2000 - 40 ol
15001 0% E 23001
E <
- .2
[T
1000 o 0
202 & 2200
500 -
10 2100 -
o -
y . . . . 0 . . . : .
0 500 1000 1500 2000 0 500 1000 1500 2000
Time (s) Time (s)
(c) Lane 2 (d) Ramp
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Table 2
Internal space/speed consistency of HIGH-SIM and NGSIM US-101 datasets.
HIGH-SIM NGSIM US-101
Maximum bias max(eS) 0.06 6.63
Minimum bias min(e) —0.06 —28.22
Mean bias mean(%) 5.76e-5 —-0.01
Percentage of bias greater than 1 (ft) (P.s-1(%)) 0.00 29.20
RMSE of bias (RMSE(¢%)) 0.0018 0.36
Table 3
Internal speed/acceleration consistency of HIGH-SIM and NGSIM 101 datasets.
HIGH-SIM NGSIM US-101
Maximum bias max(e") 0.01 56.56
Minimum bias min(e") —0.001 —63.75
Mean bias mean(e") 7.68e-6 0.30
Percentage of bias greater than 1 (ft/s) (P.v~1(%)) 0.00 65.20
RMSE of bias (RMSE(¢")) 0.002 3.12
Table 4
Platoon space/speed consistency of HIGH-SIM and NGSIM 101 datasets.
HIGH-SIM NGSIM US-101
Maximum bias max (&) 0.01 11.25
Minimum bias min(&P) —0.06 —4.40
Mean bias mean(e™) 1.19e-6 —0.03
Percentage of bias greater than 1 (ft) (Pws-1(%)) 0.0 9.93
RMSE of bias (RMSE(¢™)) 7.96e-4 0.23
Total number of vehicle pairs 7,057,678 985,552
Number of vehicle pairs with negative inter-vehicle spacing 1232 1438
% of vehicle pairs with negative inter-vehicle spacing 1.74e-4 0.0014




X. Shi et al.

Table 5

Communications in Transportation Research 1 (2021) 100014

Platoon speed/acceleration consistency of the HIGH-SIM and NGSIM US-101 datasets.

HIGH-SIM NGSIM US-101
Maximum bias max(e”") 1.33 88.28
Minimum bias min(ePV) —0.87 —88.80
Mean bias mean(e”V) —2.3%-4 0.04
Percentage of bias greater than 1 (ft/s) (Pwv.1(%)) 1.45e-4 65.88
RMSE of bias (RMSE(¢PV)) 0.11 4.51

RGBD cameras to obtain aerial videos. With the depth dimension of each
detected object, the detection and location errors caused by shadows can
be eliminated.
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