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Abstract—This paper studies a variant of the Pliable Index
CODing (PICOD) problem, i.e., an index coding problem where
a user can be satisfied by decoding any message that is not in
its side information set, where communication is decentralized,
i.e., it occurs among users rather than by the central server,
and secure, i.e., each user is allowed to decode only one message
outside its side information set and must not be able to collect
any information about any other message that is not its decoded
one. Given the difficulty of the general version of this problem,
this paper focuses on the case where the side information sets
are ‘s circular shifts’, namely, user u’s side information set is
the set of messages indexed by {u,u+1,...,u+s—1} for some
fixed s and where the indices are intended modulo the cardinality
of the message set. This particular setting has been studied in
the ‘decentralized non-secure’ and in the ‘centralized secure’
settings, thus allows one to quantify the cost of decentralized
communication under security constraints on the number of
transmissions. Interestingly, the decentralized vs the centralized
secure setting incurs a multiplicative gap of approximately three.
This is in contrast to the cases without security constraint, where
the multiplicative gap is known to be at most two.

I. INTRODUCTION

Index Coding (IC) consists of one transmitter with m
independent messages and n users. The users are connected
to the transmitter through an error-free broadcast link. The
users have side information sets locally available to them,
which are subsets of the m messages. Each user has a pre-
determined message as its desired message to decode. The
transmitter has knowledge of all users’ side information sets
and desired messages, which it uses to generate the codewords
that enable every user to decode its desired message. Users de-
code based on the received codeword from the transmitter and
the messages in their side information set. The question is to
find the minimum number of transmissions/code-length such
that every user can decode its desired message successfully. In
this paper we study the decentralized, secure and pliable 1C
problem, which is motivated by three variants of IC: Pliable
Index CODing (PICOD), decentralized IC, and secure IC.

a) Pliability: The PICOD problem is motivated by sce-
narios where the desired messages for the users are not pre-
determined. Such situations include Internet radio, streaming
services, online advertisement system, etc. In these cases, the
transmitter can leverage the freedom of choosing the desired
messages for the users, together with the side information sets
at the users, to minimize the cost of transmission. PICOD was
proposed in [1], where the system includes a single transmitter,
m message, and n users with message side information sets.
Different from IC, in the PICOD each user is satisfied when-
ever it can decode a message that is not in its side information
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set. The goal in the PICOD is to find the assignment of desired
messages for the users and the corresponding transmission
strategy that leads to the shortest possible code-length.

From the achievability side, results from [1], [4], [15]
show that PICOD affords an exponential code-length reduction
compared to IC under the linear encoding constraint. From the
converse side under linear constraint, the work in [15] provides
a lower bound on the required number of transmissions for
the randomly generated PICOD problem to be satisfied. In [7],
we derived the information theoretical optimal code-length for
some PICOD’s with symmetric side information sets (among
which the class ‘PICOD with circular-arc side information’
of interest in this paper) by leveraging novel combinatorial
arguments. In [11], [12] the Authors also derived information
theoretical converse bounds by explicitly leveraging the ‘ab-
sent users’ in the system.

b) Decentralized Communication: The decentralized IC
is motivated by peer-to-peer and ad-hoc networks where
there is no central transmitter/server. Here, the codewords are
generated by the users based their side information set and
sent through a time-sharing noiseless broadcast channel. The
goal in decentralized IC is to find the shortest code-length that
allows all users to decode their desired message.

The decentralized IC is a special case of the multi-sender
IC [10] and of the distributed IC (where the system has m
messages and 2™ — 1 servers with different message sets
available for encoding) [8]. Recently, the decentralized IC has
been studied in [13] under the name embedded IC (where the
information available for encoding at the servers is the same as
the side information sets at the users), where it is shown that
the optimal number of transmissions under linear encoding
constraint does not increase by more than a multiplicative
factor of 2 when turning a linear code for the IC to a linear
code for embedded IC. A task-based solution (i.e., a one-short
scheme) for the embedded IC was discussed in [3].

We studied the decentralized PICOD in [5], where we
proved the information theoretical optimal number of transmis-
sions for all those centralized PICOD’s we had solved in [7];
interestingly, in these cases we showed that the multiplicative
gap between the optimal number of transmissions of the
centralized vs the decentralized setting is often very close to
or exactly equal to 1, meaning that decentralized transmission
imposes a very minimal cost in terms of network load.

c¢) Secure Communication: Security in IC has been stud-
ied from several perspectives. IC with an eavesdropper, who
has limited access to the side information sets and to the
transmitted codeword, was proposed in [2]; in such a model



the transmitter needs to satisfy all users while preventing
the eavesdropper from getting any new information from the
transmissions. Another studied model is ‘security against other
users’ where the transmitter wants to prevent the users from
knowing the content of the desired messages of the other users
from the received broadcast codewords. In [9] the cases of (i)
strong security (a user does not learn any information from the
set of the non-desired messages) with secure key and (ii) weak
security (a user may learn some information from the set of
the non-desired messages but does not infer any information
on the non-desired messages, also referred to as ‘individual
security’) without secure key were investigated.

Recently, the Authors of [14] studied the case of ‘weak
security against other users’ in PICOD’s with ‘s circular
shift’ side information set structure, namely, user u’s side
information set is the set of messages indexed by {u,u +
1,...,u + s — 1} for some fixed s and where the indices
are intended modulo the cardinality of the message set m.
In [6] we generalized the problem setup of [14] and provided
linear codes whose length is at most one more than a converse
bound under the constraint of linear encoding. Our results
for centralized PICOD with ‘s circular shift’ side information
structure demonstrates a multiplicative gap between secure and
non-secure versions of the problem that is not bounded in
general; in particular, for s > m/2 the two cases have the
same information theoretic optimal code-length; however, for
1 < s < m/2 and under the constraint of linear encoding,
the minimal number of transmissions for the secure PICOD is
lowered bounded by essentially 1m/(2s), while the non-secure
PICOD can always be satisfied by at most 2 transmissions.

Contribution and Paper Organization: The decentralized
secure PICOD studied in this paper is the ‘individual secure’
version of the decentralized PICOD, motivated by the com-
munication system without central transmitter such as peer-to-
peer networks. In practice, security is a very important factor
in peer-to-peer networks, since such networks usually consist
of many anonymous users, and malicious users can get into
the networks comparatively easily. Security against other users
in the systems guarantees that the files that are shared over the
network will not fall into the hands of malicious users.

Given the difficulty of the PICOD in general, we focus here
on the case of ‘s circular shift’ side information set structure as
in [6], [14]. We show that, under a linear encoding constraint,
several cases that are feasible in the centralized setting become
infeasible in the decentralized setting. Our bounds reveal:

1) On the one hand, when m"_LS € 7, i.e., one transmission
can satisfy all users in the centralized non-secure PICOD
setting, the information theoretical optimal number of
transmissions is =, which coincides with the optimality
result for the decentralized case without security. Thus,
in this decentralized setting security comes for free.

2) On the other hand, when m”zs ¢ 7, ie., two trans-
missions can satisfy all users in the centralized non-
secure PICOD setting, things are very different. Under
linear encoding constraint, we show the converse bound
> 32—’?, which seems to indicate that we need roughly

3 times more transmission compared to the case of
centralized secure PICOD with linear encoding. This
converse bound is shown to be tight in some cases.
The multiplicative gap between the centralized and
decentralized secure PICODs is strictly larger than the
one between centralized and decentralized non-secure
PICODs with the same side information set structure.
This shows a fundamental difference when we impose
security constraints in decentralized settings.

3) We observe that for odd m and % ¢ 7, there are many
infeasible cases under the linear encoding constraint.
However, not all odd m and - ¢ 7 are infeasible;

for example, the case (m,s) = (11,8) is feasible. The

feasibility for general odd m is subject of the current

investigation.

The rest of the paper is organized as follows. Section II
introduces the system model; Section III provides the main
results and discussion; Section IV proves the infeasibility
result of Theorem 1; Section V and Section VI prove the
converse and achievability parts for Theorem 2, respectively.

II. SYSTEM MODEL

Throughout the paper we use the following notation. For
integers 1 < a1 < ag we let [ay : as] :={a1,a1 +1,..., a2},
and [az] :=[1: ag]. A capital letter as a subscript denotes the
set of elements whose indices are in the set, i.e., W4 := {w, :
wq € W,a € A}. For two sets A and B, A\ B is the set that
consists of all the elements that are in A but not in B.

In this paper we study the decentralized secure PICOD
problem with m messages and with ‘s circular shift’ side
information sets, which consists

1) m € N users and no central transmitter. The user set is
denoted as U := {uy, ua, ..., Um}-

2) m messages. The messages are of x € N independent
and uniformly distributed bits. The message set is de-
noted as W := {wy,wa, ..., Wn}.

3) User w;,i € [m], knows the messages indexed by its
side information set A; := [i : (i + s — 1) mod m].
The collection of all side information sets, denoted as
A = {A1, Ay, ..., A}, is assumed globally known
at all users. For valid setup we have s € [m — 1],
i.e., the users have some but not all messages as side
information.

4) A shared noiseless broadcast channel connects all users
in the system. The users broadcast their codewords to
all the other users one at a time.

5) The codewords are generated by each user based on
their side information set. In other words, the overall
transmission is =% := {z’1% ... z*} where code-
word x* is generated by the j-th user as

i = Ech(WAj’A)7 Vj € [m], (1)

for some function ENC;. The total normalized code-
length is £:= )" L.

JE[m]



TABLE I
SUMMARY OF RESULTS FOR PICOD’S WITH CIRCULAR SHIFT SIDE INFORMATION SETS.

Without security

With security

Infeasible cases: —2— ¢ Z,
m—s

oddm,s=1ors=m—2.

2s

Centralized 0r = L w5 €l lr = L w5 el
T2, ¢ 12, 2. ¢Zands>m/2.
m < {ILB2L G gs<g 2en,
s - M2)/21+1, 2 ¢Z,s< 3,2 ¢
Infeasible cases: —™— ¢ Z, s = 1,2 or s = 3,m — 2 with odd m
m m cZ
Decentralized | £}, = 25 Tomes ¢ Z’ by =m/s, ;s €L
! m—s :
¢Z,5: €L,

3m m
3m — 2s m—s
3m < px -

Zr2-31, g

¢ Z,even m.

m—s

6) The decoding function at the j-th user is

@ := DEC;(Wa,,z"), Vj € [m], 2)

for some function DEC;.

A decoding success is declared for user u; if W; = wg;,
for some d; € [m]\ A;. That is, user u; decodes a
message that is outside its own side information set.
The decoding at the j-th user must also be ‘individually
secure’ meaning it must satisfy

I(w; 2™, Wa,, A) =0, Vi € [m]\ ({d;} U 4;). 3)

7

8) Given (m,s), we aim to find the smallest ¢ such that
the decoding is successful and individually secure at
all users. We assume k can be arbitrarily large for
asymptotic analysis. We indicate the optimal code-length
as £7, (subscript ‘it’ stands for ‘information theoretically
optimal’). If we restrict the encoding functions to be
linear maps, the optimal code-length is denoted by ¢*
(without any subscript, so as not to clutter the notation).

IIT. MAIN RESULTS AND DISCUSSION

Our main results in this paper are as follows.

Theorem 1 (Infeasible cases): For the decentralized secure
PICOD with circular shift side information sets and linear
encoding, in the following cases it is not possible to satisfy
all users while maintaining the security constraint:

1) s=1,m>3;

2) s=2,m>5;

3) s =3 and odd m;

4) s =m — 2 and odd m.

Theorem 2 (Converse bound with multiplicative gap of 3
compared to the centralized setting): For the decentralized
secure PICOD with circular shift side information sets, when
m/(m — s) € Z we have ¢, = m/s, otherwise the optimal
code-length under linear encoding constraint is bounded as

3m
2s 7

7+2-13]
Table I summarizes known results for the PICOD problem

with circular shift side information sets in four setups (cen-
tralized vs. decentralized transmission, and with vs. without

3m o
2s — -

m/2s € Z,
m/2s ¢ Z and even m.

“4)

security constraint). We can see that, for the case m/(m—s) €
Z., the minimal number of transmissions is the same as the
case without security constraint. In this case the security
constraint does not impose any penalty in terms of number
of transmissions. However, the case m/(m — s) ¢ Z behaves
differently:

¢ In decentralized PICOD, many feasible non-secure cases
become infeasible because of the security constraint.
Compared to the centralized setting, we have more in-
feasible cases in the decentralized setting. For instance,
the centralized case with s = 2 is feasible but becomes
infeasible in the decentralized setting.

e Our general converse bound under linear encoding con-
straint is ¢* > 3m/(2s). The multiplicative gap to the
centralized secure PICOD when s < m/2 is roughly 3.
Note that the gap between the centralized [7] and de-
centralized [5] PICOD without security constraint is at
most 2. Our results show that when security constraint is
imposed, the cost of decentralization for PICOD becomes
larger.

e We can also quantify the impact of decentralized com-
munication on non-secure vs. secure PICOD. In the
centralized setting, security constraints change the linear
optimality result only when s < m/3. In the decen-
tralized setting, security constraints change the linear
optimality for at least s < 3m/4, which is strictly larger
than the above.

IV. INFEASIBLE CASES

In this section we show that the cases in Theorem 1 do not
have feasible linear solutions.

We note that in the proofs below we do not limit ourselves to
scalar or one-shot schemes. In general, the transmissions can
be linear combinations of fractions of messages, since each
message consists of x bits. Therefore, one transmission may
not allow users to decode a complete message but just a part of
it. However, by the security constraint, a user can not decode
any parts for the messages that are not its desired message.
If a user decodes a part of one message, the message is the
desired message of the user. Then by the converse argument,



the user will eventually decode its desired message and be
able to mimic the other user.

A Case s=1 m>3

In this case each user only has one message in its side in-
formation set. Since in the decentralized setting the codewords
are generated based on the local message knowledge, we can
assume without loss of generality that user u; does the first
transmission. For the first transmission, %1 can only generate a
codeword based on its side information w1, and thus it contains
some information of wy, i.e., H(w1|z1) < H(w1) where x;
is the first transmission. This makes all other users to have the
desired message as wi. Once w; has been decoded, all other
users who have w; in their side information set can mimic
user u; and thus decode message wq, (where d; is the index
of the desired message by user u;). When m # 3, there are
more than two users who can mimic user u; and there is at
least one user who can decode more than one message. This
case is thus infeasible. Note that this argument is true even
without the linear encoding constraint. Therefore the result
here is information theoretical.

B.s=2m>5

With linear encoding, the codewords are linear combinations
of the locally available messages. The first transmission is thus
a linear combination of at most two messages. We observe that
a linear combination of two consecutive messages violates
the security constraint. This is so because of the following.
Without loss of generality assume the first transmission is
done by user us. On the one hand, user us can send a linear
combination of messages we and ws; by this transmission,
user uq, (who has ws) desires w3 and user ug (who has ws)
desires ws; thus wo is decoded at user u; and ws is decoded
at user usz; now both users u; and u3 can now mimic user us
and decode wy,; since A; N Az = (), wy, can not be in the
side information sets of both user u; and user us, therefore,
u1 or ug can decode one more message outside their side
information set which violates the security constraint. On the
other hand, sending an uncoded message one at a time is not
secure by [6, Proposition 1] not even in the centralized case.

C. s=3and odd m

The transmission can only be a linear combination of two
messages with adjacent indices. There are two users whose
side information sets contains one and only one of the two
adjacent messages. These two users are satisfied by one
transmission. Also, the same message can not be involved
in two different transmissions, otherwise it allows one user
to decode more than one message by mimicking other users.
{ transmissions then always satisfy 2¢ users. However, the
number of users m is odd in this case. We conclude there
is no feasible solution for this case. Note that for either
s =2,m > 5 or s =3,m odd, the argument holds true for
any invertible mapping, thus not necessarily a linear code. We
have however not been able to derive yet a fully information
theoretic converse (i.e., no restriction on the encoding map).

D. s=m — 2 and odd m

This case is infeasible since it is infeasible in the centralized
case without constraint of linear encoding. Thus it is also
infeasible in the decentralized case.

V. CONVERSE BOUND

In this section we prove the converse bound £* > under
the linear encoding constraint for —™— ¢ 7Z. We construct a
‘chain of desired message pairs’ which provides an inequality.
We then derive a lower bound based on the maximum number
of satisfied users. By combining these two inequalities we have

the desired converse bound.

3m
2s

A. Desired Message Pairs

With linear encoding, each transmission is a linear function
of the messages in the side information set of the transmitting
user (i.e., we neglect the messages that a user may have already
decoded thanks to previous transmissions by other users).
This is without loss of generality because if the transmission
involves codewords sent in previous time slots, we do the
transmission by sending the part that involves the messages
in the side information set and the rest of the users will add
the contribution of the previous transmissions themselves.

Let us consider the codeword generator matrix G of the
overall linear code. The ¢-th transmission is the i-th row of G,
and is denoted as g;. Let Span(G) denote the row vector linear
span of G. In the decentralized setting, each transmission
involves the messages that are in one user’s side information
set. By [6, Proposition 1], Span(G) does not include any
standard basis vector. That is, each transmission involves at
least two messages. Let b; < s—1 be the range of the messages
that are involved in i-th transmission. Explicitly, the ¢-th row
of G can have at most b; nonzero elements, in the range
[a; : a; +b; —1 mod m], between the a;-th and (a; +b; — 1)
mod m-th elements. By the argument in Section IV-B, the
transmission can not involve the first and the last messages
in the side information set at the same time. Therefore, the
messages that are involved in one transmission are in the range
b €2:s5—1].

Fig. 1 illustrates the users, their desired messages, and sent
codewords: the users are denoted by their side information
set that is represented as a rectangle; the desired messages
are devoted by the circled numbers next to a user; and the
codewords are denoted by arrows, with their ranges shown
over the arrows. Without loss of generality, assume a; = 1.
The first transmission determines the desired message by
Up, —s+1 mod m t0 be wy,, and the desired message by us to be
wy. This is because these two users have all but one messages
involved the transmission in their side information sets. Note
that the desired messages of these two users are adjacent to
their side information sets. Therefore, these two users can
mimic other users by decoding their desired messages. Specif-
ically, Up, —s4+1 mod m Can MimMic Up, —s+2 mod m and ug can
mimic u;. To satisfy the security constraint, the desired mes-
sages of Up;—s+2 mod m and u; must be dp; —54+2 mod m =
b1 —s+1 mod m and d; = s + 1, respectively.
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Fig. 1. Codewords and corresponding desired message pairs for the converse
bound.

Now consider u;. To satisfy u;, there must exist a vector
vy € Span(G) such that its (s + 1)-th element is nonzero
and all its nonzero elements are in the range [1 : s + 1].
By a linear combination of v; and g; (the first row of the
generator matrix), we can generate a vector g, such that
its 1st element is zero, its (s + 1)-th element is nonzero,
and all its nonzero elements are in the range [2 : s + 1].
Therefore, go and gy are linearly independent, and g, is a
valid row of . The transmission of g¢o, besides satisfying
user ui, also satisfies user ws_p, 3, whose decoded message
must be ws_p, 2. After decoding its desired message, user
Us_p,+3 Can mimic us_p,+2 thus the desired message of
Us—p,+2 Must be was_p,+1. Now we focus on us_p, 2. By a
similar argument, we can see there must exist a g3 such that
its nonzero elements are in the range [s — by + 3 : 25 — by + 1]
and the (2s — by + 1)-th element is nonzero. Vector g3 leads to
the determination of the desired messages of another two users
in the system and then of vector g4 for another transmission.

We can see that the desired messages we found by this
argument can be grouped into pairs. For instances, (w1, ws1)
and (ws_p,t2,Was—py+1) are two such pairs, denoted as the
circled ‘1’ and ‘2’ in Fig. 1. The two messages in a pair are
at a distance of s 4+ 1. The i-th and (¢ — 1)-th pairs have a
range overlap of size b;. The desired message pairs and the
codewords form a ‘chain’: the desired message pair requires
a codeword; the codeword then determines the new desired
message pair based on its range. In this way, the ‘chain’ keeps
growing until the newly determined desired message is already
in the chain. For instance, in Fig. 1, the message wp, is a
desired message generated by the first transmission; since it
is generated again by the third transmission, the chain stops
with three transmissions. The adjacent desired message pairs
have a shift of s+ 1 — b;, shown in Fig. 1 as the solid arrows.
When the chain stops, all the pairs’ shifts sum up to at least
m. Let k be the number of transmissions we discover in the
argument. We have Zle(s +1—10b;) > m. Since £ > k, we
can replace k with £ and have the inequality

L
SO+ 0> b+ m. 5)

i=1

B. Maximum Number of Satisfied Users

Here we consider the maximum number of users that can
be satisfied by a given G. For one transmission of range b,
the maximum number of users that can be satisfied is 2(b —
1). Let the set of users whose side information sets intersect
but not contain the range of g; be denoted by Q;, |Q;] <
2(b; — 1). We argue that all satisfied users must be in one
of the Q;,i € [{], i.e., | Uf_; Qi| = m. This can be proved
by contradiction. Without loss of generality, let u; be a user
that is securely satisfied by G but not in any @);. Thus G is a
block diagonal matrix, and Span(G) can be divided into two
orthogonal spaces Span(G7) and Span(Gz). Span(G1) is not
helpful for u;. For uw; to decode, there must be a standard
basis vector in Span(Gz) and thus there is a standard basis
contained in Span(G). This violates the security constraint
in [6, Proposition 1].

Therefore, by union bound we have m =
S Qi <230, (b — 1). Finally, we have

£
b > 2+ (©)

a) Final Step: By combmmg (5) and (6) we have

| Uf:l Qi| <

0> —, @)

which is the desired converse bound in Theorem 2.

It is worth mentioning that the result here can be extended
to vector index code. With message size «, we can argue that
there are x chains, each with length at least ¢. The arguments
in Sections V-B,V-A then follow by the normalization on x.

VI. ACHIEVABLE SCHEMES

When - € Z we use the achievable scheme for the
decentralized PICOD in [5]. The scheme satisfies the security
constraint since all users have all but one messages that are
involved in the codewords thus no user can decode more than
one message. The scheme is optimal since it is optimal without
security constraint.

Next we provide achievable schemes for two cases where
our converse under linear encoding constraint is tight. One of
the schemes can be further generalized to all even m. Lastly,

a) 5: € Z: An optimal scheme is to send {w1+25k —|—

w2+25k7'w3+25k + ws— 2+23k7ws 3425k + we_ayosk ), k€
{0,1,..., 2S — 1}, for a total of 2 transmissions.

b) s = 3 and even m: An optlmal achievable scheme
is {wiyor + woyor}, k € {0,1,..., %}, for a total of m/2

transmissions. Note that in this case 327; =

2"
c) s > 3 and even m: We can further generalize the
scheme for s = 3, even m case. The scheme transmits

s—142k mod m m s
{27::1121« wi},k6{071,...,7+1—(§1}.
d) Odd m, s = m —3 > 8 - ¢ 7: This case

shows ¢ 7 are infeasible.
m—=7
The schemeghas four transmissions, {wi + >, % wa +

Win—6, 2 i3 W2it1 + Wm—5+ Wiy, Wrn—3 + Win—2, Wrn—1 +
wpm }. We are currently working to generalize the scheme.
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