
1

The Approximate Capacity of
Half-Duplex Line Networks

Yahya H. Ezzeldin, Martina Cardone, Christina Fragouli and Daniela Tuninetti

Abstract—This paper investigates the problem of character-
izing the capacity of Half-Duplex (HD) line networks, where a
source node communicates to a destination node through a multi-
hop path of N relays. If the relays operate in Full-Duplex (FD),
it is well known that the capacity of the line network equals the
minimum among the point-to-point link capacities in the path. In
contrast, this paper considers a different case where the relays
operate in HD. In the first part of the paper, it is shown that the
approximate capacity (optimal up to a constant additive gap that
only depends on the number of nodes in the network) of an HD
N -relay line network equals half the minimum of the harmonic
means of the point-to-point link capacities of each two consecutive
links in the path. It is then proved that the N +1 listen/transmit
states (out of the 2N possible ones) sufficient to characterize the
approximate capacity can be found in linear time. In the second
part of the paper, it is shown that the problem of finding the
path that has the largest HD approximate capacity in a network
that can be represented as a graph is NP-hard. However, if the
number of cycles in the network is polynomial in the number of
nodes, then a polynomial-time algorithm can indeed be designed.

I. INTRODUCTION

In recent years, promising advances have been made in
designing Full-Duplex (FD) transceivers [1], [2]. However, the
proposed FD designs still require complex self-interference
cancellation techniques. Due to this, in the near future it is
envisioned that nodes will continue to operate in Half-Duplex
(HD) mode in order to enable low-cost communications –
as recently announced, for example, in 3GPP Rel-13 [3]. A
widespread approach to route information from a source node
to a destination node in an HD network is to find the path
with the largest FD capacity and then operate the path in HD
mode [4], [5], [6]. This approach is used because of the simple
nature of the FD capacity expression, which is given by the
minimum of the point-to-point link capacities in the path, and

Y. H. Ezzeldin and C. Fragouli are with the Electrical and Computer
Engineering Department at the University of California, Los Angeles, CA
90095 USA (e-mail: {yahya.ezzeldin, christina.fragouli}@ucla.edu). Their
research was partially funded by NSF under award numbers 1514531 and
1824568. M. Cardone is currently with the Electrical and Computer Engi-
neering Department of the University of Minnesota, MN 55404 USA (e-
mail: cardo089@umn.edu). At UCLA, M. Cardone was partially supported
by NSF under award number 1314937. D. Tuninetti is with the Electrical and
Computer Engineering Department of the University of Illinois at Chicago,
Chicago, IL 60607 USA (e-mail: danielat@uic.edu). The work of D. Tuninetti
was partially funded by NSF under award number 1527059.

The results in this paper were presented in part at the 2017 IEEE Inter-
national Symposium on Information Theory and at the 55th Annual Allerton
Conference on Communication, Control, and Computing.

Copyright (c) 2017 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org.

thus can be distributively computed in linear time. However,
selecting a route based on its FD capacity may be suboptimal
if then the nodes in the selected path are operated in HD mode.

In this paper we investigate the problem of routing in
HD networks. We address the three following fundamental
questions: (i) Can a closed-form expression of the capacity
(or of an approximation of it) of an N -relay HD line network
be derived with the same promising features of the FD
counterpart? (ii) Can the linear number of active listen/transmit
configuration states sufficient to characterize the HD capacity
(or an approximation of it) be found efficiently in polynomial-
time? (iii) Does there exist a low-complexity algorithm that
finds the route in a network with the largest HD capacity (or
an approximation of it)?

A. Related Work

A route/path connecting a source node to a destination node
through N relays is an N -relay line network. Since the line
network is a physically degraded relay channel, its capacity is
known to be given by the cut-set upper bound [7] and achieved
by decode-and-forward. While for the FD case the capacity can
be expressed in an elegant and simple form as the minimum
among the point-to-point link capacities in the line network,
a similar result for the HD case is not yet available, to the
best of our knowledge. The main reason for this is due to
the fact that in HD the channel input at each relay is also
characterized by the state (either listen or transmit) of that
particular relay [8]. This allows to transmit further information
from the source to the destination by switching among the
2N possible listen/transmit states that can occur inside the
network. Given this, it is not clear what is the optimal input
distribution that maximizes the cut-set upper bound. Recent
results in [9], [10], [11] generalized an observation in [8], by
showing that the HD capacity of a Gaussian relay network can
be approximated to within an additive constant gap (i.e., which
is independent on the channel parameters and only depends on
the number of relays N) by the cut-set upper bound evaluated
with a deterministic schedule independent of the transmitted
and received signals and with independent inputs. Throughout
the paper, we refer to this as the approximate capacity.

For the class of relay networks defined in [12, Theorem 1]
(which includes the practically relevant Gaussian noise case),
the evaluation of the approximate capacity of an HD relay
network can be cast as an optimization problem over 2N

cuts of the network (as in FD) each of which is a function
of 2N listen/transmit configuration states. As N increases,

2

this evaluation, as well as determining an optimal schedule,
become computationally expensive. In [12] the authors proved
the conjecture posed in [13] in the context of Gaussian
diamond networks1, which states that at most N + 1 states
are sufficient for approximate capacity characterization for a
class of HD N -relay networks, which includes the Gaussian
noise case. A schedule with at most N + 1 active states is
referred to as simple. This result is promising since it implies
that the network can be operated close to its capacity with
a limited number of state switches. However, to the best of
our knowledge, it is not clear yet if such simple schedules
can be found with low-complexity algorithms. The authors
in [14] designed an iterative algorithm to determine a schedule
optimal for the approximate capacity when the relays employ
decode-and-forward. In [15], the authors proposed a node-
grouping technique that provides polynomial-time algorithms
to compute the approximate capacity of certain classes of
Gaussian HD relay networks that include the line network
as special case. While the results in [14], [15] show that
the approximate capacity can be found in polynomial-time
for special network topologies by solving a linear program
(LP), it is not clear how to efficiently construct a schedule that
achieves it. In contrast, in this work we derive the approximate
capacity of a general memoryless HD line network in closed
form and we design an efficient algorithm, which outputs in
O(N) time a simple schedule that achieves it.

In [16], the exact capacity region is derived for a line
network where the source node, and possibly multiple relays
along the way, have messages intended to the destination. The
capacity in [16] is given as a maximization over the augmented
alphabet used for the channel inputs (the alphabet used in the
transmitted signal plus an additional random variable denoting
that a node is listening). Additionally, the optimization in [16]
does not explicitly give the distribution for the channel inputs
and does not provide an explicit schedule for the network.
In particular, given this formulation, it is possible to use the
schedule to send additional information; this follows since the
schedule can now be considered part of the distribution of the
channel input [8]. In contrast, in our work, we consider a noisy
line network model, where the point-to-point link capacities
can be different from one link to the next (implying that
different alphabets are used for transmission over each link).
Furthermore, we upper bound the amount of information that
can be transfered through the schedule by a quantity that only
depends on N , and we look at the approximate capacity, where
a fixed schedule is selected based on the network parameters
but is not part of the codebook. This allows us to develop a
closed-form expression for the approximate capacity.

Given the derived closed-form expression for the approx-
imate capacity of an HD line network, we then analyze the
problem of HD routing, which consists of efficiently discov-
ering the path with the largest HD approximate capacity in a
relay network. As a result of its widespread use in currently
deployed wireless networks, routing has been extensively
studied in the literature. For instance, a line of work [17], [18],

1AnN -relay diamond network is a relay network topology where the source
can communicate with the destination only through N non-interfering relays.

S
0 1 2 3

D
N+1N

Fig. 1. The line network R with N relays, source S and destination D.

[19] focused on finding a route between the source and the
destination by assuming that the point-to-point link capacities
can only take values of 0 or 1. Under this assumption, the
route selection based on the FD point-to-point link capacities
is optimal. Finding the route with the largest FD capacity is
equivalent to the problem of finding the widest-path between a
pair of vertices in a graph [20]. This can be efficiently solved
by adapting any algorithm that finds the shortest path between
a pair of vertices in a graph (e.g., Dijkstra’s algorithm [21]).
For routing with multi-rate link capacities, several heuristic
metrics were proposed to enhance the selection of routes in
ad-hoc wireless networks [4], [5]. In contrast with this set
of works, we are interested in selecting the route with the
largest HD approximate capacity, by also trying to address
the fundamental complexity of finding such a route.

B. Contributions

In this paper, we study the problem of characterizing the
capacity of N -relay HD line networks. We also study the
implications of this result on the problem of routing in HD
networks, where the goal is to find the route from a source to
a destination with the largest HD approximate capacity. Our
main contributions can be summarized as follows:

1) We derive the HD approximate capacity of the N -
relay line network R (shown in Fig. 1) in closed form
and show it is given by half of the minimum of the
harmonic means of the point-to-point capacities of each
two consecutive links in the path, that is

CR = min
i∈[1:N]

{
`i`i+1

`i + `i+1

}
, (1)

where `i is the point-to-point capacity of the link be-
tween node i−1 and node i. This approximate capacity
expression has the same appealing features of the FD
counterpart, i.e., it can be evaluated in linear time and
distributively computed among the nodes in the path. To
the best of our knowledge, this is the first approximate
capacity characterization in closed form for a class of
HD relay networks with general number of relays.

2) We prove that, with only the knowledge of the network
topology (i.e., that the N relays are arranged in a line),
the cardinality of the smallest search space of states
over which a schedule that achieves the approximate
capacity can be found is exponential in N . In other
words, to reduce the cardinality of this search space to
be polynomial in the number of relays, it is crucial to
leverage the strength of the channel parameters.

3) We design an algorithm that allows to compute a simple
schedule (i.e., with at most N + 1 active states) that
achieves the approximate capacity of the N -relay HD
line network with complexity O(N). This result sheds

3

TABLE I
QUANTITIES OF INTEREST USED THROUGHOUT THE PAPER.

Quantity Definition
G Digraph representing a relay network
R Line network
LG Line digraph of the digraph G
P Path between two nodes
`i,j Point-to-point link capacity from node vi to node vj in G
`i Point-to-point link capacity from node vi−1 to node vi in R

CR (resp. CP) Approximate HD capacity of R (resp. P)
CλR Achievable HD rate for R with deterministic schedule λ

CFD
R (resp. CFD

P) FD capacity of R (resp. P)

light on how to operate a class of HD relay networks
close to the capacity with the minimum number of state
switches. Moreover, to the best of our knowledge, this
is the first result that provides an efficient way to find a
simple schedule optimal for approximate capacity.

4) We prove that the problem of finding the route with the
largest HD approximate capacity in a relay network is
NP-hard in general. Our proof is based on a reduction
from the 3SAT problem [22], which is a special case
of the well-known SAT problem, where the goal is to
determine the satisfiability of a Boolean formula. The
NP hardness of HD routing represents a surprising dif-
ference from FD, for which polynomial-time algorithms
exist to discover the path with the largest FD capacity,
such as Dijkstra’s algorithm [21]. Intuitively, the NP-
hardness in HD routing stems from the necessity to avoid
cycles in the network while discovering an HD path,
which is not necessary when finding a FD path.

5) We show that, if the number of cycles in the network
is polynomial in the total number of nodes, then a
polynomial-time algorithm that discovers the path with
the largest HD approximate capacity can be designed.
Thus, this represents a sufficient condition for which
HD routing can be efficiently solved. A relevant class of
relay networks for which this holds is the one of layered
networks where the relays are arranged over L layers of
relays and a relay in a layer can only communicate to
the relays in the next layer.

C. Paper Organization
Section II illustrates the problem setting of our problem,

describes known capacity results for HD line networks and
simplifies the approximate capacity expression for HD line
networks. Section III presents our main results and discusses
their implications. Section IV proves the NP-hardness of
finding the route with the largest HD approximate capacity in
a relay network. Section V describes special network classes
for which a polynomial-time algorithm for finding the route
with the largest HD approximate capacity exists. Section VI
concludes the paper. Some of the proofs are delegated to the
Appendix.

II. HALF-DUPLEX NETWORK MODEL

Table I summarizes and defines quantities that are used
throughout the paper.

We consider an HD relay network represented by the
directed graph G where V(G) and E(G) are the set of vertices
(communication nodes) and the set of edges (point-to-point
links) in G, respectively. The point-to-point links between
nodes in the network are assumed to be non-interfering
discrete memoryless channels. An edge connecting vertex vi
to vertex vj where vi, vj ∈ V(G) is denoted by ei,j . For
each edge ei,j ∈ E(G), we represent its point-to-point link
capacity with `i,j > 0. Over the graph G with N + 2 vertices,
information flows from a source node S ∈ V(G) (denoted
by v0) to a destination node D ∈ V(G) (denoted by vN+1)
with the help of the remaining N relay nodes. Each node
in G operates in HD, i.e., it cannot transmit and receive
simultaneously.

A relay network is called a line network if its vertices are
arranged in a path (or a route) forming a cascade of non-
interfering discrete memoryless channels2. The input/output
relation for the line network (denoted by R) with N relays
can therefore be defined through the conditional distribution

p
(
Y1, . . . , YN+1

∣∣∣{(X0, S0)}i=0N , SN+1

)
=

N∏
i=0

p
(
Yi+1

∣∣∣(Xi, Si), Si+1

)
, (2)

where: (i) Xi (respectively, Yi) denotes the channel input
(respectively, output) at node vi; (ii) Si is the binary random
variable which represents the state of node vi, i.e., if Si = 0
then node vi is receiving, while if Si = 1 then node vi is
transmitting; notice that S0 = 1 (i.e., the source always trans-
mits) and SN+1 = 0 (i.e., the destination always receives).
The line network in (2) is a cascade of N discrete memoryless
channels and as a result is physically degraded [7]. Thus, the
capacity of the line network R is given by the cut-set bound
that can be achieved by decoding transmissions from node i
at node i+1 before encoding them for transmission further in
the network as would typically happen with routing. This is
exactly how the standard decode-and-forward relaying scheme
operates over the line network. In particular, the capacity is
given by the cut-set bound as in (3), at the top of the next
page, where A represents the set of relays on the destination
side of the cut, and Ac = [1:N]\A. However, it is not clear

2A line network consists of a cascade of noisy channels, which make it
a physically degraded channel. Therefore, a node has a “cleaner” view of
information with respect to a node that is next in the line and thus, replacing
directed edges with undirected ones does not increase the capacity.

4

C
(cs)
R = max

p(X0,{Xi,Si}Ni=1)
min
A⊆[1:N]

I(YN+1, {Yi}i∈A;X0, {Xi, Si}i∈Ac |{Xi, Si}i∈A), (3)

what is the optimal distribution of {(Xi, Si)}Ni=0 needed to
characterize the capacity of the HD line network R in (3).

The capacity of the HD line network R described in (2) can
however be approximated to within a constant gap GAP = N
by using deterministic schedules. In particular, to obtain this
constant gap approximation we upper bound the cut-set bound
in (3) as seen in (4), at the top of the next page, where: (a)
follows from the chain rule of the mutual information and
by the fact that, for a discrete random variable, the entropy
is a non-negative quantity (the mutual information can hence
be upper bounded by the entropy); and (b) follows by upper
bounding the entropy of a discrete random variable by the
logarithm of its support.

This constant gap capacity approximation, which is derived
using similar arguments as in [9], [10], [11] for Gaussian HD
relay networks, follows since a binary random variable (i.e.,
a relay state) can only improve the capacity by at most 1
bit. Hence, since we have N relays, the gap is at most equal
to N . The first term CR in (4) which uses fixed schedules
(i.e., the exact values of {Si} are in the conditioning of
the mutual information term) is what we refer to as the
approximate capacity. By using decode-and-forward with an
optimal product input distribution and deterministic schedules,
the approximate capacity can be achieved and is expressed by

CR = max
λ∈Λ

min
A⊆[1:N]

∑
s∈[0:1]N

λs
∑

i∈{N+1}∪{T c
s ∩A}

i−1∈{0}∪{Ts∩Ac}

`i, (5)

where: (i) the schedule λ ∈ R2N

determines the fraction of
time the network operates in each of the states s ∈ [0 : 1]N ,
i.e., λs = Pr

(
{Si}Ni=1 = s

)
; (ii) Λ =

{
λ : λ ∈ R2N

, λ ≥

0,
∑
s∈[0:1]N λs = 1

}
is the set of all possible schedules;

(iii) Ts (respectively, T cs = [1 : N]\Ts) represents the set of
indices of relays transmitting (respectively, receiving) in the
state s ∈ [0 : 1]N ; (iv) for ease of notation, we set `i = `i−1,i

to denote the point-to-point capacity of the link from vi−1 to
vi. We can equivalently write the expression in (5) as

CR = max
λ∈Λ

min
A⊆[1:N]

∑
s∈[0:1]N

λs
∑

i∈{N+1}∪A
i−1∈{0}∪Ac

ˆ̀(s)
i , (6)

where

ˆ̀(s)
i :=

{
`i, if i∈T cs ∪ {N+1} and i− 1 ∈ Ts ∪ {0}
0, otherwise.

(7)

Similarly, we denote with CλR, the HD rate achieved by the
line network R when operated with the deterministic schedule
λ, i.e.,

CλR = min
A⊆[1:N]

∑
s∈[0:1]N

λs
∑

i∈{N+1}∪A
i−1∈{0}∪Ac

ˆ̀(s)
i . (8)

Note that, for all possible schedules λ, CλR ≤ CR.

Definition 1 (Simple Schedule). We say that a schedule λ ∈
R2N

is simple if the number of active states, i.e., states s such
that λs > 0 is at most N + 1. In other words, λ is simple if
‖λ‖0 ≤ N+1 (with ‖λ‖0 being the L0 norm of the vector λ).
In [12, Theorem 1], it was shown that for any Gaussian HD
relay network with arbitrary topology, there always exists a
simple schedule that is optimal for the approximate capacity.

A. Fundamental Cuts in HD Line Networks

In this subsection, we prove that for the HD line network
in (2), we can compute CR in (6) by considering only N + 1
cuts (out of the 2N possible ones), which are the same that
one would consider if the network was operating in FD.

For the line network R, when all the N relays operate in
FD, the FD capacity is given by

CFD
R = min

A⊆[1:N]

∑
i∈{N+1}∪A,
i−1∈{0}∪Ac

`i = min
i∈[1:N+1]

{`i} , (9)

that is, without explicit knowledge of the values of `i or their
ordering, the number of cuts over which we need to optimize
(see CFD

R in (9)) is N + 1. We refer to these cuts as funda-
mental. When states or cuts are referred to as fundamental
of a certain type (e.g., maximum, minimum), we mean that
they form the smallest set of that type that only depends on
the network topology (i.e., relays are arranged in a line) and
is independent of the actual values of the point-to-point link
capacities. Let F denote the set of these fundamental cuts
(which are of the form A = [i : N], i ∈ [1 : N] or A = ∅).
For any cut A of the network∑
i∈{N+1}∪F (A),
i−1∈{0}∪F (A)c

`i≤
∑

i∈{N+1}∪A,
i−1∈{0}∪Ac

`i for some F (A)∈F . (10)

Furthermore, the function F (·) in (10) does not depend on the
values of `i.

We next prove that the fundamental cuts in HD equal those
in (9) for FD. Consider a deterministic schedule λ. Then, by
using (10) for the inner summation in (8), for each s ∈ [0 : 1]N

we have ∑
i∈{N+1}∪F (A),
i−1∈{0}∪F (A)c

ˆ̀(s)
i ≤

∑
i∈{N+1}∪A,
i−1∈{0}∪Ac

ˆ̀(s)
i . (11)

Thus, we can simplify (8) as

CλR = min
A⊆[1:N]

∑
s∈[0:1]N

λs
∑

i∈{N+1}∪A
i−1∈{0}∪Ac

ˆ̀(s)
i

= min
A∈F

∑
s∈[0:1]N

λs
∑

i∈{N+1}∪A
i−1∈{0}∪Ac

ˆ̀(s)
i

5

C
(cs)
R = max

p(X0,{Xi,Si}Ni=1)
min
A⊆[1:N]

I(YN+1, {Yi}i∈A;X0, {Xi, Si}i∈Ac |{Xi, Si}i∈A)

(a)

≤ max
p(X0,{Xi,Si}Ni=1)

min
A⊆[1:N]

I(YN+1, {Yi}i∈A;X0, {Xi}i∈Ac |{Xi}i∈A, {Si}Ni=1) +H({Si}Ni=1)

(b)

≤ max
p({Xi}Ni=0)|{Si})p({Si}Ni=1))

min
A⊆[1:N]

I(YN+1, {Yi}i∈A;X0, {Xi}i∈Ac |{Xi}i∈A, {Si}Ni=1)︸ ︷︷ ︸
CR

+ N︸︷︷︸
GAP

, (4)

= min
i∈[1:N+1]

(∑
s∈Si

λs

)
`i, (12)

where

Si =
{
s∈ [0 :1]N |i ∈ {N+1}∪T cs , i−1 ∈ {0}∪Ts

}
. (13)

The set Si ⊆ [0 : 1]N represents the collection of states that
activate the i-th link. For illustration, for a network with N =
3 we have

S1 = {000, 001, 010, 011},
S2 = {100, 101},
S3 = {010, 110},
S4 = {001, 011, 101, 111}.

Using the same arguments as in (12), we can similarly simplify
the expression of CR in (6). Thus, the result presented in
this section explicitly provides the N + 1 cuts (out of the
2N possible ones) over which it is sufficient to minimize in
order to obtain CR in (6).

III. MAIN RESULTS AND DISCUSSION

In this section, we present our main results and discuss
their implications. Our first main result, stated in Theorem 1
is two-fold: (i) it provides a closed-form expression for the
approximate capacity of the HD line network that can be
evaluated in linear time, and (ii) it shows the existence of
a polynomial-time algorithm that outputs a simple schedule
optimal for approximate capacity.

Theorem 1. For the N -relay HD line network R described
in (2), a simple schedule (i.e., with at most N + 1 active
states) optimal for approximate capacity can be obtained in
O(N) time and the approximate capacity CR in (6) is given
by (1).

Proof: It is not difficult to argue that the right-hand
side of (1) is an upper bound on CR. This can be seen by
assuming that, for a given i ∈ [1 : N], node vi−1 perfectly
cooperates with node v0 and node vi+1 perfectly cooperates
with node vN+1 (see also Fig. 2 for an illustrative example
with i = 2 and N = 3). Clearly, the HD approximate
capacity of this new line network (equivalent to a single relay
line network) is an upper bound on CR and is given by
max

0≤β≤1
min{(1− ti)`i , ti`i+1} = `i `i+1

`i+`i+1
, which is achieved

by setting ti = `i
`i+`i+1

. Since this is true for all i ∈ [1 : N],
then CR is less than or equal to the right-hand side of (1).

S DDS

Fig. 2. Upper bound on CR for i = 2.

To prove the achievability of (1), we assign a duration of
time – denoted as TXi – for each relay i ∈ [1 : N] to be
transmitting (and hence listening in the remaining time). The
transmit period TXi assigned to relay i is parameterized by
ti and is given by the following period assignment

TXi =

{
[0, ti], i is even,
[1− ti, 1], i is odd,

(14)

where ti =
`i

`i + `i+1
, ∀i ∈ [1 : N]. We denote the time spent

by relay i listening as RXi = [0, 1]\TXi.
It is not difficult to see that, with this time allocation, the

network changes its state in at most N points in time given by
the values ti, ∀i ∈ [1 : N]. Thus the proposed schedule has at
most N + 1 states. Furthermore, the schedule can be created
in O(N). What remains to show is that the proposed schedule
achieves the rate given in (1). Towards this end, we need to
compute the duration of time γi, i ∈ [1 : N], for which the
link of capacity `i is active. This can be computed as follows

γi = |TXi−1 ∩ RXi|

(a)
=


`2

`1+`2
, i = 1,

min
(

`i+1

`i+`i+1
, `i−1

`i+`i−1

)
, i ∈ [2 : N],

`N
`N+1+`N

, i = N + 1,

(15)

where (a) follows by: (i) computing the size of the intersection
TXi−1∩RXi, (ii) using the ranges given in (14), and (iii) the
fact that the source is always transmitting and the destination
is always listening. The rate achieved by the given schedule is
hence equal to CλR = min

i=[1:N+1]
{γi`i}, which gives the result

in (1). This concludes the proof of Theorem 1.
Remark 1. Although the described achievable scheme used for
the proof of Theorem 1 yields a rate equal to the approximate
capacity in (1), it can be over-using non-bottleneck links
in the network. In particular, as described in the proof of
Theorem 1, the i-th link has an effective scheduled rate
of min{ `i`i−1

`i+`i−1
, `i`i+1

`i+`i+1
}, i.e., the effective used rate can

be strictly greater than the network approximate capacity.

6

In [23], we proposed an alternative approach for scheduling
the relays which is based on edge-coloring and we proved
that it also achieves the approximate capacity in (1) by
using the link of capacity `j with an effective scheduled rate
of minj∈[1:N]{

`j`j+1

`j+`j+1
}. In other words, the edge-coloring

algorithm proposed in [23] ensures that each link is active only
for a duration of time that suffices to achieve the approximate
capacity. This property of edge-coloring has been recently
leveraged to develop queue-aware scheduling schemes [24]
(assuming that the queues at the nodes are not infinite) that
achieve rates that approach the approximate capacity. �

In what follows, we highlight some remarks to motivate the
need to search for a simple schedule for the line network and
to explain why our search and schedule presented in the proof
of Theorem 1 cannot be simplified a priori.

Remark 2. [Are two active states sufficient for approximate
capacity characterization?] Consider a line network with
one relay. For this network, the schedule that achieves the
approximate capacity has only two active states, which activate
the links alternatively. Intuitively, one might think that this
would extend to arbitrary number of relays. For example, for a
network with N = 3, can we achieve the approximate capacity
by only considering the listen/transmit states s1 = 010 and
s2 = 101? The answer to this question is negative as we
illustrate through the following example with N = 3 and

`1 = 2r, `2 = 2r, `3 = 3r, `4 = r, (16)

where r > 0. By considering only the two aforementioned
states, we can achieve a rate of r 2

3 . However, by applying the
expression in (1), we get that the HD approximate capacity
for this network is r 3

4 . �

Remark 3. [Can we a priori limit our search over a polynomial
number of states?] For the FD line network, we can a priori
limit our search for the minimum cut over N +1 cuts (instead
of 2N). This reduction in the number of cuts is also possible
for the HD line network as we proved in Section II-A. This
fact raises the question whether we can also a priori reduce the
search space for the active states to a polynomial set (instead
of 2N). This is not possible as we state in the theorem below,
which is proved in Appendix A. This result might be due
to the fact that the capacity expression in (1) depends on
the harmonic mean between two consecutive links. Hence,
different from FD, changing the order of the point-to-point
link capacities, might also change the value of the approximate
capacity. �

Theorem 2. With only the knowledge that N relays are
arranged in a line, the cardinality of the smallest search
space of states over which a schedule optimal for approximate
capacity can be found is Ω(2N/3).

Remark 4. Theorem 1 has two promising consequences:

1) The HD approximate capacity of the N -relay line net-
work can be computed in O(N) time. This improves on
the result in [15], where the approximate capacity can
be found in polynomial-time (but not linear in the worst
case) by solving a linear program with O(N) variables.

D

S

20
15

20

20

100

5

5

Best FD
path Best HD

path

Fig. 3. Example where the best FD and HD paths are different. Edge labels
represent the point-to-point link capacities of the edges.

2) The HD approximate capacity in Theorem 1 can be
computed in a distributive way as follows. Each relay
i ∈ [1 : N] computes the quantity

mi = min

{
`i `i+1

`i + `i+1
,mi−1

}
,

where m0 = ∞, and sends it to relay i + 1. With this,
at the end we have mN = CR. In other words, for HD
approximate capacity computation, it is only required
that each relay knows the capacity of its incoming and
outgoing links. �

Remark 5. The properties discussed in Remark 4 are the
same appealing properties that advocate for the use of the
FD capacity in routing protocols. Thus, it is interesting to
understand whether routing based on the FD capacities would
also give the path with the largest HD approximate capacity or
instead routing using the HD approximate capacity expression
in (1) would yield different routes. Indeed, it turns out that the
FD capacity approach is suboptimal as shown by the example
in Fig. 3. By applying the expression in (1), we find that the
best HD route (within the blue box in Fig. 3) has an HD
approximate capacity of 13.04, which is 30% higher than the
HD approximate capacity of the best FD route (within the red
box in Fig. 3, with FD capacity of 20 but HD approximate
capacity of 10). With best FD (respectively, HD) route we
refer to the path that has the largest FD (respectively, HD
approximate) capacity. �

The example illustrated in Fig. 3 shows that in general it is
suboptimal to find the best HD path by using as optimization
metric the FD capacity of the path. In fact, as shown in [25],
there exist networks for which routing based on the FD capac-
ities yields a route with HD approximate capacity equal to half
that of the best HD route. This observation naturally suggests
the question: Does there exist an efficient (polynomial-time)
algorithm that finds the route in a network with the largest
HD approximate capacity? We address this question in the
following theorem.

Theorem 3. For a relay network in the class described in
Section II, the problem of finding the best HD path is NP-
hard.

Intuitively, we can attribute the hardness stated in Theorem 3
to the fact that we need to keep track of whether the discovered

7

paths contain cycles or not, unlike the FD counterpart (a
more detailed discussion regarding this aspect can be found in
Section IV). This observation suggests that, if the number of
cycles in a network is regulated, then we can find the simple
path (i.e., a path that contains no cycles) with the largest HD
approximate capacity in polynomial-time, as formalized in the
lemma below.

Lemma 4. If the number of cycles in a relay network with N
relays (described by the digraph G) is at most polynomial in N
(i.e., O(Nα) for some constant α), then we can find the simple
path with the largest HD approximate capacity in polynomial-
time, particularly in O((Nα+1)(|E(G)| log |E(G)|+|E(G)|d)),
where d is the maximum vertex degree in G. This holds even
when we do not have an a priori knowledge of the location
of the cycles in the network.

As a network example for which Lemma 4 applies, we can
study the layered network where the relays are arranged as
M relays per layer over L layers of relays (in total, we have
N = ML relays). Every relay can only communicate with the
relays in the following layer. It is not difficult to see that for
this particular network, the number of cycles in the graph is
equal to zero, i.e., Nα = 0. In addition, the maximum degree
d of a vertex is O(M) and the number of edges in the network
is Θ(LM2). By substituting these values in the expression in
Lemma 4, we get that the complexity of finding a simple path
with the largest HD approximate capacity in a layered network
is given by

O((Nα + 1)(|E(G)| log |E(G)|+ |E(G)|d))

= O(LM2 logLM2 + LM2M)

= O(LM2 logL+ 2LM2 logM + LM3)

= O(LM2 logL+ LM3).

IV. HD ROUTING IS NP-HARD

For a network represented by the directed graph G, a path
P = vk1 − vk2 − . . . − vkm+1

of length m in G is
a sequence of vertices vki ∈ V(G), ∀i ∈ [1 : m + 1]. An
S-D simple path in G is a path for which vk1 = v0 = S
and vkm+1 = vN+1 = D and all m + 1 vertices in P are
distinct, i.e., there are no cycles in P . From Theorem 1, the HD
approximate capacity of the S-D simple path P is given by

CP = min
i∈[2:m]

{
`ki−1,ki `ki,ki+1

`ki−1,ki + `ki,ki+1

}
. (17)

Recall that `ki−1,ki represents the link capacity of the edge
from node vki−1 ∈ P to node vki ∈ P .

In this section, our goal is to prove Theorem 3, i.e., the
problem of finding the best HD route in a network is NP-
hard. Towards this end, we start by showing that, if we want
to find the path P with the largest value of CP in (17), then
we need to restrict our search over simple paths.

A. Non-simple Paths are Misleading in HD

Practically, a communication route through a network is
expected to be a simple path, i.e, a path that contains no
cycles. This is due to the fact that for a non-simple path, e.g.,

DS
20 20
15 15

Fig. 4. A network example in which a non-simple path can appear to have
a larger HD approximate capacity than its simple subpath.

Pcyclic = S − v1 − v2 − · · · − vm − v2 − D, we know that
– from the degraded nature of the network – the information
sent from vm to v2 is a noisy version of the information that is
already available at v2 (since v2 appeared earlier in the path).
Thus, for the simple path Psimple = S − v1 − v2 − D, we
fundamentally have that

CPcyclic
≤ CPsimple

. (18)

This observation is true for both FD and HD paths in the
network and therefore the best path (in FD or HD) is naturally
a simple path. When routing using the FD capacities (to
select the best FD route), this observation turns out to be
just a technicality since the expression for the FD capacity
already exhibits the fundamental property described in (18).
Particularly, we have that E(Psimple) ⊆ E(Pcyclic), which
directly implies that

CFD
Pcyclic

= min
ei,j∈E(Pcyclic)

{`i,j}≤ min
ei,j∈E(Psimple)

{`i,j} = CFD
Psimple

.

Thus, an algorithm that selects a route in FD can end up with
either type of paths (simple or cyclic). If the path is cyclic,
then we can prune it to get a simple path while ensuring that
pruning can only improve the computed capacity.

Differently, for HD routing, it is very important to re-
strict ourselves to searching over simple paths as the HD
approximate capacity expression in (17) only applies to sim-
ple paths. Furthermore, applying the expression in (17) to
a path with a cycle can actually increase the approximate
capacity (in contradiction to the fundamental property in (18)).
To illustrate this, consider the network example shown in
Fig. 4. From Fig. 4, we now focus on the two paths: the
simple path P1 = S − v1 − D and the non-simple path
P2 = S − v1 − v2 − v3 − v1 − D. Note that P1 is a simple
path and P2 is a cyclic extension of P1 by adding the cycle
v1 − v2 − v3 − v1. If we apply the expression in (17) on both
paths, we get the value equal to 7.5 for P1 and for P2 we get
13.05. Thus, if an algorithm is allowed to output non-simple
paths, then it would output the path P2 even though we know
fundamentally that CP1

≥ CP2
. This is the first major problem

that arises when we allow an algorithm to consider non-simple
paths based on the expression in (17). The second problem
arises when we observe that P3 = S − v4 − D in Fig. 4 is
actually the best HD simple path from S to D. However, since
applying (17) for P2 yields 13.05, which is larger than what

8

we get for P3 (i.e., 10), then the algorithm will output a non-
simple path P2 which when pruned does not yield the best
HD path. Thus, an algorithm designed with the goal to find
the best HD path needs to be aware of the type of paths that
it processes. In other words, we can no longer rely on pruning
non-simple paths that an algorithm outputs as these in HD can
mislead the algorithm into not selecting the best HD path as
illustrated in this example.

As a consequence of the above discussion, in the rest of the
section, we focus on the problem of finding the simple (i.e.,
acyclic) path with the largest HD approximate capacity.

B. Finding the Best HD Simple Path is NP-hard

Our goal in this subsection is to prove that the search
problem of finding the S-D simple path with the largest HD
approximate capacity in a relay network (represented by the
digraph G) is NP-hard. Towards proving this, we first show
that the related decision problem “HD-Path”, which is defined
below, is NP-complete.

Definition 2 (HD-Path problem). Given a directed graph G
and a scalar Z > 0, determine whether there exists an S-D
simple path in G with an HD approximate capacity greater
than or equal to Z.

Since the decision problem defined above can be reduced
in polynomial-time to finding the S − D simple path with
the largest HD approximate capacity, then by proving the NP-
completeness of the decision problem in Definition 2, we also
prove that the search problem is NP-hard.

The HD-Path problem is NP because, given a guess for a
path, we can verify in polynomial-time whether it is simple
(i.e., no repeated vertices) and whether its HD approximate
capacity is greater than or equal to Z by simply evaluating the
expression in (17).

To prove the NP-completeness of the HD-Path problem,
we now show that the classical 3SAT problem (which is NP-
complete) [22] can be reduced in polynomial-time to the HD-
Path decision problem in Definition 2. For the 3SAT problem,
we are given a boolean expression B in 3-conjunctive normal
form,

B(x1, x2, . . . , xn) =(p11 ∨ p12 ∨ p13) ∧ (p21 ∨ p22 ∨ p23)

∧ · · · ∧ (pm1 ∨ pm2 ∨ pm3), (19)

where: (i) B is a conjunction of m clauses {C1, C2, . . . , Cm},
each containing a disjunction of three literals and (ii) a literal
pij is either a boolean variable xk or its negation x̄k for some
k ∈ [1 : n]. The boolean expression B is satisfiable if the
variables x[1:n] can be assigned boolean values so that B is
true. The 3SAT problem answers the question: Is the given
B satisfiable? We next prove the main result of this section
through the following lemma.

Lemma 5. A polynomial-time reduction exists from the 3SAT
problem to the HD-Path problem.

Proof. To prove the claim, we create a sequence of graphs
based on the boolean statement B given to the 3SAT problem.
In each of these graphs, we show that the existence of a

satisfying assignment for B is equivalent to a particular feature
in the graph. Finally, we construct a network where the feature
equivalent to a satisfying assignment of B is the existence of
a simple path with HD approximate capacity greater than or
equal to Z. In particular, our proof follows four steps of graph
constructions, which are explained in detail in what follows.

Running example. To illustrate these four steps we use the
following boolean expression as a running example,

B=(x̄1 ∨ x2 ∨ x3) ∧ (x4 ∨ x1 ∨ x̄2) ∧ (x̄1 ∨ x3 ∨ x̄5), (20)

where, with the notation in (19), the literals are assigned as

(p11, p12, p13) = (x̄1, x2, x3), (21a)
(p21, p22, p23) = (x4, x1, x̄2), (21b)
(p31, p32, p33) = (x̄1, x3, x̄5). (21c)

Step 1. Assume that the boolean expression B is made of
m clauses. For each clause Ci, i ∈ [1 : m] in B, construct a
gadget digraph Gi with vertices V(Gi) = {ti, vi1, vi2, vi3, ri}
and edges E(Gi) =

⋃3
j=1

{
eti,vij , evij ,ri

}
. Now we connect

the gadget graphs Gi, i ∈ [1 : m], by adding directed edges
eri,ti+1 , ∀i ∈ [1 : m−1]. Finally, we introduce a source vertex
S and a destination vertex D and the directed edges eS,t1 and
erm,D. We denote this new graph construction by GB . Note
that each vertex vij in GB represents a literal pij in the boolean
expression B. We call a pair of vertices (vij , vk`) in GB , with
i < k, as forbidden if pij = pk` in B.

Let F be the set of all such forbidden non-ordered pairs.
Consider an S-D path P = S−t1−v1`1−r1−t2−· · ·−vm`m−
rm−D in the graph GB that contains at most one vertex from
any forbidden pair in F . Using the indexes characterizing the
path P , if we set the literals pi`i to be true ∀i ∈ [1 : m], then
this is a valid assignment (since, by our definition, P avoids all
forbidden pairs in F). Additionally, since we set one literal to
be true in each clause, then this assignment satisfies B. Hence
the existence of a path P in GB that avoids forbidden pairs
implies that B is satisfiable. Similarly, we can show that if B is
satisfiable, then we can construct a path that avoids forbidden
pairs in GB using any assignment that satisfies B.

Running example. The boolean expression in (20) has m = 3
clauses. Hence, we construct 3 gadget digraphs that are
connected to form GB as represented in Fig. 5. Since each
vertex vij , i ∈ [1 : m], j ∈ [1 : 3], in GB represents a literal
pij in the boolean expression in (20) (i.e., pij = vij) and
the literals are assigned as described in (21), then the set of
forbidden pairs is given by

F = {(v11, v22), (v12, v23), (v22, v31)} (22)

as also shown in Fig. 5.

Step 2. Next we modify the set of forbidden pairs F and
the graph GB such that each vertex appears at most once in
F . For each vertex vij that appears in at least one forbidden
pair of F , define VF (vij) = {vi′j′ ∈ V(GB)|(vij , vi′j′) ∈
F or (vi′j′ , vij) ∈ F}. Then, for each VF (vij), we create
|VF (vij)| vertices and we label them as vij,k`, ∀vk` ∈ VF (vij).
We finally replace the vertex vij in GB with a path connecting

9

S D

Fig. 5. Graph GB and set of forbidden pairs F for the boolean expression in (20).

the vertices vij,k`, ∀vk` ∈ VF (vij). We denote this new graph
as G◦B . The new set of forbidden pairs F◦ is defined based
on the set F as F◦ = { (vij,k`, vk`,ij)| (vij , vk`) ∈ F}. Note
that, for this new set of forbidden pairs, each vertex in G◦B
appears in at most one forbidden pair. Let VF◦ be the set of
vertices that appear in F◦. Then ∀vij,kl ∈ VF◦ , we replace
vij,kl with a path that consists of three vertices. In particular,
for any vertex vij,k` ∈ VF◦ , we replace it with a directed
path aij,kl− vij,kl− bij,kl. We call this new graph G?B and the
forbidden pair set F? = F◦. The introduced vertices aij,k`
and bij,k` are called a-type and b-type vertices, respectively.

Similar to our earlier argument for GB , note that a path in
G?B that avoids forbidden pairs in F? gives a valid satisfying
assignment for the boolean argument B. In the reverse direc-
tion, if we have an assignment that satisfies B, then by taking
one true literal from each clause Ci, i ∈ [1 : m], we can
choose ti− ri paths that avoid forbidden pairs. By connecting
these paths together, we get an S-D path in G?B that avoids
forbidden pairs.

Running example. For our running example, given the set of
forbidden pairs F in (22), we have

VF (v11) = {v22} =⇒ v11 ← v11,22,
VF (v22) = {v11, v31} =⇒ v22 ← v22,11 − v22,31,
VF (v12) = {v23} =⇒ v12 ← v12,23,
VF (v23) = {v12} =⇒ v23 ← v23,12,
VF (v31) = {v22} =⇒ v31 ← v31,22,

where y ← Y indicates that in G◦B the vertex y is replaced by
the path Y . The set of forbidden pairs F◦ is then given by

F◦ = {(v11,22, v22,11), (v22,31, v31,22), (v12,23, v23,12)} (23)

and hence VF◦ = {v11,22, v22,11, v22,31, v31,22, v12,23, v23,12}.
Given this, we can now construct the graph G?B by replacing
any vertex inside VF◦ as follows

v11,22 ← a11,22 − v11,22 − b11,22,

v22,11 ← a22,11 − v22,11 − b22,11,

v22,31 ← a22,31 − v22,31 − b22,31,

v31,22 ← a31,22 − v31,22 − b31,22,

v12,23 ← a12,23 − v12,23 − b12,23,

v23,12 ← a23,12 − v23,12 − b23,12,

as shown in Fig. 6 (in order to better visualize the ‘evolution’
from GB to G?B , in Fig. 6 we also report again GB of Fig. 5).
Furthermore, we have F◦ = F?, where F◦ is defined in (23).

Step 3. Our next step is to modify G?B to incorporate F? di-
rectly into the structure of the graph. For each (vij,k`, vk`,ij) ∈
F? introduce a new vertex fij,k` to replace vij,k` and vk`,ij .
All edges that were incident from (to) vij,k` and vk`,ij are
now incident from (to) fij,k`. We call these newly introduced
vertices as f-type vertices and denote this new graph as G•B .
Note that in G•B , we now have incident edges from aij,k` and
ak`,ij to fij,k` and edges incident from fij,k` to vertices bij,k`
and bk`,ij . A path in G?B that avoids forbidden pairs in F?
gives a path in G•B that follows the following rules:

1) Rule 1: If any f-type vertex is visited, then it is visited
at most once;

2) Rule 2: If an f-type vertex is visited then the preceding
a-type vertex and the following b-type vertex both share
the same index (i.e., we do not have aij,k`−fij,k`−bk`,ij
or ak`,ij−fij,k`−bij,k` as a subpath of our path in G•B).

It is not difficult to see that an S−D path in G•B that abides
to the two aforementioned rules represents a feasible path that
avoids forbidden pairs F? in G?B . Specifically, this can be seen
by treating the subpath (aij,k` − fij,k` − bij,k`) in G•B as the
subpath (aij,k` − vij,k` − bij,k`) in G?B and similarly (ak`,ij −
fij,k`− bk`,ij) for (ak`,ij − vk`,ij − bk`,ij). In other words, the
problem of finding a path in G?B that avoids forbidden pairs
in F? is equivalent to finding a path in G•B that satisfies Rule
1 and Rule 2.

Running example. For our running example, the graph G•B
is shown in Fig. 7. In particular, G•B is constructed from G?B
in Fig. 6, where each vij,k` ∈ V(G?B) and vk`,ij ∈ V(G?B)
such that (vij,k`, vk`,ij) ∈ F?, with F? being defined in (23),
is now replaced by fij,k` in G•B , which is connected to the
other nodes as explained above. In order to better visualize
the ‘evolution’ from GB to G•B , we also report again GB of
Fig. 5 and G?B of Fig. 6.

Step 4. Our next step is to modify G•B by introducing edge
capacities. For any edge e ∈ E(G•B) that is not incident from
or to an f-type vertex, we set the capacity of that edge to
be 3Z. For an f-type vertex fij,k`, let g1 and h1 be the link
capacities of the edges incident to it from aij,k` and incident
from it to bij,k`, respectively. Similarly, let g2 and h2 be the

10

S D

S D

Fig. 6. G?B and set of forbidden pairs F?. The graph G?B is constructed from GB .

link capacities of the edges incident from ak`,ij and to bk`,ij ,
respectively. Then, we set these capacities as

g1 = h2 = 1.5Z, g2 = h1 = 3Z.

We now need to show that finding a path satisfying Rules 1
and 2 is equivalent to finding a simple path in G•B with HD
approximate capacity greater than or equal to Z. It is not
difficult to see that a path that follows Rules 1 and 2 is simple
and has an HD approximate capacity greater than or equal to
Z (by avoiding subpaths aij,k`−fij,k`− bk`,ij). This is due to
the following fact. Consider a path that satisfies Rules 1 and 2.
Then, for any two consecutive links in the considered path, at
most one of the two links has a capacity of 1.5Z (shown in
red in Fig. 7), i.e., at least one link has a capacity of 3Z. Thus,
a lower bound on the approximate capacity of the considered
path is given by (3Z× 1.5Z)/(3Z + 1.5Z) = Z.

To finally prove the equivalence, we now need to show that
a simple path with capacity greater than or equal to Z satisfies
Rules 1 and 2. Note that Rule 1 is inherently satisfied since
the path is simple (i.e., it visits any vertex at most once).
For Rule 2, we next argue that both subpaths are avoided by
contradiction.

Assume that the simple path selected contains a subpath of
the form aij,k` − fij,k` − bk`,ij . By our construction of the
edge capacities, both the edges eaij,k`,fij,k`

and efij,k`,bk`,ij

have a capacity equal to 1.5Z. This gives us a contradiction
since half of the harmonic mean between the capacities of
these two consecutive edges is equal to 0.75Z. Since the HD
approximate capacity of a path is the minimum of half of the
harmonic means of its consecutive edges, then the selected
path cannot have an HD approximate capacity greater than
or equal to Z, which leads to a contraction. Thus, a subpath
aij,k`−fij,k`−bk`,ij is always avoided. We now need to prove
that also the path ak`,ij − fij,k` − bij,k` is always avoided.

Towards this end, assume that the simple path selected with
HD approximate capacity greater than or equal to Z contains
(for some i′, j′, k′ and `′) a subpath of the form ak′`′,i′j′ −
fi′j′,k′`′ − bi′j′,k′`′ . Note that, as per our construction in the
graph G•B , we have that i′ < k′. Let i? be the smallest index i′

for which such a subpath exists in our selected path. Since for
the subpath in question we have that i? < k′, then to reach
ak′`′,i?j′ from S, we have already visited ri? earlier in the
path. However, to move from bi?j′,k′`′ to D (after the subpath
in question), we need to pass through ri? once more. Clearly,
since the path is simple, this leads to a contradiction. Thus, a
subpath ak`,ij − fij,k` − bij,k` is also always avoided.

This completes the proof that a simple path with capacity
greater than or equal to Z satisfies Rule 2. Therefore, finding a
path satisfying Rules 1 and 2 is equivalent to finding a simple
path in G•B with HD approximate capacity greater than or equal
to Z. The second statement is an instance of the HD-Path
problem in Definition 2.

Note that in each of the four graph constructions de-
scribed earlier, we construct one graph from the other using
a polynomial number of operations. Thus, this proves by
construction that there exists a polynomial reduction from the
3SAT problem to the HD-Path problem. This concludes the
proof of Lemma 5 and hence the proof of Theorem 3.

Running example. For our running example, the assignment
of the edge capacities is shown in G•B in Fig. 7, where black
and blue edges have a capacity of 3Z and red edges have 1.5Z.
Fig. 7 also shows the evolution of GB up to G•B .

This concludes the proof of Lemma 5.

V. SOME INSTANCES WITH POLYNOMIAL-TIME SOLUTIONS

In this section, we discuss a special class of networks for
which a polynomial-time algorithm exists to find a simple path

11

S D

S D

S D

Fig. 7. G•B and the associated edge capacities. The graph G•B is constructed from G?B .

with the largest HD approximate capacity. In particular, we
focus on networks where the number of cycles is polynomial,
i.e., the number of cycles is at most Nα for some constant α >
0, where N+2 is the total number of nodes in the network. Our
approach is based on relating paths in a network (described
by the digraph G) to paths in the line digraph of G denoted
as LG . We describe the relation in the next subsection and
then present an algorithm that finds the best HD simple path
in polynomial-time for the aforementioned class of networks.

A. The Line Digraph Perspective to the Best HD Path Problem

The line digraph of a digraph G is defined as follows.

Definition 3 (Line digraph LG). For a given digraph G, its line
digraph LG is a digraph defined by the set of vertices V(LG)
and the set of directed edges E(LG). The set V(LG) is defined
as V(LG) = {vij |ei,j ∈ E(G)} where ei,j is the directed edge
from vertex vi to vertex vj . The set of edges E(LG) is defined
as E(LG) = {eij,k`|k = j, vij , vk` ∈ V(LG)}.

An illustration of a digraph and its associated line digraph is
shown in Fig. 8. We can make the following two observations

on how simple HD paths are represented in the line digraph.
1) HD paths in G are equivalent to FD paths in LG . Note
that a path P in a network G can be equivalently defined as
the sequence of its adjacent edges (instead of vertices), i.e.,
we can equivalently write the path P = vk1 − vk2 −· · ·− vkm
in G as P = ek1,k2 − ek2,k3 − · · · − ekm−1,km . Given this and
from the definition of the line digraph LG , the path P in G is
equivalent to the path PL = vk1k2 − vk2k3 · · · − vkm−1km in
LG . For each edge eij,jk ∈ E(LG), we define the capacity for
the edge eij,jk as

cL(eij,jk) =
`i,j `j,k
`i,j + `j,k

, (24)

where `i,j is the point-to-point link capacity of the edge (link)
ei,j in G. Thus, we have that the FD capacity of the path PL
in LG is given by

CFD
PL = min

eij,jk∈E(PL)
{cL(eij,jk)}

= min
eij,jk∈E(PL)

{
`i,j `j,k
`i,j + `j,k

}
= CP , (25)

12

where CP is defined in (17). From (25) and our previous
discussion, we can conclude that, to find the path with the
largest HD approximate capacity in the network described
by the digraph G, we can first find the path in LG that has
the largest FD capacity (where the link capacities in LG are
defined as in (24)) and then map this path in LG into its
equivalent in G.
2) Simple paths in G are equivalent to simple chordless
paths in LG . We start by defining chordal and chordless paths
in digraphs.

Definition 4 (Chordal and chordless paths). A path in the
digraph G′ is chordal if there exists an edge e ∈ E(G′) such
that its endpoints are two non-consecutive vertices in the path.
A path that is not chordal is called chordless.

For example, with reference to Fig. 8, the path S′ − S −
v4 − v2 − v1 − v6 − v3 −D−D′ is a chordal path in G since
e3,2 ∈ E(G) and the vertices v3 and v2 belong to the path but
are non-consecutive. Thus, e3,2 is a chord for this path in G.
A similar reasoning holds for eS,1.

Consider a cyclic path Pcycle in G. This implies that some
vertex vk ∈ Pcycle appears at least twice in the path. Denote
with vq1 the node following vk in its first appearance in Pcycle

and with vq2 the node preceding vk in its second appearance in
the path Pcycle. Then, if we write the line digraph equivalence
of Pcycle, we have

PLcycle
= · · · − vkq1 − · · · − vq2k −

From the construction of E(LG) in Definition 3, we see that the
edge eq2k,kq1 ∈ E(LG), which implies that PLcycle

is chordal.
Differently, for a simple path Psimple, any vertex vk ∈ Psimple

appears only once. Thus, in the line digraph equivalent path
PLsimple

, the index k appears only in two consecutive vertices,
which implies that PLsimple

is chordless. This shows the
equivalence described in our observation between simple paths
in G and simple chordless paths in LG .

Given the two observations above, we can now equivalently
describe our HD routing problem on the line digraph as
follows: Can we find the chordless simple path in LG that
has the largest FD capacity?

B. An Algorithm on the Line Digraph LG
The goal of the algorithm described in this section is to

find the chordless simple path in LG that has the largest FD
capacity. The algorithm described here is a modification of the
result proposed in [26] for selecting shortest paths while avoid-
ing forbidden subpaths in undirected graphs. The result in [26]
needs to apply special care when fixing forbidden subpaths in
a graph, due to the general unstructured nature of the forbidden
set. In contrast, in our setting we will leverage the structured
nature of our forbidden subpaths (chordal paths) and our line
digraph LG to reduce the number of steps when breaking down
a discovered chordal path (presented later in Step 3 of the
algorithm). In particular, we make use of the fact that the first
chord (corresponding to a chordal subpath) encountered within
a selected path in the line digraph represents the smallest cycle
encountered along the selected path in the original graph G.

4

1

2

3

5S’ D D’S

6

21

S1

S4

3D

32

42 25

DD’S’S

5D

16 63

10

10 1

10

10

10

10

10 10

5

5

10
710

10

Fig. 8. An example of a digraph G with its corresponding line digraph LG .
For ease of notation, indexes ij instead of vij are used and the edge capacities
are only shown on LG .

Thus, by eliminating this subpath, we are sure that the number
of remaining chordal paths (present on other paths or larger
chordal paths on the same path) has not increased.

To start, we first modify our given network (described by
G) so that the source S and the destination D have at most
degree one. In particular, we modify the digraph G by adding
two new nodes (namely, S′ and D′) that are connected only
to S and D with edges eS′,S and eD,D′ (similar to Fig. 8).
These two added edges have point-to-point capacities equal to
X → ∞. Denote this new digraph by G′ and create the line
digraph associated with G′ and denote it by L(0)

G . In L(0)
G , we

now consider the node vS′S as our source and the node vDD′
as our intended destination.

The algorithm is based on incrementally applying Dijkstra’s
algorithm [21]. We first try to find the best FD path from vS′S
to vDD′ in L(i)

G by running Dijkstra’s algorithm. Note that
Dijkstra’s algorithm returns a spanning tree rooted at vS′S
that describes the best FD path from vS′S to each vertex v′

in L(i)
G . We denote the tree from our initial run as T0. From

this point, the algorithm iterates (until termination) over four
main steps described as follows (starting with i = 0).

Step 1. Given the line digraph L(i)
G and an existing best FD

path spanning tree Ti, check whether the path P(i)
L from vS′S

to vDD′ defined by Ti is chordless. If it is chordless, terminate
the algorithm since we have found the chordless path from
vS′S to vDD′ with the largest FD capacity. Otherwise, if it is
not chordless, then proceed to Step 2.

Running example. We use the line digraph from Fig. 8 as
our L(0)

G . Then, for i = 0, we have the spanning tree T0 (from
Dijkstra’s algorithm) and the selected path P(0)

L as shown in
Fig. 9. The path P(0)

L is chordal since e32,21 ∈ L(0)
G and

e42,25 ∈ L(0)
G .

Step 2. Let C(i)
P be the set of edges in L(i)

G that are chords
for the path P(i)

L from vS′S to vDD′ discussed in the earlier
step. Let C(i)

P,first ∈ C
(i)
P be the first chord that appears along

the path P(i)
L . We denote the endpoints of C(i)

P,first as vk1k2

13

21

S1S4

63

3D 32

42

25

DD’

S’S

5D

16

10 5

10

10

10

10

10

10

10

10

7

Fig. 9. Tree T0 for L(0)
G = LG in Fig. 8 (indexes ij instead of vij are used

for ease of notation). Boldface numbers represent the FD capacity with which
a node can be reached from SS′ using T0. The highlighted path is the route
selected from this tree T0 from S′S to DD′.

and vkmkm+1 , where vk1k2 is the vertex that among the two
appears earlier in the path P(i)

L and where m is the length of
the subpath P(i)

to−fix of P(i)
L connecting the two endpoints, i.e.,

we now have a path P(i)
to−fix = vk1k2 −vk2k3 −· · ·− vkmkm+1

.
Notice that, with this, we have km+1 = k1.

Running example. For our running example and i = 0, we
can see from Fig. 8 and Fig. 9 that the set of chords for P(0)

L
is C(0)
P = {e32,21, e42,25}. The selected chord C(0)

P,first is e32,21

because its effect on the path concludes earlier than e42,25.
Hence, we have P(0)

to−fix = v21 − v16 − v63 − v32, which is of
length m = 4.

Step 3. We now introduce new vertices to the graph L(i)
G by

replicating every intermediate vertex in P(i)
to−fix. In particular,

we introduce a replica vertex vk′ik′i+1
for vkiki+1

where i ∈
[2 : m−1]. We connect these replicas of vertices to each other
in the same way their corresponding originals are connected
in P(i)

to−fix, i.e., we include the edge ek′ik′i+1,k
′
i+1k

′
i+2
∀i ∈ [2 :

m−1] with the same edge capacity as ekiki+1,ki+1ki+2
.

Then, for every vi′j′ ∈ V(L(i)
G)\V(P(i)

to−fix) such that
ei′j′,kiki+1

∈ E(L(i)
G), we add an edge that connects vi′j′ to the

replica vertex of vkiki+1
, i.e., we add the edge ei′j′,k′ik′i+1

(with
the same edge capacity as ei′j′,kiki+1

). In other words, every
vertex in L(i)

G that is not in P(i)
to−fix and has an edge incident on

an intermediate vertex vkiki+1 , i ∈ [2 : m−1], of P(i)
to−fix now

has a similar (replicated) edge incident on the replica vk′ik′i+1

of vkiki+1
. Note that at this point: (i) the original vertices in

P(i)
to−fix still form a chordal path in L(i)

G and (ii) the replica
vertices have every possible incident connection their original
vertices had except connections to the two endpoint vertices
of P(i)

to−fix. We denote the digraph at this point as L̂(i+1)
G .

Now, our last change is to modify how the two endpoints

21

S1

S4

3D

32

42 25

DD’S’S

5D

16 63

1’6’ 6’3’

21

S1

S4

3D

32

42 25

DD’S’S

5D

16 63

21

S1

S4

3D

32

42 25

DD’S’S

5D

16 63

1’6’ 6’3’

10

10 1

10

10

10

10

10 10

5

5

10
7

10

10 1

10

10

10

10

10 10

5

5

10
7

10

10 1

10

10

10

10

10

5

5

10
7

10

10

10

10

10

10

10

10

10

10

10

Fig. 10. L(0)
G from Fig. 8 and the corresponding L̂(1)

G and L(1)
G . The replica

vertices and the added edges are shown in red while the deleted edges are
dashed.

of the path P(i)
to−fix in L̂(i+1)

G connect to the intermediate
vertices of the path and their replicas. We do this by adding the
edge ek′m−1k

′
m,kmkm+1

that connects the last replicated vertex

vk′m−1k
′
m

to the endpoint vkmkm+1
of P(i)

to−fix and by removing
the edge ekm−1km,kmkm+1 that connected the original last
intermediate vertex to the endpoint. In particular, the new edge
ek′m−1k

′
m,kmkm+1

has the same capacity as ekm−1km,kmkm+1

that was removed. Denote this new digraph as L(i+1)
G . Note

that in this new digraph L(i+1)
G , the path P(i)

to−fix does not
exist anymore, while all the other chordless paths have stayed
the same. This is due to the fact that we consider the first
encountered chord and therefore vertex replication applied in
this step either leaves larger chordal subpaths unaffected or
eliminates them. This structure is the key step that allowed us
to perform a simpler form of vertex replication as compared
to [26]. Thus, we have successfully eliminated a cycle (chordal
path) that appeared in the digraph before by replicating ver-
tices and deleting edges.

Running example. For our running example and iteration i =
0, recall that the chordal path that we would like to fix is given
by P(0)

to−fix = v21− v16− v63− v32 (see Fig. 10), where there
is a chord due to v21 and v32. Only the intermediate vertices
of P(0)

to−fix, v16 and v63 are replicated, while the endpoints v21

and v32 are unchanged. To generate L(1)
G , we first create L̂(1)

G
by replicating the intermediate nodes v16 and v63 (denoted
as v1′6′ and v6′3′) and all incident edges on them that are not

14

part of P(0)
to−fix. This is shown in Fig. 10. In this case, the only

such edge is eS1,16 which is replicated by introducing edge
eS1,1′6′ with the same capacity. To arrive at L(1)

G , we finally
remove the last edge in P(0)

to−fix that connects v63 to v32 and
replace it with an edge connecting v6′3′ to v32. In this case,
the chordal path P(0)

to−fix is eliminated (by removing e63,32),
while all other paths of the type · · ·−v21−v16−v63−· · · are
still available from the remaining part of P(0)

to−fix. Additionally
any path that would have used v16 − v63 − v32 (for example
vS1−v16−v63−v32) is now served by a replica path through
the sequence of vertices vS1 − v1′6′ − v6′3′ − v32. Thus, we
have removed the chordal path P(0)

to−fix and kept all the other
possible paths unchanged or replaced them with a replica. The
new generated digraphs L̂(1)

G and L(1)
G are shown in Fig. 10.

Step 4. In the fourth step, our goal is to create the spanning
tree Ti+1 of the best FD paths associated with the digraph
L(i+1)
G . To ensure termination of the algorithm, a condition

for this construction is that Ti+1 should be made as similar as
possible to Ti [26]. To do so, we run Dijkstra’s algorithm to
find Ti+1 but we start at an intermediate stage in the algorithm,
since we already know part of the spanning tree from Ti. In
particular, we do the following procedure. Recall our definition
of P(i)

to−fix and its endpoint vkmkm+1
in Step 2. Define V(i+1)

redo

to be the set of vertices for which we need to find a new
best FD path. In particular, define V(i+1)

redo as the union of: (i)
the set of all replica vertices introduced in L(i+1)

G , (ii) the set
of descendant vertices of vkmkm+1

in Ti, and (iii) the vertex
vkmkm+1 . For any vertex v 6∈ V(i+1)

redo , the path connecting vSS′
to v in Ti does not pass through P(i)

to−fix. As a result, we
can copy this part of Ti to Ti+1 without loss of generality.
Clearly, replica vertices never existed before L(i+1)

G so there
is no known path for them in Ti. Similarly, the path from vS′S
to vkmkm+1

(and its descendants) passes through P(i)
to−fix, thus,

we need to find a new route for them now that the chordal
path has been removed from the graph. Also it is not difficult
to see that any v′ 6∈ V(i+1)

redo will not be a descendant of v,
∀v ∈ V(i+1)

redo as this would contradict the need to find a new
path for some vertex in V(i+1)

redo .
As per our discussion above, we find the rest of Ti+1 by

initializing an intermediate point in the Dijkstra’s algorithm
and continue the execution of the algorithm from there. In
particular, we start from the point where ∀v 6∈ V(i+1)

redo have
been expanded (and thus appear in Ti+1 with the same path
as in Ti). We denote the intermediate version of Ti+1 at this
point as T ′i+1, which is a pruned version of the tree Ti. Note
that, at any iteration of the classical Dijkstra’s algorithm, a yet
to be expanded vertex v has a best so-far path from vS′S of FD
capacity c′(v). This achievable FD capacity at an unexpanded
vertex v is based on the maximum capacity achieved by each
of the neighbor vertices that have already been expanded and
added to the spanning tree T ′i+1 as well as the capacities
of incident edges from those neighbor vertices to the vertex
v. We denote the capacity of a neighbor vertex v′ that was
already expanded as ĉTi+1

L (v′). We now note that the point
from which we are going to start Dijkstra’s algorithm is when
the set of unexpanded vertices is V(i+1)

redo and the vertices in

21

S1S4

63

3D

42

S’S

16

10 5

10

10

10

10

7

21

S1S4

63

3D

32

42

25

DD’

S’S

5D

16

10 5

10

10

10

10 5

5

57

7

6’3’

1’6’ 5

5

Fig. 11. Spanning trees T ′1 and T1 for L(1)
G in Fig. 10. Boldface numbers

represent the FD capacity with which a node can be reached from SS′ using
each tree.

T ′i+1 form the complement set V(i+1)
redo

c
. Thus, for the vertices

still unexpanded (i.e., those in V(i+1)
redo), the capacities currently

achievable at them at this stage of the algorithm are initialized
as

ĉL(v) = max
v′ 6∈V(i+1)

redo

min
{
cTiL (v), cL(ev′,v)

}
.

Now that we have the initialization of Dijkstra’s algorithm to
the state that we want, we run the standard routine of the
algorithm to continue expanding the vertices in V(i+1)

redo . When
all the vertices have been expanded, we get the final tree Ti+1.

Running example. For our running example and i = 0, the
tree T ′1 (which is a subset of T0) and the new generated tree
T1 for L(1)

G are shown in Fig. 11. It is worth noting that the
spanning tree T1 in Fig. 11 has the path P(1)

L = vSS′ − vS4−
v42 − v21 − v16 − v63 − v3D − vDD′ of capacity CFD

P(1)
L

= 7

that is chordless. Hence the algorithm returns this path and
terminates (see Step 1).

It is important to note that, from the replication procedure
we do in Step 3, we add a number of replica vertices equal
to the length of P(i)

to−fix minus two (since we do not replicate
the endpoints). Moreover, in addition to the replica vertices,
only one endpoint of P(i)

to−fix is a member of V(i+1)
redo (i.e., the

vertex vkmkm+1
). As a result

∣∣∣V(i)
redo

∣∣∣ ≤ |V(LG)| , ∀i. Thus,
the size of the network that Dijkstra’s algorithm processes in
Step 4 does not increase from one iteration to the next. This
implies that Step 4 of the algorithm has a complexity that is
at most O(VLG log VLG + ELG), where VLG = |V(LG)| and
ELG = |E(LG)|. The time complexity of Steps 1, 2 and 3 is
linear in VLG and ELG . Let KG be the number of cycles in
G. From the observation in Section V-A, this is equal to the
number of chordal paths in LG . Since in each iteration over the
four steps, we eliminate one chordal path, then for a line graph
with KG chordal paths, we make at most KG iterations. As a
result, the complexity of the described algorithm for finding
the simple chordless path with the largest FD capacity in LG
is O ((KG + 1)(VLG log VLG + ELG)).

Note that the number of vertices in LG is equal to the
number of edges in G and the number of edges in LG is

15

upper bounded by the number of edges in G multiplied by
the maximum vertex degree d. Additionally, the complexity of
constructing a line digraph LG from a digraph G is of order
O(|E(G)|d). Thus, the problem of finding the simple path in
G with the largest HD approximate capacity is equivalent to
creating the line digraph LG with FD capacities and then
finding the chordless path with the largest FD capacity in
that line digraph LG . The computational complexity of this
procedure is O (|E(G)|d+ (KG + 1)(VLG log VLG + ELG)) =
O ((KG + 1)(|E(G)| log |E(G)|+ |E(G)|d)). Now if we let
KG = O(Nα), we get the expression in Lemma 4 which
concludes the proof.

VI. CONCLUSION

In this paper, we studied the problem of characterizing the
HD approximate capacity of the N -relay HD line network and
investigated the HD routing problem in networks. Towards this
end, our first main result was the closed-form characterization
of the HD approximate capacity for an N -relay line network
(i.e., a path) as a function of the link capacities. We then
developed a polynomial-time algorithm for finding a simple
schedule (one with at most N + 1 active states out of the 2N

possible ones) that achieves the HD approximate capacity of
the N -relay line network. To the best of our knowledge, this
is the first work which provides a closed-form expression for
the approximate capacity of an HD relay network with general
number of relays and designs an efficient algorithm to find a
simple schedule which achieves it.

By leveraging the derived closed-form expression for the
HD approximate capacity, we then proved that finding the
path from the source to the destination with the largest HD
approximate capacity is NP-hard in general. This represents
a surprising result and it is fundamentally different from the
FD counterpart, since the path with the largest FD capacity
can always be discovered in polynomial-time. Finally, we
showed that, if the number of cycles inside the network
is polynomial in the number of nodes, then a polynomial-
time algorithm exists to find the path with the largest HD
approximate capacity.

ACKNOWLEDGMENTS

We gratefully thank the anonymous reviewer for suggesting
the current version of the achievability proof of Theorem 1,
which represents a shorter version of the proof that we
proposed in [23].

APPENDIX A
PROOF OF THEOREM 2

We here prove Theorem 2 by proving the following relations
in the following subsections.

1) We first prove that the set of fundamental states in an
HD line network is equivalent to the set of fundamental
maximum cuts in a FD line network.

2) We next show that the problem of finding the set of
fundamental maximum cuts for an N -relay FD line
network is equivalent to the problem of finding subsets
of non-consecutive integers in [1 : N].

3) We prove that the number of subsets of non-consecutive
integers in [1:N] is at least exponential in N .

A. Set of Fundamental Maximum Cuts

In Section II-A we proved that we can compute the approxi-
mate capacity CR in (6) by considering only N+1 cuts, which
are the same that one would need to consider if the network
was operating in FD. These N + 1 cuts are “fundamental”,
i.e., they do not depend on the values of the point-to-point
link capacities. This implies that we can write (6) as the LP

CR = maximize x
subject to 1N+1x ≤ Aλ
and 1T2Nλ = 1, λ ≥ 02N , x ≥ 0,

(26a)

where A ∈ R(N+1)×2N

has non-negative entries

[A]i,j = ˆ̀(j)
i , (26b)

where: (i) i ∈ [1 : N + 1], j ∈ [1 : 2N]; (ii) ˆ̀(j)
i is defined

in (7). Clearly, the LP in (26) is feasible. The dual of the LP
in (26) is given by

CR = minimize y
subject to 12N y ≥ ATv
and 1TN+1v ≥ 1, v ≥ 0N+1,

(27)

where A is defined in (26b). Since the LP in (27) is a
minimization and the entries of A are non-negative, then it
is not difficult to see that, for all optimal solutions of (27), we
have 1TN+1v = 1. As a result, an optimal solution of (27) is
a solution of

CR = minimize y
subject to 12N y ≥ ATv
and 1TN+1v = 1, v ≥ 0N+1.

(28)

Since in the LP in (27) we are seeking to minimize the
objective function, this implies that at least one of the con-
straints of the type 12N y ≥ ATv (i.e., the maximum) is
satisfied with equality. We can interpret (28) as the problem
of finding the least maximum FD cut among a class of line
networks RV derived from the original network R, where
V = {v ∈ RN+1| v ≥ 0, ‖v‖1 = 1},where vi is the
i-th element of v. For each v ∈ V, we define a line
network Rv ∈ RV, where the point-to-point link capacities
are modified by v as `(v)

i = `ivi.
Let FM be the set of fundamental maximum cuts in a

FD line network, i.e., the smallest set of cuts over which we
need to search for the maximum cut in FD without explicit
knowledge of the values of the link capacities or their ordering.
Since FM is the set of fundamental maximum cuts, then it
contains a maximum cut for any FD line network. As a result,
it also contains the least maximum FD cut among the class
of line networks RV. With this, the rows of AT (constraints
in (28)) not corresponding to FM are redundant and can be
ignored when trying to find an optimal solution in (28). As a
consequence of strong duality, the dual multipliers (the states
λs in (26)) corresponding to the fundamental maximum cuts in
FM are sufficient to find a schedule optimal for approximate
capacity. We now prove that, without any knowledge of

16

the link capacities, we need to consider the network states
associated to every element of FM, i.e., considering only
the network states corresponding to a subset of FM is not
sufficient to achieve the approximate capacity. To prove that,
it suffices to provide a network example, where for each
A ∈ FM the state sAc = 1Ac is the unique optimal schedule,
i.e., λsAc = 1. For an arbitrary A ∈ FM, define the line
network with the link capacities

`i =

{
1 if i ∈MA
X →∞ otherwise ,

where

MA =
{
i ∈ [1:N+1]

∣∣∣i ∈ A∪{N+1}, i−1 ∈ Ac∪{0}
}
.

From the previous network construction, it is not difficult to
see that the unique optimal schedule (one for which CR =
CFD
R) is sAc = 1Ac , i.e., λsAc =1. Thus, for this particular

network construction, the state sAc is necessary and hence we
cannot further reduce the sufficient set to a subset of FM,
i.e., we need to consider the network states corresponding to
every element of FM.

This result implies that, to find the smallest set of states
over which we should search for an optimal schedule for
approximate capacity, we should find the set of maximum cuts
in FD and then consider their dual multipliers in (26). In what
follows, we focus on estimating the cardinality of the set of
fundamental maximum cuts FM in a FD line network, which,
as shown above, gives the cardinality of the smallest search
space for an optimal schedule.

B. Finding the Set of Possible Maximum Cuts through an
Equivalent Problem

We start by introducing some definitions, which will be used
in the rest of this section.

Definition 5. For a set of consecutive integers [a:b], we call H
a “punctured” subset of [a:b] if ∀i, j∈H with i 6= j, we have
|i−j|>1, i.e., H contains non-consecutive integers of [a:b].

Definition 6. We call H a “primitive punctured” subset of
[a:b] if H is punctured in [a:b] and ∀i ∈ [a:b]\H, H ∪ {i}
is not a punctured set, i.e., H is not a subset of any other
punctured subset of [a:b]. We denote by P(a, b) the collection
of all primitive punctured subsets of [a:b].

We now use the two above definitions to state the following
lemma, which is proved in the rest of this section.

Lemma 6. The problem of finding the set of possible maximum
cuts for a FD line network is equivalent to the problem of
finding P(1, N + 1), i.e., the collection of primitive punctured
subsets of [1 : N + 1].

Proof. We start by defining two problems, namely P1 and P2,
which are important for the rest of the proof:

P1 : max
A⊆[1:N]

g1(A) =
∑

i∈A∪{N+1}
i−1∈Ac∪{0}

`i, (29a)

P2 : max
B⊆[1:N+1]
B is punctured

g2(B) =
∑
i∈B

`i. (29b)

Note that P1 is the problem of finding the maximum FD cut
in an N -relay line network. To relate the solutions of P1 and
P2, we make use of the following definition.

Definition 7. Given a problem P, we denote with suf(P) the
smallest set of feasible solutions among which an optimal
solution can be found for any instance of the problem P.

The proof is organized as follows:
1) Step 1: We prove that P1 and P2 are equivalent; as

a consequence, there exists a function f such that
suf (P1) = f (suf (P2)).

2) Step 2: Next we prove that suf (P2) ⊆ P(1, N + 1),
which implies that

suf (P1) ⊆ f (P(1, N + 1)) .

3) Step 3: The previous step implies that the set M of
possible maximum cuts is a subset of f (P(1, N + 1)).
We finally prove that M = f (P(1, N + 1)).

Once proved, these steps imply that we can map the problem
of finding the set of possible maximum cuts for a FD line
network to the problem of finding P(1, N + 1). We prove
these three steps in Appendix B.

Example. Consider the FD line network with N = 7. To find
the set of possible maximum cuts, according to Lemma 6, we
need to find P(1, 8), which is given by

P(1, 8) =
{
{1, 4, 7}, {2, 4, 7}, {2, 5, 7}, {2, 5, 8}, {1, 3, 5, 7},

{1, 3, 6, 8}, {1, 4, 6, 8}, {2, 4, 6, 8}, {1, 3, 5, 8}
}
.

It turns out that we can retrieve the candidate maximum cuts
Ai from P(1, 8) as follows:

Ai = Hi\{8}, Hi ∈ P(1, 8), ∀i ∈ [1 : |P(1, 8)|] .

To conclude the proof of Theorem 2, we need to understand
how the size of P(1, N + 1) grows with N , which is the goal
of the following subsection.

C. The Size of the Collection of Primitive Punctured Subsets

In this subsection, we prove that the size of the collection of
primitive punctured subsets of [1 : N+1] grows exponentially
in N . In particular, we prove the following lemma.

Lemma 7. Let T (N) be the number of primitive punctured
subsets of [1 : N]. Then, for all N ≥ 4, we have the following
relation,

T (N) = T (N − 2) + T (N − 3).

The proof of the above lemma can be found in Appendix C.
Remark 6. The result in Lemma 7 suggests that T (N) grows
exponentially fast. This can be proved by observing the
following lower bound on T (N):

T (N) = T (N − 2) + T (N − 3) ≥ 2T (N − 3), (30)

where the inequality is a consequence of the fact that T (N −
2) ≥ T (N−3). By recursive application of the bound in (30),
we have that

T (N) ≥ 2T (N − 3) ≥ 2 (2T (N − 6))

17

= 4T (N − 6) ≥ 4 (2T (N − 9)) = · · · .

Thus, we have that T (N) ≥ 2kT (N − 3k), ∀k ∈ [1 : bN/3c].
By choosing k = bN/3c−1, then for all N ≥ 4, we have that

T (N) ≥ 2b
N
3 c−1T (N − 3bN/3c+ 3)

≥ 2
N
3 −2T (N − 3bN/3c+ 3)

≥ 2
N
3 −2T (3) =

T (3)

4
2N/3 ≥ T (1)

4
2N/3,

where the last two inequalities follow from the fact that T (·)
is a non-decreasing function. The bound proved above implies
that T (N) = Ω(2N/3). �

Since the number of candidate active states is equal to the
number of candidate maximum cuts in FD (see the discussion
in Appendix A-A) and this is equal to the number of primitive
punctured subsets of [1 : N + 1] (see Lemma 6), then the
number of candidate active states grows as Ω(2N/3). This
concludes the proof of Theorem 2.

Remark 7. Using the recurrence relation in Lemma 7, it is not
difficult to prove that T (N) = Θ(βN) where β is the unique
real root of the polynomial x3−x−1 = 0, i.e., x = 1.325. �

APPENDIX B
PROOF OF LEMMA 6

We here prove each of the three steps highlighted in the proof
of Lemma 6.

Step 1. We first start by proving that any feasible solution for
P1 in (29a) can be transformed into a feasible solution for P2

in (29b) with the same value for the objective function, i.e.,
∀A ⊆ [1 : N],

∃ punctured BA ∈ [1 : N + 1], s.t. g1(A) = g2(BA).

To show this, for A ⊆ [1 : N], we simply define BA as

BA=
{
i ∈ [1:N+1]

∣∣∣i∈A∪{N+1}, i−1 ∈ Ac∪{0}
}
. (31)

It is clear that BA is a punctured set as ∀i ∈ BA, i− 1 /∈ BA.
Additionally, (31) directly gives us the desired relation as

g1(A) =
∑

i∈A∪{N+1}
i−1∈Ac∪{0}

`i =
∑
i∈BA

`i = g2(BA). (32)

What remains to prove now is that any feasible solution B for
P2 gives a feasible solution AB for P1 and g1(AB) = g2(B).
For a punctured subset B of [1 : N + 1], let

AB=fAB(B)=
{
i ∈ [1:N]

∣∣∣i>sup(B)
}

︸ ︷︷ ︸
Atail

∪B\{N+1}︸ ︷︷ ︸
Amain

. (33)

It is not difficult to see that, by applying the transformation
in (31) on AB, we get back B, i.e., BAB = B. This is due to
the fact that applying (31) removes Atail which is composed of
a consecutive number of integers while keeping Amain which,
since B is punctured, is also punctured. Given this, we can
directly see from (32) that g1(AB) = g2(BAB) = g2(B). This
concludes the proof of Step 1.

Step 2. We prove this step by showing that, if there exists an
optimal solution B? for P2 that is not primitive, then there also
exists a primitive punctured set B′ such that g2(B?) = g2(B′).
Since B? is not a primitive punctured set, then there exists
another punctured set B′ such that B? ⊂ B′ and

g2(B?) =
∑
i∈B?

`i ≤
∑
i∈B′

`i = g2(B′).

If we take the largest such B′, we end up with a primitive
punctured set. However, by definition (i.e., since B? is an
optimal solution) we have that ∀B punctured, g2(B) ≤ g2(B?).
This shows that g2(B?) = g2(B′) and therefore, suf (P2) ⊆
P(1, N + 1). This concludes the proof of Step 2.

Step 3. In the first two steps, we proved that P1 and P2

are equivalent and that suf (P2) ⊆ P(1, N + 1). This implies
that suf (P1) ⊆ fAB (P(1, N + 1)), where fAB(·) is defined
in (33). We here prove that suf (P1) = fAB (P(1, N + 1)).
Consider an arbitrary set A ∈ fAB (P(1, N + 1)). To prove
that A ∈ suf (P1), it suffices to provide a network (an instance
of P1) for which A is the unique maximizer of P1. Towards
this end, for the selected A, we define BA as in (31). We know
that BA is a primitive punctured set and g1(A) = g2(BA).
Now consider the network with link capacities

`i =

{
1 if i ∈ BA
0 otherwise .

For this network, it is not difficult to see that g2(B) = |B∩BA|,
for any punctured set B. We now want to show that ∀A′ ∈
fAB (P(1, N + 1)) \A, we have g1(A′) < g1(A). Let BA′ be
defined as in (31). Again, from the proof of the previous steps
the set BA′ is primitive punctured and g1(A′) = g2(BA′).
Moreover, since BA′ and BA are both primitive we have that
BA′ ∩ BA ⊂ BA. Thus, we obtain

g2(BA′) =|BA′ ∩ BA| < |BA| = g2(BA)

=⇒ g1(A′) < g1(A).

Since this is true for any arbitrary A ∈ fAB (P(1, N + 1)),
then it is true ∀A ∈ fAB (P(1, N + 1)). This implies that
each element in fAB (P(1, N + 1)) is a unique maximum
cut for some network construction. Therefore, without any
information about the link capacities `i, we cannot further
reduce the set of possible maximum cuts and thus we have
suf (P1) = fAB (P(1, N + 1)). This concludes the proof of
Step 3 and hence the proof of Lemma 6.

APPENDIX C
PROOF OF LEMMA 7

To compute the size of P(a, b), it is helpful to first prove
some properties of P(a, b) and primitive punctured subsets
that will help throughout the proof.

Property 1. Let H be a primitive punctured subset of [a : b],
then min{H} ≤ a+ 1.

Proof. We prove this result by contradiction. Assume that for
some primitive punctured set H, we have min{H} ≥ a + 2.
This implies that H ⊂ [a + 2 : b]. Let Ĥ = H ∪ {a}. Since
H is a punctured set, then Ĥ is also a punctured set because

18

∀i ∈ H, |a − i| > 1. But since H ⊂ Ĥ, then H is not a
primitive punctured set, which is a contradiction.

Property 1 implies that, for a primitive punctured subset of
[a : b], the minimum element is either a or a + 1. Therefore,
we can write P(a, b) as

P(a, b) = P1(a, b)] P2(a, b),

where P1(a, b) (respectively, P2(a, b)) is the collection of
primitive punctured sets with minimum element a (respec-
tively, a + 1). Clearly, P1 and P2 are disjoint (we use] to
indicate that the union is over disjoint sets). Next, we prove
some properties of P1(a, b) and P2(a, b).

Property 2. P2(a, b) = P1(a+ 1, b).

Proof. Let H be a primitive punctured subset of [a+1 : b] that
contains the element a + 1. H is also a primitive punctured
subset of [a : b]. This follows since we cannot add {a} to
H to get a larger set of non-consecutive elements. Therefore,
H ∈ P1(a+1, b) =⇒ H ∈ P2(a, b). The reverse implication
is straightforward since, by definition, P2(a, b) is a primitive
punctured subset which contains the element a+ 1.

For the next property, we need to define a new operation on
the collection of sets. For a collection of sets Q, let {i}tQ =
{{i} ∪ H | H ∈ Q}. We then have the following property.

Property 3. P1(a, b) = {a} t P(a+ 2, b).

Proof. Let H be a primitive punctured subset of [a + 2 : b]
and define Ĥ = {a} ∪ H. Since H is a primitive punctured
subset of [a + 2 : b], this means that @i ∈ [a + 2 : b]\H
such that {i} ∪ H is a punctured sequence of [a + 2 : b].
This implies that @i ∈ [a : b]\[H ∪ {i}] such that {i} ∪ Ĥ is
a punctured sequence of [a : b]. Therefore Ĥ is a primitive
punctured sequence of [a : b], i.e., Ĥ ∈ P1(a, b). To prove
the reverse, consider H̃ ∈ P1(a, b). We need to prove that
Ĥ = H̃\{a} is a primitive punctured subset of [a + 2 : b].
Note that the definition of primitive subset of [a : b] implies
that ∀i ∈ [a+ 2 : b]\H̃, H̃ ∪ {i} is not a punctured set. Since
a 6∈ [a + 2 : b], this implies that ∀i ∈ [a + 2 : b]\Ĥ, H̃ ∪ {i}
is not a punctured set. Now note that since H̃ ∈ P1(a, b) then
a+ 1 6∈ H̃. Therefore, ∀i ∈ [a+ 2 : b] removing the element a
from H̃ ∪ {i} does not make it a punctured set. We therefore
conclude that, ∀i ∈ [a+ 2 : b]\Ĥ, Ĥ ∪ {i} is not a punctured
set and as a result Ĥ = H̃\{a} is a primitive punctured subset
of [a+ 2 : b].

We now have all the necessary tools to prove Lemma 7. We
obtain

P(1, N) = P1(1, N)] P2(1, N)

(a)
= P1(1, N)] P1(2, N)

(b)
=
[
{1} t P(3, N)

]
]
[
{2} t P(4, N)

]
,

where the equality in (a) follows from Property 2 and the
equality in (b) follows from Property 3. Now note that∣∣ [{i} t P(a,N)]

∣∣ =
∣∣P(a,N)

∣∣ =
∣∣P(1, N − a+ 1)

∣∣
= T (N − a+ 1),

since the number of sets in each collection remains the same.
Therefore, we have

T (N) = |P(1, N)|
=
∣∣ [{1} t P(3, N)]] [{2} t P(4, N)]

∣∣
=
∣∣ [{1} t P(3, N)]

∣∣+
∣∣ [{2} t P(4, N)]

∣∣
= T (N − 2) + T (N − 3).

This concludes the proof of Lemma 7.

REFERENCES

[1] M. Duarte, A. Sabharwal, V. Aggarwal, R. Jana, K. Ramakrishnan, C. W.
Rice, and N. Shankaranarayanan, “Design and characterization of a full-
duplex multiantenna system for WiFi networks,” IEEE Transactions on
Vehicular Technology, vol. 63, no. 3, pp. 1160–1177, 2014.

[2] E. Everett, C. Shepard, L. Zhong, and A. Sabharwal, “SoftNull: Many-
Antenna Full-Duplex Wireless via Digital Beamforming,” IEEE Trans-
actions on Wireless Communications, vol. 15, no. 12, pp. 8077–8092,
2016.

[3] Y.-P. E. Wang, X. Lin, A. Adhikary, A. Grovlen, Y. Sui, Y. Blankenship,
J. Bergman, and H. S. Razaghi, “A primer on 3gpp narrowband internet
of things,” IEEE Communications Magazine, vol. 55, no. 3, pp. 117–123,
2017.

[4] B. Awerbuch, D. Holmer, and H. Rubens, “High throughput route
selection in multi-rate ad hoc wireless networks,” in IFIP Working
Conference on Wireless On-Demand Network Systems, 2004, pp. 253–
270.

[5] D. S. De Couto, D. Aguayo, J. Bicket, and R. Morris, “A high-
throughput path metric for multi-hop wireless routing,” in Proceedings
of the 9th annual international conference on Mobile computing and
networking, 2003, pp. 134–146.

[6] J. Broch, D. A. Maltz, D. B. Johnson, Y.-C. Hu, and J. Jetcheva, “A
performance comparison of multi-hop wireless ad hoc network routing
protocols,” in Proceedings of the 4th annual ACM/IEEE international
conference on Mobile computing and networking, 1998, pp. 85–97.

[7] M. R. Aref, “Information flow in relay networks,” Ph.D. thesis, Stanford
University, 1981.

[8] G. Kramer, “Models and theory for relay channels with receive con-
straints,” in 42nd Annual Allerton Conference on Communication, Con-
trol, and Computing, September 2004, pp. 1312–1321.

[9] A. S. Avestimehr, S. N. Diggavi, and D. N. C. Tse, “Wireless Network
Information Flow: A Deterministic Approach,” IEEE Transactions on
Information Theory, vol. 57, no. 4, pp. 1872–1905, April 2011.

[10] A. Özgür and S. N. Diggavi, “Approximately Achieving Gaussian Relay
Network Capacity With Lattice-Based QMF Codes,” IEEE Transactions
on Information Theory, vol. 59, no. 12, pp. 8275–8294, December 2013.

[11] M. Cardone, D. Tuninetti, R. Knopp, and U. Salim, “Gaussian Half-
Duplex Relay Networks: Improved Constant Gap and Connections With
the Assignment Problem,” IEEE Transactions on Information Theory,
vol. 60, no. 6, pp. 3559–3575, June 2014.

[12] M. Cardone, D. Tuninetti, and R. Knopp, “On the Optimality of Simple
Schedules for Networks With Multiple Half-Duplex Relays,” IEEE
Transactions on Information Theory, vol. 62, no. 7, pp. 4120–4134,
July 2016.

[13] S. Brahma, C. Fragouli, and A. Özgür, “On the Complexity of Schedul-
ing in Half-Duplex Diamond Networks,” IEEE Transactions on Infor-
mation Theory, vol. 62, no. 5, pp. 2557–2572, May 2016.

[14] L. Ong, M. Motani, and S. J. Johnson, “On capacity and optimal schedul-
ing for the half-duplex multiple-relay channel,” IEEE Transactions on
Information Theory, vol. 58, no. 9, pp. 5770–5784, 2012.

[15] R. Etkin, F. Parvaresh, I. Shomorony, and A. Avestimehr, “Comput-
ing Half-Duplex Schedules in Gaussian Relay Networks via Min-Cut
Approximations,” IEEE Transactions on Information Theory, vol. 60,
no. 11, pp. 7204–7220, November 2014.

[16] T. Lutz, C. Hausl, and R. Kotter, “Bits through deterministic relay
cascades with half-duplex constraint,” IEEE transactions on information
theory, vol. 58, no. 1, pp. 369–381, 2012.

[17] C. E. Perkins and E. M. Royer, “Ad-hoc On-Demand Distance Vector
Routing,” in Proceedings of the Second IEEE Workshop on Mobile
Computer Systems and Applications, 1999, p. 90.

[18] T. Clausen and P. Jacquet, “Optimized Link State Routing Protocol
(OLSR),” RFC 3626, DOI 10.17487/RFC3626, 2003.

19

[19] D. B. Johnson and D. A. Maltz, “Dynamic Source Routing in Ad Hoc
Wireless Networks,” in Mobile computing. Springer, 1996, pp. 153–
181.

[20] M. Pollack, “Letter to the Editor – The Maximum Capacity Through a
Network,” Operations Research, vol. 8, no. 5, pp. 733–736, 1960.

[21] E. W. Dijkstra, “A note on two problems in connexion with graphs,”
Numerische mathematik, vol. 1, no. 1, pp. 269–271, 1959.

[22] R. M. Karp, “Reducibility among combinatorial problems,” in Complex-
ity of computer computations. Springer, 1972, pp. 85–103.

[23] Y. H. Ezzeldin, M. Cardone, C. Fragouli, and D. Tuninetti, “Efficiently
finding simple schedules in Gaussian half-duplex relay line networks,”
in 2017 IEEE International Symposium on Information Theory (ISIT),
2017, pp. 471–475.

[24] X. Song and G. Caire, “Queue-Aware Beam Scheduling for Half-Duplex
mmWave Relay Networks,” arXiv preprint arXiv:2001.05586, 2020.

[25] Y. H. Ezzeldin, M. Cardone, C. Fragouli, and D. Tuninetti, “Network
Simplification in Half-Duplex: Building on Submodularity,” IEEE Trans-
actions on Information Theory, vol. 65, no. 10, pp. 6801–6818, 2019.

[26] M. Ahmed and A. Lubiw, “Shortest Paths Avoiding Forbidden Sub-
paths,” in 26th International Symposium on Theoretical Aspects of
Computer Science STACS 2009, 2009, pp. 63–74.

Yahya H. Ezzeldin is a Ph.D. candidate in the Electrical and Computer
Engineering Department at the University of California, Los Angeles (UCLA).
He received his B.S. and M.S. degrees in Electronics and Communications
Engineering from Alexandria University in 2011 and 2014, respectively. His
research interests include network information theory and wireless networks
focusing on characterizing operational limits in next-generation wireless
networks. He worked as a machine learning platform engineer with Intel
Corporation in the summer of 2018. He is the recipient of the UCLA
University Fellowship in 2014, the Henry Samueli Fellowship in 2016 and
the Dissertation Year Fellowship at UCLA in 2019.

Martina Cardone Martina Cardone is currently an Assistant Professor in
the Electrical and Computer Engineering department at the University of
Minnesota (UMN). Dr. Cardone received her Ph.D. in Electronics and Com-
munications in 2015 from Télécom ParisTech (with work done at Eurecom
in Sophia Antipolis, France). From November 2017 to January 2018, she
was a post-doctoral associate in the Electrical and Computer Engineering
department at UMN. From July 2015 to August 2017, she was a post-doctoral
research fellow in the Electrical and Computer Engineering Department at
UCLA Henri Samueli School. She is the recipient of the NSF CRII award in
2019, the second prize in the Outstanding Ph.D. award, Télécom ParisTech,
Paris, France and the Qualcomm Innovation Fellowship in 2014. Dr. Cardone’s
main research interests are in network information theory, network coding, and
wireless networks with special focus on their capacity, security and privacy
aspects.

Christina Fragouli is a Professor in the Electrical and Computer Engineering
Department at UCLA and an IEEE fellow. She received the B.S. degree
in Electrical Engineering from the National Technical University of Athens,
Athens, Greece, and the M.Sc. and Ph.D. degrees in Electrical Engineer-
ing from the University of California, Los Angeles. She has worked at
the Information Sciences Center, AT&T Labs, Florham Park New Jersey,
and the National University of Athens. She also visited Bell Laboratories,
Murray Hill, NJ, and DIMACS, Rutgers University. Between 2006–2015 she
was an Assistant and Associate Professor in the School of Computer and
Communication Sciences, EPFL, Switzerland. She is an IEEE fellow, has
served as an Information Theory Society Distinguished Lecturer, and as an
Associate Editor for IEEE Communications Letters, for Elsevier Journal on
Computer Communication, for IEEE Transactions on Communications, for
IEEE Transactions on Information Theory, and for IEEE Transactions on
Mobile Communications. She has also served in several IEEE committees,
including the Cover Dissertation Award Committee (chair), the IT Magazine
Steering Committee (chair), the IEEE Hamming Medal Committee, the IEEE
Kobayashi Award Committee, the IEEE Teaching Award committee and the
IT Fellows Committee. Her research interests are in algorithms for network
information transfer, network security and privacy.

Daniela Tuninetti Daniela Tuninetti (Senior Member, IEEE) received the
Ph.D. degree in electrical engineering from ENST/Télécom ParisTech Paris,
France, in 2002, with work done at the Eurecom Institute, Sophia Antipolis,
France. She is currently a Professor with the Department of Electrical and
Computer Engineering, at the University of Illinois at Chicago (UIC), where
she joined in 2005. She was a Post-Doctoral Research Associate with the
School of Communication and Computer Science, (EPFL), Swiss Federal
Institute of Technology, Lausanne, Switzerland, from 2002 to 2004. Her
research interests include ultimate performance limits of wireless interference
networks (with a special emphasis on cognition and user cooperation),
coexistence between radars and communication systems, multirelay networks,
content-type coding, cache-aided systems, and distributed private coded com-
puting. She is currently a Distinguished Lecturer of the Information Theory
Society. She received the Best Paper Award from the European Wireless
Conference in 2002 and the NSF CAREER Award in 2007. She was named a
University of Illinois Scholar in 2015. She was the Editor-in-Chief of the IEEE
INFORMATION THEORY SOCIETY NEWSLETTER from 2006 to 2008,
an Editor of IEEE COMMUNICATION LETTERS from 2006 to 2009, of
IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS from 2011
to 2014, and of IEEE TRANSACTIONS ON INFORMATION THEORY from
2014 to 2017.

