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A B S T R A C T   

The emerging connected and autonomous vehicle (CAV) technologies offer a promising solution to design better 
lane-changing maneuvers that can reduce the negative impacts of vehicle lane-changing behavior on traffic 
operations. Existing studies on this topic have predominantly focused on designing lane-changing maneuvers for 
a subject vehicle (SV) and typically assumed that a vehicle in the target lane must decelerate to make space for 
the SV due to safety considerations. Nevertheless, jointly designing the trajectories of the SV and surrounding 
vehicles and allowing possible accelerations of a preceding vehicle may further alleviate the negative impacts of 
CAV’s lane-changing maneuvers. To investigate this possibility, this paper proposes a dynamic cooperative lane- 
changing model for CAVs with possible accelerations of a preceding vehicle. This model collects information of 
the surrounding vehicles and updates the lane-changing decisions for the SV in real time via three steps, namely 
lane-changing decision making, cooperative trajectory planning, and trajectory tracking. This model applies a 
linearized vehicle kinematic model to make lane-changing decisions for the SV given the states of the SV and 
surrounding vehicles, the minimum safety distance, and requirements on the comfort level for passengers. 
Furthermore, it dynamically designs the longitudinal and lateral trajectories for the SV and surrounding vehicles. 
Extensive numerical simulation experiments are conducted to evaluate the effectiveness of the proposed model. 
Results show that the proposed model increases the success rate of the SV’s lane-changing maneuvers, smoothens 
the trajectories of the SV and vehicles in the upstream direction at the cost of a slightly more significant oscil
lation of the last vehicle in the downstream direction. Overall, the proposed model reduces the negative impacts 
of lane-changing maneuvers on the surrounding traffic. The results also reveal the robustness of the model 
performance by varying several key input parameters in the experiments.   

1. Introduction 

Connected and autonomous vehicles (CAVs) have been regarded as a 
crucial component for the next generation transportation systems due to 
their substantial potential benefits such as in terms of mobility, traffic 
emissions, and public health outcomes (Fagnant & Kockelman, 2015; 
Zhang & Zhu, 2019; Martín et al., 2016). These potential benefits can be 
achieved primarily because different from human-driven vehicles (HVs), 
the driving maneuvers of CAVs, such as car-following, lane-changing, 
and turning, can be relatively accurately designed and controlled. For 
example, a number of studies have investigated the opportunity of 
optimizing trajectories of a stream of CAVs to achieve goals such as 
minimizing the overall fuel consumption or safety risks of the study 
vehicles (e.g., Li & Li, 2019; Li & Zhou, 2017; Ganji et al., 2014). Among 

these maneuvers, lane-changing is particularly important since exten
sive studies on traditional HV traffic have revealed that improper lane- 
changing behavior causes traffic oscillation (Pan et al., 2016; Li & Sun, 
2017; Li et al., 2015), such as stop and go, traffic congestion, and 
changes in vehicle speed, and is responsible for 4–15% of accidents 
(Ammoun, Nashashibi & Laurgeau, 2017). Fortunately, the emerging 
CAV technologies offer a promising solution to these issues (González 
et al., 2017). With real-time information of surrounding vehicles (e.g., 
position, speed, acceleration), a CAV can properly determine its lane- 
changing decisions (i.e., when and how to change lane) such that the 
resulting interruption in the traffic operation of the target lane can be 
reduced. 

Inspired by this concept, studies have been conducted to investigate 
the lane-changing decisions in a CAV environment in the past decades 
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(Hou, Edara & Sun, 2015; Peng et al., 2020; Tang et al., 2018). Specif
ically, these studies aim to search for a safe and comfortable lane- 
changing strategy for a subject CAV that needs to move from a current 
lane to a target lane given information of two vehicles in the target lane, 
as shown in Fig. 1(a). Both centralized (i.e., where lane-changing de
cisions of vehicles in a study system are designed by the subject vehicle; 
Li, Zhang, Ge, Shao & Li, 2017) and decentralized (i.e., each vehicle 
decides its lane-changing maneuvers independently; Li, Zhang, Feng, 
Zhang, Ge & Shao, 2018) lane-changing strategies have been consid
ered. All CAVs determine their lane-changing decisions and generate 
their trajectories independently in the decentralized lane-changing 
strategies, which usually results in a lower computation burden. How
ever, due to the time delay in the vehicle-to-vehicle (V2V) communi
cation, the decentralized lane-changing control spends more time 
negotiating with other CAVs and can be easily trapped in a communi
cation deadlock. On the contrary, the centralized lane-changing control 
is much more effective, does not cause the communication deadlock, 
and can achieve system optimum. Further, these studies have also 
investigated different types of lane-changing contexts (Rahman et al., 
2013; Tang et al., 2019), including mandatory (where a vehicle must 
change lane to reach its destination), discretionary (where a vehicle 
takes lane-changing maneuvers to achieve a faster speed), and random 
(where a vehicle’s lane-changing decisions do not follow a specific rule). 
Results from simulation and/or field tests show that the various ap
proaches proposed in these studies are effective in designing CAVs’ lane- 
changing maneuvers under different contexts. Please refer to Rahman 
et al. (2013) and Wang et al. (2019) for a comprehensive review of this 
topic. 

Despite these methodological advancements, previous studies have 
primarily focused on developing safe and comfortable lane-changing 
strategies for CAVs given information of the surrounding vehicles. 
Depending on whether the surrounding vehicles are cooperative with 
the subject vehicle or not, existing strategies can be divided into coop
erative strategies and uncooperative strategies. In a cooperative lane- 
changing model, the surrounding vehicles coordinate their behaviors 
to meet the subject vehicle’s need for lane changing (You et al., 2015; Li 
et al., 2018; Wang et al., 2014a, 2015). For example, a vehicle in the 
target lane will decelerate to make space for the subject vehicle to 
change its lane. In contrast, a subject vehicle must wait until there is 
enough space before lane changing in an uncooperative model since 
there is no coordination between the subject vehicle and the surround
ing vehicles; this is essentially similar to HV traffic (Wang et al., 2014b, 

2015). The cooperative strategies have been shown to result in more 
sensible lane changing decisions and thus to bring better performance 
for a transportation system overall (Nie et al., 2016). However, studies 
on cooperative lane-changing models for CAVs are relatively scarce (Luo 
et al., 2016) and have mostly concentrated on designing lane-changing 
maneuvers for the subject vehicle while the surrounding vehicles have 
not received much attention. Thus, the lane-changing behavior of CAVs 
still causes traffic disruptions (e.g., possible frequent sharp de
celerations). This issue can be further addressed by also designing tra
jectories of the surrounding vehicles under a fully cooperative CAV 
environment (Wang et al., 2015). This way, the trajectories of the sur
rounding vehicles can be coordinated with that of the subject vehicles 
and thus be designed in a way that causes fewer negative impacts to the 
system overall. Thus, it is necessary to propose a cooperative lane- 
changing model that simultaneously determines the trajectories of the 
subject and surrounding vehicles in a fully connected and automated 
environment, but this topic has not been well investigated. 

Further, previous studies have typically assumed that a vehicle in the 
target lane must decelerate to make space for the subject vehicle for 
safety considerations, as Fig. 1(a) shows, and otherwise, the lane- 
changing maneuver cannot be completed. This deceleration process 
inevitably disrupts the traffic on the target lane despite the properly 
designed lane-changing maneuvers for the subject CAV. Worse still, the 
disruption is usually amplified along traffic corridors (e.g., highways) 
with heavy traffic because the deceleration impacts can be propagated 
backward in space (commonly known as shockwave in traffic flow 
analysis); operations of the vehicles in the upstream direction of the 
following vehicle is likely to be affected. Thus, should their lane- 
changing maneuvers be realized completely or partially without this 
deceleration process, CAVs could further decrease the disruption in the 
existing traffic caused by their lane-changing behavior. One simple so
lution to this challenge is that apart from requesting a following vehicle 
to decelerate, a preceding vehicle on the target lane can also accelerate 
to make space for the subject vehicle, if possible, as shown in Fig. 1(b). 
This acceleration process only affects the preceding vehicle itself but not 
the following vehicle and those behinds, thus bringing fewer disruptions 
to the traffic flow on the target lane. Simple as this idea is, existing 
studies have predominantly focused on requesting a following vehicle’s 
deceleration (we name this as the “deceleration-only” paradigm here
after) while a paradigm that allows a following vehicle to decelerate and 
a preceding vehicle to accelerate (we name this the “acceleration- 
deceleration” paradigm hereafter) has rarely been investigated. 
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Fig. 1. Two cooperative lane-changing maneuvers. (a) The existing paradigm that requests a following vehicle to decelerate. (b) The proposed paradigm that allows 
a following vehicle to decelerate and a preceding vehicle to accelerate. Vehicles in solid lines represent the situation before lane changing, and those in dashed lines 
represent the situation after lane changing. 
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Therefore, studies on lane-changing models utilizing the acceleration- 
deceleration paradigm are needed to further amplify the positive 
traffic impacts of CAVs via lane-changing maneuvers. 

To address these gaps, this paper proposes an innovative dynamic 
cooperative lane-changing model for CAVs with the proposed 
acceleration-deceleration paradigm. This is a real-time control model 
that collects information and update lane-changing decisions for the 
subject CAV during its operations. The model consists of three primarily 
steps, including lane-changing decision making, cooperative trajectory 
planning, and trajectory tracking. Different from previous models, this 
model jointly considers the subject vehicle and its surrounding vehicles 
to cooperatively design their trajectories in a dynamic and centralized 
way. Furthermore, apart from the deceleration of a following vehicle, it 

incorporates possible acceleration of a preceding vehicle on the target 
lane to make space for the subject CAV’s lane-changing maneuvers. The 
contributions of this paper are threefold. First, we propose a new dy
namic cooperative lane-changing strategy under a fully CAV environ
ment where a following vehicle and a preceding vehicle can cooperate 
for the subject vehicle’s lane-changing maneuver via deceleration and 
acceleration, respectively. Allowing a preceding vehicle to cooperate via 
acceleration produces a higher chance for successful lane-changing 
maneuver, as well as mitigates the adverse impacts (e.g., traffic 
disruption) of lane changing on the traffic operation. Second, we pro
pose a dynamic cooperative lane-changing model for CAVs with the 
acceleration-deceleration paradigm. The proposed acceleration- 
deceleration paradigm makes traditional lane-changing models not 
directly applicable. Thus, this model incorporates a lane-changing de
cision-making approach based on vehicle kinematics and a cubic poly
nomial curve-based trajectory planning approach to account for this 
change. With the methodological innovations, the proposed model can 
jointly determine the trajectories of both the SV and the surrounding 
vehicles during the lane-changing process in a dynamic way. Finally, to 
assess the effectiveness of the proposed lane-changing model, we carried 
out a series of numerical simulations on a hypothetical two-lane high
way. Results show that compared with a traditional lane-changing 
model, the proposed model results in a higher proportion of successful 
lane-changing maneuver, and smoother trajectories of the SV and ve
hicles in its upstream direction. Although the last vehicle in the down
stream direction experiences a slightly more evident oscillation due to 
the cooperative acceleration, an overall improvement in all vehicles 
involved in the lane-changing process can be achieved. The results also 
reveal that the performance of the proposed model is relatively robust 
despite variations in several key input parameters. To sum up, this study 
offers an innovative solution to further reducing the negative impacts of 
lane-changing behaviors on traffic flow in the future when CAVs are 
fully deployed. It also provides a simple yet powerful analytical lane- 
changing model that can be used in CAV studies and planning prac
tice, e.g., being incorporated into simulation software for traffic impact 
assessment, being used as a prototype for developing more sophisticated 
dynamic lane-changing models that can be deployed on future CAVs. 

The remainder of this paper is organized as follows. Section 2 pre
sents the proposed dynamic cooperative lane-changing model. Section 3 
reports results from the numerical simulations to assess the performance 
of the proposed lane-changing model. Finally, Section 4 briefly con
cludes this study and discusses future research directions. 

2. Dynamic cooperative lane-changing model 

This section presents the proposed dynamic cooperative lane- 
changing model. We first introduce the overall framework of the pro
posed model and then two key components in the model, a lane- 

Table 1 
Notation list.  

Notation Description Unit 
* 

C  Vehicle length m  
[0,T] Time horizon for lane-changing s  
t ∈ [0,T] Time index s  
M = [1, 2, ⋯, M] Set of time steps in the lane-changing model N/A 
m ∈ M  Time step index N/A 
N = {1, 2, ⋯, N} Set of all vehicles considered in the lane-changing 

model 
N/A 

n ∈ N  Vehicle index N/A 

tS
m  Starting time of the m-th time step  s  

tF
m  Ending time of the m-th time step  s  

un(t) New input after linearization (i.e., the brake/ 
acceleration input) 

N/A 

vn(t) Speed of vehicle n at timet  m/s  
θn(t) Heading of vehicle n at timet  ◦

xn(t), yn(t) Lateral and longitudinal position of vehicle n at 
timet  

m  

an(t) Acceleration of vehicle n at timet  m/s2  

aL
n (t) Lateral acceleration of vehicle n at timet  m/s2  

aL,MAX  Maximum lateral vehicle acceleration m/s2  

aMAX  Maximum vehicle acceleration m/s2  

bMAX  Maximum vehicle deceleration m/s2  

τ  Inertia delay s  
k1, k2  Parameters of the linearized car-following model N/A 
k3(m), k4(m),k5(m),

k6(m)

Parameters of the cubic polynomial curve in the 
m-th time step  

N/A 

gT  Desired time gap in the linearized car-following 
model 

s  

SMIN  Minimum safety distance m   

* Units of the parameters/variables should be converted to the ones listed in 
this column before running the proposed model. 

SV

FV

Current 
Lane

Target
Lane

N PV 12N-1

Target position

Fig. 2. The investigated traffic system and the study CAVs (vehicles in red) used for analysis.  
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changing decision model, and a cooperative trajectory planning 
approach, will be illustrated in detail. For the convenience of the 
readers, the key notation used throughout the paper is summarized in 
Table 1. 

2.1. Modeling framework for dynamic cooperative lane changing 

This study considers a subject vehicle (SV) n that attempts to change 
lane during a time horizon [0,T], indexed as t ∈ [0,T], and a set of CAVs 
N = [1, 2⋯N], indexed as n ∈ N , on the target lane of the SV, as shown 
in Fig. 2. Since all vehicles are CAVs, the SV can communicate with its 
surrounding vehicles and obtain the state of each vehicle n ∈ N ∪ {n at 
each t ∈ [0, T], which includes the lateral position xn(t), longitudinal 
position yn(t), speed vn(t), acceleration an(t), and heading (i.e., the di
rection of vehicle n) θn(t). Following previous studies on lane-changing 
models (Wang et al., 2020), we primarily consider three vehicles in the 
analysis, the SV, the last preceding vehicle in the downstream direction 
of the SV’s target location on the target lane (PV), and the first following 
vehicle in the upstream direction of the SV’s target location on the target 
lane (FV), as shown in Fig. 2. For the convenience of the illustration, we 
call the PV and FV the adjacent vehicles in the following analysis. With 
the real-time information collected, this study aims to jointly design the 
behavior of the SV and the adjacent vehicles during the lane-changing 
process such that the SV’s lane-changing maneuvers can be completed 
in a safe and comfortable manner. Specifically, for the SV, we decide 
when to change lane and its trajectory during the lane-changing process; 
for the adjacent vehicles, we design their trajectories to make space 
necessary for the SV to change lane. Note that the proposed model will 

be implemented in the SV, and thus the trajectories of all three vehicles 
are essentially decided by the SV in a centralized control method. 

To this end, a dynamic cooperative lane-changing model is proposed, 
and its framework is presented in Fig. 3. The proposed model primarily 
consists of four modules, namely information acquisition, lane-changing 
decision making, cooperative trajectory planning, and trajectory 
tracking. The information acquisition module collects real-time infor
mation of each vehicle during the entire driving process. Once it receives 
a lane-changing request from the SV, the information collected is fed 
into the lane-changing decision module to determine whether the SV can 
change its lane or not; i.e., to determine the starting time and the target 
position of the SV’s lane-changing process. If the SV can change its lane, 
the cooperative trajectory planning module will be activated immedi
ately to design the trajectories of the SV, PV, and FV for the lane 
changing process. Otherwise, the model will reenter the information 
acquisition and lane-changing decision modules until lane-changing is 
allowable for the SV. Finally, the generated trajectories will be sent to 
the corresponding CAVs to control their behaviors. While the lane- 
changing maneuvers are being taken, the trajectory tracking module 
controls the trajectories of the SV and the adjacent vehicles according to 
the planned trajectories. 

An important feature of the proposed model is that it makes lane- 
changing decisions and designs vehicle trajectories dynamically. For 
this purpose, the planning time horizon [0, T] is divided into a set of time 
steps M = [1, 2, ⋯, M], indexed as m ∈ M . All time steps are of the same 
length θ such that θ × M = T. Note that the length of each time step is 
dependent on the control period of CAVs’ drive-by-wire system, which is 
usually relatively small values (e.g., 50 ms). With this setting, the lane- 
changing decision module is activated at the beginning of each time step 
until an opportunity for cooperative lane-changing is found. Afterwards, 
the trajectory planning module will start to generate trajectories for the 
SV and the adjacent vehicles. The generated trajectories will be sent to 
the relevant vehicles to control their driving maneuvers during the next 
time step. With real-time inputs form the information acquisition 
module, the trajectory planning module will generate new trajectories 
for these vehicles at the beginning of each time step given the change in 
the traffic condition and the difference between the vehicles’ actual and 
generated trajectories. An example for this dynamic trajectory planning 
process for a CAV (which can be any vehicle in the study lane-changing 
system) is shown in Fig. 4. In this example, the time horizon [0, T] is 
divided into 4 time steps with an equal length of T/4. The curves of 

Start

Car following &
 lane keeping

Arrive at the target 
position?

Information acquisition

Trajectories planning 
(PV, SV, FV)

Start

Car following &
lane keeping

Receive planned 
trajectories

Lane-changing
trajectory tacking

SV lane change 
finished?

VF/VPVS

Lane-changing 
decision made?

V2V

Y

N

N

End

Broadcast the planned 
trajectories

Lane-changing 
trajectory tracking

Y

N

V2V

Y

Fig. 3. Framework of the lane-changing model.  

Fig. 4. Dynamic trajectory planning.  
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different colors represent the trajectories of the CAV planned at the 
beginning of different time steps. Further, for each curve, the solid 
section is sent to the CAV for real-time trajectory control while the 
dashed section is discarded. For example, at the beginning of the first 
time step (i.e., time 0), a trajectory represented by the black curve is 
generated for the CAV. The CAV controls its movement according to this 
black curve while the proposed lane-changing decision model is still 
running during the first time step. Then, at the beginning of the second 
time step (i.e., time T/4), a new trajectory represented by the red line is 
planned and sent to the CAV for real-time control while the old trajec
tory planned at time 0 (the dashed black curve) is discarded. The process 
repeats until the end of the time horizon. Thus, the solid sections of each 
curve constitute the actual trajectory for the CAV’s real-time control. 

The other key consideration of the proposed cooperative lane- 
changing model is the surrounding vehicles’ willingness to cooperate. 
Specifically, the SV sends the lane-changing request to its surrounding 
vehicles via V2V communication. Information in the request includes 
the SV’s position, current lane number, target lane number, and vehicle 
type (e.g., recreational vehicle, commercial vehicle, emergency vehicle). 
The PV and FV will then respond to the SV if they are willing to 
participate in the cooperative lane-changing process or not. If the 
adjacent vehicles are willing to cooperate with the SV’s lane-changing 
process, their states will then be sent to the lane-changing decision 
module to check if the SV can safely and comfortably change its lane 
given the surrounding vehicles’ cooperative maneuvers. The possible 
cooperative maneuvers include the acceleration of the PV and the 
deceleration of the FV, which have not been jointly considered in the 
existing lane-changing models for CAVs. In this acceleration- 
deceleration paradigm, the conditions for the SVs to successfully take 
lane-changing maneuvers will be changed. Also, the trajectories of both 
the SV and the adjacent vehicles (i.e., the PV and FV) need to be 
simultaneously designed. Therefore, new approaches for lane-changing 
decision making and trajectory planning are needed. Details of the lane- 
changing decision making and the trajectory planning modules will be 
provided in the following subsections. Finally, because the proposed 
dynamic cooperative lane-changing model does not change the vehicle 
trajectory tracking algorithm greatly, we simply adopt a well-developed 
algorithm from the existing literature (Li, Sun, Cao, Liu, & He, 2017). 

2.2. Lane-changing decision model 

We propose a lane-changing decision model to determine if the SV 
can take lane-changing maneuvers or not. In a fully CAV environment, 
the lane-changing decision of the SV are subject to the willingness to 
cooperate of the surrounding vehicles and the safety condition. More 
specifically, the SV can change lane only if its adjacent vehicles are 
willing to make space for the SV and there exists a trajectory for the SV’s 
lane-changing maneuver that does not cause longitudinal or lateral 
collisions between the SV and the adjacent vehicles. The first condition 
can be determined via V2V communication and negotiation with the 
adjacent vehicles. Determination of the second condition, however, in
volves an analysis of the dynamics of the SV and adjacent vehicles. To 
address the second condition, this section presents an analytical lane- 
changing decision model based on a linearized vehicle kinematic 
model. The linearized vehicle kinematic model will first be introduced 
and then follow the derived lane-changing decision model. 

2.2.1. Linearized vehicle kinematic model 
To analyze the behaviors of the study CAVs (i.e., both the SV and the 

adjacent vehicles) for lane-changing decisions, a vehicle kinematic 

model is needed. Based on basic physics, the vehicle kinematics can be 
simply formulated as follows: 

ẋn(t) = vn(t), ∀n ∈ N , t ∈ [0, T]; (1)  

v̇n(t) =
1

Dn

(

Pn
On(t)

Rn
− Env2

n(t) − QnDng
)

, ∀n ∈ N , t ∈ [0, T], (2)  

where Dn, Pn, Rn, En, and Qn denote the mass, the mechanical efficiency, 
the tire radius, the integrated aerodynamic drag coefficient, and the 
coefficient of rolling resistance, respectively; On(t) denotes the actual 
brake/acceleration torque of vehicle n at time t; and g denotes the ac
celeration of gravity. Eq. (1) describes the relationship between a ve
hicle’s position and speed while Eq. (2) reveals the relationship between 
a vehicle’s acceleration, mass, and the multiple forces applied on the 
vehicle. 

Regardless of its simplicity, the above model is nonlinear in its form, 
making it difficult to solve these equations directly. For example, the 
integral operation is needed to compute xn(t) given the value of vn(t). 
Therefore, to achieve a dynamic lane-changing model for CAVs that is 
suitable for real-time applications, the vehicle kinematic model should 
be linearized to reduce the computation burden. To this end, we apply 
the input–output linearization method (Wang et al., 2016; Xiao & Gao, 
2011). This method is based on the desired brake/acceleration torque of 
vehicle n at time t, denoted as Q̂n(t), which can be formulated as, 

Ôn(t) =
Rn

Pn

(

En

(

2τv̇n(t) + vn(t)
)

+Qn(t)Dng+Dnun(t)
)

,∀n ∈ N , t ∈ [0,T],

(3)  

where un(t) is the new input after linearization, i.e., the brake/acceler
ation input, and τ is the inertia delay. Here the inertia delay in the 
vehicle dynamics system is considered to make the modeling results 
closer to the actual vehicle kinematics. Furthermore, the relationship 
between the actual and desired brake/acceleration torques of vehicle n 
at time t can be formulated as, 

Ôn(t) = On(t) + Ȯn(t)τ, ∀n ∈ N , t ∈ [0, T]. (4) 

Integrating Eqs. (1)–(4) yields a linear vehicle kinematic model as 
follows (Li & Peng, 2012; Stanković et al., 2000), 

ẋn(t) = vn(t), ∀n ∈ N , t ∈ [0, T]; (5)  

v̇n(t) = an(t), ∀n ∈ N , t ∈ [0, T]; (6)  

ȧn(t) = −
1
τan(t) +

1
τun(t), ∀n ∈ N , t ∈ [0, T]. (7) 

Then, given information of vehicle n at time t1, i.e., un(t1), vn(t1),

xn(t1),∀t1 ∈ [0,T], we can formulate the acceleration, speed, and position 
of the vehicle at time t2 > t1 ∈ [0, T] with the linearized vehicle kine
matic model as follows, 

an(t2) =

⎛

⎝1 − e−
t2 −t1

τ

⎞

⎠un(t1), ∀n ∈ N , t1 < t2 ∈ [0, T] (8)  

vn(t2) = vn(t1)+

⎡

⎣(t2 − t1)−τ

⎛

⎝1 − e−
t2 −t1

τ

⎞

⎠

⎤

⎦un(t1),∀n ∈ N , t1 < t2 ∈ [0,T]

(9)  
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There have been various linearized vehicle kinematic models in the 
literature to describe the vehicle kinematic characteristics. As this study 
aims to propose a lane-changing model for CAVs, the main methodo
logical effort is the development of a lane-changing decision model with 
the unique considerations (e.g., the possible acceleration of a preceding 
vehicle) and a proper vehicle kinematic model rather than testing 
different linearized vehicle kinematic models. Thus, we just select a 
simple but effective linearized vehicle kinematic model that has been 
demonstrated with satisfactory performance in previous studies (Gha
semi et al., 2013; Li & Peng, 2012). This model considers major factors 
that affect the CAVs’ longitudinal movements (e.g., vehicle mass, me
chanical efficiency) . Therefore, it is appropriate for modeling the lon
gitudinal characteristics of CAVs. Further, the model is relatively 
mathematically simple and therefore enables the elegant analytical so
lutions that are required by a real-time control model. Nonetheless, we 
acknowledge that the selected model may not be the best, to determine 
which an exhaustive comparison among existing models is necessary but 
is out of the scope of this paper. Additionally, should this be the case, the 
methodological framework presented in this paper could be applied to 
derive a lane-changing decision model based on other proper linearized 
vehicle kinematic models. Thus, the work presented here remains 
important. 

2.2.2. Lane-changing decision model 
This section presents a lane-changing decision model based on the 

linearized vehicle kinematic model. The purpose of this lane-changing 

decision model is, given the states of the SV and the adjacent vehicles, 
to determine if the SV can change lane safely and comfortably. The 
essence of this problem is to check if there exists a trajectory for the SV’s 
lane-changing maneuver that does not cause collisions between the SV 
and the adjacent vehicles. To this end, we first compute the maximum 
acceleration (or upper-bound acceleration) of the SV based on the ki
nematics of the SV and PV. Next, we compute the maximum deceleration 
(or lower-bound acceleration) of the SV based on the kinematics of the 
SV and FV. If the upper-bound acceleration is greater than or equal to the 
lower-bound acceleration, we can find at least one feasible trajectory for 
the SV to complete its lane-changing maneuver. Otherwise, the lane- 
changing maneuver cannot be completed safely; the SV will keep 
following its preceding vehicle and repeat the lane-decision making 

process in the next time step. Since this study allows the PV to accelerate 
to make space for the SV’s lane-changing maneuvers, existing lane- 
changing decision models that do not consider this possibility cannot 
be directly applied. Therefore, we offer an analytical approach to 
determining the upper- and lower-bound acceleration of the SV in the 
following analysis. 

a. Upper-bound acceleration of the SV. 
We first compute the upper-bound acceleration of the SV, which is 

constrained by the maximum space that the PV can provide for the SV’s 
lane-changing maneuver. This maximum space is dependent on the 
position of the vehicle in front of the PV, denoted as PPV, at the end of 
the planning time horizon and the safety distance between the PPV and 
PV. Since the lane-changing decision is made at the beginning of each 
time step and the length of the time step is relatively short (e.g., 50 ms), 
we treat the speed of the PPV as constant in each time step, i.e., vPPV(t) =

vPPV
(
tS
m

)
, ∀t ∈

(
tS
m, tF

m
)
, m ∈ M . Further, define xn(t|m) as the expected 

position of vehicle n at time t predicted at the beginning of time step m. 
Then the expected position of PPV at the end of the lane-changing 
process precited at the beginning of time step m can be formulated as, 

xPPV(T|m) = xPPV
(
tS
m

)
+ vPPV

(
tS
m

)(
T − tS

m

)
, ∀m ∈ M . (11) 

To ensure that the PV does not collide with the PPV, there should be a 
minimum (or safety) distance, denoted as SMIN, between them, i.e., 

SMIN ≤ xPPV(T|m) − xPV(T|m), ∀m ∈ M . (12) 

Further, based on Eq. (10) we obtain,   

Note that in Eq. (13) uPV(t) is constant in time step m, i.e., uPV(t) =

uPV
(
tS
m

)
, ∀t ∈

(
tS
m, tF

m
)
,m ∈ M . This is reasonable because the length of a 

time step is decided by the control period of the drive-by-wire system, 
and therefore the control variables (e.g., acceleration, brake/accelera
tion output) can be changed only once in each time step. Besides, this 
treatment will not cause much accuracy loss because the length of each 
time step is relatively short. The same treatment is applied throughout 
the remaining analysis in this subsection. Integrating Eqs. (11)-(13) 
yields the relationship between the theoretical brake/acceleration 
output of the PV uPV

(
tS
m

)
and tS

m as follows,   

uPV
(
tS
m

)
≥

xPPV
(
tS
m

)
+ vPPV

(
tS
m

)(
T − tS

m

)
− SMIN − xPV

(
tS
m

)
− vPV

(
tS
m

)(
T − tS

m

)

⎡

⎢
⎣1

2

(
T − tS

m

)2
− τ

⎛

⎜
⎝ts

m − τ + τe−
tFm−tSm

τ

⎞

⎟
⎠

⎤

⎥
⎦

, ∀m ∈ M . (14)   

xPV(T|m) = xPV
(
tS
m

)
+ vPV

(
tS
m

)(
T − tS

m

)
+

⎡

⎢
⎣

1
2
(
T − tS

m

)2
− τ

⎛

⎜
⎝tS

m − τ + τe−
T−tSm

τ

⎞

⎟
⎠

⎤

⎥
⎦uPV

(
tS
m

)
, ∀m ∈ M . (13)   

xn(t2) = xn(t1)+vn(t1)(t2 − t1)+

⎡

⎣1
2
(t2 − t1)

2
− τ

⎛

⎝t1 − τ + τe−
t2 −t1

τ

⎞

⎠

⎤

⎦un(t1),∀n ∈ N , t1 < t2 ∈ [0,T] (10)   
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Applying Eq. (14) into Eq. (8) yields the relationship between the 
theoretical acceleration of the PV and tsm as follows, 

aPV
(
tS
m

)
≥ a PV

(
tS
m

)

To guarantee the passengers in the PV are comfortable during the 
cooperative lane-changing process, the maximum acceleration of the PV 
should always be no greater than the maximum comfortable accelera
tion. Thus, we obtain the realistic maximum acceleration of the PV 

estimated at time step m as, 

aPV
(
tS
m

)
= min

{

a PV
(
tS
m

)
, aMAX

}

, ∀m ∈ M . (16) 

Accordingly, the realistic maximum brake/acceleration output of the 
PV is, 

uPV
(
tS
m

)
=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

uPV
(
tS
m

)
aPV

(
tS
m

)
≤ aMAX

aMAX
⎛

⎜
⎝1 − e−

T−tSm
τ

⎞

⎟
⎠

aPV
(
tS
m

)
> aMAX

, ∀m ∈ M . (17) 

Applying Eq. (17) into Eq. (10) yields the furthest position that the 
PV can reach during the acceleration process estimated at time step m as 

With this, we can compute the upper-bound acceleration of the SV 

following a similar logic. First, based on the safety condition and Eq. 
(10) we obtain 

SMIN ≤ xPV(T|m) − xSV(T|m), ∀m ∈ M ; (19)   

Solving Eqs. (19)–(20) yields   

and  

=

⎛

⎜
⎝1 − e−

T−tSm
τ

⎞

⎟
⎠

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

xPPV
(
tS
m

)
+ vPPV

(
tS
m

)(
T − tS

m

)
− SMIN − xPV

(
tS
m

)
− vPV

(
tS
m

)(
T − tS

m

)

⎡

⎢
⎣1

2

(
T − tS

m

)2
− τ

⎛

⎜
⎝ts

m − τ + τe−
T−tSm

τ

⎞

⎟
⎠

⎤

⎥
⎦

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, ∀m ∈ M. (15)   

xPV(T|m) = xPV
(
tS
m

)
+ vPV

(
tS
m

)(
T − tS

m

)
+

⎡

⎢
⎣

1
2

(
T − tS

m

)2
− τ

⎛

⎜
⎝tS

m − τ + τe−
T−tSm

τ

⎞

⎟
⎠

⎤

⎥
⎦uPV

(
tS
m

)
, ∀m ∈ M . (18)   

xSV(T|m) = xSV
(
tS
m

)
+ vSV

(
tS
m

)(
T − tS

m

)
+

⎡

⎢
⎣

1
2
(
T − tS

m

)2
− τ

⎛

⎜
⎝tS

m − τ + τe−
T−tSm

τ

⎞

⎟
⎠

⎤

⎥
⎦uSV

(
tS
m

)
, ∀m ∈ M . (20)   

uSV
(
tS
m

)
≥ uPV1

(
tS
m

)
+

xPV
(
tS
m

)
+ vPV

(
tS
m

)(
T − tS

m

)
− SMIN − xSV

(
tS
m

)
+ vSV

(
tS
m

)(
T − tS

m

)

⎡

⎢
⎣1

2

(
T − tS

m

)2
− τ

⎛

⎜
⎝tS

m − τ + τe−
T−tSm

τ

⎞

⎟
⎠

⎤

⎥
⎦

, ∀m ∈ M . (21)   
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Finally, the upper-bound acceleration of the SV is 

aSV
(
tS
m

)
= min

{

a SV
(
tS
m

)
, aMAX

}

, ∀m ∈ M . (23) 

b. Lower-bound acceleration of the SV. 
The lower-bound acceleration of the SV is achieved if the FV de

celerates with the maximum comfortable deceleration bMAX during the 
cooperative lane-changing process. Further, the speed of the FV must be 
a nonnegative value. Therefore, the maximum brake/acceleration 
output of the FV can be formulated as, 

uFV
(
tS
m

)
=

⎧
⎪⎨

⎪⎩

bMAX vFV
(
tS
m

)
≥ −bMAX(

T − tS
m

)

vFV
(
tS
m

)

T − tS
m

vFV
(
tS
m

)
< −bMAX(

T − tS
m

) , ∀m ∈ M . (24) 

The position of the FV at the end of the lane-changing process with 
the maximum brake/acceleration output estimated at the beginning of 
time step m is,   

With the safety condition 

SMIN ≤ xSV(T|m) − xFV(T|m), ∀m ∈ M , (26) 

and the vehicle dynamic of the SV,   

we obtain the maximum theoretical brake/acceleration output of the 
SV as 

u SV
(
tS
m

)
=

SMIN − xFV
(
tS
m

)
− vFV

(
tS
m

)(
T − tS

m

)

⎡

⎢
⎣1

2

(
T − tS

m

)2
− τ

⎛

⎜
⎝tS

m − τ + τe−
T−tSm

τ

⎞

⎟
⎠

⎤

⎥
⎦

− bMAX, ∀m ∈ M . (28) 

Again, the speed of the SV cannot be a negative value. To apply this 

constraint, we compute the position of the SV with the maximum 
theoretical brake/acceleration output as, 

vSV(T|m) = vSV
(
tS
m

)
+

⎡

⎢
⎣

(
T − tS

m

)
− τ

⎛

⎜
⎝1 − e−

T−tSm
τ

⎞

⎟
⎠

⎤

⎥
⎦u SV

(
tS
m

)
, ∀m ∈ M ;

(29) 

Then the realistic maximum brake/acceleration output of the SV is 

u
SV

(
tS
m

)
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

−

uSV
(
tS
m

)
vSV(T|m) ≥ 0

vFV
(
tS
m

)

⎡

⎢
⎣

(
T − tS

m

)
− τ

⎛

⎜
⎝1 − e−

T−tSm
τ

⎞

⎟
⎠

⎤

⎥
⎦

vSV (T|m) < 0 , ∀m ∈ M .

(30) 

Applying Eq. (30) into Eq. (8), we obtain the theoretical lower-bound 
acceleration of the SV as 

aSV
(
tS
m

)
=

⎛

⎜
⎝1 − e−

T−tSm
τ

⎞

⎟
⎠u

SV

(
tS
m

)
, ∀m ∈ M (31) 

Taking into account the requirement on the passengers’ level of 
comfort, we obtain the actual lower-bound acceleration of the SV as 

a SV

(
tS
m

)
= max

{
aSV

(
tS
m

)
, bMAX}

, ∀m ∈ M . (32)  

2.3. Cooperative trajectory generation 

After making the cooperative lane-changing decision, the proposed 
model needs to design trajectories for the SV, PV, and FV during the 
lane-changing process. A vehicle’s trajectory can be decomposed into 
longitudinal and lateral trajectories. For the SV that needs to change its 

aSV
(
tS
m

)
≥ a SV

(
tS
m

)
:=

⎛

⎜
⎝1 − e−

T−tSm
τ

⎞

⎟
⎠

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

uPV
(
tS
m

)
+

xPV
(
tS
m

)
+ vPV

(
tS
m

)(
T − tS

m

)
− SMIN − xSV

(
tS
m

)
+ vSV

(
tS
m

)(
T − tS

m

)

⎡

⎢
⎣1

2

(
T − tS

m

)2
− τ

⎛

⎜
⎝tS

m − τ + τe−
T−tSm

τ

⎞

⎟
⎠

⎤

⎥
⎦

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, ∀m ∈ M . (22)   

xFV(T|m) = xFV
(
tS
m

)
+vFV

(
tS
m

)(
T − tS

m

)
+

⎡

⎢
⎣

1
2
(
T − tS

m

)2
−τ

⎛

⎜
⎝tS

m − τ + τe−
T−tSm

τ

⎞

⎟
⎠

⎤

⎥
⎦uFV(m),∀m ∈ M . (25)   

xSV(T|m)=xSV
(
tS
m

)
+vSV

(
tS
m

)(
T−tS

m

)
+

⎡

⎢
⎣

1
2
(
T −tS

m

)2
−τ

⎛

⎜
⎝tS

m −τ+τe−
T−tSm

τ

⎞

⎟
⎠

⎤

⎥
⎦uSV

(
tS
m

)
,∀m∈M , (27)   
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lane, both longitudinal and lateral trajectories should be designed. 
However, for PV and FV, we simply need to plan their longitudinal 
trajectories since they will move on the same lane. In the following 
analysis, we present approaches for generating the longitudinal and 

lateral trajectories. 

2.3.1. Longitudinal trajectory planning 
To reduce the impacts of the lane-changing process on the upstream 

traffic, the PV will accelerate with its upper bound acceleration uPV
(
tS
m

)
,

∀m ∈ M . The SV and PV will then conduct cooperative car following. To 
model the car-following behavior, this study applies the linearized car- 
following model proposed by Milanés and Shladover (2014), one of 
the popular car-following models for CAVs. Let âSV(m), âFV(m) be the 
target acceleration of the SV and FV during time step m, respectively. 
Then the car-following behavior of the SV and FV can be formulated as, 

Fig. 5. Success rates of lane-changing maneuvers with (a) varying speed of the first vehicle on the target lane, (b) varying initial time headway between each two 
consecutive vehicles on the target lane, (c) varying initial distance between the SV and PV, and (d) varying initial speed difference of the SV and PV. 

SV

FV

Current 
Lane

Target
LaneFV PV PVSV

Fig. 6. Lane-changing trajectories of the PV, SV, and FV in one simulated scenario.  

Table 2 
Other parameters used in the simulation.  

Parameters Value Unit Parameters Value Unit 

L  3.5 m  SMIN   6.0 m  

C  4.96 m  gT   1.5 s  

T  6 s  aMAX   1.5 m/s2  

k1  1.4 s−2  bMAX   −1.0 m/s2  

k2  0.85 s−1  aL,MAX   1.4 m/s2   

Table 3 
Success rates of lane-changing maneuvers from the TLCM and CLCM.  

Model Number of successful lane-changing 
maneuvers 

Success rate of lane-changing 
maneuvers 

TLCM 51,752  53.1% 
CLCM 70,756  72.6%  
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where k1, k2 are statis known values st, gT is the desired time gap be
tween the adjacent vehicles.The output from this linearized car- 
following model will be sent to both SV and FV to control their accel
eration at each time step. 

2.3.2. Lateral trajectory planning 
To generate the lateral trajectory of the SV, we apply a cubic poly

nomial trajectory planning method. The cubic polynomial trajectory 
rather than other methods such as sine trajectory is selected because its 
second-order smoothness (Yang et al., 2018) and computational trac
tability make it appropriate for real-time trajectory planning. The cubic 
polynomial curve can be mathematically formulated as, 

ySV(xSV(t)) = k3(m)xSV(tm)
3
+k4(m)xSV(tm)

2
+k5(m)xSV(tm)+k6(m),

∀m ∈ M , t ∈ [0,T]. (35) 

As mentioned previously, the state of the SV can be obtained at the 
beginning of each time step tS

m, including lateral position xSV(tS
m), lon

gitudinal position ySV(tS
m) and heading θSV(tS

m). Further, from the lane- 
changing decision-making module, we obtain the lateral position of 
the SV at the end of the time horizon xSV(T|m). Since the SV moves from 
the center of the current lane to that of the target lane, the horizontal 
position of the SV at the end of the time horizon is ySV

(
xSV

(
tS
m

))
+ L, 

where L denotes the width of a single lane. To simplify the computation 
and expedite the trajectory generation process, we assume that the SV’s 
target heading (i.e., θSV(T|m)) is 0. Note that one can set θSV(T|m)) as 
other desired values and the solution procedure proposed here still ap
plies but with higher complexity. Applying the above information into 
Eq. (35), we obtain, 

ySV
(
xSV

(
tS
m

) )
= ySV

(
tS
m

)
, ∀m ∈ M ; (36)  

ySV(xSV(T|m) ) = ySV
(
xSV

(
tS
m

))
+ L, ∀m ∈ M ; (37) 

Fig. 7. Speed evolutions of the study CAVs produced by: (a) TLCM in the first representative scenario, (b) CLCM in the first representative scenario, (c) TLCM in the 
second representative scenario, and (d) CLCM in the second representative scenario. 

âSV(m)=k1
(
xPV

(
tS
m

)
−xSV

(
tS
m

)
−C−vSV

(
tS
m

)
gT )

+k2
(
vPV

(
tS
m

)
−vSV

(
tS
m

))
,∀m∈M ; (33)  

âFV(m) = k1
(
xSV

(
tS
m

)
− xFV

(
tS
m

)
− C − vFV1

(
tS
m

)
gT )

+ k2
(
vSV

(
tS
m

)
− vFV

(
tS
m

) )
, ∀m ∈ M , (34)   
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Fig. 8. Time-space diagram of all vehicles produced by (a) the TLCM, and (b) the CLCM in a representative scenario.  

Fig. 9. Speed evolutions of the (a) PV, (b) SV, (c) first, (d) eleventh, (e) twenty first, (f) thirty first, (g) forty first, and (h) fiftieth vehicle in the upstream traffic.  
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y’
SV

(
xSV

(
tS
m

) )
= tan

(
θ
(
tS
m

) )
, ∀m ∈ M ; (38)  

y’
SV(xSV(T|m) ) = 0, ∀m ∈ M . (39) 

Solving the above equations yields an analytical solution to the pa
rameters in Eq. (35) as follows   

−

(
ySV

(
tS
m

)
+ L

)
(3xSV

(
tS
m

)2xSV(T|m) − xSV
(
tS
m

)3
)

(
xSV

(
tS
m

)
− xSV(T|m)

)(
xSV

(
tS
m

)2
− 2xSV

(
tS
m

)
x(T|m) + xSV(T|m)

2
),∀m ∈ M ;

(40)     

Fig. 10. Standard deviations of the speed of the (a) PV, (b) SV, (c) first, (d) eleventh, (e) twenty first, (f) thirty first, (g) forty first, and (h) fiftieth vehicle in the 
upstream with varying speed of the first vehicle on the target lane. 

k6(m) =

(
xSV

(
tS
m

)
− xSV(T|m)

)(
3ySV

(
tS
m

)
xSV(T|m)

2
− x

(
tS
m

)
xSV(T|m)

2tan
(
θ
(
tS
m

) ))

(
xSV

(
tS
m

)
− xSV(T|m)

)(
xSV

(
tS
m

)2
− 2xSV

(
tS
m

)
x(T|m) + xSV(T|m)

2
)
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k3(m) =
2L +

(
xSV

(
tS
m

)
− xSV(T|m)

)
tan

(
θ
(
tS
m

))
)

(
xSV

(
tS
m

)
− xSV(T|m)

)3 , ∀m ∈ M . (43) 

Finally, to make sure the passengers in the SV are comfortable during 
the lane-changing process, we impose an upper bound to the lateral 
acceleration of the SV. The maximum lateral acceleration of the SV using 
the above cubic polynomial trajectory can be formulated as (Yang et al., 
2018), 

aL
SV

(
tF
m

)
=

(
vSV(T|m)

2
)

⃒
⃒
⃒
⃒
⃒

2xSV(T|m)
(
tan

(
αSV

(
tS
m

) ) )
− 6ySV(T|m)

(xSV(T|m) )
2

⃒
⃒
⃒
⃒
⃒
, ∀m ∈ M .

(44) 

If the lateral acceleration is greater than the maximum lateral ac
celeration aL,MAX, the lane-changing maneuver will be aborted, and the 
SV will continue lane keeping on the current lane. 

Fig. 11. Standard deviations of the speed of the (a) PV, (b) SV, (c) first, (d) eleventh, (e) twenty first, (f) thirty first, (g) forty first, and (h) fiftieth vehicles in the 
upstream with varying initial time headway between each two consecutive vehicles on the target lane. 

k5(m) =
−

(
xSV(T|m)

(
tan

(
θ
(
tS
m

))
(xSV(T|m)

2
− 2xSV

(
tS
m

)2
)

+ xSV
(
tS
m

)(
x(T|m)tan

(
θ
(
tS
m

))
− 6L

)))

(
xSV

(
tS
m

)
− xSV(T|m)

)3 , ∀m ∈ M ; (41)  

k4(m) =
xSV(T|m)

(
2xSV(T|m)tan

(
θ
(
tS
m

) )
− 3L

)
− xSV

(
tS
m

)(
L +

(
xSV

(
tS
m

)
+ xSV(T|m)

))

(
xSV

(
tS
m

)
− xSV(T|m)

)3 , ∀m ∈ M ; (42)   
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3. Simulation and results analysis 

To verify the effectiveness of the dynamic cooperative lane-changing 
model, we carried out extensive numerical simulations using MATLAB 
2019 as the simulation platform. This section presents the simulation 
settings and discusses the results. We first introduce the parameter set
tings and the evaluation of the proposed model in terms of the success 
rate of lane-changing maneuvers, impacts on the study CAVs (i.e., SV, 
PV, and FV), and impacts on vehicles in the upstream direction of the 
SV’s target position on the target lane will be presented successively. 

3.1. Simulation settings 

In the simulation, we consider a two-lane highway segment with 60 
vehicles on the target lane, 10 of which are in the downstream direction 
of the SV’s target position while 50 are in the upstream direction. The 
first vehicle on the target lane runs at a constant speed and other vehi
cles on this lane operate according to the linearized car-following model 
(Section 2.3.1). The simulation time horizon is 100 s and the length of 
each time step is 50 ms; there are 2000 time steps for each simulation. To 
investigate the robustness of the proposed model under different traffic 

conditions, we consider four different parameters that can possibly 
affect the effectiveness of the proposed model, including the speed of the 
first vehicle on the target lane, the initial time headway between each 
two consecutive vehicles on the target lane, the initial distance between 
the SV and PV, and the initial speed difference between the SV and PV 
with the speed of the SV being the minuend. The speed of the first 
vehicle on the target lane varies from 5 to 25 m/s, with a step size of 1 
m/s. The initial time headway between each two consecutive vehicles on 
the target lane varies from 1.0 to 3.0 s, with a step size of 0.1 s. The 
initial distance between the SV and PV varies from 10% to 90% of the 
distance between the PV and FV, with a step size of 5%. The initial speed 
difference of the SV and PV varies from −3 to 3 m/s, with a step size of 
0.5 m/s. With this setting, we created 97,461 scenarios with different 
initial conditions for the simulation analysis. Other parameters used in 
the simulation remain constant across all scenarios and are summarized 
in Table 2. 

Further, to demonstrate the effectiveness of the proposed lane- 
changing model with the acceleration-deceleration paradigm, we 
compare the results of the proposed cooperative lane-changing model 
(CLCM) with a traditional lane-changing model (TLCM) where the 
deceleration-only paradigm is implemented (Wang et al., 2020). The 

Fig. 12. Standard deviations of the speed of the (a) PV, (b) SV, (c) first, (d) eleventh, (e) twenty first, (f) thirty first, (g) forty first, and (h) fiftieth vehicle in the 
upstream with varying initial distance between the SV and PV. 

Z. Wang et al.                                                                                                                                                                                                                                   



Expert Systems With Applications 173 (2021) 114675

15

effectiveness of both models is assessed from three aspects, namely the 
success rate of lane-changing maneuvers, impacts on the study CAVs (i. 
e., the PV, SV, and FV), impacts on the vehicles in the upstream direction 
of the target position of the SV (we call them the upstream vehicles 
hereafter for the simplicity of the illustration). The success rate of the 
lane-changing maneuvers is defined as the ratio of the number of sce
narios where the SV successfully changes its lane to the number of 
scenarios. To investigate the impacts of the lane-changing process on the 
traffic operations, we plot the speed profiles of the study CAVs and 
upstream CAVs in some representative scenarios to present whether 
there is a speed variation. Further, we use the standard deviation of the 
speeds of these vehicles as a measure to quantitatively analyze these 
impacts under various parameter settings. 

3.2. Success rate of lane-changing maneuvers 

The success rates of both models out of all simulated scenarios are 
summarized in Table 3. The success rates of lane-changing maneuvers 
with varying parameter settings are presented in Fig. 5. Subplots provide 
results with varying speed of the first vehicle on the target lane (a), 
varying initial time headway between each two consecutive vehicles on 

the target lane (b), varying initial distance between the SV and PV (c), 
and varying initial speed difference between the SV and PV (d). The 
trajectories of the PV, SV, FV during the lane-changing process in one 
simulated scenario are presented in Fig. 6. 

As can be seen from Table 3, out of 97,461 scenarios, the SV suc
cessfully takes lane-changing maneuvers 51,752 times (with a success 
rate of 53.1%) with the TLCM while this value increases to 70,756 (with 
a success rate of 72.6%) with the CLCM. The CLCM results in an increase 
of 36.7% in terms of the success rate of the lane-changing maneuvers. 
This result shows that the coordination between the SV and its sur
rounding vehicles during the lane-changing process creates more op
portunities for the SV’s lane-changing maneuvers. Fig. 5 further reveals 
how this improvement changes with different input parameters. We see 
from Fig. 5(a) that with the increase in the speed of the first vehicle on 
the target lane, the success rate declines in both models because the 
increasing speed requires a longer distance between the PV and FV for 
the SV to change lane. However, the success rate of the CLCM is 
consistently higher than that of the TLCM despite the variations in the 
speed of the first vehicle on the target lane. Fig. 5(b) shows similar re
sults, with the success rate of the CLCM greater than that of the TCLM 
except when the time headway between each two consecutive vehicles is 

Fig. 13. Standard deviations of the speed of the (a) PV, (b) SV, (c) first, (d) eleventh, (e) twenty first, (f) thirty first, (g) forty first, and (h) fiftieth vehicle in the 
upstream with varying initial speed difference of the SV and PV. 
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greater than 2.5 s. However, CLCM results in the same success rates as 
TLCM when improvements are not obtained, indicating that CLCM at 
least performs as well as TLCM. Interestingly, the success rate of the 
TLCM is 0% when the time headway is less than or equal to 1.6 s. This 
observation indicates that the SV cannot take lane-changing maneuvers 
at all in this condition because the time headway between each two 
consecutive vehicles on the target lane is so small that there is not 
enough space for the SV’s lane-changing maneuvers. This situation is 
changed by the CLCM; with the acceleration of the PV, enough space is 
provided for the SV to change its lane in around 30% of the simulated 
scenarios. This result implies that the proposed CLCM is particularly 
important for corridors with congested traffic where the time headway 
between vehicles is likely to be small and thus lane changing is almost 
impossible with the TLCM. Fig. 5(c) and Fig. 5(d) reveal that CLCM 
increases the success rate of lane-changing regardless of the variations in 
the initial distance between the SV and PV and the initial speed differ
ence of the SV and PV, respectively. Further, the success rate of lane- 
changing maneuvers is not affected by the variations in these two pa
rameters in both models. 

Fig. 6 visualizes the trajectories of the PV, SV, and FV during the 
lane-changing process with vehicles in dashed lines denoting the initial 
positions and vehicles in solid lines representing the final positions. As 
can be seen from this figure, the SV is able to commence the lane- 
changing maneuver with a smooth trajectory without colliding with 
the SV and FV. These results prove that our proposed model is able to 
conduct safe and comfortable lane-changing maneuver for CAVs. 

3.3. Impacts on the study CAVs 

The speed evolutions of the study CAVs in two representative sce
narios are presented in Fig. 7. The standard deviations of the speed of the 
PV and SV versus varying speed of the first vehicle on the target lane, 
varying initial time headway between each two consecutive vehicles on 
the target lane, varying initial distance between the SV and PV, and 
varying initial speed difference of the SV and PV are presented in Fig. 10 
(a)-(b), Fig. 11 (a)-(b), Fig. 12 (a)-(b), Fig. 13 (a)-(b), respectively. 

As seen from Fig. 7, the SV suffers from an evident speed oscillation 
with an amplitude of 8 m/s and even a complete stop for about 2 s in the 
TLCM. This phenomenon, however, is alleviated in the CLCM, with its 
amplitude decreased to 3 m/s, since the SV does not have to decelerate as 
much with the cooperative behavior of the PV and FV. In addition, the 
SV’s adjustment time for lane changing decreases from 20 s (TLCM) to 
10 s (CLCM). Further, the SV’s lane-changing maneuvers inevitably 
affect the operation of the FV in both models, but the impact in the 
CLCM is not as significant that in the TLCM. The PV’s speed remains 
constant during the lane-changing process in the TLCM, while a small 
speed oscillation of the PV is observed in the CLCM in the second case 
(see Fig. 7(d)). This is because, in the proposed model, the PV may 
accelerate to cooperate with the SV’s lane-changing maneuvers. How
ever, the magnitude of the oscillation reduction in other vehicles 
(including the SV, FV and other vehicles in the upstream direction that 
will be discussed in the next subsection) is far greater than the magni
tude of the oscillation increase in the PV, meaning that the increase in 
the PV’s speed oscillation can be completely offset by the decrease in 
other vehicles’ speed oscillations. Thus, the proposed model still reduces 
the negative impacts of lane-changing maneuvers on the traffic opera
tion from a system perspective. 

The same phenomenon is also observed in other scenarios with 
different parameter settings shown in Fig. 10, Fig. 11, Fig. 12, and 
Fig. 13. We see that the standard deviations of the PV’s speed in the 
CLCM are generally greater than those in the TLCM, indicating the 
CLCM causes the PV a greater speed oscillation than the TLCM. How
ever, the amplitude of this oscillation (which can be measured by the 
gap between the two curves in the same subplot) is obviously much 
smaller than the sum of the amplitude of other vehicles’ speed oscilla
tion. Thus, the CLCM consistently reduces the traffic disruptions in the 

investigated highway system in a variety of parameter settings. 

3.4. Impacts on the upstream vehicles 

The time–space diagrams of the vehicles in one of the simulated 
scenarios from the CLCM and TLCM are presented in Fig. 8. The speed 
evolutions of the first, eleventh, twenty first, thirty first, forty first, and 
fiftieth vehicles in the upstream in the same scenario are presented in 
Fig. 9 (c)-(h). The standard deviations of the speed of these vehicles 
versus varying speed of the first vehicle on the target lane, varying initial 
time headway between each two consecutive vehicles on the target lane, 
varying initial distance between the SV and PV, and varying initial speed 
difference of the SV and PV are presented in Fig. 10 (c)-(h), Fig. 11 (c)- 
(h), Fig. 12 (c)-(h), Fig. 13 (c)-(h), respectively. 

As can be seen in Fig. 8(a), there is a shockwave starting at the 10-th 
second and propagating along the upstream vehicles when the TLCM is 
applied to design the lane-changing maneuvers. The CLCM model, 
however, causes almost no observable shockwave among the upstream 
vehicles, as shown in Fig. 8(b). This result indicates that with proper 
coordination, the CLCM can alleviate the disruption in the upstream 
traffic flow caused by the SV’s lane-changing maneuvers. Fig. 9(c)-(h) 
offer a more intuitive presentation of this impact. As can be seen from 
Fig. 9(c)-(h), all the selected vehicles experience an evident speed 
oscillation when TLCM is applied. While there are also observable speed 
oscillations in these vehicles with the CLCM, the amplitudes of these 
oscillations are much smaller and thus brings almost no substantial 
impacts on the traffic operation. This result is consistent with the fact 
that there is no observable shockwave in the time–space diagram in 
Fig. 8(b). These results reveal that the CLCM alleviates the negative 
impacts of lane-changing maneuver on the upstream traffic flow 
compared with TLCM. 

As can be seen from Fig. 10 (c)-(h), the standard deviations of the 
selected vehicles’ speeds increase with the increase in the speed of the 
first vehicle on the target lane. The speed variations of all selected ve
hicles produced by CLCM are much lower than those produced by TLCM, 
indicating that the CLCM consistently produces smoother trajectories for 
the upstream vehicles than the TLCM. Further, the gap between the lines 
in all subplots becomes larger as the speed of the first vehicle on the 
target lane increases until it reaches 20 m/s, meaning that the proposed 
CLCM’s capability in reducing traffic oscillations in the upstream traffic 
flow is stronger when the speed of the first vehicle on the target lane is 
higher. Also, we observe that the standard deviations of the speed 
decrease as the vehicle number increases (i.e., from Fig. 10 (c) to (h)), 
which indicates that the shockwave is dampened gradually along the 
upstream traffic direction. 

Fig. 11 (c)-(h) show that with the increase in the time headway be
tween each two consecutive vehicles on the target lane, the standard 
deviations of each selected CAV’s speed decrease in both lane-changing 
models. Further, the standard deviations of the first thirty vehicles in the 
target lane produced by the CLCM is always smaller than those produced 
by the TLCM, with the difference being very substantial when the time 
headway value is small. This observation indicates that the proposed 
CLCM smoothens the trajectories of the first thirty vehicles with all 
considered time headway values. For the remaining vehicles, trajectory 
smoothing is still achieved when the time headway is small (as shown by 
the gap between the two curves in Fig. 11 (g)-(h)). Also, when 
improvement is not observed, CLCM performs as well as TLCM, which is 
similar to the impacts of this input parameter on the success rate of the 
lane-changing maneuvers. 

The impact on upstream CAVs’ speed standard deviation of the initial 
distance between the SV and PV is shown in Fig. 12 (c)-(h). The CLCM 
achieves smaller speed standard deviations than the TLCM in all up
stream CAVs. Interestingly, the speed standard deviations of the first 41 
CAVs in the upstream direction is first getting smaller and then larger as 
the initial distance between the SV and PV increases when the CLCM is 
applied, as seen by the U-shape curves for the CLCM in Fig. 12 (c)-(f). 
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However, the speed standard deviations of these vehicles are strictly 
increasing as the initial distance between the SV and PV increases when 
the TLCM is applied. This is because, when the initial distance between 
PV and SV is small, the acceleration of the PV cannot provide enough 
space for the SV’s lane-changing maneuvers, and thus the SV must 
decelerate to maintain a safety distance. As a result, the FV and the 
following vehicles are affected. As the initial distance between the PV 
and SV gets larger, the impacts of the SV’s deceleration on the upstream 
vehicles are reduced, thus leading to a decreasing standard deviation of 
their speeds. Yet, when the initial distance between the SV and PV 
reaches 60% (i.e., the initial distance between the SV and FV is less than 
40%), even though the acceleration of the PV provides more space for 
the SV, the FV still needs to decelerate relatively more to avoid collisions 
because of its short distance to the SV. This impact gets stronger as the 
initial distance between the SV and PV gets smaller, thus bringing a 
more substantial speed oscillation. In contrast, the space necessary for 
the SV’s lane-changing maneuvers is only provided via the FV’s decel
eration in the TLCM, so the resulting speed standard deviations are more 
evident. Further, the FV has to accelerate more as the initial distance 
between the PV and SV gets larger, and thus a higher speed standard 
deviation is witnessed. These results, again, indicate the CLCM is 
effective in smoothing trajectories of the following CAVs. 

Finally, Fig. 13 (c)-(h) show how the initial speed difference between 
SV and PV affects the speed standard deviation of the CAVs in the up
stream direction. Again, it can be seen that CLCM consistently decline 
the standard deviations of the speeds of the upstream CAVs with 
different values of the initial speed difference between the SV and PV. 
Furthermore, the gaps between the two curves in each subplot decrease 
as the parameter value increases, showing that the effectiveness of the 
CLCM in reducing the disruptions of the SV’s lane-changing maneuvers 
in the upstream CAVs is weakened as the initial speed difference be
tween the SV and PV increases. 

4. Conclusion and future work 

This study proposes a dynamic cooperative lane-changing model for 
CAVs with possible accelerations of a preceding vehicle. This model is 
designed to make lane-changing decisions for the SV and generate tra
jectories for the SV, PV, and FV in a coordinated manner dynamically. 
The lane-changing decision is made by analytically analyzing vehicle 
kinematics given the states of the SV, PV, and FV, the minimum safety 
distance, and requirements on the comfort level for passengers. The 
longitudinal and lateral trajectories of the vehicles are designed with a 
linear car-following model and a cubic polynomial curve method, 
respectively. Results from numerical simulation in extensive scenarios 
show that the proposed model is effective in coordinating the maneuvers 
of the SV, PV, and FV during the lane-changing process. It substantially 
increases the success rate of the SV’s lane-changing maneuvers since the 
possible acceleration of the PV brings a higher probability of obtaining 
the required space for lane changing. Furthermore, the trajectories of the 
SV and all vehicles scattered in the upstream direction of the SV’s target 
position on the target lane are smoothened and thus the traffic disrup
tion (or shockwave) is much alleviated. Although the PV’s speed expe
riences a slightly greater oscillation since it may accelerate to make 
space for the SV’s lane-changing maneuvers, the oscillation reduction in 
other vehicles completely offsets this small increase in the PV’s speed 
oscillation. Therefore, the proposed model still achieves a system-wide 
improvement in terms of reducing the negative impacts of lane- 
changing maneuvers on the traffic operation. In addition, results 
confirm the effectiveness of the proposed model under a variety of 
parameter settings corresponding to various traffic conditions in the real 
world. 

This study adds to the body of literature demonstrating the necessity 
of adopting cooperative centralized control in lane-changing decisions 
for CAVs. Further, the model presented here provides a simple yet 
powerful analytical tool that can be used in future CAV studies and 

planning practice. Results show that the traffic oscillation of the PV is 
amplified in the proposed model, future research may integrate a tra
jectory optimization component to search for the optimal trajectory of 
the vehicles so that this amplification can be minimized. Also, this study 
investigates the case where only one SV needs to change lane and can be 
used as a foundation for developing sophisticated models for a more 
complicated case where multiple lane-changing requests need to be 
answered. Development of such a model requires an integrated 
perspective from the entire system, which will be an interesting research 
direction. Further, this study regards the CAV’s willingness to cooperate 
as a deterministic input acquired via V2V communication. Yet, a CAV’s 
willingness to cooperate may depend on various subjective factors, e.g., 
the passengers’ perception of the resultant delay, the presence and 
attractiveness of the incentives, the passengers’ personality. Further 
studies can extend this work to incorporate the effects of these factors on 
the willingness to cooperate into the model with a fuzzy modeling 
approach (e.g., Martín et al., 2016). Finally, apart from the lane- 
changing problem considered in this study, the lane-changing 
behavior on a two-lane road where on each lane the vehicles travel in 
opposite directions is also interesting and important. Yet, the analysis of 
the latter is more complex since it would require a consideration of the 
vehicle movements in the opposite direction. Future studies can base on 
this study to propose lane-changing models for the more complicated 
case. 
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