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The emerging connected and autonomous vehicle (CAV) technologies offer a promising solution to design better
lane-changing maneuvers that can reduce the negative impacts of vehicle lane-changing behavior on traffic
operations. Existing studies on this topic have predominantly focused on designing lane-changing maneuvers for
a subject vehicle (SV) and typically assumed that a vehicle in the target lane must decelerate to make space for
the SV due to safety considerations. Nevertheless, jointly designing the trajectories of the SV and surrounding
vehicles and allowing possible accelerations of a preceding vehicle may further alleviate the negative impacts of
CAV’s lane-changing maneuvers. To investigate this possibility, this paper proposes a dynamic cooperative lane-
changing model for CAVs with possible accelerations of a preceding vehicle. This model collects information of
the surrounding vehicles and updates the lane-changing decisions for the SV in real time via three steps, namely
lane-changing decision making, cooperative trajectory planning, and trajectory tracking. This model applies a
linearized vehicle kinematic model to make lane-changing decisions for the SV given the states of the SV and
surrounding vehicles, the minimum safety distance, and requirements on the comfort level for passengers.
Furthermore, it dynamically designs the longitudinal and lateral trajectories for the SV and surrounding vehicles.
Extensive numerical simulation experiments are conducted to evaluate the effectiveness of the proposed model.
Results show that the proposed model increases the success rate of the SV’s lane-changing maneuvers, smoothens
the trajectories of the SV and vehicles in the upstream direction at the cost of a slightly more significant oscil-
lation of the last vehicle in the downstream direction. Overall, the proposed model reduces the negative impacts
of lane-changing maneuvers on the surrounding traffic. The results also reveal the robustness of the model
performance by varying several key input parameters in the experiments.

1. Introduction

Connected and autonomous vehicles (CAVs) have been regarded as a
crucial component for the next generation transportation systems due to
their substantial potential benefits such as in terms of mobility, traffic
emissions, and public health outcomes (Fagnant & Kockelman, 2015;
Zhang & Zhu, 2019; Martin et al., 2016). These potential benefits can be
achieved primarily because different from human-driven vehicles (HVs),
the driving maneuvers of CAVs, such as car-following, lane-changing,
and turning, can be relatively accurately designed and controlled. For
example, a number of studies have investigated the opportunity of
optimizing trajectories of a stream of CAVs to achieve goals such as
minimizing the overall fuel consumption or safety risks of the study
vehicles (e.g., Li & Li, 2019; Li & Zhou, 2017; Ganji et al., 2014). Among
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these maneuvers, lane-changing is particularly important since exten-
sive studies on traditional HV traffic have revealed that improper lane-
changing behavior causes traffic oscillation (Pan et al., 2016; Li & Sun,
2017; Li et al., 2015), such as stop and go, traffic congestion, and
changes in vehicle speed, and is responsible for 4-15% of accidents
(Ammoun, Nashashibi & Laurgeau, 2017). Fortunately, the emerging
CAV technologies offer a promising solution to these issues (Gonzalez
et al., 2017). With real-time information of surrounding vehicles (e.g.,
position, speed, acceleration), a CAV can properly determine its lane-
changing decisions (i.e., when and how to change lane) such that the
resulting interruption in the traffic operation of the target lane can be
reduced.

Inspired by this concept, studies have been conducted to investigate
the lane-changing decisions in a CAV environment in the past decades
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Fig. 1. Two cooperative lane-changing maneuvers. (a) The existing paradigm that requests a following vehicle to decelerate. (b) The proposed paradigm that allows
a following vehicle to decelerate and a preceding vehicle to accelerate. Vehicles in solid lines represent the situation before lane changing, and those in dashed lines

represent the situation after lane changing.

(Hou, Edara & Sun, 2015; Peng et al., 2020; Tang et al., 2018). Specif-
ically, these studies aim to search for a safe and comfortable lane-
changing strategy for a subject CAV that needs to move from a current
lane to a target lane given information of two vehicles in the target lane,
as shown in Fig. 1(a). Both centralized (i.e., where lane-changing de-
cisions of vehicles in a study system are designed by the subject vehicle;
Li, Zhang, Ge, Shao & Li, 2017) and decentralized (i.e., each vehicle
decides its lane-changing maneuvers independently; Li, Zhang, Feng,
Zhang, Ge & Shao, 2018) lane-changing strategies have been consid-
ered. All CAVs determine their lane-changing decisions and generate
their trajectories independently in the decentralized lane-changing
strategies, which usually results in a lower computation burden. How-
ever, due to the time delay in the vehicle-to-vehicle (V2V) communi-
cation, the decentralized lane-changing control spends more time
negotiating with other CAVs and can be easily trapped in a communi-
cation deadlock. On the contrary, the centralized lane-changing control
is much more effective, does not cause the communication deadlock,
and can achieve system optimum. Further, these studies have also
investigated different types of lane-changing contexts (Rahman et al.,
2013; Tang et al., 2019), including mandatory (where a vehicle must
change lane to reach its destination), discretionary (where a vehicle
takes lane-changing maneuvers to achieve a faster speed), and random
(where a vehicle’s lane-changing decisions do not follow a specific rule).
Results from simulation and/or field tests show that the various ap-
proaches proposed in these studies are effective in designing CAVs’ lane-
changing maneuvers under different contexts. Please refer to Rahman
et al. (2013) and Wang et al. (2019) for a comprehensive review of this
topic.

Despite these methodological advancements, previous studies have
primarily focused on developing safe and comfortable lane-changing
strategies for CAVs given information of the surrounding vehicles.
Depending on whether the surrounding vehicles are cooperative with
the subject vehicle or not, existing strategies can be divided into coop-
erative strategies and uncooperative strategies. In a cooperative lane-
changing model, the surrounding vehicles coordinate their behaviors
to meet the subject vehicle’s need for lane changing (You et al., 2015; Li
et al., 2018; Wang et al., 2014a, 2015). For example, a vehicle in the
target lane will decelerate to make space for the subject vehicle to
change its lane. In contrast, a subject vehicle must wait until there is
enough space before lane changing in an uncooperative model since
there is no coordination between the subject vehicle and the surround-
ing vehicles; this is essentially similar to HV traffic (Wang et al., 2014b,

2015). The cooperative strategies have been shown to result in more
sensible lane changing decisions and thus to bring better performance
for a transportation system overall (Nie et al., 2016). However, studies
on cooperative lane-changing models for CAVs are relatively scarce (Luo
et al., 2016) and have mostly concentrated on designing lane-changing
maneuvers for the subject vehicle while the surrounding vehicles have
not received much attention. Thus, the lane-changing behavior of CAVs
still causes traffic disruptions (e.g., possible frequent sharp de-
celerations). This issue can be further addressed by also designing tra-
jectories of the surrounding vehicles under a fully cooperative CAV
environment (Wang et al., 2015). This way, the trajectories of the sur-
rounding vehicles can be coordinated with that of the subject vehicles
and thus be designed in a way that causes fewer negative impacts to the
system overall. Thus, it is necessary to propose a cooperative lane-
changing model that simultaneously determines the trajectories of the
subject and surrounding vehicles in a fully connected and automated
environment, but this topic has not been well investigated.

Further, previous studies have typically assumed that a vehicle in the
target lane must decelerate to make space for the subject vehicle for
safety considerations, as Fig. 1(a) shows, and otherwise, the lane-
changing maneuver cannot be completed. This deceleration process
inevitably disrupts the traffic on the target lane despite the properly
designed lane-changing maneuvers for the subject CAV. Worse still, the
disruption is usually amplified along traffic corridors (e.g., highways)
with heavy traffic because the deceleration impacts can be propagated
backward in space (commonly known as shockwave in traffic flow
analysis); operations of the vehicles in the upstream direction of the
following vehicle is likely to be affected. Thus, should their lane-
changing maneuvers be realized completely or partially without this
deceleration process, CAVs could further decrease the disruption in the
existing traffic caused by their lane-changing behavior. One simple so-
lution to this challenge is that apart from requesting a following vehicle
to decelerate, a preceding vehicle on the target lane can also accelerate
to make space for the subject vehicle, if possible, as shown in Fig. 1(b).
This acceleration process only affects the preceding vehicle itself but not
the following vehicle and those behinds, thus bringing fewer disruptions
to the traffic flow on the target lane. Simple as this idea is, existing
studies have predominantly focused on requesting a following vehicle’s
deceleration (we name this as the “deceleration-only” paradigm here-
after) while a paradigm that allows a following vehicle to decelerate and
a preceding vehicle to accelerate (we name this the “acceleration-
deceleration” paradigm hereafter) has rarely been investigated.
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Table 1
Notation list.

Notation Description Unit

C Vehicle length m

[0,T] Time horizon for lane-changing s

te[0,T] Time index s

M =1,2,,M]| Set of time steps in the lane-changing model N/A

me.7 Time step index N/A

A ={1,2,-,N} Set of all vehicles considered in the lane-changing ~ N/A
model

neJ Vehicle index N/A

&, Starting time of the m-th time step s

& Ending time of the m-th time step s

un(t) New input after linearization (i.e., the brake/ N/A
acceleration input)

Vn(t) Speed of vehicle n at timet m/s

On(t) Heading of vehicle n at timet °

Xn (), ¥n(t) Lateral and longitudinal position of vehicle n at m
timet

ay(t) Acceleration of vehicle n at timet m/s?

ak(t) Lateral acceleration of vehicle n at timet m/s?

a-MAX Maximum lateral vehicle acceleration m/s?

aMAX Maximum vehicle acceleration m /52

pMAX Maximum vehicle deceleration m/s?

T Inertia delay s

ki.ko Parameters of the linearized car-following model N/A

k3 (m), k4 (m),ks(m), Parameters of the cubic polynomial curve in the N/A

ke (m) m-th time step

g Desired time gap in the linearized car-following s
model

SMIN Minimum safety distance m

" Units of the parameters/variables should be converted to the ones listed in
this column before running the proposed model.

Therefore, studies on lane-changing models utilizing the acceleration-
deceleration paradigm are needed to further amplify the positive
traffic impacts of CAVs via lane-changing maneuvers.

To address these gaps, this paper proposes an innovative dynamic
cooperative lane-changing model for CAVs with the proposed
acceleration-deceleration paradigm. This is a real-time control model
that collects information and update lane-changing decisions for the
subject CAV during its operations. The model consists of three primarily
steps, including lane-changing decision making, cooperative trajectory
planning, and trajectory tracking. Different from previous models, this
model jointly considers the subject vehicle and its surrounding vehicles
to cooperatively design their trajectories in a dynamic and centralized
way. Furthermore, apart from the deceleration of a following vehicle, it

A Target position
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incorporates possible acceleration of a preceding vehicle on the target
lane to make space for the subject CAV’s lane-changing maneuvers. The
contributions of this paper are threefold. First, we propose a new dy-
namic cooperative lane-changing strategy under a fully CAV environ-
ment where a following vehicle and a preceding vehicle can cooperate
for the subject vehicle’s lane-changing maneuver via deceleration and
acceleration, respectively. Allowing a preceding vehicle to cooperate via
acceleration produces a higher chance for successful lane-changing
maneuver, as well as mitigates the adverse impacts (e.g., traffic
disruption) of lane changing on the traffic operation. Second, we pro-
pose a dynamic cooperative lane-changing model for CAVs with the
acceleration-deceleration paradigm. The proposed acceleration-
deceleration paradigm makes traditional lane-changing models not
directly applicable. Thus, this model incorporates a lane-changing de-
cision-making approach based on vehicle kinematics and a cubic poly-
nomial curve-based trajectory planning approach to account for this
change. With the methodological innovations, the proposed model can
jointly determine the trajectories of both the SV and the surrounding
vehicles during the lane-changing process in a dynamic way. Finally, to
assess the effectiveness of the proposed lane-changing model, we carried
out a series of numerical simulations on a hypothetical two-lane high-
way. Results show that compared with a traditional lane-changing
model, the proposed model results in a higher proportion of successful
lane-changing maneuver, and smoother trajectories of the SV and ve-
hicles in its upstream direction. Although the last vehicle in the down-
stream direction experiences a slightly more evident oscillation due to
the cooperative acceleration, an overall improvement in all vehicles
involved in the lane-changing process can be achieved. The results also
reveal that the performance of the proposed model is relatively robust
despite variations in several key input parameters. To sum up, this study
offers an innovative solution to further reducing the negative impacts of
lane-changing behaviors on traffic flow in the future when CAVs are
fully deployed. It also provides a simple yet powerful analytical lane-
changing model that can be used in CAV studies and planning prac-
tice, e.g., being incorporated into simulation software for traffic impact
assessment, being used as a prototype for developing more sophisticated
dynamic lane-changing models that can be deployed on future CAVs.

The remainder of this paper is organized as follows. Section 2 pre-
sents the proposed dynamic cooperative lane-changing model. Section 3
reports results from the numerical simulations to assess the performance
of the proposed lane-changing model. Finally, Section 4 briefly con-
cludes this study and discusses future research directions.

2. Dynamic cooperative lane-changing model
This section presents the proposed dynamic cooperative lane-

changing model. We first introduce the overall framework of the pro-
posed model and then two key components in the model, a lane-
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Fig. 2. The investigated traffic system and the study CAVs (vehicles in red) used for analysis.
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Fig. 3. Framework of the lane-changing model.

changing decision model, and a cooperative trajectory planning
approach, will be illustrated in detail. For the convenience of the
readers, the key notation used throughout the paper is summarized in
Table 1.

2.1. Modeling framework for dynamic cooperative lane changing

This study considers a subject vehicle (SV) 7 that attempts to change
lane during a time horizon [0, T], indexed as t € [0,T], and a set of CAVs
A" =[1,2---N], indexed as n € ./, on the target lane of the SV, as shown
in Fig. 2. Since all vehicles are CAVs, the SV can communicate with its
surrounding vehicles and obtain the state of each vehiclen € ./ U {n at
each t € [0, T], which includes the lateral position x,(t), longitudinal
position y,(t), speed v,(t), acceleration a,(t), and heading (i.e., the di-
rection of vehicle n) 6,(t). Following previous studies on lane-changing
models (Wang et al., 2020), we primarily consider three vehicles in the
analysis, the SV, the last preceding vehicle in the downstream direction
of the SV’s target location on the target lane (PV), and the first following
vehicle in the upstream direction of the SV’s target location on the target
lane (FV), as shown in Fig. 2. For the convenience of the illustration, we
call the PV and FV the adjacent vehicles in the following analysis. With
the real-time information collected, this study aims to jointly design the
behavior of the SV and the adjacent vehicles during the lane-changing
process such that the SV’s lane-changing maneuvers can be completed
in a safe and comfortable manner. Specifically, for the SV, we decide
when to change lane and its trajectory during the lane-changing process;
for the adjacent vehicles, we design their trajectories to make space
necessary for the SV to change lane. Note that the proposed model will
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s Time step 1 (planned but discarded)
*Time step 2 (planned but discarded)
Time step 3 (planned but discarded)
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Fig. 4. Dynamic trajectory planning.

be implemented in the SV, and thus the trajectories of all three vehicles
are essentially decided by the SV in a centralized control method.

To this end, a dynamic cooperative lane-changing model is proposed,
and its framework is presented in Fig. 3. The proposed model primarily
consists of four modules, namely information acquisition, lane-changing
decision making, cooperative trajectory planning, and trajectory
tracking. The information acquisition module collects real-time infor-
mation of each vehicle during the entire driving process. Once it receives
a lane-changing request from the SV, the information collected is fed
into the lane-changing decision module to determine whether the SV can
change its lane or not; i.e., to determine the starting time and the target
position of the SV’s lane-changing process. If the SV can change its lane,
the cooperative trajectory planning module will be activated immedi-
ately to design the trajectories of the SV, PV, and FV for the lane
changing process. Otherwise, the model will reenter the information
acquisition and lane-changing decision modules until lane-changing is
allowable for the SV. Finally, the generated trajectories will be sent to
the corresponding CAVs to control their behaviors. While the lane-
changing maneuvers are being taken, the trajectory tracking module
controls the trajectories of the SV and the adjacent vehicles according to
the planned trajectories.

An important feature of the proposed model is that it makes lane-
changing decisions and designs vehicle trajectories dynamically. For
this purpose, the planning time horizon [0, T is divided into a set of time
steps.#Z =|[1,2,---,M], indexed as m € .#. All time steps are of the same
length 6 such that § x M = T. Note that the length of each time step is
dependent on the control period of CAVs’ drive-by-wire system, which is
usually relatively small values (e.g., 50 ms). With this setting, the lane-
changing decision module is activated at the beginning of each time step
until an opportunity for cooperative lane-changing is found. Afterwards,
the trajectory planning module will start to generate trajectories for the
SV and the adjacent vehicles. The generated trajectories will be sent to
the relevant vehicles to control their driving maneuvers during the next
time step. With real-time inputs form the information acquisition
module, the trajectory planning module will generate new trajectories
for these vehicles at the beginning of each time step given the change in
the traffic condition and the difference between the vehicles’ actual and
generated trajectories. An example for this dynamic trajectory planning
process for a CAV (which can be any vehicle in the study lane-changing
system) is shown in Fig. 4. In this example, the time horizon [0, T] is
divided into 4 time steps with an equal length of T/4. The curves of
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different colors represent the trajectories of the CAV planned at the
beginning of different time steps. Further, for each curve, the solid
section is sent to the CAV for real-time trajectory control while the
dashed section is discarded. For example, at the beginning of the first
time step (i.e., time 0), a trajectory represented by the black curve is
generated for the CAV. The CAV controls its movement according to this
black curve while the proposed lane-changing decision model is still
running during the first time step. Then, at the beginning of the second
time step (i.e., time T/4), a new trajectory represented by the red line is
planned and sent to the CAV for real-time control while the old trajec-
tory planned at time O (the dashed black curve) is discarded. The process
repeats until the end of the time horizon. Thus, the solid sections of each
curve constitute the actual trajectory for the CAV’s real-time control.
The other key consideration of the proposed cooperative lane-
changing model is the surrounding vehicles’ willingness to cooperate.
Specifically, the SV sends the lane-changing request to its surrounding
vehicles via V2V communication. Information in the request includes
the SV’s position, current lane number, target lane number, and vehicle
type (e.g., recreational vehicle, commercial vehicle, emergency vehicle).
The PV and FV will then respond to the SV if they are willing to
participate in the cooperative lane-changing process or not. If the
adjacent vehicles are willing to cooperate with the SV’s lane-changing
process, their states will then be sent to the lane-changing decision
module to check if the SV can safely and comfortably change its lane
given the surrounding vehicles’ cooperative maneuvers. The possible
cooperative maneuvers include the acceleration of the PV and the
deceleration of the FV, which have not been jointly considered in the
existing lane-changing models for CAVs. In this acceleration-
deceleration paradigm, the conditions for the SVs to successfully take
lane-changing maneuvers will be changed. Also, the trajectories of both
the SV and the adjacent vehicles (i.e., the PV and FV) need to be
simultaneously designed. Therefore, new approaches for lane-changing
decision making and trajectory planning are needed. Details of the lane-
changing decision making and the trajectory planning modules will be
provided in the following subsections. Finally, because the proposed
dynamic cooperative lane-changing model does not change the vehicle
trajectory tracking algorithm greatly, we simply adopt a well-developed
algorithm from the existing literature (Li, Sun, Cao, Liu, & He, 2017).

2.2. Lane-changing decision model

We propose a lane-changing decision model to determine if the SV
can take lane-changing maneuvers or not. In a fully CAV environment,
the lane-changing decision of the SV are subject to the willingness to
cooperate of the surrounding vehicles and the safety condition. More
specifically, the SV can change lane only if its adjacent vehicles are
willing to make space for the SV and there exists a trajectory for the SV’s
lane-changing maneuver that does not cause longitudinal or lateral
collisions between the SV and the adjacent vehicles. The first condition
can be determined via V2V communication and negotiation with the
adjacent vehicles. Determination of the second condition, however, in-
volves an analysis of the dynamics of the SV and adjacent vehicles. To
address the second condition, this section presents an analytical lane-
changing decision model based on a linearized vehicle kinematic
model. The linearized vehicle kinematic model will first be introduced
and then follow the derived lane-changing decision model.

2.2.1. Linearized vehicle kinematic model
To analyze the behaviors of the study CAVs (i.e., both the SV and the
adjacent vehicles) for lane-changing decisions, a vehicle kinematic

Expert Systems With Applications 173 (2021) 114675

model is needed. Based on basic physics, the vehicle kinematics can be
simply formulated as follows:

X,(t) = va(t),Vn € 47,1 € [0, TY; €8]
V() = Di (P,,O;e([ )_ E v (1) — QnD,,g> n et e0,T], 2

where Dy, P,, Ry, En, and Q, denote the mass, the mechanical efficiency,
the tire radius, the integrated aerodynamic drag coefficient, and the
coefficient of rolling resistance, respectively; O,(t) denotes the actual
brake/acceleration torque of vehicle n at time t; and g denotes the ac-
celeration of gravity. Eq. (1) describes the relationship between a ve-
hicle’s position and speed while Eq. (2) reveals the relationship between
a vehicle’s acceleration, mass, and the multiple forces applied on the
vehicle.

Regardless of its simplicity, the above model is nonlinear in its form,
making it difficult to solve these equations directly. For example, the
integral operation is needed to compute x;,(t) given the value of v,(t).
Therefore, to achieve a dynamic lane-changing model for CAVs that is
suitable for real-time applications, the vehicle kinematic model should
be linearized to reduce the computation burden. To this end, we apply
the input-output linearization method (Wang et al., 2016; Xiao & Gao,
2011). This method is based on the desired brake/acceleration torque of

vehicle n at time t, denoted as Q,,(t), which can be formulated as,

0,(1) R <En (2115n(t) +vn(t)) +Qn(l)D,,g+Dnu,,(t)> Vne/t€(0,7],

P,
3

where up(t) is the new input after linearization, i.e., the brake/acceler-
ation input, and 7 is the inertia delay. Here the inertia delay in the
vehicle dynamics system is considered to make the modeling results
closer to the actual vehicle kinematics. Furthermore, the relationship
between the actual and desired brake/acceleration torques of vehicle n
at time t can be formulated as,

0,(t) = 0,(1) + O, (1), Yn € 4,1 € [0,T]. 4

Integrating Eqgs. (1)—(4) yields a linear vehicle kinematic model as
follows (Li & Peng, 2012; Stankovic et al., 2000),

X,(t) = vu(1),Yn € 47,1 € 0,T); 5)
Vu(t) = a,(t),Vn € 4,1t € [0,T]; (6)
. 1 1 ,

a,(1) = 7;(1,,(),‘) +;un(t)7Vn e N tel0,T). )

Then, given information of vehicle n at time t;, i.e., u,(t;), va(ta),
Xn(t1),Vt; € [0,T], we can formulate the acceleration, speed, and position
of the vehicle at time t, > t; € [0, T] with the linearized vehicle kine-
matic model as follows,

_hh

a(t)=|1-e u,(t,),Yn € Nty < 1, € [0,T] (€))

n-1

w()=v.())+ | (a—t)—7| 1—€ 7

uy (1), Vn €Nt <1, €[0,T]

©)
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1 ot
Xa(2) =X, (1) +vu (1) (2 —11) + E(IZ 7!1)2 e I

There have been various linearized vehicle kinematic models in the
literature to describe the vehicle kinematic characteristics. As this study
aims to propose a lane-changing model for CAVs, the main methodo-
logical effort is the development of a lane-changing decision model with
the unique considerations (e.g., the possible acceleration of a preceding
vehicle) and a proper vehicle kinematic model rather than testing
different linearized vehicle kinematic models. Thus, we just select a
simple but effective linearized vehicle kinematic model that has been
demonstrated with satisfactory performance in previous studies (Gha-
semi et al., 2013; Li & Peng, 2012). This model considers major factors
that affect the CAVs’ longitudinal movements (e.g., vehicle mass, me-
chanical efficiency) . Therefore, it is appropriate for modeling the lon-
gitudinal characteristics of CAVs. Further, the model is relatively
mathematically simple and therefore enables the elegant analytical so-
lutions that are required by a real-time control model. Nonetheless, we
acknowledge that the selected model may not be the best, to determine
which an exhaustive comparison among existing models is necessary but
is out of the scope of this paper. Additionally, should this be the case, the
methodological framework presented in this paper could be applied to
derive a lane-changing decision model based on other proper linearized
vehicle kinematic models. Thus, the work presented here remains
important.

2.2.2. Lane-changing decision model
This section presents a lane-changing decision model based on the
linearized vehicle kinematic model. The purpose of this lane-changing

TS

st (Tim) = oy (1) o (5) (T =) + [3(T = £)" —e | 4 2o

decision model is, given the states of the SV and the adjacent vehicles,
to determine if the SV can change lane safely and comfortably. The
essence of this problem is to check if there exists a trajectory for the SV’s
lane-changing maneuver that does not cause collisions between the SV
and the adjacent vehicles. To this end, we first compute the maximum
acceleration (or upper-bound acceleration) of the SV based on the ki-
nematics of the SV and PV. Next, we compute the maximum deceleration
(or lower-bound acceleration) of the SV based on the kinematics of the
SV and FV. If the upper-bound acceleration is greater than or equal to the
lower-bound acceleration, we can find at least one feasible trajectory for
the SV to complete its lane-changing maneuver. Otherwise, the lane-
changing maneuver cannot be completed safely; the SV will keep
following its preceding vehicle and repeat the lane-decision making

o (13) + v (1) (T — 3) = S — s (5) — v (1) (T — )

e (1)

vV

LT _ )2 N e
T PR
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u,(t),Yne Nty <t, €10,T] 10)

process in the next time step. Since this study allows the PV to accelerate
to make space for the SV’s lane-changing maneuvers, existing lane-
changing decision models that do not consider this possibility cannot
be directly applied. Therefore, we offer an analytical approach to
determining the upper- and lower-bound acceleration of the SV in the
following analysis.

a. Upper-bound acceleration of the SV.

We first compute the upper-bound acceleration of the SV, which is
constrained by the maximum space that the PV can provide for the SV’s
lane-changing maneuver. This maximum space is dependent on the
position of the vehicle in front of the PV, denoted as PPV, at the end of
the planning time horizon and the safety distance between the PPV and
PV. Since the lane-changing decision is made at the beginning of each
time step and the length of the time step is relatively short (e.g., 50 ms),
we treat the speed of the PPV as constant in each time step, i.e., vppy (t) =
vepy (65, Vt € (£, 85), m € .#. Further, define x,(tjm) as the expected
position of vehicle n at time t predicted at the beginning of time step m.
Then the expected position of PPV at the end of the lane-changing
process precited at the beginning of time step m can be formulated as,

prv(T‘m) = Xppy ([Sl) -+ Vppy (I?n) (T — tfz),Vm eN. an

To ensure that the PV does not collide with the PPV, there should be a
minimum (or safety) distance, denoted as SMN, between them, i.e.,

SMN < xppy (T|m) — xpy (T|m),¥m € A . (12)

Further, based on Eq. (10) we obtain,

Upy (t,sn) m e .. 13)

Note that in Eq. (13) upy(t) is constant in time step m, i.e., upy(t) =
upy (t5),Vt € (85, t5),m € .. This is reasonable because the length of a
time step is decided by the control period of the drive-by-wire system,
and therefore the control variables (e.g., acceleration, brake/accelera-
tion output) can be changed only once in each time step. Besides, this
treatment will not cause much accuracy loss because the length of each
time step is relatively short. The same treatment is applied throughout
the remaining analysis in this subsection. Integrating Egs. (11)-(13)
yields the relationship between the theoretical brake/acceleration
output of the PV upy (t5) and t3, as follows,

Yme .. a4
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Applying Eq. (14) into Eq. (8) yields the relationship between the following a similar logic. First, based on the safety condition and Eq.
theoretical acceleration of the PV and ¢;, as follows, (10) we obtain

apy (If,) > avpy (I,S,,) SMN < xpy (T|m) — x5y (T|m), Vm € #; 19)

L | [ ) v ) (T = 2) =S ()~ () (=) | 5

%(T—IS)Z—T B —T+Te T

m

To guarantee the passengers in the PV are comfortable during the
cooperative lane-changing process, the maximum acceleration of the PV
should always be no greater than the maximum comfortable accelera-
tion. Thus, we obtain the realistic maximum acceleration of the PV

~
xsv(T|m) = xsy (t,sn) + vgy (t,sn) (T — t’s") + %(T — t;i)z -7 tfl —74+ ‘L'e’TTm usv( ,”).,Vm c. (20)
estimated at time step m as,
Solving Egs. (19)-(20) yields
e () = min{a o (15), a8 }Nm . 16)

ey () + vev () (T = 1) = "™ = xov (1) +vsv (1) (T = 1,

ugy (£3,) = pvi (£,) + ).,vm e 21

. 2 Ty
T —8) -1 —t471e =

Accordingly, the realistic maximum brake/acceleration output of the
PV is,

Uupy (t,sn) dpy (l‘/sn) < aMX

and
aMAX

aw(E)={ 7\ @ (1) > a"™ m € .. an

Applying Eq. (17) into Eq. (10) yields the furthest position that the
PV can reach during the acceleration process estimated at time step m as
With this, we can compute the upper-bound acceleration of the SV

m

s (Tm) = 200 (15) v () (T —13) + ST =) —e | =25 | | (1) vm < 2. (18)
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a() Za (@) = [1-e

= ) L (&) +vev (B) (T —15) = "™ — x5y (15) + vsv (5) (T = 15)
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EPV ( m

1
2

Finally, the upper-bound acceleration of the SV is
s () = min{a o (18), @ },vm . @3)

b. Lower-bound acceleration of the SV.
The lower-bound acceleration of the SV is achieved if the FV de-
celerates with the maximum comfortable deceleration bBMAX during the
cooperative lane-changing process. Further, the speed of the FV must be
a nonnegative value. Therefore, the maximum brake/acceleration

output of the FV can be formulated as,
PMAX (t’s") > _pMAX (T _ ZS)

m

Upy (IZL) = ,Vm en. 24

vev (1)

rln) (1) < BT 1)

n

The position of the FV at the end of the lane-changing process with
the maximum brake/acceleration output estimated at the beginning of
time step m is,

(T—t,sﬂ)z—r A

,Ym e A . (22)

constraint, we compute the position of the SV with the maximum
theoretical brake/acceleration output as,

S
'

v (Tlm) = vy () + | (T = £) [ 1= e

u SV(!Z),Vm (S

29
Then the realistic maximum brake/acceleration output of the SV is
usy(23)  vsv(Tim) >0

i ()

vsv(Tlm) <0 vy ez,

(5n) =

(30)

Applying Eq. (30) into Eq. (8), we obtain the theoretical lower-bound
acceleration of the SV as

1 -5,
va(T|m):va(t§1)+vl:v(l‘i) (T*tlsn)‘F E(Tftrsn)sz 2‘317’7:4>’L'eilf ﬁpv(m),Vme//. (25)
s T s
With the safety condition asv (1) = (1 —e ) u (8),Yme.# (31)
-sv
SMN < gy (T|m) — xpy (T|m),Ym € A4, (26)

and the vehicle dynamic of the SV,

xou (Tm) =5y () +von () (T—15) 4 [5(T—13)" [ 3 —e e

we obtain the maximum theoretical brake/acceleration output of the
SV as

SMIN e (trsn) — VRV (trsn) (T — tfl) _ bMAX~ Yme /. (28)

usv(r,) =

Wr-8) -« tfn—r—&-re*ﬁ

m

Again, the speed of the SV cannot be a negative value. To apply this

Taking into account the requirement on the passengers’ level of
comfort, we obtain the actual lower-bound acceleration of the SV as

usy ([Sl) 7Vm E.f/, (27)

a_gy (tfn) = max{asv (I,Sn)JMAX}Nm en. (32)

2.3. Cooperative trajectory generation

After making the cooperative lane-changing decision, the proposed
model needs to design trajectories for the SV, PV, and FV during the
lane-changing process. A vehicle’s trajectory can be decomposed into
longitudinal and lateral trajectories. For the SV that needs to change its
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Table 2

Other parameters used in the simulation.
Parameters Value Unit Parameters Value Unit
L 35 m SMIN 6.0 m
c 4.96 m g 15 s
T 6 s aMAax 1.5 m/s?
k1 1.4 572 pMAX -1.0 m/s®
ko 0.85 s! ab-MAX 1.4 m/s?

Table 3
Success rates of lane-changing maneuvers from the TLCM and CLCM.
Model  Number of successful lane-changing Success rate of lane-changing
maneuvers maneuvers
TLCM 51,752 53.1%
CLCM 70,756 72.6%

lane, both longitudinal and lateral trajectories should be designed.
However, for PV and FV, we simply need to plan their longitudinal
trajectories since they will move on the same lane. In the following
analysis, we present approaches for generating the longitudinal and

100
LCl
(a) —A-TLCM
80
g 4
2 60
o X
% H—H—H—X
8 40
8
1
(7]
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0
5 10 15 20 25
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S
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[
0
@
8 a0
3
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(7]
20
0
0 20 40 60 80 100

Distance between the SV and PV (%)

lateral trajectories.

2.3.1. Longitudinal trajectory planning

To reduce the impacts of the lane-changing process on the upstream
traffic, the PV will accelerate with its upper bound acceleration Tpy (£3,),
Vm € .#. The SV and PV will then conduct cooperative car following. To
model the car-following behavior, this study applies the linearized car-
following model proposed by Milanés and Shladover (2014), one of
the popular car-following models for CAVs. Let dsy(m), dgy(m) be the
target acceleration of the SV and FV during time step m, respectively.
Then the car-following behavior of the SV and FV can be formulated as,

100
80
:\a‘
2 60
[
13
173
S a0
o
>
(7]
2 —%—CLCM
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d A
1 1.5 2 25 3
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Fig. 5. Success rates of lane-changing maneuvers with (a) varying speed of the first vehicle on the target lane, (b) varying initial time headway between each two
consecutive vehicles on the target lane, (c) varying initial distance between the SV and PV, and (d) varying initial speed difference of the SV and PV.

Target
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Current
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Fig. 6. Lane-changing trajectories of the PV, SV, and FV in one simulated scenario.



Z. Wang et al.

N
N

-
N

-
o

Speed (m/s)

10 20 25 30

14

127

-
o

Speed (m/s)

15 20 25 30
Time (s)

10

Expert Systems With Applications 173 (2021) 114675

14
—*—PV
121 (b) —A—FV
——S8V
10
2
E
©
]
()
[oR
%)
al
2 -
0 . . . . .
0 5 10 15 20 25 30
Time (s)
14
—*—PV
121 (d) —A—FV
—6—S8V
10 +
2
E
©
()]
(0]
Q.
n
4
2
0 . X . X .
0 5 10 15 20 25 30
Time (s)

Fig. 7. Speed evolutions of the study CAVs produced by: (a) TLCM in the first representative scenario, (b) CLCM in the first representative scenario, (c) TLCM in the
second representative scenario, and (d) CLCM in the second representative scenario.

T (om) = (o (15) v (1) — C v (1)) s (v (15) v (1)) e

ary (m) = ki (xsv (£,) —xev (1)

where k;, ko are statis known values st, g7 is the desired time gap be-
tween the adjacent vehicles.The output from this linearized car-
following model will be sent to both SV and FV to control their accel-
eration at each time step.

2.3.2. Lateral trajectory planning

To generate the lateral trajectory of the SV, we apply a cubic poly-
nomial trajectory planning method. The cubic polynomial trajectory
rather than other methods such as sine trajectory is selected because its
second-order smoothness (Yang et al., 2018) and computational trac-
tability make it appropriate for real-time trajectory planning. The cubic
polynomial curve can be mathematically formulated as,

ysv (xsv (1)) = ks (m)xsy () + ks (m)xsy (1) + ks (m)xsy (£ ) +ke (m),

Vme.#,t€0,T). (35)

—Cven()87) (v (1) v (1)) v €.,

10

(33)

(34

As mentioned previously, the state of the SV can be obtained at the
beginning of each time step t5, including lateral position xsy(t},), lon-
gitudinal position ysy(t5) and heading 6sv(t3). Further, from the lane-
changing decision-making module, we obtain the lateral position of
the SV at the end of the time horizon xsy (T|m). Since the SV moves from
the center of the current lane to that of the target lane, the horizontal
position of the SV at the end of the time horizon is ysv (xsv (&) ) + L,
where L denotes the width of a single lane. To simplify the computation
and expedite the trajectory generation process, we assume that the SV’s
target heading (i.e., Osv(T|m)) is 0. Note that one can set Osy(T|m)) as
other desired values and the solution procedure proposed here still ap-
plies but with higher complexity. Applying the above information into
Eq. (35), we obtain,

Ysv (xsv (l‘f,) ) = Ysv (l,s,,) \Vm € .4 (36)

ysv(xsv(T|m) ) = ysv (xsv (&) + L, Vm € .#; 37)
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upstream with varying speed of the first vehicle on the target lane.

ysv(xsv(y) ) =tan(0(s}) ), Vm € #;

yev (xsv(T|m) ) = 0,Ym € .#.
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Solving the above equations yields an analytical solution to the pa-

rameters in Eq. (35) as follows

(xsv (15) = xsv (Thm) (3ysv (1) xov (Thm)” — x(25) xov (Tm)*tan (6

l’S

m

)
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—(xsv(T|m 0(r3)) (xsv Tm)® — 2xsy ,Snz +xsv (23) (x(T)m 0(r5)) — 6L
g = T (a0 @) <(1 = _< )()Tlm))3<r><< mian(0(5) - 61))) )

_ st(T‘m) (2xsv(T|m)tan(0(t,sn) ) — 3L) — Xsv (lrsn) (L + (xSV (Z‘,Sn) + )Csv(Tlm)))

Nm e . ; (42)
(xsv (15,) — xsv(T|m))

k4(m)

))),Vmeﬁ. (43)

k3(m) _ 2L + (xSV (tm) - xSV(T|m))tan(0(t§Vl szv(T|m) (tan(asv (t'sn) ) ) _ 6ysv(T|m)

(xov (15) — x5y (T]m))’ dsy (1) = (st(T"")2> (xsy(T|m))

Finally, to make sure the passengers in the SV are comfortable during (44)
the lane-changing process, we impose an upper bound to the lateral L .
acceleration of the SV. The maximum lateral acceleration of the SV using If the lateral acceleration is greater than the maximum lateral ac-

3 L.MAX 3 5
the above cubic polynomial trajectory can be formulated as (Yang et al., celeration ¢"**%, the lane-changing maneuver will be aborted, and the
2018) SV will continue lane keeping on the current lane.

Nme .
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Fig. 12. Standard deviations of the speed of the (a) PV, (b) SV, (c) first, (d) eleventh, (e) twenty first, (f) thirty first, (g) forty first, and (h) fiftieth vehicle in the

upstream with varying initial distance between the SV and PV.

3. Simulation and results analysis

To verify the effectiveness of the dynamic cooperative lane-changing
model, we carried out extensive numerical simulations using MATLAB
2019 as the simulation platform. This section presents the simulation
settings and discusses the results. We first introduce the parameter set-
tings and the evaluation of the proposed model in terms of the success
rate of lane-changing maneuvers, impacts on the study CAVs (i.e., SV,
PV, and FV), and impacts on vehicles in the upstream direction of the
SV’s target position on the target lane will be presented successively.

3.1. Simulation settings

In the simulation, we consider a two-lane highway segment with 60
vehicles on the target lane, 10 of which are in the downstream direction
of the SV’s target position while 50 are in the upstream direction. The
first vehicle on the target lane runs at a constant speed and other vehi-
cles on this lane operate according to the linearized car-following model
(Section 2.3.1). The simulation time horizon is 100 s and the length of
each time step is 50 ms; there are 2000 time steps for each simulation. To
investigate the robustness of the proposed model under different traffic

14

conditions, we consider four different parameters that can possibly
affect the effectiveness of the proposed model, including the speed of the
first vehicle on the target lane, the initial time headway between each
two consecutive vehicles on the target lane, the initial distance between
the SV and PV, and the initial speed difference between the SV and PV
with the speed of the SV being the minuend. The speed of the first
vehicle on the target lane varies from 5 to 25 m/s, with a step size of 1
m/s. The initial time headway between each two consecutive vehicles on
the target lane varies from 1.0 to 3.0 s, with a step size of 0.1 s. The
initial distance between the SV and PV varies from 10% to 90% of the
distance between the PV and FV, with a step size of 5%. The initial speed
difference of the SV and PV varies from —3 to 3 m/s, with a step size of
0.5 m/s. With this setting, we created 97,461 scenarios with different
initial conditions for the simulation analysis. Other parameters used in
the simulation remain constant across all scenarios and are summarized
in Table 2.

Further, to demonstrate the effectiveness of the proposed lane-
changing model with the acceleration-deceleration paradigm, we
compare the results of the proposed cooperative lane-changing model
(CLCM) with a traditional lane-changing model (TLCM) where the
deceleration-only paradigm is implemented (Wang et al., 2020). The
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upstream with varying initial speed difference of the SV and PV.

effectiveness of both models is assessed from three aspects, namely the
success rate of lane-changing maneuvers, impacts on the study CAVs (i.
e., the PV, SV, and FV), impacts on the vehicles in the upstream direction
of the target position of the SV (we call them the upstream vehicles
hereafter for the simplicity of the illustration). The success rate of the
lane-changing maneuvers is defined as the ratio of the number of sce-
narios where the SV successfully changes its lane to the number of
scenarios. To investigate the impacts of the lane-changing process on the
traffic operations, we plot the speed profiles of the study CAVs and
upstream CAVs in some representative scenarios to present whether
there is a speed variation. Further, we use the standard deviation of the
speeds of these vehicles as a measure to quantitatively analyze these
impacts under various parameter settings.

3.2. Success rate of lane-changing maneuvers

The success rates of both models out of all simulated scenarios are
summarized in Table 3. The success rates of lane-changing maneuvers
with varying parameter settings are presented in Fig. 5. Subplots provide
results with varying speed of the first vehicle on the target lane (a),
varying initial time headway between each two consecutive vehicles on
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the target lane (b), varying initial distance between the SV and PV (c),
and varying initial speed difference between the SV and PV (d). The
trajectories of the PV, SV, FV during the lane-changing process in one
simulated scenario are presented in Fig. 6.

As can be seen from Table 3, out of 97,461 scenarios, the SV suc-
cessfully takes lane-changing maneuvers 51,752 times (with a success
rate of 53.1%) with the TLCM while this value increases to 70,756 (with
a success rate of 72.6%) with the CLCM. The CLCM results in an increase
of 36.7% in terms of the success rate of the lane-changing maneuvers.
This result shows that the coordination between the SV and its sur-
rounding vehicles during the lane-changing process creates more op-
portunities for the SV’s lane-changing maneuvers. Fig. 5 further reveals
how this improvement changes with different input parameters. We see
from Fig. 5(a) that with the increase in the speed of the first vehicle on
the target lane, the success rate declines in both models because the
increasing speed requires a longer distance between the PV and FV for
the SV to change lane. However, the success rate of the CLCM is
consistently higher than that of the TLCM despite the variations in the
speed of the first vehicle on the target lane. Fig. 5(b) shows similar re-
sults, with the success rate of the CLCM greater than that of the TCLM
except when the time headway between each two consecutive vehicles is
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greater than 2.5 s. However, CLCM results in the same success rates as
TLCM when improvements are not obtained, indicating that CLCM at
least performs as well as TLCM. Interestingly, the success rate of the
TLCM is 0% when the time headway is less than or equal to 1.6 s. This
observation indicates that the SV cannot take lane-changing maneuvers
at all in this condition because the time headway between each two
consecutive vehicles on the target lane is so small that there is not
enough space for the SV’s lane-changing maneuvers. This situation is
changed by the CLCM; with the acceleration of the PV, enough space is
provided for the SV to change its lane in around 30% of the simulated
scenarios. This result implies that the proposed CLCM is particularly
important for corridors with congested traffic where the time headway
between vehicles is likely to be small and thus lane changing is almost
impossible with the TLCM. Fig. 5(c) and Fig. 5(d) reveal that CLCM
increases the success rate of lane-changing regardless of the variations in
the initial distance between the SV and PV and the initial speed differ-
ence of the SV and PV, respectively. Further, the success rate of lane-
changing maneuvers is not affected by the variations in these two pa-
rameters in both models.

Fig. 6 visualizes the trajectories of the PV, SV, and FV during the
lane-changing process with vehicles in dashed lines denoting the initial
positions and vehicles in solid lines representing the final positions. As
can be seen from this figure, the SV is able to commence the lane-
changing maneuver with a smooth trajectory without colliding with
the SV and FV. These results prove that our proposed model is able to
conduct safe and comfortable lane-changing maneuver for CAVs.

3.3. Impacts on the study CAVs

The speed evolutions of the study CAVs in two representative sce-
narios are presented in Fig. 7. The standard deviations of the speed of the
PV and SV versus varying speed of the first vehicle on the target lane,
varying initial time headway between each two consecutive vehicles on
the target lane, varying initial distance between the SV and PV, and
varying initial speed difference of the SV and PV are presented in Fig. 10
(a)-(b), Fig. 11 (a)-(b), Fig. 12 (a)-(b), Fig. 13 (a)-(b), respectively.

As seen from Fig. 7, the SV suffers from an evident speed oscillation
with an amplitude of 8 m/s and even a complete stop for about 2 s in the
TLCM. This phenomenon, however, is alleviated in the CLCM, with its
amplitude decreased to 3 m/s, since the SV does not have to decelerate as
much with the cooperative behavior of the PV and FV. In addition, the
SV’s adjustment time for lane changing decreases from 20 s (TLCM) to
10 s (CLCM). Further, the SV’s lane-changing maneuvers inevitably
affect the operation of the FV in both models, but the impact in the
CLCM is not as significant that in the TLCM. The PV’s speed remains
constant during the lane-changing process in the TLCM, while a small
speed oscillation of the PV is observed in the CLCM in the second case
(see Fig. 7(d)). This is because, in the proposed model, the PV may
accelerate to cooperate with the SV’s lane-changing maneuvers. How-
ever, the magnitude of the oscillation reduction in other vehicles
(including the SV, FV and other vehicles in the upstream direction that
will be discussed in the next subsection) is far greater than the magni-
tude of the oscillation increase in the PV, meaning that the increase in
the PV’s speed oscillation can be completely offset by the decrease in
other vehicles’ speed oscillations. Thus, the proposed model still reduces
the negative impacts of lane-changing maneuvers on the traffic opera-
tion from a system perspective.

The same phenomenon is also observed in other scenarios with
different parameter settings shown in Fig. 10, Fig. 11, Fig. 12, and
Fig. 13. We see that the standard deviations of the PV’s speed in the
CLCM are generally greater than those in the TLCM, indicating the
CLCM causes the PV a greater speed oscillation than the TLCM. How-
ever, the amplitude of this oscillation (which can be measured by the
gap between the two curves in the same subplot) is obviously much
smaller than the sum of the amplitude of other vehicles’ speed oscilla-
tion. Thus, the CLCM consistently reduces the traffic disruptions in the
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investigated highway system in a variety of parameter settings.
3.4. Impacts on the upstream vehicles

The time-space diagrams of the vehicles in one of the simulated
scenarios from the CLCM and TLCM are presented in Fig. 8. The speed
evolutions of the first, eleventh, twenty first, thirty first, forty first, and
fiftieth vehicles in the upstream in the same scenario are presented in
Fig. 9 (c)-(h). The standard deviations of the speed of these vehicles
versus varying speed of the first vehicle on the target lane, varying initial
time headway between each two consecutive vehicles on the target lane,
varying initial distance between the SV and PV, and varying initial speed
difference of the SV and PV are presented in Fig. 10 (c)-(h), Fig. 11 (c)-
(h), Fig. 12 (c)-(h), Fig. 13 (c)-(h), respectively.

As can be seen in Fig. 8(a), there is a shockwave starting at the 10-th
second and propagating along the upstream vehicles when the TLCM is
applied to design the lane-changing maneuvers. The CLCM model,
however, causes almost no observable shockwave among the upstream
vehicles, as shown in Fig. 8(b). This result indicates that with proper
coordination, the CLCM can alleviate the disruption in the upstream
traffic flow caused by the SV’s lane-changing maneuvers. Fig. 9(c)-(h)
offer a more intuitive presentation of this impact. As can be seen from
Fig. 9(c)-(h), all the selected vehicles experience an evident speed
oscillation when TLCM is applied. While there are also observable speed
oscillations in these vehicles with the CLCM, the amplitudes of these
oscillations are much smaller and thus brings almost no substantial
impacts on the traffic operation. This result is consistent with the fact
that there is no observable shockwave in the time-space diagram in
Fig. 8(b). These results reveal that the CLCM alleviates the negative
impacts of lane-changing maneuver on the upstream traffic flow
compared with TLCM.

As can be seen from Fig. 10 (c)-(h), the standard deviations of the
selected vehicles’ speeds increase with the increase in the speed of the
first vehicle on the target lane. The speed variations of all selected ve-
hicles produced by CLCM are much lower than those produced by TLCM,
indicating that the CLCM consistently produces smoother trajectories for
the upstream vehicles than the TLCM. Further, the gap between the lines
in all subplots becomes larger as the speed of the first vehicle on the
target lane increases until it reaches 20 m/s, meaning that the proposed
CLCM'’s capability in reducing traffic oscillations in the upstream traffic
flow is stronger when the speed of the first vehicle on the target lane is
higher. Also, we observe that the standard deviations of the speed
decrease as the vehicle number increases (i.e., from Fig. 10 (c) to (h)),
which indicates that the shockwave is dampened gradually along the
upstream traffic direction.

Fig. 11 (c)-(h) show that with the increase in the time headway be-
tween each two consecutive vehicles on the target lane, the standard
deviations of each selected CAV’s speed decrease in both lane-changing
models. Further, the standard deviations of the first thirty vehicles in the
target lane produced by the CLCM is always smaller than those produced
by the TLCM, with the difference being very substantial when the time
headway value is small. This observation indicates that the proposed
CLCM smoothens the trajectories of the first thirty vehicles with all
considered time headway values. For the remaining vehicles, trajectory
smoothing is still achieved when the time headway is small (as shown by
the gap between the two curves in Fig. 11 (g)-(h)). Also, when
improvement is not observed, CLCM performs as well as TLCM, which is
similar to the impacts of this input parameter on the success rate of the
lane-changing maneuvers.

The impact on upstream CAVs’ speed standard deviation of the initial
distance between the SV and PV is shown in Fig. 12 (c)-(h). The CLCM
achieves smaller speed standard deviations than the TLCM in all up-
stream CAVs. Interestingly, the speed standard deviations of the first 41
CAVs in the upstream direction is first getting smaller and then larger as
the initial distance between the SV and PV increases when the CLCM is
applied, as seen by the U-shape curves for the CLCM in Fig. 12 (c)-(f).
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However, the speed standard deviations of these vehicles are strictly
increasing as the initial distance between the SV and PV increases when
the TLCM is applied. This is because, when the initial distance between
PV and SV is small, the acceleration of the PV cannot provide enough
space for the SV’s lane-changing maneuvers, and thus the SV must
decelerate to maintain a safety distance. As a result, the FV and the
following vehicles are affected. As the initial distance between the PV
and SV gets larger, the impacts of the SV’s deceleration on the upstream
vehicles are reduced, thus leading to a decreasing standard deviation of
their speeds. Yet, when the initial distance between the SV and PV
reaches 60% (i.e., the initial distance between the SV and FV is less than
40%), even though the acceleration of the PV provides more space for
the SV, the FV still needs to decelerate relatively more to avoid collisions
because of its short distance to the SV. This impact gets stronger as the
initial distance between the SV and PV gets smaller, thus bringing a
more substantial speed oscillation. In contrast, the space necessary for
the SV’s lane-changing maneuvers is only provided via the FV’s decel-
eration in the TLCM, so the resulting speed standard deviations are more
evident. Further, the FV has to accelerate more as the initial distance
between the PV and SV gets larger, and thus a higher speed standard
deviation is witnessed. These results, again, indicate the CLCM is
effective in smoothing trajectories of the following CAVs.

Finally, Fig. 13 (c)-(h) show how the initial speed difference between
SV and PV affects the speed standard deviation of the CAVs in the up-
stream direction. Again, it can be seen that CLCM consistently decline
the standard deviations of the speeds of the upstream CAVs with
different values of the initial speed difference between the SV and PV.
Furthermore, the gaps between the two curves in each subplot decrease
as the parameter value increases, showing that the effectiveness of the
CLCM in reducing the disruptions of the SV’s lane-changing maneuvers
in the upstream CAVs is weakened as the initial speed difference be-
tween the SV and PV increases.

4. Conclusion and future work

This study proposes a dynamic cooperative lane-changing model for
CAVs with possible accelerations of a preceding vehicle. This model is
designed to make lane-changing decisions for the SV and generate tra-
jectories for the SV, PV, and FV in a coordinated manner dynamically.
The lane-changing decision is made by analytically analyzing vehicle
kinematics given the states of the SV, PV, and FV, the minimum safety
distance, and requirements on the comfort level for passengers. The
longitudinal and lateral trajectories of the vehicles are designed with a
linear car-following model and a cubic polynomial curve method,
respectively. Results from numerical simulation in extensive scenarios
show that the proposed model is effective in coordinating the maneuvers
of the SV, PV, and FV during the lane-changing process. It substantially
increases the success rate of the SV’s lane-changing maneuvers since the
possible acceleration of the PV brings a higher probability of obtaining
the required space for lane changing. Furthermore, the trajectories of the
SV and all vehicles scattered in the upstream direction of the SV’s target
position on the target lane are smoothened and thus the traffic disrup-
tion (or shockwave) is much alleviated. Although the PV’s speed expe-
riences a slightly greater oscillation since it may accelerate to make
space for the SV’s lane-changing maneuvers, the oscillation reduction in
other vehicles completely offsets this small increase in the PV’s speed
oscillation. Therefore, the proposed model still achieves a system-wide
improvement in terms of reducing the negative impacts of lane-
changing maneuvers on the traffic operation. In addition, results
confirm the effectiveness of the proposed model under a variety of
parameter settings corresponding to various traffic conditions in the real
world.

This study adds to the body of literature demonstrating the necessity
of adopting cooperative centralized control in lane-changing decisions
for CAVs. Further, the model presented here provides a simple yet
powerful analytical tool that can be used in future CAV studies and
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planning practice. Results show that the traffic oscillation of the PV is
amplified in the proposed model, future research may integrate a tra-
jectory optimization component to search for the optimal trajectory of
the vehicles so that this amplification can be minimized. Also, this study
investigates the case where only one SV needs to change lane and can be
used as a foundation for developing sophisticated models for a more
complicated case where multiple lane-changing requests need to be
answered. Development of such a model requires an integrated
perspective from the entire system, which will be an interesting research
direction. Further, this study regards the CAV’s willingness to cooperate
as a deterministic input acquired via V2V communication. Yet, a CAV’s
willingness to cooperate may depend on various subjective factors, e.g.,
the passengers’ perception of the resultant delay, the presence and
attractiveness of the incentives, the passengers’ personality. Further
studies can extend this work to incorporate the effects of these factors on
the willingness to cooperate into the model with a fuzzy modeling
approach (e.g., Martin et al., 2016). Finally, apart from the lane-
changing problem considered in this study, the lane-changing
behavior on a two-lane road where on each lane the vehicles travel in
opposite directions is also interesting and important. Yet, the analysis of
the latter is more complex since it would require a consideration of the
vehicle movements in the opposite direction. Future studies can base on
this study to propose lane-changing models for the more complicated
case.

CRediT authorship contribution statement

Zhen Wang: Conceptualization, Methodology, Software, Writing -
original draft. Xiangmo Zhao: Conceptualization, Project administra-
tion, Resources, Investigation, Funding acquisition. Zhiwei Chen:
Conceptualization, Methodology, Writing - original draft, Formal anal-
ysis, Validation. Xiaopeng Li: Conceptualization, Supervision, Re-
sources, Funding acquisition.

Declaration of Competing Interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Acknowledgements

This work is partially supported by the Guizhou Province Science and
Technology Major Project (No. ZNWLQC[2019]3012-2), National Nat-
ural Science Foundation of China (No. U1864204, 61703054). Natural
Science Foundation of Shaanxi Province (No. 2018JQ6035), U.S. Na-
tional Science Foundation (CMMI #1932452). ‘111’ project (No.
B14043). Mr. Zhen Wang greatly acknowledges financial support from
China Scholarship Council.

References

Ammoun, S., Nashashibi, F., & Laurgeau, C. (2007). An analysis of the lane changing
manoeuvre on roads: the contribution of inter-vehicle cooperation via
communication. 1095-1100.

Fagnant, D. J., & Kockelman, K. (2015). Preparing a nation for autonomous vehicles:
Opportunities, barriers and policy recommendations. Transportation Research Part A,
77, 167-181. https://doi.org/10.1016/j.tra.2015.04.003

Ganyji, B., Kouzani, A. Z., Khoo, S. Y., & Shams-Zahraei, M. (2014). Adaptive cruise
control of a HEV using sliding mode control. Expert Systems with Applications, 41(2),
607-615. https://doi.org/10.1016/j.eswa.2013.07.085

Ghasemi, A., Kazemi, R., & Azadi, S. (2013). Stable Decentralized Control of a Platoon of
Vehicles With Heterogeneous Information Feedback. IEEE Transactions on Vehicular
Technology, 62(9), 4299-4308. https://doi.org/10.1109/TVT.2013.2253500

Gonzalez, D., Pérez, J., & Milanés, V. (2017). Parametric-based path generation for
automated vehicles at roundabouts. Expert Systems with Applications, 71, 332-341.
https://doi.org/10.1016/j.eswa.2016.11.023

Hou, Y., Edara, P., & Sun, C. (2015). Situation assessment and decision making for lane
change assistance using ensemble learning methods. Expert Systems with Applications,
42(8), 3875-3882. https://doi.org/10.1016/j.eswa.2015.01.029


https://doi.org/10.1016/j.tra.2015.04.003
https://doi.org/10.1016/j.eswa.2013.07.085
https://doi.org/10.1109/TVT.2013.2253500
https://doi.org/10.1016/j.eswa.2016.11.023
https://doi.org/10.1016/j.eswa.2015.01.029

Z. Wang et al.

Li, B., Zhang, Y., Feng, Y., Zhang, Y., Ge, Y., & Shao, Z. (2018). Balancing Computation
Speed and Quality: A Decentralized Motion Planning Method for Cooperative Lane
Changes of Connected and Automated Vehicles. IEEE Transactions on Intelligent
Vehicles, 3(3), 340-350. https://doi.org/10.1109/TTV10.1109/TIV.2018.2843159

Li, B., Zhang, Y., Ge, Y., Shao, Z., & Li, P. (2017). Optimal control-based online motion
planning for cooperative lane changes of connected and automated vehicles. IEEE
International Conference on Intelligent Robots and Systems, 2017-Septe,
3689-3694. 10.1109/IR0S.2017.8206215.

Li, L., & Li, X. (2019). Parsimonious trajectory design of connected automated traffic.
Transportation Research Part B: Methodological, 119, 1-21. https://doi.org/10.1016/j.
trb.2018.11.006

Li, P. (Taylor), & Zhou, X. (2017). Recasting and optimizing intersection automation as a
connected-and-automated-vehicle (CAV) scheduling problem: A sequential branch-
and-bound search approach in phase-time-traffic hypernetwork. Transportation
Research Part B: Methodological, 105, 479-506. 10.1016/j.trb.2017.09.020.

Li, X., & Sun, J. Q. (2017). Studies of vehicle lane-changing dynamics and its effect on
traffic efficiency, safety and environmental impact. Physica A: Statistical Mechanics
and Its Applications, 467, 41-58. https://doi.org/10.1016/j.physa.2016.09.022

Li, S. E., & Peng, H. (2012). Strategies to minimize the fuel consumption of passenger
cars during car-following scenarios. Proceedings of the Institution of Mechanical
Engineers, Part D: Journal of Automobile Engineering, 226(3), 419-429. https://doi.
0rg/10.1177/0954407011420214

Li, X., Sun, Z., Cao, D., Liu, D., & He, H. (2017). Development of a new integrated local
trajectory planning and tracking control framework for autonomous ground
vehicles. Mechanical Systems and Signal Processing, 87, 118-137. https://doi.org/
10.1016/j.ymssp.2015.10.021

Li, Z., Zhang, R., Xu, S., & Qian, Y. (2015). Study on the effects of driver’s lane-changing
aggressiveness on traffic stability from an extended two-lane lattice model.

Co ications in Nonli Science and Numerical Simulation, 24(1-3), 52-63.
https://doi.org/10.1016/j.cnsns.2014.12.007

Luo, Y., Xiang, Y., Cao, K., & Li, K. (2016). A dynamic automated lane change maneuver
based on vehicle-to-vehicle communication. Transportation Research Part C: Emerging
Technologies, 62, 87-102. https://doi.org/10.1016/j.trc.2015.11.011

Martin, S., Romana, M. G., & Santos, M. (2016). Fuzzy model of vehicle delay to
determine the level of service of two-lane roads. Expert Systems with Applications, 54,
48-60. https://doi.org/10.1016/j.eswa.2015.12.049

Milanés, V., & Shladover, S. E. (2014). Modeling cooperative and autonomous adaptive
cruise control dynamic responses using experimental data. Transportation Research
Part C: Emerging Technologies, 48, 285-300. https://doi.org/10.1016/].
trc.2014.09.001

Nie, J., Zhang, J., Ding, W., Wan, X., Chen, X., & Ran, B. (2016). Decentralized
Cooperative Lane-Changing Decision-Making for Connected Autonomous Vehicles.
IEEE Access, 4, 9413-9420. https://doi.org/10.1109/ACCESS.2017.2649567

Pan, T. L., Lam, W. H. K., Sumalee, A., & Zhong, R. X. (2016). Modeling the impacts of
mandatory and discretionary lane-changing maneuvers. Transportation Research Part
C: Emerging Technologies, 68, 403-424. https://doi.org/10.1016/j.trc.2016.05.002

Peng, T., Su, L., Zhang, R., Guan, Z., Zhao, H., Qiu, Z., ... Xu, H. (2020). A new safe lane-
change trajectory model and collision avoidance control method for automatic
driving vehicles. Expert Systems with Applications, 141, 112953. https://doi.org/
10.1016/j.eswa.2019.112953

18

Expert Systems With Applications 173 (2021) 114675

Rahman, M., Chowdhury, M., Xie, Y., & He, Y. (2013). Review of Microscopic Lane-
Changing Models and Future Research Opportunities. IEEE Transactions on Intelligent
Transportation Systems, 14(4), 1942-1956. https://doi.org/10.1109/
TITS.2013.2272074

Stankovié, S. S., Stanojevi¢, M. J., & Siljak, D. D. (2000). Decentralized overlapping
control of a platoon of vehicles. IEEE Transactions on Control Systems Technology, 8
(5), 816-832. https://doi.org/10.1109/87.865854

Tang, J., Liu, F., Zhang, W., Ke, R., & Zou, Y. (2018). Lane-changes prediction based on
adaptive fuzzy neural network. Expert Systems with Applications, 91, 452-463.
https://doi.org/10.1016/j.eswa.2017.09.025

Tang, J., Yu, S., Liu, F., Chen, X., & Huang, H. (2019). A hierarchical prediction model for
lane-changes based on combination of fuzzy C-means and adaptive neural network.
Expert Systems with Applications, 130, 265-275. https://doi.org/10.1016/j.
eswa.2019.04.032

Wang, D., Hu, M., Wang, Y., Wang, J., Qin, H., & Bian, Y. (2016). Model predictive
control-based cooperative lane change strategy for improving traffic flow. Advances
in Mechanical Engineering, 8(2), 1-17. https://doi.org/10.1177/1687814016632992

Wang, M., Daamen, W., Hoogendoorn, S. P., & van Arem, B. (2014a). Rolling horizon
control framework for driver assistance systems. Part I: Mathematical formulation
and non-cooperative systems. Transportation Research Part C: Emerging Technologies,
40, 271-289. https://doi.org/10.1016/j.trc.2013.11.023

Wang, M., Daamen, W., Hoogendoorn, S. P., & van Arem, B. (2014b). Rolling horizon
control framework for driver assistance systems. Part II: Cooperative sensing and
cooperative control. Transportation Research Part C: Emerging Technologies, 40,
290-311. https://doi.org/10.1016/j.trc.2013.11.024

Wang, M., Hoogendoorn, S. P., Daamen, W., van Arem, B., & Happee, R. (2015). Game
theoretic approach for predictive lane-changing and car-following control.
Transportation Research Part C: Emerging Technologies, 58, 73-92. https://doi.org/
10.1016/j.trc.2015.07.009

Wang, Z., Shi, X., & Li, X. (2019). Review of Lane-Changing Maneuvers of Connected and
Automated Vehicles: Models, Algorithms and Traffic Impact Analyses. Journal of the
Indian Institute of Science., 99(4), 589-599. https://doi.org/10.1007/s41745-019-
00127-7

Wang, Z., Zhao, X., Xu, Z., Li, X., & Qu, X. (2020). Modeling and Field Experiments on
Lane Changing of an Autonomous Vehicle in Mixed Traffic. Computer-aided Civil and
Infrastructure Engineering. https://doi.org/10.13140/RG.2.2.19857.58724. [In press]

Xiao, L., & Gao, F. (2011). Practical string stability of platoon of adaptive cruise control
vehicles. IEEE Transactions on Intelligent Transportation Systems, 12(4), 1184-1194.
https://doi.org/10.1109/TITS.2011.2143407

Yang, D., Zheng, S., Wen, C., Jin, P. J., & Ran, B. (2018). A dynamic lane-changing
trajectory planning model for automated vehicles. Transportation Research Part C:
Emerging Technologies, 95(June), 228-247. https://doi.org/10.1016/j.
trc.2018.06.007

You, F., Zhang, R., Lie, G., Wang, H., Wen, H., & Xu, J. (2015). Expert Systems with
Applications Trajectory planning and tracking control for autonomous lane change
maneuver based on the cooperative vehicle infrastructure system. Expert Systems with
Applications, 42(14), 5932-5946. https://doi.org/10.1016/j.eswa.2015.03.022

Zhang, X., & Zhu, X. (2019). Autonomous path tracking control of intelligent electric
vehicles based on lane detection and optimal preview method. Expert Systems with
Applications, 121, 38-48. https://doi.org/10.1016/j.eswa.2018.12.005


https://doi.org/10.1109/TIV10.1109/TIV.2018.2843159
https://doi.org/10.1016/j.trb.2018.11.006
https://doi.org/10.1016/j.trb.2018.11.006
https://doi.org/10.1016/j.physa.2016.09.022
https://doi.org/10.1177/0954407011420214
https://doi.org/10.1177/0954407011420214
https://doi.org/10.1016/j.ymssp.2015.10.021
https://doi.org/10.1016/j.ymssp.2015.10.021
https://doi.org/10.1016/j.cnsns.2014.12.007
https://doi.org/10.1016/j.trc.2015.11.011
https://doi.org/10.1016/j.eswa.2015.12.049
https://doi.org/10.1016/j.trc.2014.09.001
https://doi.org/10.1016/j.trc.2014.09.001
https://doi.org/10.1109/ACCESS.2017.2649567
https://doi.org/10.1016/j.trc.2016.05.002
https://doi.org/10.1016/j.eswa.2019.112953
https://doi.org/10.1016/j.eswa.2019.112953
https://doi.org/10.1109/TITS.2013.2272074
https://doi.org/10.1109/TITS.2013.2272074
https://doi.org/10.1109/87.865854
https://doi.org/10.1016/j.eswa.2017.09.025
https://doi.org/10.1016/j.eswa.2019.04.032
https://doi.org/10.1016/j.eswa.2019.04.032
https://doi.org/10.1177/1687814016632992
https://doi.org/10.1016/j.trc.2013.11.023
https://doi.org/10.1016/j.trc.2013.11.024
https://doi.org/10.1016/j.trc.2015.07.009
https://doi.org/10.1016/j.trc.2015.07.009
https://doi.org/10.1007/s41745-019-00127-7
https://doi.org/10.1007/s41745-019-00127-7
https://doi.org/10.13140/RG.2.2.19857.58724. [In press]
https://doi.org/10.1109/TITS.2011.2143407
https://doi.org/10.1016/j.trc.2018.06.007
https://doi.org/10.1016/j.trc.2018.06.007
https://doi.org/10.1016/j.eswa.2015.03.022
https://doi.org/10.1016/j.eswa.2018.12.005

	A dynamic cooperative lane-changing model for connected and autonomous vehicles with possible accelerations of a preceding  ...
	1 Introduction
	2 Dynamic cooperative lane-changing model
	2.1 Modeling framework for dynamic cooperative lane changing
	2.2 Lane-changing decision model
	2.2.1 Linearized vehicle kinematic model
	2.2.2 Lane-changing decision model

	2.3 Cooperative trajectory generation
	2.3.1 Longitudinal trajectory planning
	2.3.2 Lateral trajectory planning


	3 Simulation and results analysis
	3.1 Simulation settings
	3.2 Success rate of lane-changing maneuvers
	3.3 Impacts on the study CAVs
	3.4 Impacts on the upstream vehicles

	4 Conclusion and future work
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Acknowledgements
	References


