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Influence of coin symmetry on infinite hitting times in quantum walks
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Classical random walks on finite graphs have an underrated property: a walk from any vertex can reach
every other vertex in finite time, provided they are connected. Discrete-time quantum walks on finite connected
graphs, however, can have infinite hitting times. This phenomenon is related to graph symmetry, as previously
characterized by the group of direction-preserving graph automorphisms that trivially affect the coin Hilbert
space. If a graph is symmetric enough (in a particular sense), then the associated quantum walk unitary will
contain eigenvectors that do not overlap a set of target vertices for any coin-flip operator. These eigenvectors
span the infinite-hitting-time (IHT) subspace. Quantum states in the IHT subspace never reach the target vertices,
leading to infinite hitting times. However, this is not the whole story: the graph of the three-dimensional cube
does not satisfy this symmetry constraint, yet quantum walks on this graph with certain symmetric coins can
exhibit infinite hitting times. We study the effect of coin symmetry by analyzing the group of coin-permutation
symmetries (CPSs): graph automorphisms that act nontrivially on the coin Hilbert space but leave the coin
operator invariant. Unitaries using highly symmetric coins with large CPS groups, such as the permutation-
invariant Grover coin, are associated with higher probabilities of never arriving, as a result of their larger IHT

subspaces.

DOI: 10.1103/PhysRevA.105.032206

I. INTRODUCTION

A classical random walk can be described by the move-
ment of a particle on a graph, where the vertices represent
possible locations and the edges connect neighboring sites.
At each step, the next edge is chosen randomly [1]. Quantum
walks are the unitary analogs of these classical random walks
[2,3]. Similar to the classical case, there are discrete-time [4,5]
and continuous-time [6,7] versions of quantum walks. In this
paper, we consider only discrete-time quantum walks.

The unitary operator U corresponding to one time step
in the discrete-time quantum walk can be decomposed into
two parts: U = 8(1, ® €). The Hilbert space of U is H =
H, ® H., where H, and H, are the Hilbert spaces of the po-
sition (vertices) and of the internal degree of freedom (coin),
respectively. The shift operator § propagates quantum states
between the vertices of the graph. It is analogous to the adja-
cency matrix of the graph, but since the shift depends on the
state of the coin, it operates on the complete Hilbert space H.
It takes the form

§= " le) (vl ® c)cl. (M

where {|v)} are vertex basis states, {|c)} are coin basis states,
and |c(v)) is the neighboring vertex to v along the edge la-
beled by coin state c.

The coin operator C acts on the coin Hilbert space H..
Discrete-time quantum walks use these operators to mix the
particle’s internal basis states at each vertex. A vertex with d
edges (degree d) allows the particle to have as many coin basis
states. In irregular graphs, the degree is different for different
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vertices, which causes the dimension of the coin Hilbert space
to occupy a range of values, and hence, it becomes difficult to
choose one coin to act on all the vertices. However, there are a
couple of solutions one can employ. Self-loops can be used to
effect regularity. Another solution is for the coin operator to
depend on the vertex. Hence, C can be structured differently
for different applications. In this paper we will consider only
regular graphs.

The notion of vertex hitting time is a concept borrowed
from classical random walks. Classically, it is defined as the
average number of time steps taken for a walk to reach a
“final” vertex vy, given an initial distribution. The formula for
the hitting time 7, (vy) is

w(vp) = Y tpvy, 1), )

t=0

where p(vy,t) is the probability that the walk has reached
vertex v at time ¢ for the first time.

Classical random walks will always have finite hitting
times for all vertices in finite connected graphs. However,
interference effects may prevent this in quantum walks. This
leads to the uniquely quantum-mechanical phenomenon of an
infinite hitting time.

To define a quantum notion of hitting time we must define
what it means to arrive at a vertex for the first time. In our
approach, we treat the final vertex as an absorbing wall. After
every time step of the walk, a measurement is performed on
the final vertex to check whether the walk has reached it or
not. If it has, the walk is halted. The average time until the
walk halts is the hitting time for the measured quantum walk.

©2022 American Physical Society
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The projective measurements used are I =l vrl ® 1,
and 1—I1 r» where |vy) is the state on the final vertex. For
a detailed explanation, we refer the reader to Ref. [8].
Spectral analysis of the unitary evolution operator reveals
that there may be some eigenvectors that have no overlap with
the chosen final vertex v;. If a component of the initial state
|1) exists in the subspace spanned by these eigenvectors, that
component never reaches the final vertex. This phenomenon
may lead to infinite hitting time at the final vertex, so we
label this the infinite-hitting-time (IHT) subspace, denoted as
V. The overlap between the initial state and the IHT subspace
quantifies the probability that the final vertex is never reached:

4

Ov(ly) =Y [ {(yIVi) I, 3)
i=1

where {V;} is an orthonormal basis for V.

A sufficient condition for infinite hitting times, established
in [8-10], is for the evolution unitary to contain at least one k-
dimensional eigenspace, where k > d. Within this eigenspace
there will exist a subspace of dimension at least k — d that
has no support on the final vertex. This subspace forms a
part of the IHT subspace. If multiple eigenspaces contain IHT
subspaces, the sum of these subspaces gives the IHT subspace
of the entire unitary.

While the above condition is sufficient for a quantum walk
unitary to have an IHT subspace, it is not a necessary con-
dition. It is possible for eigenspaces with degeneracy < d
to contain vectors that have no overlap with the final vertex.
Hence, one must perform an analysis over all the eigenspaces
when computing the size of the IHT subspace. The procedure
is simple. Apply Gaussian elimination to each eigenspace, and
subsequently count the number of vectors that have no overlap
with a chosen final vertex.

In general, degenerate eigenspaces of the unitary contribute
to the existence of IHT subspaces. This degeneracy is pri-
marily a consequence of symmetry; hence, an analysis of
the symmetries of the quantum walk may provide conditions
predicting infinite hitting times.

II. SYMMETRIES OF A QUANTUM WALK

Previous work has focused on the influence of graph sym-
metry on infinite hitting time [9,10]. Here, the symmetry of
the graph was represented by its group of direction-preserving
automorphisms. The irreducible representations of this group
give a sufficient condition for a quantum walk on this graph
to have infinite hitting times. If the dimension of at least one
of the irreducible representations is larger than the dimension
of the coin, a corresponding eigenspace of the quantum walk
unitary will have a larger dimension than the coin, which is
a sufficient condition for a graph to exhibit infinite hitting
times. These papers considered Cayley graphs, in which the
automorphism group is simply related to the group used to
define the graph. The first discovery of infinite hitting time
[9] was observed on the n-dimensional hypercube with 2"
vertices, where n > 3.

An automorphism of a graph is a reordering of the vertices
that leaves the graph unchanged. Since this reordering is just a
permutation of the vertices, we can use permutation matrices

to define automorphisms. We consider two classes of permu-
tations P; € P, C P, where P is the set of all permutations
on H. P; and P, contain permutations with a tensor-product
structure and are defined as

Pr={P|P=P®1)} 4)
and
P,={P|P=P,®P), )

where P, and P. are permutations acting on H, and H,,
respectively. Permutations P that give rise to graph automor-
phisms necessarily leave the shift operator invariant:

A={P| PSP =3). (6)

Thus, the group of direction-preserving automorphisms
studied in [8-10] is generated from permutations in P; that
leave S invariant:

A ={PeP | PSP =3)}. (7)

Here, we consider automorphisms from the larger class of
permutations P:

A, ={PeP, | PSPT =8}, (8)

which forms the group of joint automorphisms. Clearly, A, C
A, C A

Infinite hitting times in quantum walks are a consequence
of symmetry in the quantum walk unitary U. These symme-
tries can be represented by unitary operations W forming the
group of quantum walk symmetries:

W={W|Wow'=0}. 9)

Hence, for a graph automorphism to be a symmetry of the
quantum walk, it must satisfy PUPT = U. This is readily
satisfied by all the elements of A;. Hence, the group of
direction-preserving automorphisms actually contains sym-
metries of the quantum walk: A; = W. For elements in A,
the condition PUP" = U is satisfied only when the coin per-
mutation leaves the coin operator invariant:

BCP =C. (10)
The joint automorphisms that satisfy this condition are sym-
metries of the quantum walk and are denoted as the group of
coin-permutation symmetries:

Wy ={PeA|PCP =C). (11)

Evidently, coin symmetry plays a large role in determining the
size of the group of coin-permutation symmetries. By choos-
ing coins of varying symmetry, it may be possible to connect
characteristics of the coin-permutation symmetry group to the
existence of infinite hitting times.

Automorphisms of the graph from W N (A\ A) may
still be symmetries of the quantum walk. We do not address
symmetries of this type and leave it open to future research.
Figure 1 summarizes the relations between the different sym-
metry groups discussed above.

III. COINS

In the analysis of infinite hitting times in quantum walks,
we use three coins. On one end, we have the Grover coin,
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@ Graph Automorphisms
A={P| PSP = §)
@ Direction-Preserving Automorphisms
Ai=W, = {P| P= B, o1, PSP = §)
@ Joint Automorphisms
Ay ={P|P=P,®P., PSP = §}
@ Quantum Walk Symmetries
W= (W | WOWT = 0}
@ Coin-Permutation Symmetries
Wy ={P e Ay | P.CPI = C}

FIG. 1. Relations between classes of graph automorphisms and quantum walk symmetries.

which is the most symmetric of the lot. On the other end, we
consider a random unitary, which should lack any particular
symmetry. As an intermediate between these two, we also
consider the discrete-Fourier-transform (DFT) coin.

Grover coin. This is the most symmetric coin generally
used in quantum walks, and we would expect to see this sym-
metry reflected in the eigenspace decomposition of a walk’s
unitary. The symmetry arises from the permutation invariance
[11] of the coin, which takes the form

a b b -+ b
b a b - b

G=|b b a - Db, (12)
b b b - a

where we choose a = % —landb = % and d is the dimension
of the coin. Due to the permutation-invariance property, all
d! permutation matrices P. of size d x d satisfy the coin-
permutation symmetry constraint: 2.GP. = G, implying this
coin is associated with the largest possible coin-permutation
symmetry group.

The symmetries of this coin fit into the symmetries of the
hypercube very nicely. A quantum walk on an n-dimensional
hypercube with this coin can be reduced to a quantum walk
on a line for the initial state |0}0| ® |¥)Xy|, where |y) =

7 o i) 2l

(1,0,1)

(0,0,1) //

o .
(0,0,0) ‘../‘(1’1’1)
. Py

'.‘ /“‘ /

o/ (1,1,0)

(0,1,0)

FIG. 2. The 3D cube, with solid blue, dashed green, and dot-
ted red edges to signify logical XOR with 100, 001, and 010,
respectively.

DFT coin. Another commonly used coin is the DFT coin
D. 1t is a generalization of the popular Hadamard coin J to
arbitrary dimension:

A 1 [1 1
R

1 1 1 cee 1
| 1 w w? w¥=D
E — _d 1 w2 a)4 P wz(dfl) , (14)
1 o@D LHe-12 wd=D@=1)

where @ = ¢?*/4. This coin is not as symmetric as the
Grover coin, and we see this reflected in our analysis of
quantum walk unitaries. For a DFT coin of any dimen-
sion, there are only two permutation matrices that leave
the coin invariant. The identity permutation gives rise to
direction-preserving automorphisms; however, the permuta-
tion (1,d,d —1,...,3,2) can create joint automorphisms.
The associated coin-permutation symmetry group is hence
smaller than that for the Grover coin; however, W, C W.

Asymmetric coin. Our last coin is a random unitary. To
create this unitary, we generate a matrix of random complex
numbers and subsequently orthogonalize it. Here we expect
Wi =W,.

TABLE 1. Spectral decomposition of the unitary U for walks on
the 3D cube. There exist m; eigenspaces of dimension k, each with
corresponding IHT subspace V; of dimension |V;| < k. The Hilbert
space dimension is |H| = Y_ my k = 24, and the total IHT subspace
dimension is [V| = > my |Vi| = Y my|Vi|.

Eigenspaces
Coin k my Vil 4! IHT?
Grover 6 2 3 6 Yes
3 4 0
DFT 2 2 1 2 Yes
2 8 0
1 4 0
Asymmetric 1 24 0 0 No
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TABLEII. Spectral decomposition of the unitary U for walks on
the four-dimensional (4D) hypercube. There exist m; eigenspaces of
dimension k, each with corresponding IHT subspace V; of dimension
[Vk| < k. The Hilbert space dimension is [H| = Y mk = 64, and
the total IHT subspace dimension is |V | =Y m|V,/|.

Eigenspaces
Coin k my A V] IHT?
Grover 18 2 14 32 Yes
6 2 2
4 4 0
DFT 8 4 5 24 Yes
4 4 1
2 8 0
Asymmetric 1 64 0 0 No

IV. SPECTRAL ANALYSIS OF QUANTUM WALK
UNITARIES

Using the coins from the previous section, we constructed
quantum walk unitaries for multiple Cayley graphs. We con-
sider Cayley graphs since their construction always yields
d-regular graphs, and their automorphism groups are closely
related to the groups used to construct them. In particular we
look at Cayley graphs of the Abelian Z§ group (hypercube of
dimension d) and symmetric groups of different sizes.

Cayley graphs are defined using a group G and a generating
set H C G. The elements g; € G form the vertices of the
Cayley graph, and edges exist between two vertices g; and
gy if g,vgl.’1 € H. In other words, an element of H, say, h;,
defines an edge between g; and gy when h;g; = gy. Thus, each
element of G will have |H| edges, making it an |H |-regular
graph. H is called a generating set if and only if its elements
produce a Cayley graph that is connected.

The shift operator S for Cayley graphs will thus be

§= lhjgi, j)&i. jl, (15)

Il
=}
~
Il
=}

TABLE III. Spectral decomposition of the unitary U for walks
on the 5D hypercube. There exist my eigenspaces of dimension k,
each with corresponding IHT subspace V;, of dimension |V;| < k. The
Hilbert space dimension is || = ) myk = 160, and the total IHT
subspace dimension is |V | = > my|V,|.

Eigenspaces
Coin k my A V| IHT?
Grover 50 2 45 110 Yes
10 4 5
5 4 0
DFT 10 2 7 22 Yes
4 2 2
2 4 1
2 60 0
1 4 0
Asymmetric 1 160 0 0 No

(3,2,1) (2,3,1) 213)
/ \ - —=(3,2,1)
/ \
(1,2,3) / \ (1,3,2)
(2,1,3) (3,1,2)

FIG. 3. The Cayley graph of S; with generating set H =
{(2,1,3),(3,2, 1)}, where application of the permutation (2,1,3)
corresponds to a blue solid edge and (3,2,1) corresponds to a green
dashed edge.

where h;g; is the group composition operation between two
elements /; and g;.

A. Hypercubes: Cayley graphs of Abelian group Z¢

In a hypercube, vertices can be labeled using bit strings
from Zg. Hence, a d-dimensional hypercube has a vertex
Hilbert space H, of size 2¢. Two vertices labeled by bit strings
x and y are connected if x and y differ in exactly one bit, that
is,

hx®y) =1,

where h(a) is the Hamming weight of string @ and x @ y is the
bitwise XOR of the bit strings corresponding to vertices x and
y. In the Cayley graph formalism, this implies the generating
set H contains all weight-one bit strings. For any vertex x,
there can be only d other bit strings which satisfy the above
equation; hence, each vertex of the hypercube has degree d.
Thus, each vertex has d basis states, and the dimension of the
coin Hilbert space H, is also d. Thus, the unitary describing
the evolution of states in a hypercube will be of dimension
|H,| |Hy| = d2¢. The three-dimensional (3D) cube is dis-
played as an example in Fig. 2.

The hypercube is an interesting case because it does not
satisfy the sufficient condition derived in [9] for a graph to
exhibit quantum walks with infinite hitting times. Its automor-
phism group is Abelian, and all its irreducible representations
have dimension 1. However, it was observed in [9] that walks

(3,2,1)

(2,1,3)

(37 17 2)

FIG. 4. The Cayley graph of S; with generating set H =
{(2,1,3),(3,2,1), (1, 3,2)}, where application of the permutation
(2,1,3) corresponds to a blue solid edge, (3,2,1) corresponds to a
green dashed edge, and (1,3,2) corresponds to a red dotted edge.
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TABLE 1V. Spectral decomposition of the unitary U for
walks on the Cayley graph of S; with generating set H =
{(2,1,3),(3,2,1), (1, 3,2)}. There exist m; eigenspaces of dimen-
sion k, each with corresponding IHT subspace V; of dimension
[Vk| < k. The Hilbert space dimension is [H| =) mk = 18, and
the total IHT subspace dimension is |V| = > my|Vi|.

Eigenspaces
Coin k my Vil V| IHT?
Grover 5 2 2 6 Yes
4 2 1
DFT 4 2 1 2 Yes
2 4 0
1 2 0
Asymmetric 2 6 0 0 No
1 6 0

on the hypercube can, indeed, exhibit infinite hitting times

with some coins. This was presumed to be an effect of the coin

symmetry. In this paper, we can now validate that intuition.
In the hypercube, the shift operator § can be expressed as

241

QU

-1
|x$ejﬂj><x7j|? (16)

(%N
I

X

Il
=}
~.
Il
=}

where ¢; is the n-bit string corresponding to the number 2/
and the notation |a, b) = |a) ® |b). Thus, the shift operator
transfers the state from vertex x along edge j to the vertex
xDe;.

We analyzed the evolution unitary for hypercubes of di-
mensions 3, 4, and 5. We choose the vertex labeled 29 — 1 to
be the final vertex with the absorbing wall. Thus, the projector
onto the final vertex is ﬁf- =124 — 124 — 1| ® 14. To avoid
infinite hitting time at this final vertex, one must ensure that
the initial state has no components in the IHT subspace of
the unitary. Note that the IHT subspace depends only on the
choice of the final vertex.

The results of spectral decomposition of the unitaries are
displayed in Tables I, II, and III. For each of the proposed
quantum walks in this paper, we ask whether the walk may
potentially exhibit infinite hitting time or not. The lack of
graph symmetry is highlighted by the fact that there are no
degenerate eigenspaces in any of the unitaries using the asym-
metric coin.

First, we note that infinite hitting times are possible in all
the tested hypercubes for quantum walks that use the Grover
or DFT coin. As illustrated in Tables I-III, the dimension
of the IHT subspace is generally larger for quantum walks

SO e O R 1

DO QO DD WO DN Qo = =
VLl . .

N
R e e

FIG. 6. The Cayley graph of S, with generating set H, =
{(2,1,3,4),(3,2,1,4), (4,2,3, 1)}, where application of the per-
mutation (2,1,3,4) corresponds to a blue solid edge, (4,2,3,1)
corresponds to a green dashed edge, and (3,2,1,4) corresponds to a
red dotted edge.

that use the Grover coin than those that use the DFT coin.
For larger hypercubes, the ratio of the dimension of the IHT
subspace to the dimension of the Hilbert space grows asymp-
totically to 1 (ford =9, |H| = 4608, |V |/|H| = 0.965).

For quantum walks that use the DFT coin, eigenspaces of
dimension < d also contain vectors in the IHT subspace. This
is interesting as these eigenspaces do not satisfy the previously
shown sufficient condition for the existence of IHT subspaces,
that the dimension of at least one eigenspace is larger than
that of the coin. We additionally observed that the ratio of
the dimension of the IHT subspace to the dimension of the
Hilbert space |V |/|H| is generally larger for the DFT coin in
even dimensions as opposed to odd dimensions. We were able
to observe this effect up to coin dimension 11, as performing
the decomposition for larger dimensions becomes computa-
tionally expensive. Further work is needed to understand the
systematic differences between even and odd dimensions.

B. Cayley graphs of the symmetric group

We consider Cayley graphs of symmetric groups with dif-
ferent generating sets. For groups S; and S4; we consider
elements (1,2,3) and (1,2,3,4), respectively, as the final ver-
tices.

S3 with generating set H = {(2, 1, 3), (3, 2, 1)}. This Cay-
ley graph is a circle of the six elements of S3, as shown in
Fig. 3. Quantum walks on the circle do not exhibit infinite
hitting time except when the coin operator is the identity.

S3 with generating set H = {(2, 1, 3), (3,2, 1), (1,3,2)}.
When we add the permutation element (1,3,2) to the gen-
erating set, the graph becomes more connected. As shown
in Fig. 4, every vertex is now within two edges of every
other vertex. However, quantum walks on this graph can still
exhibit infinite hitting times with the Grover and DFT coins.
Decomposition of the evolution unitary yields eigenspaces
as in Table IV. For the Grover coin, each of the individual
subspaces has greater than three dimensions. So they each

FIG. 5. The Cayley graph of S, with generating set H, = {(2, 1, 3,4), (3,2, 1,4), (1,4, 3, 2)}, where application of the permutation
(2,1,3,4) corresponds to a blue solid edge, (1,4,3,2) corresponds to a green dashed edge, and (3,2,1,4) corresponds to a red dotted edge.
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TABLE V. Spectral decomposition of the unitary U for
walks on the Cayley graph of S; with generating set H, =
{(2,1,3,4),(3,2,1,4), (1,4, 3,2)}. There exist my, eigenspaces of
dimension k, each with corresponding IHT subspace V. of dimension
[Vk| < k. The Hilbert space dimension is [H| =) mk = 72, and
the total IHT subspace dimension is |V| = > my|Vi|.

Eigenspaces
Coin k my Vil \4 IHT?
Grover 14 2 11 26 Yes
3 4 1
3 8 0
2 4 0
DFT 6 2 5 15 Yes
3 5 1
3 11 0
2 6 0
Asymmetric 3 18 0 0 No
2 6 0
1 6 0

include subspaces that have no overlap with the final vertex.
The size of the IHT subspace with the Grover coin is six. For
the DFT coin, we observe a smaller IHT subspace, of dimen-
sion 2. Although quantum walks with the asymmetric coin do
not actually exhibit infinite hitting times, there are degenerate
eigenspaces in the evolution unitary. This degeneracy arises
from the symmetry of the graph, as explored in Refs. [9,10].
Sy with generating sets H) ={(2,1,3,4),(3,2,1,4),
(1,4,3,2)}, H, ={(2,1,3,4),(3,2,1,4), (4,2,3, 1)}.
When looking at Cayley graphs of S4, we can observe the
combined effect of coin symmetry and graph symmetry. We
consider two generating sets of the same size to understand
how graph symmetry plays a role in producing larger IHT

TABLE VI. Spectral decomposition of the unitary U for
walks on the Cayley graph of S, with generating set H, =
{(2,1,3,4),(3,2,1,4), (4,2, 3, 1)}. There exist my, eigenspaces of
dimension k, each with corresponding IHT subspace V; of dimension
[Vl < k. The Hilbert space dimension is |H| =Y mik = 72, and
the total IHT subspace dimension is |V | = Y m;|V,]|.

Eigenspaces
Coin k my A \4 IHT?
Grover 14 2 11 36 Yes
6 4 3
4 2 1
3 4 0
DFT 4 2 3 14 Yes
4 2 1
3 6 1
3 10 0
2 4 0
Asymmetric 3 18 0 0 No
2 6 0
1 6 0

TABLE VIL Spectral decomposition of the unitary U for
walks on the Cayley graph of S; with generating set H =
{2,1,3,4),(3,2,1,4),(1,2,4,3),(1,3,2,4)}. There exist my
eigenspaces of dimension k, each with corresponding IHT sub-
space V; of dimension |Vi| < k. The Hilbert space dimension is
|H| =Y mk = 96, and the total IHT subspace dimension is |V | =
Yo mylVil.

Eigenspaces
Coin k my Vil \4 IHT?
Grover 26 2 22 56 Yes
6 2 2
5 4 2
3 4 0
DFT 11 2 8 35 Yes
6 2 4
6 2 2
3 7 1
2 7 0
2 4 0
Asymmetric 3 24 0 0 No
2 8 0
1 8 0

subspaces. Although H; and H, contain similar elements,
they produce different Cayley graphs. H; generates a Cayley
graph which can have a maximum separation of up to six
edges between two elements, as shown in Fig. 5, whereas
H, generates a Cayley graph that requires no more than
four edges to reach every other vertex. The Cayley graph
corresponding to this generating set is displayed in Fig. 6.
Both graphs exhibit infinite hitting times, as shown in
Tables V and VI. The most symmetric case, with generating
set H, and the Grover coin, yields the IHT subspace with the
largest dimension, 36:

Generating set Grover DFT
Hy ={(2,1,3,4),(3,2,1,4),(1,4,3,2)} 26 15
H, =1{(2,1,3,4),(3,2,1,4),(4,2,3, 1)} 36 14

Curiously, the dimensions of the IHT subspaces for unitaries
with the DFT coin are roughly the same, although one graph
is more symmetric than the other. Using the asymmetric coin,
the unitary has eigenspaces of degeneracy 3, which arise due
to symmetries of the shift matrix . However, this degeneracy
is insufficient to produce IHT subspaces.

=W N NN W
. N\

O N W N

PO =
DO 0O s i O i

FIG. 7. The Cayley graph of S, with generating set H =
{(2,1,3,4),(3,2,1,4),(1,2,4,3), (1, 3, 2,4)}, where application
of the group element (2,1,3,4) corresponds to a thick orange solid
edge, (3,2,1,4) corresponds to a red dotted edge, (1,2,4,3) corre-
sponds to a thin blue solid edge, and (1,3,2,4) corresponds to a green
dashed edge.
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120 . . . : :
—&6— 5D hypercube
| =¥ 4D hypercube |

o) 100 3D cube
§ —5— S, with H = {(1,2),(1.3),(2.4)
§ 80 | —&— S, with H={(1,2),(1,3),(1,4) ]
/)] .
2 S, with H = {(1,2),(1,3),(3,4).(2,3)}
T
= 60 1
(@]
C
Re)
2 40 1
(0]
£
a

20 1

O . X ’
0 5 10 15 20 25 30

Vertices in final vertex set

FIG. 8. Reduction in the dimension of the IHT subspace as the
number of vertices in the final vertex set is increased. The evolution
unitaries of six graphs with the Grover coin were analyzed.

Sy with generating set H =1{(2,1,3,4),(3,2,1,4),
(1,2,4,3),(1, 3,2,4)}. With a larger generating set, this
graph has greater symmetry than the previous examples. This
set generates a graph where the maximum separation between
two vertices is four edges, as displayed in Fig. 7. Table VII
presents the dimensions of the IHT subspaces of the evolu-
tion unitary for the different coins. The dimensions of the
IHT subspaces with the Grover and DFT coins are 56 and
35, respectively. As expected, the increased graph symmetry
enlarges the dimension of the IHT subspace in proportion to
the Hilbert space. Spectral analyses of other Cayley graphs
of S, with generating sets of size 4 also yield IHT subspaces
which are larger than with three generating elements.

C. Multiple-vertex infinite hitting time

Until now hitting times have been calculated for only
one final vertex. However, similar analyses can be made by
considering a subset of the vertices to be “final” vertices.
Increasing the number of final vertices leads to IHT subspaces
of smaller dimension, and the corresponding overlap between
the initial state and the THT subspace decreases. This is il-
lustrated in Fig. 8, which displays the dimension of the IHT

subspace for walks using the Grover coin on graphs with
different numbers of final vertices. It is interesting to note
that infinite hitting times are possible in the five-dimensional
(5D) hypercube even if up to 25 of the 32 vertices are in the
final vertex set. Similarly, for the Cayley graph of S4 with four
generating elements, there exists a nontrivial IHT subspace
even if up to 18 of the 24 vertices are in the final vertex set.

V. CONCLUSION

The objective of this paper was to explore the influence
of coin symmetry on infinite hitting time. We did not find
an exact relationship between the group of coin-permutation
symmetries and the dimension of the IHT subspace. However,
we showed through analysis of three coins—the Grover coin,
invariant under any permutation matrix; the DFT coin, invari-
ant under only two permutation matrices; and random unitary
coins lacking any symmetry—that coins with high symmetry
and hence larger coin-permutation symmetry groups are asso-
ciated with larger IHT subspaces. The dimensions of the I[HT
subspaces for some quantum walks that use these coins are
summarized in Table VIII. Larger IHT subspaces generally
imply a larger overlap with initial states, leading to a higher
probability of never reaching the final vertex.

We also explored the effect of considering a group of ver-
tices as final vertices, a final vertex set. It is interesting to note
that these quantum walks can still exhibit infinite hitting time,
as in the case of the 5D hypercube, which exhibits infinite
hitting time with as many as 25 vertices in the final vertex set.
Analyses of this type could be useful to determine beforehand
the propensity of initial states to hit a set of target vertices in
a graph. Conversely, this can also be used to choose graphs
and coins to block initial states from reaching a set of target
vertices.

A number of open questions remain about infinite hitting
times in quantum walks. Is it possible to determine a sufficient
condition for infinite hitting times using the irreducible repre-
sentations of the coin-permutation symmetry group? Can we
use analyses of infinite hitting times to solve or simplify com-
putational problems? Are there larger automorphism groups
or different types of quantum walk symmetries that more fully
characterize infinite hitting times in quantum walks?
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TABLE VIII. Summary of results. The dimension of the IHT subspace |V | for one final vertex is shown relative to the dimension of the
unitary’s Hilbert space |7{|. Quantum walks with initial states having components in V can exhibit infinite hitting time on the chosen final
vertex. S; ; is shorthand for a Cayley graph of the symmetric group S; with a generating set of size j.

3D cube 4D hypercube 5D hypercube S3.2 S33 S43 Si3 Sia
|V| for Grover coin 6 32 110 0 6 26 36 56
|V| for DFT coin 2 24 22 0 2 15 14 35
|V| for asymmetric coin 0 0 0 0 0 0 0 0
|H| 24 64 160 12 18 72 72 96
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