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Abstract

The modeling and analysis of degradation data have been an active research area

in reliability engineering for reliability assessment and system health management. As

the sensor technology advances, multivariate sensory data are commonly collected for

the underlying degradation process. However, most existing research on degradation

modeling requires a univariate degradation index to be provided. Thus, constructing a

degradation index for multivariate sensory data is a fundamental step in degradation

modeling. In this paper, we propose a novel degradation index building method for

multivariate sensory data with censoring. Based on an additive nonlinear model with

variable selection, the proposed method can handle censored data, and can automat-

ically select the informative sensor signals to be used in the degradation index. The

penalized likelihood method with adaptive group penalty is developed for parameter

estimation. We demonstrate that the proposed method outperforms existing methods

via both simulation studies and analyses of the NASA jet engine sensor data.

Key Words: Adaptive LASSO; General Path Model; Prognostics; Sensor Selection;

Splines; System Health Monitoring.

1



Nomenclature and Abbreviations

cdf cumulative distribution function

pdf probability density function

LEV largest extreme value distribution

LASSO least absolute shrinkage and selection operator

k-CV k-fold cross validation

FNR false negative error rates

FPR false positive error rates

TER total error rates, summation of FPR and FNR

DI-VS the proposed degradation index with variable selection

DI-NVS degradation index without variable selection

DI-VSL degradation index with variable selection and linear form

DI-KSL degradation index proposed by [1]

x(t) the history of multi-channel sensor signals from a unit

u(t) cumulative exposure

fj[xj(t);βj] the effect of jth signal on the degradation process

h(z) a mapping function that ensures a positive exposure

n, p, m number of units, number of sensors, and number of splines

U a random failure threshold

α, α̃ the target failure threshold and the practical failure threshold

log(α), σ location and scale parameters of a location-scale distribution

ti, δi failure time and censoring indicator for unit i

φ (·), Φ (·) pdf and cdf of a location-scale distribution

β the coefficient vector of spline basis in the model

Li, li the likelihood and log-likelihood function of unit i

ωj the weights of jth sensor in the adaptive group LASSO penalty

σl the lower bound for the scale parameter σ

λ tuning parameter of the adaptive group LASSO penalty

η, γ hyper-parameters in the objective function

zp p quantile of a standard location-scale distribution
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1 Introduction

1.1 Background

Degradation data have been widely used in reliability engineering for reliability and system

health assessment. There are many examples of products and systems that provide degrada-

tion data, such as the loss of light output from a light-emitting diode (LED) array, the power

output decrease of photovoltaic arrays, and the vibration from a worn bearing in a wind

turbine. The data type is typically a repeated measurement of the degradation index (e.g.,

the loss of light output from an LED array) with a monotone increasing (decreasing) trend.

The general path model is one class of methods for degradation modeling. In the typically

modeling framework of the general path models, a soft failure occurs when the degradation

level reaches a predefined failure threshold. The stochastic process model framework is also

popular in the degradation literature. In the stochastic process models, the distribution of the

degradation incremental levels is modeled by a Gaussian distribution or other distributions

such as the gamma or inverse Gaussian distribution. Thus, in existing research on degradation

modeling, the degradation index is needed and can be measured over time.

Different from traditional degradation data, modern sensor technology allows one to collect

multi-channel sensor data that are related to an underlying degradation process. This is very

common in many modern engineering systems. One example is the motivating data in our

study, the multi-channel jet engine data ([2]). In the jet engine data, multiple sensors such as

temperatures and pressures of module parts are recorded while the engine is operating. The

details about the dataset are introduced in Section 5.1. In such multi-channel sensor data, any

single channel may not be sufficient to represent the underlying degradation process. Without

a degradation index, most existing methods in the aforementioned frameworks will not be

applicable in the analysis of such sensor signal data. Thus, building a degradation index is an

important step in utilizing the sensor data in degradation analysis.

There are several key considerations when building the degradation index based on multi-

sensory data. In real engineering applications, it is typically complicated how each sensor

signal reflects the overall degradation. In such a case, a linear form for the effect of each
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sensor signal may not be adequate, which motivates us to consider nonlinear functional forms

of the individual sensor signal. In most cases, not all sensors collected are useful in representing

the underlying degradation process. Thus, it is important to automatically select more useful

and relevant sensors to build the degradation index. Besides, censored data are quite common

in reliability engineering applications. It is ideal to use both exact failure and censored time

data in the training of the model. In addition, when considering the prediction accuracy,

the risks of being false positive and false negative are quite different, especially for failures of

important systems such as jet engines. An asymmetric loss function is desirable during the

training of the degradation index model.

Motivated by these considerations, this paper aims to develop a flexible method for con-

structing a degradation index from multi-channel signals with automatic variable selection

while accounting for censored data and nonlinear relationships.

1.2 Literature Review and Contribution of This Work

Regarding the general path models for degradation data, the classic reference book is Meeker

and Escobar [3]. For the stochastic process models for degradation data, the Wiener process,

gamma process, and the inverse-Gaussian process have been used (e.g., [4]). Ye and Xie [5]

provided a comprehensive review of degradation models. These models are suitable for the

cases of one-dimensional degradation data. On the other hand, Meeker and Hong [6] and

Hong et al. [7] outlined some opportunities for using sensor data in reliability modeling and

analysis.

Regarding the recent development of degradation modeling, Zheng et al. [8] considered the

joint modeling of degradation data and lifetime data using the proportional hazards model.

Wang et al. [9] developed a Wiener process model to describe heterogeneity in degradation

data. Chen et al. [10] developed an integration method of multi-source accelerated degradation

testing for reliability evaluation. Duan et al [11] proposed an adaptive monitoring scheme

based on the hidden Markov model to predict the faults of systems with hidden degradation

processes. Kumar et al. [12] proposed a health indicator based on the state-space model to

access the degradation process. Wang et al. [13] constructed a stochastic multi-phase model
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for multi-component systems. In summary, the modeling and analysis of degradation data is

an active area, which is carried out with the availability of degradation measurements.

In the area of degradation index building, Liu et al. [14] proposed a data-level fusion model

for developing composite health indices for degradation modeling and prognostic analysis.

Follow-up work includes [15, 16, 17, 18]. Recently, Kim et al. [1] proposed a latent linear

model that constructs a health index via multiple sensors and selects informative sensors.

Wei et al. [19] proposed a dynamic conditional variational autoencoder to learn the health

index. Kim et al. [20] developed a sensor selection framework that can be applied to neural

network-based models and improved in interpretability of neural network models. Li et al. [21]

developed a data-model interactive prediction method for multi-sensor monitored stochastic

degrading devices. However, existing methods can not handle censored data and conduct

variable selection at the same time, which is the gap that this paper aims to fill.

Regarding variable selections, the least absolute shrinkage and selection operator (LASSO)

penalty for regression-type problems was studied in [22]. Zou [23] developed the adaptive

LASSO to ensure variable selection consistency, and Yuan and Lin [24] considered the group

LASSO for efficient variable selections with meaningful interpretation. Under the context of

this paper, we focus on the adaptive group LASSO to select the important sensors.

This paper proposes a novel framework based on the cumulative exposure model to build

the degradation index with multivariate sensors, which is applicable to many engineering

systems equipped with sensors. The contributions of this paper are unique from existing lit-

erature. Specifically, the proposed framework can include censored failure time information

to train the model, which can preserve the information provided by the data. The proposed

framework can automatically select the most informative sensors related to the degradation

process using the adaptive group LASSO penalty. To enable sufficient flexibility in the non-

linear relationship between sensors and degradation path, spline-based methods are used to

describe the contribution of each sensor signal in the cumulative exposure.
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1.3 Overview

The rest of this paper is organized as follows. Section 2 introduces the framework for degrada-

tion index building based on time-to-event data with multivariate signals. Section 3 presents

the parameter estimation with variable selection. Section 4 uses simulation to study the per-

formance of the proposed methods. The motivating example is used to illustrate the developed

method in Section 5. Section 6 contains conclusions and discusses areas for future research.

2 Building Degradation Index

2.1 Degradation Index

Consider sensor data with p degradation signals. Let x(t) = {[x1(s), · · · , xp(s)]
′ : 0 ≤ s ≤ t}

be the collection of information for the p signals from a unit, where xj(s) is the jth the

dynamic covariate information at time s, j = 1, . . . , p. For the jet engine data, those xj(·)’s

can be signals from various sensors and recorded operating conditions. We use the cumulative

exposure model (aka, the cumulative damage model) to construct the degradation index (e.g.,

see [25]). The cumulative exposure model is useful when the damage is accumulative, which

is the case for many engineering systems. For example, the damage to an automobile tire is

accumulative due to wear out.

The cumulative exposure u(t) for the covariate history x(t) is defined as,

u(t) =

∫ t

0

h

{
p∑

j=1

fj[xj(s);βj]

}
ds, (1)

where fj[xj(t);βj] represents the nonlinear effect function of the signal xj(t) on the degradation

index and βj are parameters that represent the influence of the covariate on the cumulative

exposure. Note that fj(·;βj) is defined on the range of the covariate, not on time t. Here,

h(z) maps the effect to a positive exposure, and the integral is from 0 to t, which guarantees

that u(t) is monotonically increasing and utilizes all the information in the history up to

time t. In this paper, we use the function h(z) = log[1 + exp(z)]/ log(2), which maps the
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input z ∈ (−∞,∞) to an output that takes value h(z) ∈ (0,∞). In literature, functions like

h(z) = exp(z) are used, but the function h(z) used here is numerically more stable.

When modeling the nonlinear effect of the jth signal fj(·;βj) in u(t), it is desirable to

make the function form flexible enough to capture potential nonlinearity in sensors’ effect.

Therefore, we use a non-negative spline function, called M-splines (e.g., [26]). For the jth

signal, let fj[xj(t);βj] =
∑m

k=1
βjkγjk[xj(t)], where {γjk[xj(t)] : k = 1, . . . ,m} are spline basis

of the M-spline of order three with (m − 3) interior knots and βj = (βj1, . . . , βjm)
′ are the

coefficients of the basis. Let β = (β′

1, . . . ,β
′

p)
′ be the parameters for all p signals. Figure 1(a)

shows the basis of the M-spline of order 3 with 7 interior knots (m = 10). The magnitude of

β can be used to identify which signals are more important for the degradation index u(t).

Although we used the M-splines for implementation, other splines such as the B-splines can

also be used, because most spline basis functions are quite flexible.

Note that u(0) = 0, and u(t) is always monotonically increasing, which are the two proper-

ties of u(t) that satisfy the characteristics of a degradation index as introduced in Section 1.1.

Thus, in this paper, we propose to use u(t) as a degradation index.

2.2 Modeling Time to Failure and Degradation Index

Based on the cumulative exposure model, a unit fails at time T when the cumulative exposure

reaches a random threshold U (e.g., [25]). That is

U = u(T ), (2)

where the function u(·) is defined in (1). We model log(U) by the largest extreme value (LEV)

distribution (e.g., [3]) with the location parameter log(α) and the scale parameter σ > 0. The

cumulative distribution function (cdf) and the probability density function (pdf) of U are

GU(u;α, σ) = ΦLEV

[
log(u)− log(α)

σ

]
and gU(u;α, σ) =

1

σu
φLEV

[
log(u)− log(α)

σ

]
,
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where ΦLEV(x) = exp[− exp(−x)], and φLEV(x) = exp[−x − exp(−x)]. As an illustration,

Figure 1(b) shows the pdf of LEV distributions with α = exp(5) and σ = 0.01, 0.03, and 0.1.

The parameter α in the LEV distribution can be used as the target failure threshold for

the degradation index in (1), which is pre-fixed. This is because we want those failed units

with their degradation indexes u(t) centered around the failure threshold when they fail. The

scale parameter σ serves as a measurement of how small the difference between u(t) and the

threshold α is if the unit is failed. Because we do not observe U , in practice, we use the

following threshold rule. That is, if u(t) ≥ α, we say a unit fails, and if u(t) < α, we say the

unit is surviving (i.e., the operation status is normal). Through re-scaling, we can map the

degradation index to any range that is desirable for the particular application. For example,

using 100u(t)/α, one can map the normal range of the degradation index into [0, 100].

For building the degradation index, a suitable property of the LEV distribution is its

skewness to the right as shown in Figure 1(b). Thus, we allow the larger difference between

u(t) and α on the positive side so that when making predictions, we can potentially reduce false

negative error (i.e., falsely predicting failed units as censored). This is desirable because, in

our study, we focus on important equipment like the jet engine. Falsely predicting a failed unit

as censored (i.e., false negative) can result in great losses or even severe accidents. Note that

other location-scale distributions with the right skewness could also be considered. Through

the relationship between T and U as shown in (2), the cdf and the pdf of T are, GT (t;β) =

ΦLEV ({log[u(t)]− log(α)} /σ) , and gT (t;β) = {u′(t)/[σu(t)]}φLEV ({log[u(t)]− log(α)} /σ),

where the derivative of of u(t) is u′(t) = h
(∑p

j=1

∑m
k=1

βjkγjk[xj(t)]
)
.

3 Parameter Estimation

3.1 Log-likelihood with Adaptive Group LASSO Penalty

We first introduce some notation for the data. From the sensor data, there are n units with p

degradation signals. Three sets of observable data are taken into consideration, which include

failure-time data, censoring indicator, and multivariate degradation signals. Let ti be the

failure time of the ith unit and let xi(t) = {[xi1(s), · · · , xip(s)]
′ : 0 ≤ s ≤ t} be the collection
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Figure 1: The plots show the construction of the M-spline of order 3 with 7 interior knots (a),
and the pdf of LEV distributions with α = exp(5) and various values of σ (b).

of p signals for the ith unit prior to and at time t. Here xij(s) is the jth observed dynamic

covariate information at time s, i = 1, . . . , n, j = 1, . . . , p, and 0 ≤ s ≤ ti. The observed

censoring indicator of the ith unit is denoted by δi, where δi equals to 1 if the ith unit fails

and 0 otherwise. Then, the collected information from unit i is denoted by {ti, δi,xi(ti)},

where i = 1, . . . , n, and let H = {{ti, δi,xi(ti)} : i = 1, . . . , n} be the collection of the data.

Note that for training the degradation index, lifetime data with failures are necessary for our

methods.

To estimate the parameters β, the likelihood for the ith unit is expressed as,

Li(β) =

([
u′(ti)

σu(ti)

]
φLEV

{
log[u(ti)]− log(α)

σ

})δi

×

(
1− ΦLEV

{
log[u(ti)]− log(α)

σ

})1−δi

.

Note that this is not an actual likelihood, because the “response” u(ti) is unknown. Instead,

the log-likelihood function serves as a loss function for the estimation purpose. The log-

likelihood function for the ith unit is

li(β) = δi

{
log[u′(ti)]− log(σ)− log[u(ti)]− log

[
α

u(ti)

]1/σ
−

[
α

u(ti)

]1/σ}

+(1− δi) log

(
1− exp

{
−

[
α

u(ti)

]1/σ})
.

(3)

9



Hence, the overall log-likelihood function is l(β|H) =
∑n

i=1
li(β). Then, we can obtain the

maximum likelihood (ML) estimates of β by maximizing the overall log-likelihood function.

Note that β are the unknown parameters, and α and σ are set as constants because the

“response” u(ti) is unknown. From Figure 1(b) and the perspective of the likelihood function,

the smaller value of σ is, the larger value of the pdf of a failure is. Besides, inside the φLEV(·)

and ΦLEV(·), we have the log(u) − log(α) = log(u/α) term. In this case, α and β can take

different combinations of values so that u/α keeps the same, which yields the same likelihood.

Thus, it is necessary to let α and σ be given constants to avoid identifiability issues.

As discussed in Section 2.2 and from (3), it can be seen that u(ti) ≈ α if the ith unit is

a failure, and u(ti) < α if the ith unit is censored. That is, the role of α is to set the target

failure threshold. Then, the role of σ is to measure how close the difference between u(ti)

and α. So for the value of σ, ideally, we want σ to be a small enough value to allow the

degradation index of failed units to end close to the target failure threshold α. For the value

of α, in theory, we can set any value for the target failure threshold α. Then β can adjust

correspondingly to provide a degradation index between 0 and α. In applications, setting α

close to the mean of failure times helps the convergence of the estimation algorithm.

Although multiple sensors are available to assess the degradation process, not every sensor

collected has a significant contribution. So we integrate variable selection in the model to find

out informative sensors. Since there are multiple M-splines basis to represent one sensor, we

want to penalize coefficient parameters associated with one sensor simultaneously when that

sensor does not contribute. Therefore, we adopt the adaptive group LASSO method in [27] to

conduct variable selection. The adaptive group LASSO approach penalizes parameters in the

same group simultaneously. In our model, the parameters in M-splines for the same variable

are treated to be in the same group. That is, βi and βj are in different groups for any i 6= j.

From the perspective of variable selection, the jth sensor variable has no effect on u(t) if all

elements in βj are significantly small. The adaptive group LASSO considers the penalties on

different grouped parameters have different effects. Let ωj be a given weight of the penalty for

the jth variable, where ωj ≥ 0 and j = 1, . . . , p. Then, the penalized negative log-likelihood
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function is

L(β;λ) = −l(β|H) + λ

p∑

j=1

ωj||βj||2, (4)

where λ ≥ 0 is a tuning parameter and ||βj||2 =
√∑m

k=1
β2
jk is the L2 norm of the vector βj.

Typically, the weights are given by setting

ωj =





||β̃j||
−γ
2 if ||β̃j||2 > 0

∞ if ||β̃j||2 = 0,
(5)

where β̃j is an estimate of βj and γ ≥ 0 is a hyper-parameter. Here we follow the practice

in [27] and define ∞ · 0 = 0. That means the model does not select sensor j if its coefficient

estimates L2 norm is zero (i.e., ||β̃j||2 = 0).

3.2 Optimization of Objective Function

The optimization of (4) is challenging. Here we discuss some strategies used in the optimiza-

tion of the objective functions. To optimize the objective function, we use the Nelder-Mead

algorithm in the R package nloptr. Due to the model complexity and non-convexity, there

exist multiple local optimal of the coefficients. However, in our study, the main focus is to

predict the status accurately. Therefore, even though there are local optimal points, it is of

less concern as long as the optimization allows us to predict units’ status accurately.

One thing to notice is the influence of σ value in the optimization procedure. If σ is

prefixed at a small value (e.g., 0.01) at the beginning of the optimization, the algorithm could

be easily trapped at local optima. As shown in Figure 1(b), when σ is small, the pdf of LEV is

highly concentrated around the location parameter log(α). That means a unit with log[u(ti)]

at the event time that is close to the threshold log(α) has a high probability. While a unit

which degradation index at the event time is far away from the threshold has almost zero

probability, thus, its contribution to the likelihood function is small. During the optimization

process, with a small σ, it is possible that the β is updated to an estimation that some units’

degradation paths get almost 0 probability. So the contribution of these units to the objective

function is neglected in the following updates of the β estimation. Only units with log[u(ti)]
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that are relatively close to log(α) have the chance to further move close to the threshold.

One approach to avoid the local optima is to set a larger value for σ at the beginning of the

optimization process, and then decrease it gradually to the prefixed lower bound. By setting

σ to a large value, say σ = 1, the information of all units is equally treated, regardless of the

distance between the value of log[u(ti)] and the location parameter. After a certain number

of iterations, the unit’s log[u(ti)] moves closer to log(α), then we can decrease the value of

σ by a small amount and update β estimation. Repeating this step until σ decreased to the

fixed constant can help to avoid the local optima problem. Instead of manually determining

a sequence of σ to decrease, we add it to the optimization parameters.

Let σl be the prefixed lower bound of σ. We consider the transformation log(σ∗) = log(σ−

σl). Thus, σ = exp[log(σ∗)] + σl. Then we optimize log(σ∗) and β simultaneously. This

transformation can always impose a lower bound for the estimation of σ. Although we include

log(σ∗) in the parameter estimation, the purpose is not to obtain an estimation of log(σ∗). The

reason is that σ is not identifiable and it always becomes smaller to allow a larger likelihood.

Via the iterations, it will get to its lower bound eventually. Thus, we include σ in the parameter

estimation so that it can smoothly decrease and help to avoid the local optima of β estimation.

With a larger value of σ in the early stage of the iterations, the benefit of the asymmetric

property of the LEV distribution is not evident. We introduce the following remedy to ensure

the estimates of u(ti) are moving towards the right direction during the early stage of the

optimization iterations. As discussed above, when building a degradation index, it is desirable

that u(ti) = α if ith unit fails and u(ti) < α if ith unit is censored. Thus, we further impose

those two constraints on the objective function. That is, we modify the objective function as,

M (β, λ) = L(β;λ) + η
n∑

i=1

δi{[α− u(ti)]}
2 + (1− δi){[u(ti)− α]+}

2. (6)

The positive part function is [u(ti)−α]+ = max (u(ti)− α, 0) and the penalty η is non-negative.

Therefore, to encourage the estimated u(t) satisfying the degradation index characteristic (i.e.,

u(ti) = α if ith unit fails and u(ti) < α if ith unit is censored) as well as perform variable

selection, we work with the objective function M (β, λ) as shown in (6).
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3.3 Determining Tuning Parameter

In parameter estimation, we need to determine the tuning parameter λ in the objective func-

tion (6). The k-fold cross-validation (k-CV) approach is used. Because the main goal of our

degradation index model is to accurately predict the status of testing units, especially for

the failed units, we use both the false negative error rate and total error rate as the criteri-

on to select the tuning parameters. Let FNR and FPR be the averaged false negative and

positive error rates across the k folds, respectively. Then the averaged total error rate is

TER = FNR+FPR. For a sequence of values for λ, denoted by {λ1, . . . , λq}, the correspond-

ing error rates are {TER1, . . . ,TERq}, and {FNR1, . . . ,FNRq}. Let kf = argminb FNRb be

the index of tuning parameter that minimizes FNR. We want to select the tuning parameter λ

so that FNR is minimized, while TER is kept at a relatively low level. That means we do not

want to sacrifice FPR to achieve the smallest FNR. Therefore, the selected tuning parameter

is λs, of which the index s is determined by

s =





argminb FNRb if TERkf ≤ 0.2,

argminb TERb otherwise.

(7)

In this way, when a λ minimizes FNR at the cost of FPR, we will switch to the λ that

minimizes TER to achieve a balance between FPR and FNR.

The parameters η, γ, and σl are treated as hyper-parameters. We do not tune η because

the role of the η penalty term is to help u(t) move towards α at the beginning stage. After

u(t) is close to α, the effect of the asymmetric property of LEV kicks in and the shrinkage

of σ towards σl serves the same role. Therefore, we only include η penalty term to help the

algorithm converge and set a moderate large value for η. In particular, η is set to be 5. We

fix the hyper-parameter γ = 2 in the calculation of the weights in (5), which is as a common

practice.

The lower bound of scale parameter σl is set to be 0.01 in this paper. In practice, the σl

can be set by users. Ideally, the smaller value of σl has better performance of the degradation

index. However, the smaller value takes more computation time. In our cases, we set it as
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σl = 0.01, because when α = exp(5), the 99% tolerance interval of the LEV distribution will be

(145.9, 156.5), using the quantile of the LEV distribution. This interval is (−2%, 5%) around

the target exp(5), which is narrow enough. Regarding the selection of the number of splines,

the strategy is setting it large enough to allow flexibility. Then we use the adaptive group

LASSO penalty to regularize the estimation and let the penalty shrink those less important

sensors.

3.4 Parameter Estimation Procedure

In this section, we describe how to obtain the estimates β̂ based on the training set, using

the adaptive group LASSO procedure. With initial estimates β̃j, we obtain the weights ωj, as

in (5) for j = 1, · · · , p. We first apply the k-CV in Section 3.3 to obtain the tuning parameter

λs as in (7). The average of the β estimates from each fold in k-CV can also provide a warm

starting point for the final estimate of β. Similar ideas are also used in literature (e.g., [28]).

With the best selected λs, the warm starting point for β, and the entire training set, we

apply the adaptive group LASSO procedure to obtain the final estimates of β in (6), which is

denoted by β̂. The statistical inference and variable selection results can be obtained based

on β̂.

The question remains how to find the initial estimates β̃j’s. Huang et al. [27] suggested

that one can use the group LASSO procedure (i.e., without adaptive weights) to find the

initial estimates of parameters. For the group LASSO estimates, the objective function in (6)

is simplified by setting ωj = 1, j = 1, · · · , p. Similarly, we apply the k-CV to find the best

tuning parameter λ̃s for the group LASSO, and use the averaged estimates as the warm starting

points for the final estimates of the group LASSO procedure, denoted by β̃j, j = 1, · · · , p.

For the initial values of the k-CV of the group LASSO procedure, we have to use cold

starting points as we do not have much information about the parameters at this step. We

randomly select the starting points that satisfy some desirable properties in the degradation

scenario. The details of selecting starting points are given in Supplementary Section 1.
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4 Simulation Study

In order to evaluate the performance of the proposed degradation index building method,

we use various simulated scenarios to compare our model with the model without variable

selection and the model that assumes linear sensor effect. We investigate the average times

that our model properly selects variables and the average prediction accuracy (i.e., correctly

predicts the status of a unit as a failure or censored one).

4.1 Simulation Setup and Procedure

In this simulation study, we want to generate datasets similar to the jet engine data to demon-

strate the performance of our degradation index building framework. To generate the simula-

tion data, we first consider the signal sensors. In the simulation study, we generate 10 sensor

signals similar to the jet engine signals within time interval [0, 350]. We assume each signal

is a function of time with some variations. That is Xj(t) = gj(t) + ǫj(t), j = 1, . . . , 10. The

function gj(t) can take forms such as constant, linear, quadratic, log functions, and the error

term ǫj(t) follows a normal or a uniform distribution. Supplementary Figure 1 presents the

example of simulated signals for 10 units. The signals can be increasing, decreasing, or ran-

domly fluctuate over time. After obtaining the sensor information, the basis functions of the

M-spline with 2 interior knots are constructed based on the signals. So we have 50 coefficient

parameters for the simulated data. To test the variable selection capability of our method,

we assume that 5 out of 10 signals cause the units to fail, and the rest 5 have no effect on the

failure process. Hence, we set the values of parameters of the first 5 signals to have effects on

the degradation index. Among the five signals with effect, we assume the second and fourth

are linear functions of time, the first and the fifth are quadratic functions of time, and the

third one is assumed to follow a normal distribution. With the true parameter coefficients β

and the simulated sensor signal history, we can compute u(t) using (1).

The next step is to generate the failure-time data. Let the time to failure be T =

min{C, 350}, where C follows a Weibull distribution. The Weibull shape and scale parameters

are determined to ensure the proportion of failed units does not exceed 90%. Here we set the
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upper bound for T to be 350 to mimic the jet engine data. We set the failure threshold as

α = exp(5), and the censoring indicator is defined as δ = 1 if u(T ) ≥ exp(5) and δ = 0 if

u(T ) < exp(5).

To test the procedure under different situations, we consider various n and β to control

the number of total units and effects degree of covariates. The number of units is chosen as

n = 50, 100, 150, 200, 250, 300. Because we have 5 splines for each covariate, the corresponding

βj is of length 5 for j = 1, . . . , 10. Assume that the last 5 signals do not affect the degradation

process, so β = (β′

1,β
′

2,β
′

3,β
′

4,β
′

5,0
′

25)
′

. We consider four scenarios and the coefficients

are listed in Supplementary Table 1, which are (A): Contributions of effective covariates

(x1(t), . . . , x5(t)) are on the same magnitude; (B): The signals with quadratic function forms

(i.e., x1(t) and x5(t)) have larger effects; (C): The signals with linear function forms (i.e., x2(t)

and x4(t)) have larger effects; and (D): Only the random term (i.e., x3(t)) has larger effect.

4.2 Method Comparisons

In order to better understand the performance of the proposed model and procedure, we

compare the proposed model with the model without variable selection, and with the model

considering only linear relationship for the covariate effect.

For the model without variable selection, λ is set to 0 in (6). The objective function is,

M(β) = −l(β|H) + η

n∑

i=1

δi{[α− u(ti)]}
2 + (1− δi){[u(ti)− α]+}

2.

If we assume the covariate effect is in a linear form, then degradation index becomes ũ(t) =
∫ t

0
h
{∑p

j=1
xj(s)βj

}
ds. We also use adaptive LASSO to perform variable selection and the

objective function is the same as (6) but with u(t) replaced by ũ(t).

4.3 Simulation Results

We generate simulation data based on the procedure described in Section 4.1 and apply three

different models to the simulated data. We denote our proposed model as DI-VS, the model

without variable selection as DI-NVS, and the model assumes linear sensor effect as DI-VSL.
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In this simulation, the target failure threshold is set to be α = exp(5). For each sample size n

and coefficient parameter vector β, we repeat the trial 200 times. For each trial, we split the

simulated data into 80% training set and 20% testing set. The tuning parameter is selected

by 5-fold cross-validation on the training set.

Regrading to the predictions of unit status, although the target failure threshold is α, in

practice, due to training errors. If we use the target failure threshold α as the threshold, some

failures with u(t) < α are reported to be surviving units. In practice, one can use a threshold

that is slightly smaller than α, which typically yields better classification results. We call this

the practical threshold α̃. One can choose α̃p = exp [log(α) + zpσ], where zp is the quantile

function of the standard LEV distribution. In the simulation study, the classification uses the

α̃0.01 threshold. The practical threshold separates the two categories better than the target

failure threshold. For the purpose of prediction, we suggest using the practical threshold for

predicting the status of testing units.

Figure 2 shows the average FNR, FPR, and TER as the number of units increases. Al-

though in general FNR decreases for all three models, DI-VS has the most consistent perfor-

mance across various scenarios and the number of units. When the number of units is small

(i.e., less than 100), the FNR of DI-NVS is the largest among the three models, which shows

the benefit to consider variable selection, especially when n is relatively small. The FNR for

DI-VSL is large in Scenarios A and D, even when the number of units is large. For FPR, in

Scenarios B, C, and D, FPR does not change a lot with the size increases. In Scenario A,

DI-NVS has the smallest FPR across the number of units while DI-VSL has the largest. The

results show that ignoring nonlinear relationships can lead to larger errors in some scenarios.

With respect to the TER, DI-VS has the smallest errors for almost all scenarios.

Regrading the variable selection capability, Figure 3 shows the average number of correctly

specified variables, effect variables, and no effect variables identified by the model versus the

number of units (n) for different methods and scenarios. The actual number of effective

variables is 5, no-effect variables in the model is 0, and correctly specified variables are 10.

Ideally, we want the model to include all 5 effective variables and zero no-effect variable.

The number of correctly specified variables includes the number of effective variables that
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Figure 2: Average FNR, FPR and TER versus number of units (n) for different methods and
scenarios.
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remained in the model and no-effect variables excluded from the model, which should be 10.

Compared to DI-VSL, DI-VS tends to include more effective signals in the model when the

number of units is large in Scenarios A and D. For Scenarios B and C, the number of effect

signals remained in the model is close to DI-VSL when the number of units is large. For

signals that have no effect on the underlying degradation process, DI-VS can exclude more

signals across all four scenarios and various numbers of units. In general, the DI-VS model

has more correctly specified variables across different simulation scenarios compared to the

DI-VSL model.

Overall, the simulation results show that our proposed model has better accuracy in pre-

dicting a unit status for various scenarios and numbers of units. It can also exclude signals

with no effect from the model. Supplementary Section 3 also contains some further simulation

results which show that the proposed method can select the most informative sensors and is

robust to different censoring rates.

5 Application

5.1 The Illustrative Application

In this section, we apply the developed methods to the jet engine sensor data ([2]). We first

provide a brief introduction to the jet engine data. For illustration, we use a subset that

contains 200 units with 100 failures and 100 surviving units. The failure-time data give the

cycles to failure for failed units and time in service for surviving units. The multi-channel

sensor data give time-varying signals with cycles for all 200 units. The dataset includes 21

sensor outputs that measure the system’s physical and functional conditions. There are 8

sensors that record temperature and pressure at the fan inlet and different outlets and 8

sensors that capture various fan speeds and coolant bleed in the simulation model. Besides,

the measurements of pressure ratio, fuel flow ratio, bypass ratio, burner fuel-air ratio, and

bleed enthalpy are also provided in the dataset. In the jet engine simulation data, there are

16 multi-channel sensors after removing those with constant signals. Figure 5 illustrates the

cycles to failure for 20 units with their corresponding 16 multi-channel signals.
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Figure 5: Plot of a subset of the time to event (a), and multi-channel signals of the 20 units
presented by different colors (b).

Except for the model introduced in Section 4.2, in the real application, we also compare

our model with existing models in literature [1], which is denoted as DI-KSL. The details

of this method are introduced in Supplementary Section 4.1. The prediction ability of each

model are investigated and the results are summarized in Section 5.2.

5.2 Result Comparisons

For the model comparison, we randomly split the dataset into 80% training set and 20%

testing set while keeping the proportion of failed units as 50% in both training and testing

sets. We apply each of the four models DI-VS, DI-NVS, DI-VSL, and DI-KSL to the training

set and then use the trained model to predict unit status in the test set. In DI-VS and

DI-NVS model, we use 10 spline basis to represent each of the 16 sensors, so in total, we have

160 coefficient parameters. The target failure threshold is set as α = exp(5). The tuning

parameter is selected by 5-fold cross-validation. When the sample size is relatively small (e.g.,

200 in this application), it is generally not recommended to go with a large number of folds.

Thus, five was a reasonable choice. For DI-KSL, we only use the failed units in the training

set to build the model due to the model property. For each method, we repeat the splitting
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50 times and the results are summarized as follows.

Figure 4 presents the boxplot of the prediction errors over 50 splits on the testing set of

four models and Table 1 provides the average prediction error over repetitions. We can see

that DI-VS has the lowest averaged total error and FPR among the four models. The DI-VSL

has zero FNR. However, its FPR is unusually large. One potential reason is that DI-VSL fails

to capture the nonlinear trend in the data. This can cause the estimation of log(σ∗) to fail to

shrink as expected, which results in the model having errors on one side. The DI-KSL model

has the second smallest average FPR. However, its FNR is 4% larger than our proposed

model DI-VS. One possible reason is that the DI-KSL model neglects the censored unit’s

information when training the model. Except for the DI-VSL model, the other three models

have a similar inter quantile range for prediction errors.

Substituting the estimates into (1), the degradation index over time can be obtained for an

individual unit. Figure 6 presents the degradation index built with our proposed framework

DI-VS from one split. In this plot, in the testing set, all censored units are below α̃0.01

threshold and most failed units are over that threshold. We can see from the plot that using

a practice failure threshold allows more true failed units’ u(t) to reach the threshold.

Regrading to the variable selection, in the above jet engine data analysis, all 16 sensors

are kept by the DI-VS model. However, as we have already seen in the simulation study,

when the number of units in the model becomes larger, DI-VS tends to keep more variables

in the model even some of them are no-effect. Therefore, we take a small subset of the jet

engine data and test the model’s variable selection ability when n is small. Supplementary

Figure 6(a) shows the proportion of each variable being excluded over 20 replicates when the

number of units changes from 40 to 80 with 10 increment. We can see that when the number

of units is relatively small, some sensors such as NRf, altitude, and Nf are excluded from the

model with high probability. When n = 40, each variable is excluded from the model at least

once. However, as n increases, there are variables that can be remained in the model over all

20 replicates.

To better understand the sensors’ effects on the degradation path, we use the accumulated

local effects (ALE) plot in [29] for visualization. ALE plot is a visualization approach to present
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Figure 6: The degradation index for training and testing set with one split of the jet engine
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dotted line is α̃0.01.

Table 1: The average FNR, FPR, and TER for the DI-VS, DI-KSL, DI-VSL, DI-NVS models
based on 50 data splits. Here the practical threshold is α̃0.01.

Model FNR FPR TER
DI-VS 0.030 0.026 0.057
DI-KSL 0.070 0.034 0.104
DI-VSL 0.000 0.645 0.645
DI-NVS 0.040 0.040 0.080

the predictors’ main and secondary-order effects in complex black box supervised learning

models. We provide the technical details and the ALE plots in Supplementary Section 4.2.

The ALE plot in Supplementary Figure 6(b) shows that the temperature at LPT outlet (T50)

and pressure at HPC outlet tend to have a constant influence when the measurements are low

and a larger effect on the damage level when measurements increase, while the coolant bleed

(W31) has decreasing effect before a certain point then the effect becomes constant.

6 Conclusions and Areas for Future Research

In this paper, motivated by the jet engine multi-channel sensory data, we propose a new frame-

work to build the degradation index based on the cumulative exposure model. The framework
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can handle censored data and conduct variable selection automatically. The comprehensive

simulation studies and jet engine data analysis show that our approach has flexibility and

advantages. It is also demonstrated that the performance of the proposed framework is more

robust than other models. The DI-VS model has consistently good prediction accuracy re-

gardless of the dataset size and scenarios.

The flexibility of the proposed framework makes it applicable to many complex engineering

systems equipped with multiple sensors. In practice, based on the knowledge about different

applications, the way to model the impact of sensors fj (xj), and how to conduct the nonlin-

ear transformation h(z) can be adjusted accordingly. Regarding the usage of the proposed

degradation index, this paper focuses on the product status prediction. Other potential usage

includes the product health assessment and prediction for the remaining useful life.

There are a few limitations of the proposed framework. One of the limitations is that the

model tends to keep no-effect sensors when the number of units n is large. A possible reason

is that we use the log-likelihood function in the objective function. When the number of units

is large, as long as the sensor can provide a little contribution to the likelihood, adding up

these contributions of n units can lead to large minimization of the objective function. It will

be interesting to study the adaptive elastic net penalties or involve the number of units in

the penalty term. Another limitation is that the proposed model can only handle numerical

covariates. It will be useful to extend the current framework to deal with categorical variables.

There are some other future directions for the proposed model. In this paper, we consider

an additive way to model all sensors’ impact. However, in reality, the way that sensors influ-

ence the degradation process can be much more complex. It will be interesting to allow sensors

interactions in the model. Besides, this proposed framework requires strict monotonicity of

the degradation index. If the Wiener process is used, then there needs not to be such a strict

requirement for monotonicity as long as there is an overall trend. It will be interesting to

study degradation index building with less requirement on monotonicity. Multiple degrada-

tion characteristics modeling has been popular (e.g., [30, 31]). Building multiple degradation

indexes for data with multiple degradation characteristics is also worth investigating.
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Supplementary Material

The following supplementary materials are available online.

Additional details: Additional details for the algorithm, simulation study, and data analysis

(pdf file).

Acknowledgment

The authors thank the editor, associate editor, and referees, for their valuable comments that

helped improve the paper significantly. The authors acknowledge the Advanced Research

Computing program at Virginia Tech for providing computational resources. The work by

Hong was partially supported by National Science Foundation Grant CMMI-1904165 to Vir-

ginia Tech.

References

[1] M. Kim, C. Song, and K. Liu, “A generic health index approach for multisensor degra-

dation modeling and sensor selection,” IEEE Transactions on Automation Science and

Engineering, vol. 16, pp. 1426–1437, 2019.

[2] A. Saxena and K. Goebel, “PHM08 challenge data set,” tech. rep., NASA Ames Prog-

nostics Data Repository, Moffett Field, CA, 2008.

[3] W. Q. Meeker and L. A. Escobar, Statistical Methods for Reliability Data. John Wiley &

Sons, 1998.

[4] Z. Ye and N. Chen, “The inverse Gaussian process as a degradation model,” Technomet-

rics, vol. 56, pp. 302–311, 2014.

[5] Z. Ye and M. Xie, “Stochastic modeling and analysis of degradation for highly reliable

products,” Applied Stochastic Models in Business and Industry, vol. 31, pp. 16–32, 2015.

25



[6] W. Q. Meeker and Y. Hong, “Reliability meets big data: Opportunities and challenges,

with discussion,” Quality Engineering, vol. 26, pp. 102–116, 2014.

[7] Y. Hong, M. Zhang, and W. Q. Meeker, “Big data and reliability applications: The

complexity dimension,” Journal of Quality Technology, vol. 50, pp. 135–149, 2018.

[8] H. Zheng, X. Kong, H. Xu, and J. Yang, “Reliability analysis of products based on

proportional hazard model with degradation trend and environmental factor,” Reliability

Engineering & System Safety, vol. 216, p. 107964, 2021.

[9] Z. Wang, Q. Zhai, and P. Chen, “Degradation modeling considering unit-to-unit

heterogeneity-a general model and comparative study,” Reliability Engineering & Sys-

tem Safety, vol. 216, p. 107897, 2021.

[10] W.-B. Chen, X.-Y. Li, and R. Kang, “Integration for degradation analysis with multi-

source adt datasets considering dataset discrepancies and epistemic uncertainties,” Reli-

ability Engineering & System Safety, vol. 222, p. 108430, 2022.

[11] C. Duan, Y. Li, H. Pu, and J. Luo, “Adaptive monitoring scheme of stochastically failing

systems under hidden degradation processes,” Reliability Engineering & System Safety,

vol. 222, p. 108322, 2022.

[12] A. Kumar, C. Parkash, G. Vashishtha, H. Tang, P. Kundu, and J. Xiang, “State-space

modeling and novel entropy-based health indicator for dynamic degradation monitoring

of rolling element bearing,” Reliability Engineering & System Safety, vol. 222, p. 108356,

2022.

[13] H. Wang, H. Liao, and X. Ma, “Stochastic multi-phase modeling and health assessment

for systems based on degradation branching processes,” Reliability Engineering & System

Safety, vol. 222, p. 108412, 2022.

[14] K. Liu, N. Z. Gebraeel, and J. Shi, “A data-level fusion model for developing composite

health indices for degradation modeling and prognostic analysis,” IEEE Transactions on

Automation Science and Engineering, vol. 10, pp. 652–664, 2013.

26



[15] X. Fang, K. Paynabar, and N. Gebraeel, “Multistream sensor fusion-based prognostics

model for systems with single failure modes,” Reliability Engineering & System Safety,

vol. 159, pp. 322–331, 2017.

[16] C. Song, K. Liu, and X. Zhang, “Integration of data-level fusion model and kernel methods

for degradation modeling and prognostic analysis,” IEEE Transactions on Reliability,

vol. 67, pp. 640–650, 2018.

[17] A. Chehade, C. Song, K. Liu, A. Saxena, and X. Zhang, “A data-level fusion approach

for degradation modeling and prognostic analysis under multiple failure modes,” Journal

of Quality Technology, vol. 50, pp. 150–165, 2018.

[18] C. Song and K. Liu, “Statistical degradation modeling and prognostics of multiple sensor

signals via data fusion: A composite health index approach,” IISE Transactions, vol. 50,

pp. 853–867, 2018.

[19] Y. Wei, D. Wu, and J. Terpenny, “Learning the health index of complex systems using

dynamic conditional variational autoencoders,” Reliability Engineering & System Safety,

vol. 216, p. 108004, 2021.

[20] M. Kim, J.-R. C. Cheng, and K. Liu, “An adaptive sensor selection framework for mul-

tisensor prognostics,” Journal of Quality Technology, vol. 53, pp. 566–585, 2021.

[21] T. Li, X. Si, H. Pei, and L. Sun, “Data-model interactive prognosis for multi-sensor mon-

itored stochastic degrading devices,” Mechanical Systems and Signal Processing, vol. 167,

p. 108526, 2022.

[22] R. Tibshirani, “Regression shrinkage and selection via the Lasso,” Journal of the Royal

Statistical Society, Series B, vol. 58, pp. 267–288, 1996.

[23] H. Zou, “The adaptive Lasso and its oracle properties,” Journal of the American Statis-

tical Association, vol. 101, pp. 1418–1429, 2006.

27



[24] M. Yuan and Y. Lin, “Model selection and estimation in regression with grouped vari-

ables,” Journal of the Royal Statistical Society: Series B (Statistical Methodology), vol. 68,

pp. 49–67, 2006.

[25] Y. Hong and W. Q. Meeker, “Field-failure predictions based on failure-time data with

dynamic covariate information,” Technometrics, vol. 55, pp. 135–149, 2013.

[26] J. O. Ramsay, “Monotone regression splines in action,” Statistical Science, vol. 3, pp. 425–

441, 1988.

[27] J. Huang, J. L. Horowitz, and F. Wei, “Variable selection in nonparametric additive

models,” Annals of Statistics, vol. 38, pp. 2282–2313, 2010.

[28] R. Mazumder, J. H. Friedman, and T. Hastie, “Sparsenet: Coordinate descent with

nonconvex penalties,” Journal of the American Statistical Association, vol. 106, pp. 1125–

1138, 2011.

[29] D. W. Apley and J. Zhu, “Visualizing the effects of predictor variables in black box

supervised learning models,” Journal of the Royal Statistical Society: Series B (Statistical

Methodology), vol. 82, pp. 1059–1086, 2020.

[30] G. Fang, R. Pan, and Y. Hong, “Copula-based reliability analysis of degrading systems

with dependent failures,” Reliability Engineering & System Safety, vol. 193, p. 106618,

2020.

[31] Z. Saberzadeh and M. Razmkhah, “Reliability of degrading complex systems with two

dependent components per element,” Reliability Engineering & System Safety, vol. 222,

p. 108398, 2022.

28


