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Abstract

The modeling and analysis of degradation data have been an active research area
in reliability engineering for reliability assessment and system health management. As
the sensor technology advances, multivariate sensory data are commonly collected for
the underlying degradation process. However, most existing research on degradation
modeling requires a univariate degradation index to be provided. Thus, constructing a
degradation index for multivariate sensory data is a fundamental step in degradation
modeling. In this paper, we propose a novel degradation index building method for
multivariate sensory data with censoring. Based on an additive nonlinear model with
variable selection, the proposed method can handle censored data, and can automat-
ically select the informative sensor signals to be used in the degradation index. The
penalized likelihood method with adaptive group penalty is developed for parameter
estimation. We demonstrate that the proposed method outperforms existing methods
via both simulation studies and analyses of the NASA jet engine sensor data.
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Splines; System Health Monitoring.



cdf

pdf
LEV
LASSO
k-CV
FNR
FPR
TER
DI-VS
DI-NVS
DI-VSL
DI-KSL

Nomenclature and Abbreviations

cumulative distribution function

probability density function

largest extreme value distribution

least absolute shrinkage and selection operator
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false negative error rates
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the proposed degradation index with variable selection
degradation index without variable selection

degradation index with variable selection and linear form
degradation index proposed by [1]

the history of multi-channel sensor signals from a unit
cumulative exposure

the effect of jth signal on the degradation process

a mapping function that ensures a positive exposure

number of units, number of sensors, and number of splines

a random failure threshold

the target failure threshold and the practical failure threshold
location and scale parameters of a location-scale distribution
failure time and censoring indicator for unit ¢

pdf and cdf of a location-scale distribution

the coefficient vector of spline basis in the model

the likelihood and log-likelihood function of unit ¢

the weights of jth sensor in the adaptive group LASSO penalty
the lower bound for the scale parameter o

tuning parameter of the adaptive group LASSO penalty
hyper-parameters in the objective function

p quantile of a standard location-scale distribution



1 Introduction

1.1 Background

Degradation data have been widely used in reliability engineering for reliability and system
health assessment. There are many examples of products and systems that provide degrada-
tion data, such as the loss of light output from a light-emitting diode (LED) array, the power
output decrease of photovoltaic arrays, and the vibration from a worn bearing in a wind
turbine. The data type is typically a repeated measurement of the degradation index (e.g.,
the loss of light output from an LED array) with a monotone increasing (decreasing) trend.
The general path model is one class of methods for degradation modeling. In the typically
modeling framework of the general path models, a soft failure occurs when the degradation
level reaches a predefined failure threshold. The stochastic process model framework is also
popular in the degradation literature. In the stochastic process models, the distribution of the
degradation incremental levels is modeled by a Gaussian distribution or other distributions
such as the gamma or inverse Gaussian distribution. Thus, in existing research on degradation
modeling, the degradation index is needed and can be measured over time.

Different from traditional degradation data, modern sensor technology allows one to collect
multi-channel sensor data that are related to an underlying degradation process. This is very
common in many modern engineering systems. One example is the motivating data in our
study, the multi-channel jet engine data ([2]). In the jet engine data, multiple sensors such as
temperatures and pressures of module parts are recorded while the engine is operating. The
details about the dataset are introduced in Section 5.1. In such multi-channel sensor data, any
single channel may not be sufficient to represent the underlying degradation process. Without
a degradation index, most existing methods in the aforementioned frameworks will not be
applicable in the analysis of such sensor signal data. Thus, building a degradation index is an
important step in utilizing the sensor data in degradation analysis.

There are several key considerations when building the degradation index based on multi-
sensory data. In real engineering applications, it is typically complicated how each sensor

signal reflects the overall degradation. In such a case, a linear form for the effect of each



sensor signal may not be adequate, which motivates us to consider nonlinear functional forms
of the individual sensor signal. In most cases, not all sensors collected are useful in representing
the underlying degradation process. Thus, it is important to automatically select more useful
and relevant sensors to build the degradation index. Besides, censored data are quite common
in reliability engineering applications. It is ideal to use both exact failure and censored time
data in the training of the model. In addition, when considering the prediction accuracy,
the risks of being false positive and false negative are quite different, especially for failures of
important systems such as jet engines. An asymmetric loss function is desirable during the
training of the degradation index model.

Motivated by these considerations, this paper aims to develop a flexible method for con-
structing a degradation index from multi-channel signals with automatic variable selection

while accounting for censored data and nonlinear relationships.

1.2 Literature Review and Contribution of This Work

Regarding the general path models for degradation data, the classic reference book is Meeker
and Escobar [3]. For the stochastic process models for degradation data, the Wiener process,
gamma process, and the inverse-Gaussian process have been used (e.g., [4]). Ye and Xie [5]
provided a comprehensive review of degradation models. These models are suitable for the
cases of one-dimensional degradation data. On the other hand, Meeker and Hong [6] and
Hong et al. [7] outlined some opportunities for using sensor data in reliability modeling and
analysis.

Regarding the recent development of degradation modeling, Zheng et al. [8] considered the
joint modeling of degradation data and lifetime data using the proportional hazards model.
Wang et al. [9] developed a Wiener process model to describe heterogeneity in degradation
data. Chen et al. [10] developed an integration method of multi-source accelerated degradation
testing for reliability evaluation. Duan et al [11] proposed an adaptive monitoring scheme
based on the hidden Markov model to predict the faults of systems with hidden degradation
processes. Kumar et al. [12] proposed a health indicator based on the state-space model to

access the degradation process. Wang et al. [13] constructed a stochastic multi-phase model



for multi-component systems. In summary, the modeling and analysis of degradation data is
an active area, which is carried out with the availability of degradation measurements.

In the area of degradation index building, Liu et al. [14] proposed a data-level fusion model
for developing composite health indices for degradation modeling and prognostic analysis.
Follow-up work includes [15, 16, 17, 18]. Recently, Kim et al. [1] proposed a latent linear
model that constructs a health index via multiple sensors and selects informative sensors.
Wei et al. [19] proposed a dynamic conditional variational autoencoder to learn the health
index. Kim et al. [20] developed a sensor selection framework that can be applied to neural
network-based models and improved in interpretability of neural network models. Li et al. [21]
developed a data-model interactive prediction method for multi-sensor monitored stochastic
degrading devices. However, existing methods can not handle censored data and conduct
variable selection at the same time, which is the gap that this paper aims to fill.

Regarding variable selections, the least absolute shrinkage and selection operator (LASSO)
penalty for regression-type problems was studied in [22]. Zou [23] developed the adaptive
LASSO to ensure variable selection consistency, and Yuan and Lin [24] considered the group
LASSO for efficient variable selections with meaningful interpretation. Under the context of
this paper, we focus on the adaptive group LASSO to select the important sensors.

This paper proposes a novel framework based on the cumulative exposure model to build
the degradation index with multivariate sensors, which is applicable to many engineering
systems equipped with sensors. The contributions of this paper are unique from existing lit-
erature. Specifically, the proposed framework can include censored failure time information
to train the model, which can preserve the information provided by the data. The proposed
framework can automatically select the most informative sensors related to the degradation
process using the adaptive group LASSO penalty. To enable sufficient flexibility in the non-
linear relationship between sensors and degradation path, spline-based methods are used to

describe the contribution of each sensor signal in the cumulative exposure.



1.3 Overview

The rest of this paper is organized as follows. Section 2 introduces the framework for degrada-
tion index building based on time-to-event data with multivariate signals. Section 3 presents
the parameter estimation with variable selection. Section 4 uses simulation to study the per-
formance of the proposed methods. The motivating example is used to illustrate the developed

method in Section 5. Section 6 contains conclusions and discusses areas for future research.

2 Building Degradation Index

2.1 Degradation Index

Consider sensor data with p degradation signals. Let x(t) = {[z1(s), -+ ,2,(s)] : 0 < s <t}
be the collection of information for the p signals from a unit, where x;(s) is the jth the
dynamic covariate information at time s, j = 1,...,p. For the jet engine data, those x;(-)’s
can be signals from various sensors and recorded operating conditions. We use the cumulative
exposure model (aka, the cumulative damage model) to construct the degradation index (e.g.,
see [25]). The cumulative exposure model is useful when the damage is accumulative, which
is the case for many engineering systems. For example, the damage to an automobile tire is
accumulative due to wear out.

The cumulative exposure u(t) for the covariate history x(t) is defined as,

u(t) :/0 h{z fj[xj(s);/@j]}dsv (1)

where f;[x;(t); B,] represents the nonlinear effect function of the signal () on the degradation
index and 3; are parameters that represent the influence of the covariate on the cumulative
exposure. Note that f;(-;3;) is defined on the range of the covariate, not on time t. Here,
h(z) maps the effect to a positive exposure, and the integral is from 0 to ¢, which guarantees
that u(t) is monotonically increasing and utilizes all the information in the history up to

time ¢. In this paper, we use the function h(z) = log[l + exp(z)]/log(2), which maps the



input z € (—00,00) to an output that takes value h(z) € (0,00). In literature, functions like
h(z) = exp(z) are used, but the function h(z) used here is numerically more stable.

When modeling the nonlinear effect of the jth signal f;(-;8;) in u(t), it is desirable to
make the function form flexible enough to capture potential nonlinearity in sensors’ effect.
Therefore, we use a non-negative spline function, called M-splines (e.g., [26]). For the jth
signal, let f;[z;(2); B;] = > o5 Bixvielz;(t)], where {7;i[z;(t)] : k= 1,...,m} are spline basis
of the M-spline of order three with (m — 3) interior knots and B; = (8j1,...,Bjm)" are the
coefficients of the basis. Let 8 = (8, ... 7,6;9)’ be the parameters for all p signals. Figure 1(a)
shows the basis of the M-spline of order 3 with 7 interior knots (m = 10). The magnitude of
(B can be used to identify which signals are more important for the degradation index u(t).
Although we used the M-splines for implementation, other splines such as the B-splines can
also be used, because most spline basis functions are quite flexible.

Note that u(0) = 0, and wu(t) is always monotonically increasing, which are the two proper-
ties of u(t) that satisfy the characteristics of a degradation index as introduced in Section 1.1.

Thus, in this paper, we propose to use u(t) as a degradation index.

2.2 Modeling Time to Failure and Degradation Index

Based on the cumulative exposure model, a unit fails at time 7" when the cumulative exposure

reaches a random threshold U (e.g., [25]). That is

U =u(T), (2)

where the function u(-) is defined in (1). We model log(U) by the largest extreme value (LEV)
distribution (e.g., [3]) with the location parameter log(«) and the scale parameter o > 0. The

cumulative distribution function (cdf) and the probability density function (pdf) of U are
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where Py (r) = exp[—exp(—=z)], and ¢rpv(xz) = exp[—z — exp(—x)]. As an illustration,
Figure 1(b) shows the pdf of LEV distributions with o« = exp(5) and ¢ = 0.01, 0.03, and 0.1.

The parameter « in the LEV distribution can be used as the target failure threshold for
the degradation index in (1), which is pre-fixed. This is because we want those failed units
with their degradation indexes u(t) centered around the failure threshold when they fail. The
scale parameter o serves as a measurement of how small the difference between u(t) and the
threshold « is if the unit is failed. Because we do not observe U, in practice, we use the
following threshold rule. That is, if u(t) > «, we say a unit fails, and if u(t) < «, we say the
unit is surviving (i.e., the operation status is normal). Through re-scaling, we can map the
degradation index to any range that is desirable for the particular application. For example,
using 100u(t)/a, one can map the normal range of the degradation index into [0, 100].

For building the degradation index, a suitable property of the LEV distribution is its
skewness to the right as shown in Figure 1(b). Thus, we allow the larger difference between
u(t) and « on the positive side so that when making predictions, we can potentially reduce false
negative error (i.e., falsely predicting failed units as censored). This is desirable because, in
our study, we focus on important equipment like the jet engine. Falsely predicting a failed unit
as censored (i.e., false negative) can result in great losses or even severe accidents. Note that
other location-scale distributions with the right skewness could also be considered. Through
the relationship between T" and U as shown in (2), the cdf and the pdf of T" are, G (t; 3) =
Prpv ({log[u(t)] —log(a)} /o), and gr(t; B) = {u'(t)/[ou(t)]}éLev ({log[u(t)] —log(a)} /o),
where the derivative of of u(t) is u/(t) = h < b1 ke BikviklTj (t)])

3 Parameter Estimation

3.1 Log-likelihood with Adaptive Group LASSO Penalty

We first introduce some notation for the data. From the sensor data, there are n units with p
degradation signals. Three sets of observable data are taken into consideration, which include
failure-time data, censoring indicator, and multivariate degradation signals. Let t; be the

failure time of the ith unit and let a;(t) = {[z;1(s), - ,2ip(s)] : 0 < s <t} be the collection
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Figure 1: The plots show the construction of the M-spline of order 3 with 7 interior knots (a),
and the pdf of LEV distributions with o = exp(5) and various values of o (b).

of p signals for the sth unit prior to and at time ¢. Here z;;(s) is the jth observed dynamic
covariate information at time s, ¢ = 1,...,n, j = 1,...,p, and 0 < s < t;. The observed
censoring indicator of the ith unit is denoted by d;, where d; equals to 1 if the 4th unit fails
and 0 otherwise. Then, the collected information from unit ¢ is denoted by {t;, ;, ;(t;)},
where i = 1,...,n, and let H = {{t;,0;,x;(t;)} :i=1,...,n} be the collection of the data.
Note that for training the degradation index, lifetime data with failures are necessary for our
methods.

To estimate the parameters 3, the likelihood for the ith unit is expressed as,

@) = ([0 gy [N BN (g, [lol(t] Lol 1)

ou(t;) o o

Note that this is not an actual likelihood, because the “response” wu(t;) is unknown. Instead,
the log-likelihood function serves as a loss function for the estimation purpose. The log-

likelihood function for the ith unit is

u(t;)

+(1—6;)log (1 ~exp {_ Lf;)]“}) | (3)

9
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Hence, the overall log-likelihood function is I(B|H) = Y ., l;(3). Then, we can obtain the
maximum likelihood (ML) estimates of 3 by maximizing the overall log-likelihood function.

Note that B are the unknown parameters, and o and o are set as constants because the
“response” u(t;) is unknown. From Figure 1(b) and the perspective of the likelihood function,
the smaller value of o is, the larger value of the pdf of a failure is. Besides, inside the ¢pgy(+)
and Ppgy(-), we have the log(u) — log(a) = log(u/c) term. In this case, a and 3 can take
different combinations of values so that u/a keeps the same, which yields the same likelihood.
Thus, it is necessary to let a and o be given constants to avoid identifiability issues.

As discussed in Section 2.2 and from (3), it can be seen that u(t;) ~ « if the ith unit is
a failure, and w(t;) < « if the ith unit is censored. That is, the role of « is to set the target
failure threshold. Then, the role of ¢ is to measure how close the difference between wu(t;)
and «. So for the value of o, ideally, we want o to be a small enough value to allow the
degradation index of failed units to end close to the target failure threshold «. For the value
of a, in theory, we can set any value for the target failure threshold «. Then B can adjust
correspondingly to provide a degradation index between 0 and «. In applications, setting «
close to the mean of failure times helps the convergence of the estimation algorithm.

Although multiple sensors are available to assess the degradation process, not every sensor
collected has a significant contribution. So we integrate variable selection in the model to find
out informative sensors. Since there are multiple M-splines basis to represent one sensor, we
want to penalize coefficient parameters associated with one sensor simultaneously when that
sensor does not contribute. Therefore, we adopt the adaptive group LASSO method in [27] to
conduct variable selection. The adaptive group LASSO approach penalizes parameters in the
same group simultaneously. In our model, the parameters in M-splines for the same variable
are treated to be in the same group. That is, 8; and 3, are in different groups for any i # j.
From the perspective of variable selection, the jth sensor variable has no effect on w(t) if all
elements in B, are significantly small. The adaptive group LASSO considers the penalties on
different grouped parameters have different effects. Let w; be a given weight of the penalty for

the jth variable, where w; > 0 and j = 1,...,p. Then, the penalized negative log-likelihood
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function is

L(B;\) = —U(BIH) + AZ%—H@HQ, (4)

where A > 0 is a tuning parameter and ||3;|] = /> /", 51219 is the L, norm of the vector 3;.

Typically, the weights are given by setting

.57 if 1B, >0
Y, 1185112 ||[~3JHQ 5)
o0 if |[B,]]2 = 0,

where Bj is an estimate of 3; and v > 0 is a hyper-parameter. Here we follow the practice
in [27] and define oo - 0 = 0. That means the model does not select sensor j if its coefficient

estimates Ly norm is zero (i.e., HBJHQ =0).

3.2 Optimization of Objective Function

The optimization of (4) is challenging. Here we discuss some strategies used in the optimiza-
tion of the objective functions. To optimize the objective function, we use the Nelder-Mead
algorithm in the R package nloptr. Due to the model complexity and non-convexity, there
exist multiple local optimal of the coefficients. However, in our study, the main focus is to
predict the status accurately. Therefore, even though there are local optimal points, it is of
less concern as long as the optimization allows us to predict units’ status accurately.

One thing to notice is the influence of ¢ value in the optimization procedure. If o is
prefixed at a small value (e.g., 0.01) at the beginning of the optimization, the algorithm could
be easily trapped at local optima. As shown in Figure 1(b), when ¢ is small, the pdf of LEV is
highly concentrated around the location parameter log(«). That means a unit with log[u(t;)]
at the event time that is close to the threshold log(«) has a high probability. While a unit
which degradation index at the event time is far away from the threshold has almost zero
probability, thus, its contribution to the likelihood function is small. During the optimization
process, with a small o, it is possible that the 8 is updated to an estimation that some units’
degradation paths get almost 0 probability. So the contribution of these units to the objective

function is neglected in the following updates of the 3 estimation. Only units with log[u(t;)]
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that are relatively close to log(a) have the chance to further move close to the threshold.

One approach to avoid the local optima is to set a larger value for o at the beginning of the
optimization process, and then decrease it gradually to the prefixed lower bound. By setting
o to a large value, say ¢ = 1, the information of all units is equally treated, regardless of the
distance between the value of log[u(t;)] and the location parameter. After a certain number
of iterations, the unit’s log[u(t;)] moves closer to log(«), then we can decrease the value of
o by a small amount and update 3 estimation. Repeating this step until o decreased to the
fixed constant can help to avoid the local optima problem. Instead of manually determining
a sequence of o to decrease, we add it to the optimization parameters.

Let o be the prefixed lower bound of . We consider the transformation log(c*) = log(o —
07). Thus, 0 = expllog(c*)] + 0;. Then we optimize log(c*) and 3 simultaneously. This
transformation can always impose a lower bound for the estimation of . Although we include
log(c*) in the parameter estimation, the purpose is not to obtain an estimation of log(c*). The
reason is that o is not identifiable and it always becomes smaller to allow a larger likelihood.
Via the iterations, it will get to its lower bound eventually. Thus, we include ¢ in the parameter
estimation so that it can smoothly decrease and help to avoid the local optima of 3 estimation.

With a larger value of ¢ in the early stage of the iterations, the benefit of the asymmetric
property of the LEV distribution is not evident. We introduce the following remedy to ensure
the estimates of u(t;) are moving towards the right direction during the early stage of the
optimization iterations. As discussed above, when building a degradation index, it is desirable
that u(t;) = « if ith unit fails and u(¢;) < « if éth unit is censored. Thus, we further impose

those two constraints on the objective function. That is, we modify the objective function as,

M(BA) = LB:N) +n Y difla = u(t)]}* + (1= 6:){[u(t:) — a4} (6)

i=1

The positive part function is [u(t;)—a], = max (u(t;) — «, 0) and the penalty 71 is non-negative.
Therefore, to encourage the estimated wu(t) satisfying the degradation index characteristic (i.e.,
u(t;) = a if ith unit fails and u(t;) < «a if ¢th unit is censored) as well as perform variable

selection, we work with the objective function M (3, \) as shown in (6).
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3.3 Determining Tuning Parameter

In parameter estimation, we need to determine the tuning parameter A in the objective func-
tion (6). The k-fold cross-validation (k-CV) approach is used. Because the main goal of our
degradation index model is to accurately predict the status of testing units, especially for
the failed units, we use both the false negative error rate and total error rate as the criteri-
on to select the tuning parameters. Let FNR and FPR be the averaged false negative and
positive error rates across the k folds, respectively. Then the averaged total error rate is
TER = FNR + FPR. For a sequence of values for A, denoted by {Ai,...,A,}, the correspond-
ing error rates are {TERy,..., TER,}, and {FNRy,...,FNR,}. Let ky = arg min, FNR,; be
the index of tuning parameter that minimizes FNR. We want to select the tuning parameter A
so that FNR is minimized, while TER is kept at a relatively low level. That means we do not
want to sacrifice FPR to achieve the smallest FNR. Therefore, the selected tuning parameter

is Ay, of which the index s is determined by

argmin, FNR, if TERy, < 0.2,
s = (7)

arg min, TER, otherwise.

In this way, when a A minimizes FNR at the cost of FPR, we will switch to the A that
minimizes TER to achieve a balance between FPR and FNR.

The parameters 7, v, and o; are treated as hyper-parameters. We do not tune n because
the role of the n penalty term is to help w(¢) move towards « at the beginning stage. After
u(t) is close to «, the effect of the asymmetric property of LEV kicks in and the shrinkage
of ¢ towards o; serves the same role. Therefore, we only include 1 penalty term to help the
algorithm converge and set a moderate large value for n. In particular, n is set to be 5. We
fix the hyper-parameter v = 2 in the calculation of the weights in (5), which is as a common
practice.

The lower bound of scale parameter o; is set to be 0.01 in this paper. In practice, the o,
can be set by users. Ideally, the smaller value of g; has better performance of the degradation

index. However, the smaller value takes more computation time. In our cases, we set it as
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o; = 0.01, because when o = exp(5), the 99% tolerance interval of the LEV distribution will be
(145.9,156.5), using the quantile of the LEV distribution. This interval is (—2%,5%) around
the target exp(5), which is narrow enough. Regarding the selection of the number of splines,
the strategy is setting it large enough to allow flexibility. Then we use the adaptive group
LASSO penalty to regularize the estimation and let the penalty shrink those less important

SEensors.

3.4 Parameter Estimation Procedure

In this section, we describe how to obtain the estimates ,[Ai based on the training set, using
the adaptive group LASSO procedure. With initial estimates Bj, we obtain the weights w;, as
in (5) for j =1,--- ,p. We first apply the k-CV in Section 3.3 to obtain the tuning parameter
As as in (7). The average of the 3 estimates from each fold in k-CV can also provide a warm
starting point for the final estimate of 8. Similar ideas are also used in literature (e.g., [28]).
With the best selected \,, the warm starting point for 3, and the entire training set, we
apply the adaptive group LASSO procedure to obtain the final estimates of 3 in (6), which is
denoted by B The statistical inference and variable selection results can be obtained based
on B

The question remains how to find the initial estimates Bj’s. Huang et al. [27] suggested
that one can use the group LASSO procedure (i.e., without adaptive weights) to find the
initial estimates of parameters. For the group LASSO estimates, the objective function in (6)
is simplified by setting w; = 1,5 = 1,--- ,p. Similarly, we apply the k-CV to find the best
tuning parameter Xs for the group LASSO, and use the averaged estimates as the warm starting
points for the final estimates of the group LASSO procedure, denoted by Bj7j =1,---,p.

For the initial values of the k-CV of the group LASSO procedure, we have to use cold
starting points as we do not have much information about the parameters at this step. We
randomly select the starting points that satisfy some desirable properties in the degradation

scenario. The details of selecting starting points are given in Supplementary Section 1.
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4 Simulation Study

In order to evaluate the performance of the proposed degradation index building method,
we use various simulated scenarios to compare our model with the model without variable
selection and the model that assumes linear sensor effect. We investigate the average times
that our model properly selects variables and the average prediction accuracy (i.e., correctly

predicts the status of a unit as a failure or censored one).

4.1 Simulation Setup and Procedure

In this simulation study, we want to generate datasets similar to the jet engine data to demon-
strate the performance of our degradation index building framework. To generate the simula-
tion data, we first consider the signal sensors. In the simulation study, we generate 10 sensor
signals similar to the jet engine signals within time interval [0,350]. We assume each signal
is a function of time with some variations. That is X;(t) = g;(t) + €;(t),j = 1,...,10. The
function g¢;(t) can take forms such as constant, linear, quadratic, log functions, and the error
term €;(t) follows a normal or a uniform distribution. Supplementary Figure 1 presents the
example of simulated signals for 10 units. The signals can be increasing, decreasing, or ran-
domly fluctuate over time. After obtaining the sensor information, the basis functions of the
M-spline with 2 interior knots are constructed based on the signals. So we have 50 coefficient
parameters for the simulated data. To test the variable selection capability of our method,
we assume that 5 out of 10 signals cause the units to fail, and the rest 5 have no effect on the
failure process. Hence, we set the values of parameters of the first 5 signals to have effects on
the degradation index. Among the five signals with effect, we assume the second and fourth
are linear functions of time, the first and the fifth are quadratic functions of time, and the
third one is assumed to follow a normal distribution. With the true parameter coefficients 3
and the simulated sensor signal history, we can compute u(t) using (1).

The next step is to generate the failure-time data. Let the time to failure be T =
min{C, 350}, where C follows a Weibull distribution. The Weibull shape and scale parameters

are determined to ensure the proportion of failed units does not exceed 90%. Here we set the
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upper bound for 7" to be 350 to mimic the jet engine data. We set the failure threshold as
a = exp(5), and the censoring indicator is defined as § = 1 if u(T") > exp(5) and 6 = 0 if
u(T') < exp(5).

To test the procedure under different situations, we consider various n and 3 to control
the number of total units and effects degree of covariates. The number of units is chosen as
n = 50,100, 150, 200, 250, 300. Because we have 5 splines for each covariate, the corresponding
B, is of length 5 for j = 1,...,10. Assume that the last 5 signals do not affect the degradation
process, so B = (8}, 85, B B),3s,05:)". We consider four scenarios and the coefficients
are listed in Supplementary Table 1, which are (A): Contributions of effective covariates
(x1(t),...,x5(t)) are on the same magnitude; (B): The signals with quadratic function forms
(i.e., z1(t) and x5(t)) have larger effects; (C): The signals with linear function forms (i.e., z2(t)

and x4(t)) have larger effects; and (D): Only the random term (i.e., x3(¢)) has larger effect.

4.2 Method Comparisons

In order to better understand the performance of the proposed model and procedure, we
compare the proposed model with the model without variable selection, and with the model
considering only linear relationship for the covariate effect.

For the model without variable selection, A is set to 0 in (6). The objective function is,

M(B) = ~UBIH) + 1) df[a —u(t)]}* + (1 = 6:){[u(t:) — a4}

If we assume the covariate effect is in a linear form, then degradation index becomes u(t) =

fg h{ ];:1 :Ej(s)ﬁj} ds. We also use adaptive LASSO to perform variable selection and the

objective function is the same as (6) but with u(t) replaced by u(t).

4.3 Simulation Results

We generate simulation data based on the procedure described in Section 4.1 and apply three
different models to the simulated data. We denote our proposed model as DI-VS, the model

without variable selection as DI-NVS, and the model assumes linear sensor effect as DI-VSL.
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In this simulation, the target failure threshold is set to be a = exp(5). For each sample size n
and coefficient parameter vector 3, we repeat the trial 200 times. For each trial, we split the
simulated data into 80% training set and 20% testing set. The tuning parameter is selected
by 5-fold cross-validation on the training set.

Regrading to the predictions of unit status, although the target failure threshold is «, in
practice, due to training errors. If we use the target failure threshold « as the threshold, some
failures with u(t) < « are reported to be surviving units. In practice, one can use a threshold
that is slightly smaller than «, which typically yields better classification results. We call this
the practical threshold &. One can choose &, = exp [log(a) + z,0], where z, is the quantile
function of the standard LEV distribution. In the simulation study, the classification uses the
Q.01 threshold. The practical threshold separates the two categories better than the target
failure threshold. For the purpose of prediction, we suggest using the practical threshold for
predicting the status of testing units.

Figure 2 shows the average FNR, FPR, and TER as the number of units increases. Al-
though in general FNR decreases for all three models, DI-VS has the most consistent perfor-
mance across various scenarios and the number of units. When the number of units is small
(i.e., less than 100), the FNR of DI-NVS is the largest among the three models, which shows
the benefit to consider variable selection, especially when n is relatively small. The FNR for
DI-VSL is large in Scenarios A and D, even when the number of units is large. For FPR, in
Scenarios B, C, and D, FPR does not change a lot with the size increases. In Scenario A,
DI-NVS has the smallest FPR across the number of units while DI-VSL has the largest. The
results show that ignoring nonlinear relationships can lead to larger errors in some scenarios.
With respect to the TER, DI-VS has the smallest errors for almost all scenarios.

Regrading the variable selection capability, Figure 3 shows the average number of correctly
specified variables, effect variables, and no effect variables identified by the model versus the
number of units (n) for different methods and scenarios. The actual number of effective
variables is 5, no-effect variables in the model is 0, and correctly specified variables are 10.
Ideally, we want the model to include all 5 effective variables and zero no-effect variable.

The number of correctly specified variables includes the number of effective variables that
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remained in the model and no-effect variables excluded from the model, which should be 10.
Compared to DI-VSL, DI-VS tends to include more effective signals in the model when the
number of units is large in Scenarios A and D. For Scenarios B and C, the number of effect
signals remained in the model is close to DI-VSL when the number of units is large. For
signals that have no effect on the underlying degradation process, DI-VS can exclude more
signals across all four scenarios and various numbers of units. In general, the DI-VS model
has more correctly specified variables across different simulation scenarios compared to the
DI-VSL model.

Overall, the simulation results show that our proposed model has better accuracy in pre-
dicting a unit status for various scenarios and numbers of units. It can also exclude signals
with no effect from the model. Supplementary Section 3 also contains some further simulation
results which show that the proposed method can select the most informative sensors and is

robust to different censoring rates.

5 Application

5.1 The Illustrative Application

In this section, we apply the developed methods to the jet engine sensor data ([2]). We first
provide a brief introduction to the jet engine data. For illustration, we use a subset that
contains 200 units with 100 failures and 100 surviving units. The failure-time data give the
cycles to failure for failed units and time in service for surviving units. The multi-channel
sensor data give time-varying signals with cycles for all 200 units. The dataset includes 21
sensor outputs that measure the system’s physical and functional conditions. There are 8
sensors that record temperature and pressure at the fan inlet and different outlets and 8
sensors that capture various fan speeds and coolant bleed in the simulation model. Besides,
the measurements of pressure ratio, fuel flow ratio, bypass ratio, burner fuel-air ratio, and
bleed enthalpy are also provided in the dataset. In the jet engine simulation data, there are
16 multi-channel sensors after removing those with constant signals. Figure 5 illustrates the

cycles to failure for 20 units with their corresponding 16 multi-channel signals.
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Figure 3: Average number of correctly specified variables, effect variables, and no effect vari-
ables identified by the model versus number of units (n) for different methods and scenarios.
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Figure 5: Plot of a subset of the time to event (a), and multi-channel signals of the 20 units
presented by different colors (b).

Except for the model introduced in Section 4.2, in the real application, we also compare
our model with existing models in literature [1], which is denoted as DI-KSL. The details
of this method are introduced in Supplementary Section 4.1. The prediction ability of each

model are investigated and the results are summarized in Section 5.2.

5.2 Result Comparisons

For the model comparison, we randomly split the dataset into 80% training set and 20%
testing set while keeping the proportion of failed units as 50% in both training and testing
sets. We apply each of the four models DI-VS, DI-NVS, DI-VSL, and DI-KSL to the training
set and then use the trained model to predict unit status in the test set. In DI-VS and
DI-NVS model, we use 10 spline basis to represent each of the 16 sensors, so in total, we have
160 coefficient parameters. The target failure threshold is set as a = exp(5). The tuning
parameter is selected by 5-fold cross-validation. When the sample size is relatively small (e.g.,
200 in this application), it is generally not recommended to go with a large number of folds.
Thus, five was a reasonable choice. For DI-KSL, we only use the failed units in the training

set to build the model due to the model property. For each method, we repeat the splitting
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50 times and the results are summarized as follows.

Figure 4 presents the boxplot of the prediction errors over 50 splits on the testing set of
four models and Table 1 provides the average prediction error over repetitions. We can see
that DI-VS has the lowest averaged total error and FPR among the four models. The DI-VSL
has zero FNR. However, its FPR is unusually large. One potential reason is that DI-VSL fails
to capture the nonlinear trend in the data. This can cause the estimation of log(c*) to fail to
shrink as expected, which results in the model having errors on one side. The DI-KSL model
has the second smallest average FPR. However, its FNR is 4% larger than our proposed
model DI-VS. One possible reason is that the DI-KSL model neglects the censored unit’s
information when training the model. Except for the DI-VSL model, the other three models
have a similar inter quantile range for prediction errors.

Substituting the estimates into (1), the degradation index over time can be obtained for an
individual unit. Figure 6 presents the degradation index built with our proposed framework
DI-VS from one split. In this plot, in the testing set, all censored units are below ag g1
threshold and most failed units are over that threshold. We can see from the plot that using
a practice failure threshold allows more true failed units’ u(t) to reach the threshold.

Regrading to the variable selection, in the above jet engine data analysis, all 16 sensors
are kept by the DI-VS model. However, as we have already seen in the simulation study,
when the number of units in the model becomes larger, DI-VS tends to keep more variables
in the model even some of them are no-effect. Therefore, we take a small subset of the jet
engine data and test the model’s variable selection ability when n is small. Supplementary
Figure 6(a) shows the proportion of each variable being excluded over 20 replicates when the
number of units changes from 40 to 80 with 10 increment. We can see that when the number
of units is relatively small, some sensors such as NRf, altitude, and Nf are excluded from the
model with high probability. When n = 40, each variable is excluded from the model at least
once. However, as n increases, there are variables that can be remained in the model over all
20 replicates.

To better understand the sensors’ effects on the degradation path, we use the accumulated

local effects (ALE) plot in [29] for visualization. ALE plot is a visualization approach to present
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Table 1: The average FNR, FPR, and TER for the DI-VS, DI-KSL, DI-VSL, DI-NVS models
based on 50 data splits. Here the practical threshold is ag.g;.

Model FNR FPR TER
DI-VS | 0.030 0.026 0.057
DI-KSL | 0.070 0.034 0.104
DI-VSL | 0.000 0.645 0.645
DI-NVS | 0.040 0.040 0.080

the predictors’ main and secondary-order effects in complex black box supervised learning
models. We provide the technical details and the ALE plots in Supplementary Section 4.2.
The ALE plot in Supplementary Figure 6(b) shows that the temperature at LPT outlet (T50)
and pressure at HPC outlet tend to have a constant influence when the measurements are low
and a larger effect on the damage level when measurements increase, while the coolant bleed

(W31) has decreasing effect before a certain point then the effect becomes constant.

6 Conclusions and Areas for Future Research

In this paper, motivated by the jet engine multi-channel sensory data, we propose a new frame-

work to build the degradation index based on the cumulative exposure model. The framework
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can handle censored data and conduct variable selection automatically. The comprehensive
simulation studies and jet engine data analysis show that our approach has flexibility and
advantages. It is also demonstrated that the performance of the proposed framework is more
robust than other models. The DI-VS model has consistently good prediction accuracy re-
gardless of the dataset size and scenarios.

The flexibility of the proposed framework makes it applicable to many complex engineering
systems equipped with multiple sensors. In practice, based on the knowledge about different
applications, the way to model the impact of sensors f; (z;), and how to conduct the nonlin-
ear transformation h(z) can be adjusted accordingly. Regarding the usage of the proposed
degradation index, this paper focuses on the product status prediction. Other potential usage
includes the product health assessment and prediction for the remaining useful life.

There are a few limitations of the proposed framework. One of the limitations is that the
model tends to keep no-effect sensors when the number of units n is large. A possible reason
is that we use the log-likelihood function in the objective function. When the number of units
is large, as long as the sensor can provide a little contribution to the likelihood, adding up
these contributions of n units can lead to large minimization of the objective function. It will
be interesting to study the adaptive elastic net penalties or involve the number of units in
the penalty term. Another limitation is that the proposed model can only handle numerical
covariates. It will be useful to extend the current framework to deal with categorical variables.

There are some other future directions for the proposed model. In this paper, we consider
an additive way to model all sensors’ impact. However, in reality, the way that sensors influ-
ence the degradation process can be much more complex. It will be interesting to allow sensors
interactions in the model. Besides, this proposed framework requires strict monotonicity of
the degradation index. If the Wiener process is used, then there needs not to be such a strict
requirement for monotonicity as long as there is an overall trend. It will be interesting to
study degradation index building with less requirement on monotonicity. Multiple degrada-
tion characteristics modeling has been popular (e.g., [30, 31]). Building multiple degradation

indexes for data with multiple degradation characteristics is also worth investigating.
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The following supplementary materials are available online.

Additional details: Additional details for the algorithm, simulation study, and data analysis
(pdf file).
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