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Abstract
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1 Introduction
We are concerned with the following trace ratio maximization problem

max fp(X), (1.1a)
XTX=1;

where 1 < k < n, Iy is the k x k identity matrix, and

trace(XTAX + XTD)

[trace(XTBX)]? ° (1.1b)

fo(X) =

A, B € R™" are symmetric and B is positive semi-definite with rank(B) > n — k,
D € R™ matrix variable X € R"*¥ and parameter 0 < 6 < 1. The condition that
rank(B) > n — k ensures the denominator of f3(X) is always positive for any X such
that XTX = I.

Problem (1.1) is a maximization problem on the Stiefel manifold [1]:

Ok =(x e R* . xTx = ).

Previously studied special cases include 1) D = 0 and 6 = 1 from Fisher’s linear
discriminant analysis (LDA) [31, 46, 47] in the setting of supervised machine learning;
2) A =0and 6 = 1/2 from orthogonal canonical correlation analysis (OCCA) [48];
3) B = I, or & = 0 for which (1.1) is a fundamental problem in numerical linear
algebra, optimization, and applied statistics [5, 8, 12—-14, 16, 18, 28, 32, 49-51]. For
our purpose in Sect. 5, problem (1.1) will appear as a subproblem that has to be solved
repeatedly for a novel orthogonal multi-view subspace learning framework.

Our goal is to investigate problem (1.1) as a maximization problem on the Stiefel
manifold @"*¥ in both theory and numerical computation. Our major contributions are
as follows: (1) We transform the KKT condition of (1.1) with respect to the Stiefel man-
ifold equivalently into a nonlinear eigenvalue problem with eigenvector dependency
(NEPv), a term that was coined in [6]; (2) We establish crucial necessary conditions,
beyond the KKT condition, of local and global maximizers in terms of the extreme
eigenvalues of the NEPv; (3) We characterize the role of D in how precisely it pins
maximizers down, which is important because when D = 0, any maximizer repre-
sents a class of many associated with an element of the Grassmann manifold ¥ (R"),
the set of all £ dimensional subspaces of R"; (4) A numerical method based on the
self-consistent field (SCF) iteration for the NEPv with post-processing is proposed to
efficiently solve (1.1) as a consequence of our theoretical results, and the method is
always convergent; 5) As an application, we establish a new orthogonal multi-view
subspace learning framework and solve it alternatingly with our method for (1.1)
serving as the computational workhorse.

The rest of this paper is organized as follows. In Sect. 2, we derive the KKT
condition, its associated NEPv, and important theoretical issues to lay the foundation
for the rest of the paper. In Sect. 3, we investigate the role of D in pining down the
maximizers. In Sect. 4, we propose our SCF method for problem (1.1) and conduct
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Trace ratio optimization with an application...

a detailed convergence analysis. An application to multi-view subspace learning is
carried out in Sect. 5. Results of numerical experiments are reported in Sect. 6. Finally,
we draw our conclusions in Sect. 7.

Notation. R”*" is the set of m x n real matrices and R” = R"*L, [, € R"*" jg
the identity matrix, and 1,, € R" is the vector of all ones. ||x |2 is the 2-norm of vector
x € R". For B € R™*", R(B) is the column subspace and its singular values are
denoted by o;(B) fori = 1, ..., min{m, n} arranged in the nonincreasing order, and

rank (B) rank (B)

1Bl =o1(B), 1Bl = | > [6:(B IBlce = 3 oi(B)
i=1

i=1

are the spectral norm, the Frobenius norm, and the trace norm (also known as the
nuclear norm) of B, respectively. For a symmetric matrix A € R"™", eig(A) =
{Xi(A)}7_, denotes the set of its eigenvalues (counted by multiplicities) arranged in
the nonincreasing order; A > 0 (> 0) means that A is positive definite (semi-definite).
MATLAB-like notation is used to access the entries of a matrix: X;.; x.¢) to denote
the submatrix of a matrix X, consisting of the intersections of rows i to j and columns
k to ¢, and when i : j is replaced by :, it means all rows, similarly for columns.

2 KKT condition and associated NEPv

We start by finding out the first order optimality condition, also known as the KKT
condition, for problem (1.1). To that end, we will need to find the gradient of fy on
Stiefel manifold ©"*¥. It is known that the gradient of f; on the manifold at X is
given by [1, (3.35)], [8, Corollary 1]

3 fo(X 3 fo(X 3 fo(X
grad fy gnxk (X) =17X< ];9)(( )> = ];9; ) — X sym <XT ];")(( )>, 2.1

where ITx(Z) := Z — X sym(X"Z) and sym(XTZ) = (X"Z + ZTX)/2. With (2.1),
computing the gradient is just a matter of computing the partial derivative d fy (X)/0 X
for which all entries of X are treated as independent variables. We have

dfa(X) 2 [

D
90X  [trace(XTBX)]? AX+ - —0fi (X)BX1| ,

2

where f1(X) is simply fp(X) in (1.1b) with & = 1. Finally, we obtain the KKT
condition grad fygnxx (X) = 0, or equivalently,

2 D _
= |AX+Z —0A/X)BX|=XA 22
[trace(XTBX)]G[ 5 0N } ’ (2.22)
X e 0", AT = A e RF*K, (2.2b)
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An explicit expression for A can be obtained by pre-multiplying Eq. (2.2a) by XT.
Equation (2.2a) does not appear in the form of an NEPv because of the isolated term
D. Next, we introduce

E(X) = 2 DXTEXDL o hix)s 2.3)
~ [trace(XTBX)]? 2 : '
and consider the following NEPv
E(X)X = XA, X € Ok, (2.4)

Pre-multiply (2.4) by XT to get A = XTE(X)X, which is always symmetric.

Remark2.1 A KKT condition equivalent to (2.2) can also be obtained by working
with In fy(X) = In(trace(XTAX + XTD)) — 0 In(trace(XT BX)).

Our first theorem establishes an equivalency relation between the KKT condition
(2.2) and NEPv (2.4).

Theorem 2.1 X € O"*k js a KKT point of (1.1), i.e., it satisfies (2.2), if and only if it
is an orthonormal basis matrix of a k-dimensional invariant subspace of E(X) and
XTD is symmetric.

Proof Suppose that X satisfies (2.2). Pre-multiply (2.2a) by XT and then solve for
XTD to conclude that XT D is symmetric. Next, upon using XTX = I;, we have

- -~ DTx
XD'X =X A+ —

EX)X = XA
X + + [trace(XTBX)]?

1
[trace(XTBX)]?
=: XA,

which gives (2.4). On the other hand, suppose that (2.4) holds and X T D is symmetric.
We expand (2.4) and rearrange the terms to get

1
" [trace(XTBX)]?

DX -
=X(A——F+—— ) = XA,
[trace(XTBX)]?

which gives (2.2a) and also Ais symmetric because both A and DTX are symmetric.

LHS of (2.2a) = XDTX + XA

O
The following lemma plays a key role in our analysis later in this paper, where and
henceforth

trace(XTAX)

- [trace(XTBX)]?" 2.5)

8o(
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Lemma2.1 For X, X € Q< jf
trace()?TE(X)f) > trace(XTE(X)X),

then

trace(XTDXTX)

X 5(\ B —— —
fo(X) +y < go(X) + [trace(XTBX)]? '

where o« = trace(XTAX), § = tace(X'D), B =
B = trace(XTBX), and

y = %[(1 —0)B+68—p' B
Furthermore, if inequality (2.6) is strict, then so is inequality (2.7).
Proof It can be verified that
trace(XTE(X)X) = 2(1 — 0) fo(X).
Leto = trace()’(\TAf(\). By assumption (2.6), we have

2(1 — ) fo(X) < trace(XTE(X)X)

tbl\)

(1— 9)f9(X)/3 <@+ trace(XTDXTX) — 0.f1(X)B,

| =

(1—9)f9(X)A = —0/0(X)

’ng| Q)

=

implying
~ trace(f(\TDXTS(\)
g0+ = = o0+,

where

’30 31—0
V—(I—Q)fe(X)B\ +0f9(X),3 = Jo(X)

oa+6 a+8 ~ 45 a+td
=(1-6 +6—= -
=m0 g’ po

=-|a-op+eB-p ).

o +4
BB

This proves inequality (2.7), and it is strict if inequality (2.6) is strict.

(2.6)

2.7)

trace(XT BX),

2.8)

— [ot + trace(XTDXTX) — 0 £, (X)ﬁ],

trace(XTDXTX) Bl
,39 ’31—0 ’

O
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Lemma 2.1 israther general and valid forall & € R actually. As the first consequence
of Lemma 2.1, we have the next theorem, where 0 < 6 < 1 is imposed to ensure y
of (2.8) is nonnegative. It lays the foundation of our SCF iteration for NEPv (2.4) in
Sect. 4, which iterates from the current approximation X to the next one X, while the
objective value is increased.

Theorem 2.2 Given X € Q"*k, suppose either 6 € {0, 1}, or trace(XTAX+XTD) >
0 when 0 < 6 < 1. If (2.6) holds for X € O"*K then

= trace(f(\TDXTff\)
fG(X)SgG(X)+m 2.9
< 3'(* ”gTD”trace _ g 210
< go( )+m—fe( ), (2.10)

where X = 5(\(UVT) defined in terms of SVD XTp=vUuxvT [15]. Furthermore, if
inequality (2.6) is strict, then so is the first inequality in (2.9).

Proof InLemma 2.1, we note y = 0 inthe case 6 € {0, 1}, and inthe case 0 < 6 < 1
we will have y > 0 because o + 8 = trace(XTAX + XTD) > 0 by assumption and'
1-6)p+ 93— ,BI’GBP > (. Hence inequality (2.9) holds. To prove the inequality
in (2.10), we note, by von Neumann’s trace inequality [42] (see also [17, p. 182], [36,
6.81]), that

k k
trace(X"DX"X) <Y " 0i(XT D)oy (X"X) < Y " 0i(X" D) = | X" Dllace.
i=1 i=1

yielding the inequality in (2.10). To see the equality in (2.10), we notice that
X™D = VUTX™D = vXVT yielding trace(XTD) = || XTD|qace. and that the
trace is invariant with respect to similarity transformations. O

Remark 2.2 Tn Theorem 2.2, if also XTD > 0, then U = V and X = X.

The proof of the inequality in (2.10) above can be adapted to yield the next lemma.

Lemma 2.2 Given X € O™k we have

”XTD”trace

ootk fo(XQ) = 80X) + (0 S XTBXT

and Qopt = UVT is a global maximizer, where U, V. € QK< are from the SVD
XTp=Uxv.

! This is a classical inequality. A quick proof goes as follows. Suppose B > 0 (otherwise the inequality
clearly holds). Let x = E/ﬂ. It suffices to show (1 — 6) + 6x > x? for all x > 0. Since x? is concave
for 0 < 0 < 1, the curve of x? as a function of x is at or below its tangent line at x = 1 and hence
x? < 1+46(x — 1), as was to be shown.
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Lemma 2.3 ([48, Lemma 3]) Forany H € R*¥, we have | trace(H)| < Y°F_, 0;(H).
If | trace(H)| = Zle o0;(H), then either H = 0 when trace(H) > 0, or H < 0 when
trace(H) < 0.

Our next theorem presents necessary conditions for local or global maximizers of

(1.1).
Theorem 2.3 Let Xopt € Q™K be a local or global maximizer of (1.1).

(@) If Xopt is a global maximizer, then X T D>o0;

opt
(b) If XgptD > 0, and if also trace(XgptAXopt + XgptD) > 0 in the case when

0 < 0 < 1, then Xop is an orthonormal basis matrix of the invariant subspace
associated with the k largest eigenvalues of E(Xqpt).

Proof If Xop € 0"** is a global maximizer, then by Lemma 2.2

1 X oot D llrace

[trace(XgptBXopt)]Q ’

Jo(Xopt) = le&f(xk Jo(Xopt @) = 8o (Xopt) +

implying trace(XgptD) = ||X(TptD||trace, which in turn implies X;FptD > 0 by
Lemma 2.3. This proves item (a).

Next we prove item (b). Since Xop¢ is a KKT point of problem (1.1), R(Xop) is an
invariant subspace of £ (Xopt) by Theorem 2.1. Therefore there is an orthogonal matrix
Q such that the columns of X Q = [vy, v2, ..., vi] are eigenvectors of E(Xopt)
associated with its eigenvalues (1 > pup > -+ > .

Let E(Xopt) = U AUT be the eigen-decomposition of E (Xopt), where U =
(uy, us, ..., u,), UTU = I,, A = diag(A1, A, ..., Ap) With Ap > Ao > -+ > A,
Further, we can choose this eigen-decomposition such that v; = u;; and u; = 2;;
for 1 < j < k. It goes as follows: iy = min{i : A; = w1} and recursively,
ij =min{i : A; =uj, > ij_l}fOI'j =2,...,k. Thus,

Xopt = (Ui, - ui,_,, u;, 107, (2.11)

Assume, to the contrary, that R(Xop) is not an eigenspace associated with the k
largest eigenvalues of E(Xopt). Then uy = A;, < Ar. Necessarily iy > k. Atleast one
of uj for 1 < j < k does not appear among v; = uj for 1 < j < k and let u; be
such one. Consider for0 < ¢ < 1

X8=[uil,...,u,’kfl,\/l—82uik+8sug] 0T (2.12)

which goes to Xopt as £ goes to 0, where s = &1 such that s u}Dqk > 0 and gy, is the
last column of Q. It can be verified that X;FX ¢ = I and

k
trace(X] E(Xop) Xe) = Y Ai; + &7 (he — Aig)

J=1
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> trace(X o E(Xopt) Xopt) + €7 (k. — Aq,)
> trace(X gy E (Xopt) Xopt)- (2.13)

By Lemma 2.1 and noticing thaty = 0forf € {0, 1} and y > 0 for 0 < 6 < because
trace(XoptAXopt + X OptD) > 0 is assumed for the case, we have

trace(XT DX 3, Xe)

[trace(XTBX)1?

Jo(Xopt) < go(Xe) + (2.14)

We get from (2.11) and (2.12) that

Xgth = QOlu;,, ...,uik_l,uik]T [uil, cos Ui N1 —&%u, + 8su4] o’
= Q diag(1,1,...,1,V/1—¢2) QT,

=:2

and

trace(XTDXgths) = trace(X;rDQ.Q QT) = trace(QTXSTDQ.Q)
k—

1
(o' XTDQ)(] P \/1—82(QTX;FDQ)(k’k), (2.15)

j=1

where (QTX;FDQ)(].,J.) denotes the (j, j)th entry of QTXT D Q. Next, we note

0
T T .
X;D=XyuD+0Q 0 ,
T
1+m lkD+85“zD
0
Q"XIDQ = 0Q"X,,DO+ 0 0
2 ul T
1+m D—i—esu D
ul' D 0
i1
= .° |0+ ; 0. (2.16)
Wl D 0
T
u;ED 1+m"sz+‘””eD

Recall that XOTptD > 0, and thus QTX OptDQ > 0 and, as a result, its (k, k)th entry
(0" Xgu D Q)i = u} Dqy > 0. There are two cases to consider
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1. Case (0" X3, DQ) , \, = u; Dgy > 0. Then we have

: Ty T Ty T
Jlim (07X, DOQ) ) = (Q XopDQ) s 1y > O
implying (QTX;FD Q)(k o > 0 for sufficiently tiny ¢;
2. Case (QTXEPtD Q)(k o= ui Dq;. = 0. It follows from (2.16) that

(Q"X;DQ)y 4y =€su;Dg; =0

by the choice of s we made earlier.

In summary, we always have (Q"XIDQ) (k. = O for sufficiently tiny e. Therefore,

for sufficiently tiny ¢ > 0, we have by (2.15)

k
trace(X! DXopiXe) < Y (Q"XDOQ)
j=1
= trace(QT X! D Q) = trace(X] D). (2.17)

()]

Combine (2.14) and (2.17) to get fp(Xop) < fo(X,) for sufficiently tiny ¢ > 0,
contradicting that X is a local maximizer. O

Remark 2.3 Our proof for Theorem 2.3(b) is quite laborious, chiefly because we take
care of both local and global maximizers with the same argument. Just for the case of
a global maximizer alone, it can be significantly simplified. In fact, by Theorem 2.2
and Lemma 2.2, we have from (2.13)

I XTDlirace

Jo(Xopt) < go(Xe) + m

= max fp(X:0),
Qe@kxk

contradicting that Xop € "<k is a global maximizer.

3 Therole of D
When D =0, f3(XQ) = fp(X)forany X € 0"** and Q € OF*k asinthe LDA case
for which & = 1 as well. In such a case, fj is actually a function on the Grassmann

manifold % (R"), the collection of all k-dimensional subspaces in R". Any global
maximizer Xop is a representative of a class

Kopt 1= {XoptQ : Q € O} 3.1

of maximizers. As a result, maximizers are not unique. Fortunately, often any maxi-
mizer is just as good as another in applications such as LDA.
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In general if D # 0, then fy(X Q) # fo(X). The global maximizers of (1.1) cannot
be characterized as simple as we just did for the case D = 0. Our goal in this section is
to characterize the maximizers of (1.1) for a general D. In particular, our main result
imply that if X, is a global maximizer and if rank(XgptD) = k, then Xop is the
unique maximizer within Xy in (3.1) in the sense that

fo(X) < fo(Xopt) forany X € Xqpe but X # Xopt.
To achieve our goal, we will investigate, for a given X, € % (R"),

max fo(X). (3.2)
X ek R(X)=X,

Lemma 3.1 Given X € % (R"), the singular values of X' D are independent of the
choice of X € O™k subject to R(X) = X, and as a result, rank (X D) is a constant
for any X € Q" satisfying R(X) = X.

Proof Pick a particular X € Q" such that R(X() = X. Any X € O"* satisfying
R(X) = X takes the form X¢Q for some Q € OQF*kK. The conclusion is a simple
consequence of [(Xo Q)T DIT[(Xo Q)T D] = [X{ D1T[ X[ D], which has nothing to do
with Q. m]

Owing to this lemma, we define the D-rank of X' € % (R") with respect to D €
R” xk by

rank p(X) = rank(XTD),

forany X € O"*¥ satisfying R(X) = X. Our main resultin this section is Theorem 3.1
below whose proof is deferred to the end of this section after we develop a concrete
version of it in Theorem 3.2.

Theorem 3.1 Given X, € 4 (R"), let r = rank p(X). The maximizer Xqp of (3.2)
admits the decomposition

Xopt = XX* + YX*’ (3.3)

where X x, having rank(X x,) = r is unique while Y x, withrank(Yy,) = k — r has
a freedom of QK= x(k=r),

To make Theorem 3.1 concrete, we will explicitly construct X y, and Y, in (3.3).
To this end, we pick a particular X, € O"*f such that R(X,) = X, and keep it
fixed. Then any X € O"*¥ satisfying R(X) = X, takes the form X = X, Q for some
Q € OF*k and vice versa. With this X,, (3.2) can be equivalently reformulated as

max  fo (X« Q). (34
Qe@kxk
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Lemma3.2 Let S € RN} withSVD S = UX VT, where U, V € OF* and
Y =diag(uidiy, - ooy e—t I _ys i di,) with (3.52)

t
i o> e > =0, Y ki=k. (3.5b)
i=1

Let r = rank(S), which is k if u; > 0 or k — k; if u; = 0. The maximizers of

max trace(Q7S) (3.6)
Qe@kxk
are given by
Qopt = U1:n Vi 1y + Uttt WV g 10 3.7

where?> W € Q*=x&=7) s arbitrary.
Proof By von Neumann'’s trace inequality [42],
k k
trace(Q"S) <Y " 0;(QN0; () =Y 07 (S) = S hsace = Q" Sllirace:
j=1 j=1
where for the equality to hold, by Lemma 2.3, we need QTS > 0 and vice versa. Any
such Q which we will characterize in a moment is a maximizer of (3.6). Now for any

Q € OF*k such that QTS > 0, we have

vIioTsyv =viQlux = zx > 0.
——

In particular, Z ¥ is symmetric, i.e., ZX = (ZX )T = > 7T, from which we get, upon
using Z € Qkxk,

7Z¥7=ZXZ=xzZNhz =%,

723 =2Z5)ry =z ==z zxz) = 5%z,
i.e., X2 and Z commute, which implies Z = diag(Zy, ..., Z;), where Z; € Qki xki
Againuse ZX = > 7T to conclude Zl.T =Z;forl <i<t—1and Z;F = Z,; too if

uy > 0. Furthermore

0=xZY =diag(u1Z1, ..., w—1Zi—1, i Zyt)

2 By convention, when r = k, W is a null matrix and the term U . ,  1:¢) WV(FZr 1) disappears from (3.7)
altogether. '
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yields that Z; > Ofor1 <i <t —1and Z; > 0 too if u; > 0. Hence Z; = I,
forl1 <i <t—1,and Z; = I, too if t; > 0 but otherwise Z; € Qk>ki arbitrary.
Specifically,

Iks lfr = k,
=1, . (3.8)
diag(Z, Z;), ifr <k,

where Z, € Q*—)x*=") ip the case r < k is arbitrary. Finally any maximizer of (3.6)
is given by Q0 = UZTVT with Z as characterized in (3.8). O

Remark 3.1 The decomposition of Qo as the sum of two terms in (3.7) is constructed
in terms of the SVD of § as specified in the lemma. As they appear, both terms are
SVD-dependent! However, they are not. In fact, the first term U 1., V(T is the

1)
subunitary factor of the polar decomposition of S and the factor is unique [23, 25, 27],

independent of any variationinSVD § = U X VTso long as X1+ 1.r) > 0. The second
term represents a set of matrices of the form U LWVE, where W € Q*—r)x(k=r) jq

arbitrary,and U , V| € OQ***~") are any orthonormal basis matrices of the subspaces
R(S)*, R(ST)L, respectively.

With the help of Lemma 3.2, we present a concrete version of Theorem 3.1 in
Theorem 3.2 below.

Theorem 3.2 Given X, € Q" let XID = UZVT be the SVD of XI D, where
U, Ve Ok and X1y > 0, wherer = rank(XID). For any maximizer Qop of
(3.4),

X*Qopt = X*U(:,lzr) V(F;F)l;r) + X*U(:,r+1:k)WV(F;F)r+1;k)’ (3.9

Sfor which the first term X, U 1.r) V(T_ 17) has rank r and the second term has rank k —r
and a freedom in W € Q=X poreover,

[X«Qop)"'D = VEVT =0, trace([ Xy Qopt]" D) = | X} Dlirace-
Proof By Lemma 2.2, we have

trace([ X+ Q1T D)

Qren&ka Jo(Xx0) = go(Xx) + [trace (XTBX)T"

Hence the optimizers of (3.4) are the same as those of

max trace([X*Q]TD)z max trace(QTXID).
Qe@kxk Qe@kxk

By Lemma 3.2 with § = XID, Qopt takes the form of (3.7), yielding (3.9). The rest
of claims of the theorem are simple consequences. O

Now we are ready to prove Theorem 3.1.
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Proof of Theorem 3.1 For any particularly chosen X, € Q"*¥ satisfying R(X,) = X,
adopting the notation of Theorem 3.2, we find Xopt = X« Qopt as given by (3.9). We
claim that the first term X, U(. 1. V( 1) is independent of choices of X, although it

is constructed by a particularly chosen X . First we note r = rank (X ID) depends on
X, only by Lemma 3.1. Second, the product U¢. 1., VTl " does not change with the
inherent variations in SVD, as we argued in Remark_ 3 1. Third, suppose a different
X, € Onxk satisfying R(X,) = X, is chosen. Then X, = X, 0 for some Q0 € OQ%*k,
We have

X'p=x,0"p=0"x'D=(Q"U)zV".

As we just argued that the product “U¢. 1. V( 1) does not change with the inherent

variations in SVD”, we conclude that the first term in (3.9) corresponding to X « 1S
given by

i>|<(§TU)(:,1:r) V(T,l:r) = (X, é)(éTU(:,lzr))V(?l;r) = X*U(:,l:r)vgl;,)’

having nothing to do with 0, as expected. O

The last terms in (3.3) and its concrete version in (3.9) disappear altogether if
r := rankp (X,) = k. Hence we have the following corollary.

Corollary 3.1 Problem (3.2) has a unique maximizer if rank p (X,) = k.

4 Self-consistent field iteration

In what follows we will limit problem (1.1) to the case:

there exists X € 0%k such that trace(XTAX + XTD) > 0. 4.1)

This assumption ensures that, at optimality, the objective value is nonnegative when
0 < 6 < 1 but not really needed for our results to hold when 6 € {0, 1}, however. It
evidently holds if A > 0, because trace(XTAX + XTD) > 0 for X = UVT where
U, V are from the SVDof D = UX VT,

We argue that having (4.1) doesn’t lose much generality even for 6 € {0, 1}. In fact,
it can be verified that for X € Q"**

fo(X) = trace(XT[A + al,]1X + X' D) —
trace(XT[A + «B1X + XTD)
trace(XTBX)

fix) =

By choosing a sufficiently large « > 0, we can make A + «f, > Oand A +aB > 0
(assuming B > 0 otherwise it may be possible that A + «B % 0 for any « > 0)
and hence transform problem (1.1) for 6 € {0, 1} to an equivalent one that satisfies
assumption (4.1).
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4.1 SCF

Based on the KKT condition in Theorem 2.1, the monotonicity claims in Theorem 2.2
and Lemma 2.2, and the necessary conditions in Theorem 2.3 for a local/global max-
imizer, an SCF iteration as outlined in Algorithm 4.1 is rather natural.

Algorithm 4.1 SCF iteration for problem (1.1) satisfying (4.1)

Input: X( € Q"*k  such that trace(XgAXo + XED) > 0if 0 < 6 < 1 but otherwise not required;
Output: a maximizer of (1.1).

1: fori = 1,2, ... until convergence do
2: construct E; = E(X;_1) as in (2.3); _ N
3:  compute the partial eigen-decomposition E; X; = X;A;_1 for the k largest eigenvalues of E;

and their associated eigenvectors, or simply some X, i € 0"k such that trace(f(\;.rE[ X, i) >
trace(X;r_lEiXi_l);

4:  compute SVD: ?ITD =U;%; ViT;

S: X,‘ = 5(\1' U,' ViT;

6: end for

7: return the last X; as a maximizer of (1.1).

A few comments are in order for Algorithm 4.1.

(1) It is required initially trace(XTAXo + XTD) > 0if 0 < 6 < 1 but not necessary

for 6 e {0, 1}, in order to ensure that { fj (X;)}{°, is monotonically increasing (see
Theorem 4.2 in the next subsection).
The case when A > 0 can be easily dealt with as follows: 1) compute SVD
XTD = UxVT, and update X to Xo(UVT). With the updated X¢, we have
trace(XTAXO + XTD) = trace(XTAXo) +trace(X') > 0. This case is ubiquitous
in data science applications such as multi-view learning in Sect. 5 that motivates
our study in the first place, where A is often some type of variances and hence
positive semidefinite. In general, when A is just symmetric and possibly indefinite,
what can we do if we don’t have such an initial X but (4.1) is known to hold in the
case 0 < 6 < 1? One remedy is to set & = 0 (or 1) and iterate until some X; with
trace(X iTAX i+ X iTD) > 0 and then switch back to the original 6. But we caution
that this remedy could still fail because even with 6 = 0 (or 1), the algorithm does
not guarantee to find a global maximizer, i,e., there is no guarantee to have some
X; with trace(X iTAX i+ X iTD) > 0. When that happens, we may have to try with
one or more random X as the last resort toi increase chance of success.

(2) At line 3, we offer two options to obtain Xi. EV1dent1y, X; associated with the
k largest eigenvalues of E; maximizes trace(X EiX; ). But as we will show
later in Theorem 4.2 that the objective value will still increase as long as
trace()?iTEi)?i) > trace(XiT_lEi X;_1). This is an important observation, espe-
cially for alarge scale problem where an iterative method has to be used to compute
the partial eigen-decomposition of E; and the convergence to a very accurate par-
tial eigen-decomposition may not be cost effective. When that is the case, we can
afford to compute partial eigen-decompositions with gradually increased accuracy
as the for-loop progresses, namely, use less accurate partial eigen-decompositions
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at the beginning many for-loops to save work and more and more accurate partial
eigen-decompositions as X; comes closer and closer to the target. Such an adaptive
strategy is a delicate issue and often the best strategy is problem-dependent. Further
study on this is out of the scope of this paper and should be pursued elsewhere.

(3) Lines 4 and 5 execute maxg f ()? i Q) yielding X; according to Theorem 3.2 (with
W = I in (3.7) always). X; is not uniquely defined if rank(}?l.TD) < k. But that
non-uniqueness doesn’t affect the corresponding objective value.

(4) A natural stopping criterion to end the for-loop is to use the normalized residual
of NEPv (2.4):

[trace(X[BX)1” IIE(X)X: — Xi(X]E(X)X)F
. < tol, “4.2)
2Vk lAll2 + 61 f1(XDIIBll2 + 1 Dll2

where tol is a preset tolerance. For computational convenience, it will be just fine
toreplace the spectral norms || A||2, || B||2, and || D || in (4.2) by their corresponding
I-norm.

Theorem 4.1 below presents two properties about approximation X;.
Theorem 4.1 Let {X;}7° ) be generated by Algorithm 4.1.

(@) XI'D > 0and trace(X] D) = | X} Dllwace fori > 0.
(b) If the eigenvalue gap

AM(E(Xi-1)) — M+1(E(Xi-1)) > 0,

then any two orthonormal eigenbasis matrices X, i and f/\l associated with k largest
eigenvalues of E(X;_1) satisfy 2 = 5(\,-Q for some Q € QK. Furthermore,
if, additionally, rank(DT)?i) = k (which is independent of Q), then the next
approximation X; from line 5 of Algorithm 4.1 is uniquely determined regardless
of any inherent freedom in SVD.

Proof The conclusions in item (a) follows from X iTD =V % Vl.T.

Consider item (b). Since the eigenvalue gap is positive, the eigenspace associated
with the k largest eigenvalues of E(X;_1) is unique [38, p. 244], and thus the first
claim Y; = X, ; O follows. The second claim is a consequence of Theorem 3.2. O

4.2 Convergence analysis

Much of our analysis is similar to the one for the OCCA case [48]: A = O0and 6 = 1/2.
But the complete characterization on what the limits of X; may look like in the rank-
deficient situation, i.e., rank (X ID) < k, in Theorem 4.3 is entirely new even for the
OCCA case.

Theorem 4.2 Let the sequence {X;}7°, be generated by Algorithm 4.1. The following
statements hold.

(@) The sequence { fy(X;)}2, is monotonically increasing and convergent;
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(b) If
trace(X| E(X;_1)X;) > trace(X; | E(Xi_1)X;_1), (4.3)

then fy(Xi—1) < fo(X;);

(c) Let{X;}iec1 be any convergent subsequence of {X; }fio, converging to X . Then X,
satisfies the first order optimality condition in (2.2) and the necessary condition
in Theorem 2.3 for a global maximizer: XID > 0 and X, is an orthonormal
basis matrix of the invariant subspace associated with the k largest eigenvalues

of E(X,).

Proof In Algorithm 4.1, we require initially trace(X;Qr AXo+ Xg D) > 0 for the case
0 < 6 < 1 so that all subsequent trace(XiTAX,- + X; D) > Oforthecase 0 <6 < 1.
As aresult, { fy (Xi)}?io is monotonic increasing for all 0 < 0 < 1. In fact, fori =1,
by Theorem 2.2 we conclude that

”Xr]rD”trace

fo(Xo) < go(X1) + m

= fo(X1).

As a consequence, it guarantees trace(XfAX 1+ X?D) >0when0 <6 < 1. In
particular,

trace(X T E(X0)X 1) > trace(X§ E(X0)Xo) = fo(Xo) < fo(X1).

Inductively, we conclude that trace(Xl.TAX i + Xl.TD) > (O foralli when0 < 6 < 1
and that { fp (X i)}?io is monotonically increasing for all 0 < 6 < 1, and, furthermore,
that if (4.3) holds then fy(X;—1) < fop(X;). This proves items (a) and (b).

To prove item (c), we consider the subsequence {X;.t1}ier, which, as a bounded

sequence in R”*K has a convergent subsequence {X; | }icf» Where TCI Let

Z= _lim Xy € Q<.

Isi—o00

As aresult, by Theorem 4. 1(a) ZTD > 0 which we will need in a moment. Accordmg
to E(X;))Xit1 = Xl+1(Ql+1A Qiq) fori € T where Qir1 = U,+1V it holds
that

+1

EX)Z=ZM, M=Z'E(X,)Z. (4.4)
Also, from Theorem 4.1(a), we know YTD = DTY = 0for Y € {X,, Z}, and

foX) =_lim fo(X) =_lim  fo(Xiy1) = fo(2). @.5)

[3i—o00 Isi—o00

Since E(X;)Xiy1 = Xi+1(Ql.T+1Ai Qi+1) and X; 41 associates with the k largest
eigenvalues of E(X;), we conclude that Z is an orthonormal eigenbasis matrix of
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E(X,) associated with its k largest eigenvalues. We claim that X, is also one, too,
because, otherwise, we would have

trace(ZTE(X,)Z) > trace(XL E(X,) Xs).

which, by Theorem 2.2 and Remark 2.2 (recall ZT™D > 0), yields fy(Z) > fo(Xy),
contradicting (4.5). Hence X, is indeed an orthonormal eigenbasis matrix of E(X)
associated with its k largest eigenvalues, implying

E(X*)X* = X*A*

for some k x k symmetric A, whose eigenvalues consists of the k largest eigenvalues
of E(X,). Consequently, by Theorem 2.1, X, satisfies the first order optimality in
(2.2). Regarding the necessary conditions in Theorem 2.3 for a global maximizer, we
notice that X ID > 0is aresult of Theorem 4.1(a) and we have already shown that X,
is an orthonormal eigenbasis matrix of E (X, ) associated with its k largest eigenvalues.

O

To further analyze the convergence of the sequence {X;}7°, we now introduce the

distance metric on Grassmann manifold ¢ (R"). Let X = R(X) and Y = R(Y),

where X, ¥ € R" with XTX = yTy = Ix. The canonical angles 6;(X,)) >
<oo > Ok (X, ) between X and ) are defined by

0<6;(X,)) = arccosai(XTY) < % forl <i <k,

and accordingly, @ (X, ) = diag(61(X, ), ..., 6 (X, ))). It is known that
dist2 (X, V) := [ sin © (X, V)2 (4.6)

is a unitarily invariant metric on ¢ (R") [40, p. 95].
The following lemma is an equivalent restatement of [30, Lemma 4.10] (see also
[19, Proposition 7]) in the context of Grassmann manifold % (R").

Lemma4.1 ([30, Lemma 4.10]) Let Xy € 9 (R") be an isolated accumulation point
of the sequence { X; € 9 (R”)}ﬁo, in the metric (4.6), such that, for every subsequence
{X;}ie1 converging to Xy, there is an infinite subset 1 C Isatisfying dista (X;, Xj+1) —
0asl>i— oo. Then the entire sequence {X; };’io converges to Xj.

Theorem 4.3 Let the sequence {X;}{° be generated by Algorithm 4.1, and let X,
be an accumulation point of {X;}72. Let 0 < XI'D = v VT be the SVD of XID
such that X 1.y 1.5y > 0, where r := rank(XID). Suppose that R(X) is an isolated

accumulation point of {R(X;)}?2,, in the metric (4.6), and that the eigenvalue gap
assumption,

M (E(X)) — A41(E(X5)) > 0, 4.7)
holds.
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(@) The entire sequence {R(X;)}2, converges to R(Xy).
(b) If r =k, then {X;}7°, converges to X (in the standard Euclidean metric).
(c) In general for r < k, {X;}72 converges to the set

Xy = {X*V(:,l:r) V(T,l:r) + X*V(:,rvtl:k)WV(I;‘,rJr];k) We @(k_r)x(k_r>} (4-8)
in the sense that

min || X; — X[l > 0 asi — oo. 4.9
XeX

K

Proof Suppose that {X;}; 1 is a subsequence converging to X {Xi1};er, as abounded

sequence in R”*¥ has a convergent subsequence {X; | }i et where Tc L Let

Z=_lim X;;; € 0",

Isi—o00

It can be seen that {R(X;)};er converges to R(X,) and {R(X;1)}; converges to
R(Z) in the metric (4.6). As in the proof of Theorem 4.2, we will have (4.4) and
conclude that both X, and Z are orthonormal eigenbasis matrices associated with the
k largest eigenvalues of E(X ), and R(Z) = R(X,) by the eigenvalue gap assumption
(4.7). Hence

_lim dista(R(X;), R(Xi+1)) = dist2(R(X4), R(Z)) = 0.

Isi—o00

By Lemma 4.1, {R(X;)}{2,, converges to R(X). This proves item (a).
With additionally rank(X] D) = k and the conclusion we just proved, we know
that the limit of any convergent subsequence of {X;}7° takes the form of X, Q for

some Q € OF*k because all limits share the same column space R(Xx). Moreover,
Theorem 4.2(a) implies that fp(X,) = fo (X« Q). Noticing that

trace(XID) trace(QTXID)

[trace(XTBX,)]?’ fo(X:Q) = g6 (Xs) + [trace(XTBX,)]?’

Jo(Xx) = go(Xs) +
we find trace(QTXID) = trace(XID) = ||XID||tralce since XID > 0, i.e., this
0 € OF*F maximizes trace(GT(XID)) over G € Q% and thus, by Lemma 3.2, Q
is the unitary polar factor of X! D, yielding Q = I. This completes the proof of item
(b).

We now prove item (c). Let X, € Q"*"~0 gsuch that [X,, X, ] is orthogonal.
We expand X; as

Xi = Xo(XTX) + Xo (XT X)) =0 X.Ci + X1 S;. (4.10)

It can be seen that ||S;|l> = | sin(R(X;), R(X:)]l2 — 0asi — oo by item (a).
The singular values of C; are the cosines of the canonical angles between R(X;) and
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R(X), which all go to 1 as i — oo by item (a). In other words, C,-Cl.T — I as
i — 00. So we can write

el =n+F", 1m EY =o. (4.11)
11— 00
By how X; are defined in the algorithm and by (4.10), we have
0= X/D=C/X.D+S'X], D=ClViinZarinVi, + 5§ X1, D.

Since Sl.TXLD — 0 asi — oo, we conclude that

lim CI'Ve 1 Zar1n Vi = im XD = XD =VeinZar1n Vi,
1—> 00 11— 00
which implies lim;_, o0 C} V(.. 1:) = V(.,1:r). S0 we can write

CMVern = Vern + FP, lim F? =o. (4.12)

i—00
_ T 7
As aresult, we get V(. 1) = C; V. 1.y — F;7 and

2
CiVirr = CiCl Vi 1) — CiF,-( )
1 2 3
= Vit + FO Ve — GF? = Vi + F, (4.13)

and lim;_, o F”) = 0. Using (4.11) and (4.13), we get

3
[C,TV(:,rJrl:k)]TV(:,l:r) = V({,.,.l;k)ci V(:,l:r) = V(r:lir+1:k)Fi( )» 4.14)
[CIVer 101 IC Ve riin] = Vertia CiCl Vi ri
1
=+ V(:,r+1:k)Fi( )V(:,r+1:k)- 4.15)

The distance between two subspaces R(CiT Vi.r+1:4)) and R(V(. r+1:4)) can be given
by [24, Lemma 2.1], [39, Chapter 1]

~12
H{[C,-TV(:,r+1:k)]T[C,-TV(:,rH:k)]} [CTVe 101 Ve 1)

2

which goes to 0 as i — oo by (4.14) and (4.15), i.e.,
llggo R(CI V1) = RV 1) (4.16)
in the metric (4.6). Equation (4.16) together with (4.15) imply
CIVe 1 = Ve Wi + F? for some Wy € Q*k—0xk=n 1 (4.17)
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()]

and lim; . F; = 0. As aresult, we get V(. 1:4) = CiTV(:,,H:k) w; — Fl.(4) W; and

4
CiVirttn = CiCzTV(:,r+1:k)Wi — CiFi( )Wi
W ! 4
5
= Ve,noWi + F2, “18)

and lim;_0o F” = 0. With (4.11)~(4.18) in mind, we have from (4.10) and
Vet V(F{l:r) + Vir+1m) V(T,r+1:k) = Iy that

Xi = X,C; V(:,l:r) V(T,l:r) + X C; V(:,r+l:k) V(T,r+1:k) + X1 Si
= Xu Vi1 V(P;ljl;r) + Xu Ve rr10Wi V(:r,r.;_l;k) (4.192)
+ X FOVE L+ X FOVE L + XaLSi. (4.19b)

The sum of the two terms in (4.19a) belongs to X, of (4.8) and each of the three terms
in (4.19b) goes to 0 and hence the limiting equation (4.9) holds. O

What is remarkable about Theorem 4.3 is that we start with an accumulation
point X, which always exists because 0"** is a bounded set in R”>** and thus
is compact, and end up with the conclusions that {R(X;)}7°, converges to R(Xs)
and that {Xi}?io converges to X, under the conditions that rank(XID) = k and
M(E(X4)) > M+1(E(Xy)). In general, X; arbitrarily approaches X, of (4.8) as
i — o00. The set X, is uniquely determined by R(X), independent of a particular
accumulation point X.

A quantitative convergence estimate like [48, ineq. (24)] can be derived, in a similar
way there, to obtain

distr (R(X;41), R(X%)) < coll Xi — Xxlltrace,

where cq is a constant dependenton A, B, and D, and it will be inevitably overestimated
to be too big to be of much use, as for [48, ineq. (24)]. For that reason, we will
simply skip it. Recently, the authors of [3] proposed an approach to estimate the
true SCF convergence rate for an NEPv satisfying the invariance property E(X Q) =
E(X) for any X € 0"k and Q e O%*. The approach is not straightforwardly
applicable to our NEPv (2.4) because E(-) in (2.3) does not have this invariance
property. In what follows, we explain an idea from the forthcoming paper [29] for
the case when X ID > 0. It is much more complicated to deal with the general case
when XID > 0 (see [29] for detail). If XID > 0, then XTD is nonsingular for
any X € O™k such that || sin @ (R(X), R(X:))ll2 is sufficiently tiny, which is a
reasonable assumption for studying local convergence rate. Suppose, in the rest of this
paragraph, || sin @ (R(X), R(X+)) || is sufficiently tiny such that X D is nonsingular.
Then XT D has a unique polar decomposition [23, 25, 27], and hence

E(X):= E(XI'(X" D)),
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is well-defined, where I" (X TD) is the orthogonal polar factor of X TD. It can be seen
that the usual SCF, E(X;—1)X; = X; A; on E(X), is same as the SCF in Algorithm 4.1
if starting with the same initial X¢. It can be proved nontrivially [29] that E(X Q) =
E(X) for any Q € O°F and X € O"** such that XT D is nonsingular. Therefore the
results in [3] can be applied.

5 Application to multi-view learning

Different from classical machine learning, multi-view learning aims to learn from mul-
tiple views of the same object in order to leverage their complementary and redundant
information to boost learning performances [4]. For example, in the classification of
Internet advertisement on Internet pages [20], the geometry of the image (if available)
as well as phrases occuring in the URL, the image’s URL and alt text, the anchor
text, and words occurring near the anchor text are considered as different views of
a page. Due to the heterogeneity of multiple views, learning from multi-view data is
challenging, even though they conceal more information. Multi-view subspace learn-
ing is the most popularly studied methodology designed to narrow the heterogeneity
gap [35] by learning proper representations of the multiple views in a common latent
subspace. In what follows, we will first briefly introduce the problem formulation of
multi-view subspace learning and related works, and then propose our new learning
model and an efficient alternating iterative method based on our earlier SCF iteration
in Algorithm 4.1 to numerically solve the model.

5.1 Problem formulation and related work

Multi-view subspace learning seeks a common latent space via some unknown trans-
formation on each view so that certain learning criteria over the given multi-view data
set are optimized with respect to these transformations. Let {(ZE] ), e, zl@), yi) };”:1 be
a multi-view data set of v views and m instances, where the ith data points zl@ e R
of all views (1 < s < v) share the same class label y; € {0, 1}¢ of ¢ classes, whose
rtheentry (y;)(- = 1 if the ith data points belong to class r and otherwise (y;)) = 0.
Linear transformations are often used to perform feature extraction. Specifically, we
look for projection matrix Py € R"s*k for view s to transform zl@ from R"s to its
) _ pT®

latent representation u; ;~ in the common space R,

Represent the m data points of view s by Z; = [zis), R z,(;i)] € R™s>™ jts latent
representation by Uy = [ugs), ] = PYZ, € RF™ and pack the projection

matrices P to get

P=(Pf Pl ... PTIT with P, e R™>* forl <s <w. (5.1)

v

We will require 1 < k < ming ng due to the orthogonality constraints to be imposed
on each Py later.
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Several existing methods [7, 37, 41] in the literature explored both the inter-view
correlations and the intra-view class separability from the labeled multi-view data.
Some important statistical quantities are summarized as follows:

1. the sample cross-covariance matrices Cs; = %ZS H, Z,T, and, in particular, the
. . _ 1 T
covariance matrices Cy s = n—lZS Hy,Zg,

2. the between-class scatter matrices S\ = Z,(¥"r~'y — 11,17)ZT,

3. the within-class scatter matrices S&) = Z(I,, — YTI~! Y)zr,
4. the class centers scatter matrices across views M ; = Z; Y'r-'mH.r-! YZIT,
where centering matrix H, = I, — %1,”1;1, label matrix ¥ = [y{,..., y,], and
r=yrr.

Most existing methods are often formulated as a trace maximization problem in the
form

max trace(PTcDP) (5.2)
PTY P=I,

which is equivalent to a generalized eigenvalue problem (GEP) for matrix pencil
® — )\ [10, 15], where @ = ®T and ¥ = ¥T = 0 have the following block
structures

ni na ny ny ny - Ny
n| @11 P12 ... P ni| ¥
ny| @21 P22 ... Doy ns ¥,
D=, . . o] = . , (5.3)
ny ¢v,1 (pv,Z v (Dv,v ny L2

with @, ; and ¥ taken to be Cs ;, M 4, Slgs), and SV(VS ), depending on different learning
objectives:

— multiset canonical correlation analysis (MCCA) [43] is (5.2) with &, ; = C;; and
U, = Cy 4, Vs, 1,

— generalized multi-view analysis (GMA) [37] is (5.2) with @, ; = aCy;, Vs # ¢,
@, = S, and @, = S, Vs,

— multi-view linear discriminant analysis (MLDA) [41] is (5.2) with &,;, =
aCy 1, Vs # 1, g = S, and ¥, = Cy 4, Vs, and

— multi-view modular discriminant analysis (MvMDA) [7] is (5.2) with @5 ; = M, ;
and ¥, = S, Vs, 1,

where @ > 0 is a pre-defined parameter to weigh the importance of class separability.
In these methods, only ¥ > 0 is guaranteed, and there is a possibility that ¥ may be
singular. When that happens, often ¥ is regularized by adding y I with a tiny y to
it. In MCCA, @ > 0 always holds, but it may be indefinite for the other three. In all
of these methods, the diagonal blocks of @ are always positive semi-definite, i.e., all
@, s > 0, which makes the first point in our previous comments for Algorithm 4.1 a
non-issue.
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5.2 Proposed model and alternating iteration

We propose a new formulation for supervised multi-view subspace learning as

$o(P) with s(P) trace(PT® P)
max wi =
{PyeQns xkyy_| ’ o [trace(PTY P))?

54
an orthogonal multi-view subspace learning model (OMvSL), where @ and ¥ gen-
erally will have the block structures as in (5.3) with each block taken to be Cs ;,
M ;, Sés), or 555 ), depending on learning scenarios as the above existing methods,
and 0 < # < 1 is an adjustable parameter that can be fine tuned to yield the best
contrastive effect between trace(PT® P) and trace(PTW¥ P). It is noted that 6 = 0
means no contrastive comparison at all, 8 = 1 means the other extreme as in LDA,
while 0 < # < 1 means comparing trace(PT ® P) against trace(PTW¥ P) fractionally.
Function ¢ (P) is well-defined if at least one of the inequalities rank (¥) > ng — k
for1 <s < wvisvalid.

Comparing with (5.2), the new model (5.4) possesses two unique properties:

1. Linear projection matrices Py are orthonormal fors = 1, ..., v. This is a preferred
property for metric preservation and data visualization, and has been explored
for unsupervised learning in, e.g., [9, 48]. However, orthogonality constraints are
incompatible with constraint in (5.2) if both are imposed. A workaround in the past
is to compute a solution P to (5.2) and orthogonalize each corresponding portion
of P to generate a projection matrices for the view, but it may produce suboptimal
performance [9].

2. Trace ratio formulation (5.4) is a more essential formulation for general feature
extraction problem than ratio trace formulation (5.2) [44] since it naturally solves
the above-mentioned incompatibility issue. The introduced 6, as a super-parameter,
can adjust the relative importance of trace(PT® P) against that of trace(PTw P).
In our later numerical experiments, we will investigate the impact of 6 in terms of
classification accuracy.

Model (5.4) is a maximization problem over the Cartesian product of v Stiefel
manifolds 0" **, The KKT conditions can be derived straightforwardly by examining
the partial gradients with respect to each Py on 0" *¥ along the line of derivations in
Sect. 2. In fact, for any fixed s and fixed Py for s’ # s, the objective of (5.4) becomes
a function of P; alone:

tra(:e(PST AgPg) + tra(:e(PST Dy)
[trace( P B Py)]?

Xs:0(Py) == , (5.5a)

where, with oy = trace(P[z]cD[s]P[s]) and B; = ZS,# trace(Pf:lI/s/ Py),

As = Dys + (@ /K) Ly, By = W5 + (By/k) Iy, Dy =2 ®; ¢ Py, (5.5b)
s'#s
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D5 is @ after crossing out its sth block-row and sth block-column, and P is P of
(5.1) after crossing out its sth block. The dependency of Ag, By, and Ds on Py for
s" # s is suppressed for clarity. The KKT conditions of (5.4) can be made to consist
of v coupled NEPv:

Eg(Py) Py = PyAg, Py e Q™*F forl<s <w, (5.62)
where
Es(h) = : g DPLHRDL B, (si6by
Y [trace(P B Py)1° $ ) Xs:1(Fs)Dbs | . (3.

They are coupled because of the dependency of Ay, By, and Dy on Py for s’ # s.
Individually, (5.6) is the KKT condition for

max  xg.0(Py), givenPyfors’ # s. (5.7)
Pse@njxk

Along the line of reasoning in Sect. 2, we can get the next theorem, as an extension
of Theorem 2.3.

Theorem 5.1 Let {PSOPt € ([))”V(k}g:1 be a local or global maximizer of (5.4) and let
A, By, and Dy in (5.6) be evaluated at {PSOPt v

s=1"

(a) If{PSOPt};’:1 is a global maximizer, then (PSOPt)TDS >0forl <s<wv;

(b) Suppose ¢g({PS°pt};’=]) > 0 when 0 < 6 < 1 but otherwise not required for
0 € {0,1}. If (PSOP t)TDs > 0, then PSOpt is an orthonormal basis matrix of the

invariant subspace associated with the k largest eigenvalues of Ey(Py* t).

Proof If {PY0 pt};’zl is a global maximizer, then Py P for a fixed s is a global maximizer
of (5.7). Item (a) is a consequence of Theorem 2.3(a). Notice that ¢y ({ Ps lDt};’zl) >0
implies trace([ PYPT Ay POPY) +trace ([ PYP' 1T Dy) > 0. Apply Theorem 2.3(b) to (5.7)
to conclude the proof of item (b). m|

5.3 Alternating iteration

Similar to Sect. 4, in what follows we will limit problem (5.4) to the case:

there exists {P; € (O)"SX]‘}EZ1 such that trace(PT® P) > 0. (5.8)

This assumption is automatically satisfied if all @ ¢ > 0, as in all existing multi-view
learning methods reviewed in Sect. 5.1, because

v
trace(PT<15 P)= Ztrace(PsTtps,s Py) > 0.

s=1
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Algorithm 5.1 OMvSL#: Orthogonal Multi-view Subspace Learning via 6-Trace

Ratio
Input: @ and ¥ asin (5.3), 1 < k < ming ng, and tolerance €;
Output: {Pg € O'*s Xk};’:l that approximately solves (5.4).

1: pick {PS(O) e Qs Xk};’:] satisfying trace(([P@1T@ P©) > 0if 0 < 6 < 1 but otherwise not required
for 6 € (0, 1}, where P© = [(P()T, ..., (P{)T]T;
2: i = 0, and evaluate the objective of (5.4) at { PS(O)}” to ¢;

s=1

3: repeat
4: fors=1tovdo ) .
5: form (5.7) with either Py = PY(,’), Vs # s for the Jacobi-style updating, or Py = PY(,hLl), 1<

s’ <sand Py = Px(,i), s < s’ < v for the Gauss-Seidel-style updating;

6: solve (5.7) by Algorithm 4.1 (with Ps(i) as an initial guess) for its maximizer PS(HI);
7:  end for )

8:  ¢p = ¢, and evaluate the objective of (5.4) at {PS(’H)}E:1 to ¢;

9: i=i+1;

10: until [¢ — ¢o| < €¢;
11: return the last {Ps(') € Oxky

v
s=1-

Again assumption (5.8) is not really needed for our results to hold in the case when
0 € {0, 1}. Generic optimization methods for optimizing a smooth function over the
Cartesian product of the Stiefel manifolds Q" *¥ are available and can be applied. For
example, classical optimization algorithms such as the steepest ascent or trust-region
methods over the Euclidean space have been extended to the general Riemannian
manifoldsin, e.g., [1]. But these methods do not make use of the special trace-fractional
structure. In what follows, we propose to solve (5.4) by maximizing its objective
alternatingly over {P; € ([))”A‘Xk};’:1 in either the Jacobi-style or Gauss—Seidel-style
updating as outlined in Algorithm 5.1, where the SCF iteration in Algorithm 4.1 serves
as the computational engine to solve each subproblem (5.7) over just one Py at line 6.

Algorithm 5.1 requires initially trace([P(@]TAP©@) > 0if 0 < # < 1 but oth-
erwise not required for & € {0, 1}, similarly to what we previously remarked for
Algorithm 4.1. Note that trace ([P ©]TA P©) > 0is guaranteed to hold if all @ ; > 0.
The condition guarantees that the objective (5.4) is monotonically increasing for the
Gauss—Seidel-style updating. In cases when we don’t have an initial guess P satis-
fying trace([P@1T@ P©) > 0 for the case 0 < 6 < 1, we suggest to set @ = 0 (or 1)
and iterate until some P such that trace([P?1T® P¥) > 0 and then switch back to
the original 6. Unfortunately, it is not clear if the monotonicity property in the objec-
tive holds for the Jacobi-style updating even with trace([P©1T@ P©) > 0. In all of
our numerical experiments in Sect. 6.2, we simply take PS(O) to be the first k columns
of I,,, for reproducibility and didn’t encounter any convergence issue nonetheless for
both the Jacobi-style and Gauss-Seidel-style updating. In practice, we may simply
take random {PS(O) }v_, if no better one is known.

Remark 5.1 Later in Sect. 6, Algorithm 5.1 will be applied with the blocks of @ and ¥
realized as in the multi-view learning methods GMA [37], MLDA [41], and MVMDA
[7]. The resulting (5.4) will be referred to as OGMA, OMLDA, and OMvMDA,
respectively.
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Next we will discuss the convergence of Algorithm 5.1. With the Jacobi-style updat-
ing, Algorithm 5.1 generates a sequence {{Ps(’)};’=1 }?io and the same can be said
for with the Gauss—Seidel-style updating. But for the convenience of convergence
analysis, we shall expand the sequence by inserting v — 1 additional intermediate

approximations
(PIHD L PGV PO PO s =12, v

into between {Ps(i) }y_, and {Ps(i+]) }4_, in the case of the Gauss—Seidel-style updating.

We then re-index the expanded sequence and still denote it by {{Px(i)};’: 1 }?ZO.
Theorem 5.2 Let the sequence {{}'—’SO)};’=1 }?i() be generated by Algorithm 5.1, and let
{Ps(*)};’:1 be an accumulation point of {{Ps(l)};’zl}?io. Evaluate A, By, and Dy in

(5.6) at {PS(,*), s" # s} for each s to A§*), B§*), and Di*), respectively.

(a) (PA-(*))TD?) >0forl <s <v.
(b) {¢9({Ps(l)}?:1)}?io is monotonically increasing in the case of the Gauss-Seidel-
style updating and thus convergent.

Proof Item (a) holds because (Ps(i))TDS > 0 is designed to hold in Algorithm 4.1.
Because of our expansion in the sequence of approximations in notation for the Gauss—
Seidel-style updating, {Ps(i)}f;:l differs from {PS(HI)}L | in just one of the Ps(i), and
that particular Ps(i) is updated by Algorithm 4.1 so that the objective value is increased.
Hence item (b) holds. O

We caution that the monotonicity in objective value is only proved for the case of
the Gauss—Seidel-style updating but not the Jacobi-style updating. As a tradeoff in
the for-loop of Algorithm 5.1, the v subproblems (5.7) for the Jacobi-style updating
are completely independent and can be solved in parallel, while those for the Gauss—
Seidel-style updating have to be solved sequentially.

We introduce a metric for the Cartesian product of v Grassmann manifolds:

dista (P }_y, {Qs 1o = ) lIsin @ (P, Q)2 (5.9)

s=1

for (P1,...,Py), (Q1,..., Q) € G R") x --- x 4 (R"™). Again the following
lemma, similar to Lemma 4.1, is an equivalent restatement of [30, Lemma 4.10]
(see also [19, Proposition 7]) in the context of the Cartesian product of Grassmann
manifolds ¥ (R"s).

Lemma 5.1 ([30, Lemma4.10]) Let {P*) € % (R™)}V_, be an isolated accumulation
point of the sequence {{’Ps(l) € gk(R"S)};’:l}ZO, in the metric (5.9), such that, for

v
s=1’

TcrI satisfying distz({PAgi)}f;:l, {735"“)}5:1) — 0as1 > i — oco. Then the entire

sequence { {Ps(i> }§=1 }fi()

every subsequence {{Py(i) ) }ie]I converging to {’PS(*)} there is an infinite subset

converges to {Ps(*)};’:l‘
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Theorem 5.3 To the conditions of Theorem 5.2 add these: {R(Ps(*))}g: | is anisolated
accumulation point of { {72(Ps(l))}221 }?io in the metric (5.9) and the eigenvalue gaps

M(ES(PFY) — gt (EP (P > 0 for 1 < 5 < v,

where each EX(P™) is defined as in (5.6b) with AY, B, and DI, and
also® {¢9({P(l)}‘§ DIy is convergent for the Jacobi-style updating. Let ry =
rank((P™) D) for 1 < s < v,

(a) The entire sequence {{R(Ps(i))}gzl }20 converges to {’R(P(*))}”

() If rg =k forall1 <s <k, then {{Ps(i)}lf: }l _ converges to {P( )} | (in the

metric of the Cartesian product of the Euclidean spaces R"*K).

(¢) In general, for each s, let [P(*)] D(*) Vi Xs VT be the singular value decom-
position such that (Xs) 1., 1:r,) > 0, and define

PE*) = {PS(*)(V.Y)(:,]:r,r)(Vf)"(lz,1;rS)

POV 1 We (Vo) Ly = Wy € QKXo

Then {{Ps(i)};’=1 }?Zo converges to the product IP’(I*) X+ X ]P’,(,*) of sets, in the sense
that

min Y |PY = Pl = 0 asi — oc.
PeP® vs

Proof Suppose that { (P }V_, },; is a subsequence converging to (P }V_, - Note that
@i+1)

{{P l } ; } iel’

subsequence {{ P

as a bounded sequence in R *K x ... x R™*k has a convergent

(’H)} } 5> Where Tc I Let

Z; = lim PS(H'D e 0" for1<s <.
Isi—o00

It can be seen that {{R(P(i))}” 1}iep converges to {72(Ps(*))};’:1 and
{{R(P(l+l))} } = converges to {R(Z,)}'_, in the metric (5.9).

For each s, we have Eg (P(’))P(I'H) P("H)[(Q("H)) A(’)Q(l+1)] or possibly
P("H) P @ in the case of the Gauss—Seidel- style updating. Now lettmg]I >i — 00,
we get Es(P*)Z, = Z;Mj or possibly P = Z,. For the latter, we obviously have
R(PS(*)) = R(Z;), and, for the former, as we argued in the proof of Theorem 4.2, we
will also have R(PS(*)) = R(Zs). Hence for each s

_lim disty(R(PD)), R(PITV)) = disty(R(P™), R(Zy)) = 0.

I3i—o00

3 {do ({P(l) };’ l)} 0 is guaranteed convergent for the Gauss—Seidel-style updating by Theorem 5.2(b).
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By Lemma 5.1, the entire sequence {{R(PS(’-))};’:1 }?:o converges to {R(P" N,
This proves item (a).

With, additionally, rank((PX(*))TD‘g*) ) = k and the conclusion we just proved,
we know that the limit of any convergent subsequence of {{Rp};’:l }?io takes the
form of {PS(*) Oy}Y_, for some Qg € OF*k because all limits share the same column
spaces, respectively. Moreover, since {¢y ({Ps(i) Jv_1)}72, is convergent (by assumption
for the Jacobi-style updating or guaranteed for the Gauss—Seidel-style updating by
Theorem 5.2(b)), we must have

o ({PY_)) = do({P Q51 )).

It follows from (5.5) that
T T T
trace(Qz[PS(*)] D‘g*)) = trace([Ps(*)] Dﬁ*)) = ||[PS(*)] D‘S*)Htrace.

Hence Q; € O maximizes trace(GT[Py(*)]TD‘g*)) over G € OF*k and therefore

Qg is the unitary polar factor of [PS(*)]TDS(*), yielding Q; = I. This completes
the proof of item (b). A proof of item (c) can be given in a similar way to that of
Theorem 4.3(c). Detail is omitted. O

6 Numerical experiments

In this section, we will perform two sets of numerical experiments. The first set demon-
strates the basic behavior of the SCF iteration in Algorithm 4.1 for problem (1.1) on
synthetic examples, and the second set demonstrates the effectiveness of our multi-
view subspace learning model (5.4) solved by the alternating iteration in Algorithm 5.1
which uses Algorithm 4.1 as its computational workhorse. We compare ours against
the state-of-the-art methods in machine learning for multi-view feature extraction on
five real world data sets. All experiments were conducted in MATLAB 2018a on
an Mac laptop using macOS Mojave with Intel Core i9 CPU (2.9 GHz) and 32 GB
memory.

6.1 Experiments on synthetic problems

We first report numerical results on problem (1.1) solved by our proposed SCF iteration
in Algorithm 4.1 on synthetic examples, where matrices A, B and D are randomly
generated with varying n € [1000, 4000] and k € {50, 100}. Specifically, for a given
pair (n, k), matrices A and D are synthesized in MATLAB as

X = randn(n, n); X = (X+X')./2; [U,"] = eig(X);

v = rand(n,1l) + le-6; A = U * diag(v) * U’; D = randn(n, k);

and B is generated similarly to A. With an increase of n by 1000 in the given interval,
we generated 8 synthetic examples in total. Also varying 6 € [0, 1] with an increase
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Fig.2 CPU time and the estimated linear convergence rate by Algorithm 4.1 on 8 synthetic examples for
0 €10,1]

by 0.1, we tested Algorithm 4.1 on a total of 88 problems (1.1). The stopping tolerance
tol = 1077 in (4.2) and the maximum number of iterations is set to 10°.

Figure 1 displays the convergence curves of both objective function value and
normalized NEPv residual, defined as the left-hand side of (4.2), by Algorithm 4.1 on
8 synthetic examples with selected 6 € {0, 0.3, 0.5, 0.8}. As can be observed, most of
the curves of normalized NEPv residual reach the preset tolerance tol = 10~/ much
earlier than the preset maximum number of iterations. For these synthetic examples,
fewer numbers of iterations are required for smaller 6 than larger ones. We point out
that the tolerance 107 is often considered too tiny in machine learning applications.
Also observe that all objective value curves are very much flat in fewer than 50 SCF
iterations.

Figure 2 plots the CPU times by Algorithm 4.1 again on the 8 synthetic examples
as 6 varies. These times are well correlated with the size n. The larger n is, the
more CPU time is consumed. For & < 0.2, the CPU times are comparable for all
examples. As 0 becomes large, more CPU times are consumed for the same (7, k).
This observation is consistent with our estimated rates of linear convergence, which are
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always under 1 (demonstrating always convergence) but increase as 6 does for those
synthetic examples (demonstrating more iterations are needed for a larger 6 than a
smaller one). We caution the reader that in general, the rate of linear convergence by
Algorithm 4.1 is unlikely an increasing function of 6 for given A, B, and D.

6.2 Experiments on multi-view data for feature extraction

We will specialize the blocks of @ and ¥ in (5.3) according to supervised multi-
view subspace learning models GMA [37], MLDA [41], and MvMDA [7] as detailed
in Sect. 5.1, yielding three different orthogonal MvSL (OMvSL) models in the form
(5.4) that will be referred to, accordingly, as OGMA, OMLDA, and OMvMDA, where
prefix “O” is for “Orthogonal” (as previously for OCCA [48]). Each of them can be
solved by Algorithm 5.1 with either the Jacobi-style or Gauss—Seidel-style updating,
leading to six OMvSL methods that will be distinguished further by a suffix “-J” or “-
G”. For example, OGMA-J and OGMA-G are OMvSL (5.4) with @ and ¥ specialied
as in GMA and solved by Algorithm 5.1 with the Jacobi-style and Gauss—Seidel-style
updating, respectively.

We evaluate the model (5.4) for multi-view feature extraction. Five data sets in
Table 1 are used to evaluate the performance of the three proposed concrete models
solved by the two updating schemes: OGMA-G, OGMA-J, OMLDA-G, OMLDA-]J,
OMvVMDA-G, and OMvMDA-J, in terms of multi-view feature extraction by com-
paring them against their baseline counterparts: GMA, MLDA and MvMDA. We
apply various feature descriptors to extract features of views, including CENTRIST
[45], GIST [34], LBP [33], histogram of oriented gradient (HOG), color histogram
(CH), and SIFT-SPM [21], from image data sets: Caltech101 [22] and Scenel5 [21].
Multiple Features (mfeat) and Internet Advertisements (Ads) are publicly available
from the UCI machine learning repository [11]. Dataset mfeat contains handwritten
numeral data with six views including profile correlations (fac), Fourier coefficients
of the character shapes (fou), Karhunen-Love coefficients (kar), morphological fea-
tures (mor), pixel averages in 2 x 3 windows (pix), and Zernike moments (zer). Ads
is used to predict whether or not a given hyperlink (associated with an image) is an
advertisement and has three views: features based on the terms in the images URL,
caption, and alt text (url+alt+caption), features based on the terms in the URL of the
current site (origurl), and features based on the terms in the anchor URL (ancurl).

Except for MVMDA and its new variant: OMvMDA, all other models share the
same trade-off parameter « to balance the pairwise correlations and supervised infor-
mation. In our experiments, we tune @ € {0.01, 0.1, 1, 10, 100} for proper balancing
in supervised setting. To prevent possible singularity, we add a small value, e.g., 1078,
to the diagonals of W Vs. For our proposed methods, an additional parameter 6 is
varied from O to 1 with an increase of 0.1. We also set the maximum number of
iterations to 50 for both the SCF iteration of Algorithm 4.1 and the Jacobi-style or
Gauss-Seidel-style updating of Algorithm 5.1. It is more of an empirical threshhold
observed as a good enough setting for multi-view feature extraction.

To evaluate the classification performance of compared methods, the 1-nearest
neighbor classifier as the base classifier is employed. We run each method to
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Table 1 Real world data sets, where the number of features for each view is shown inside the parentheses
and ‘-’ for views not applicable

mfeat Caltech101-7 Caltech101-20 Scenel5 Ads
Samples 2000 1474 2386 4310 3279
Classes 10 7 20 15 2
View 1 fac(216) CENTRIST(254) CENTRIST(254) CENTRIST(254) url+alt+caption(588)
View 2 fou(76)  GIST(512) GIST(512) GIST(512) origurl(495)
View 3 kar(64)  LBP(1180) LBP(1180) LBP(531) ancurl(472)
View4  mor(6) HOG(1008) HOG(1008) HOG(360) -
View 5 pix(240) CH(64) CH(64) SIFT-SPM(1000) -
View 6 zer(47) SIFT-SPM(1000) ~ SIFT-SPM(1000) — -

Table 2 Classification accuracy (& standard deviation) of multi-view feature extraction on the five real
world data sets in Table 1 with 10% training and 90% testing over 10 random splits. The best 6 is shown in
the parentheses

Methods mfeat Caltech101-7 Caltech101-20 ~ Scenel5 Ads

GMA 93.99 £0.87 93.25 £ 1.04 81.16 £ 0.94 61.41 £1.30 92.59 £1.76
OGMA-J 96.81 £0.4604 95.14 £0.5904 86.48 £1.0206 79.90£0.800.00 94.69 = 0.750s3)
OGMA-G 96.80 £ 0.4404 95.07 £0.5605 86.60 £ 1.110s5 79.90 £ 1.020.00 94.91 = 0.6703)
MLDA 92.01 £ 1.74 92.18 £0.95 77.79 £ 1.01 59.02 +0.94 92.50 £2.06
OMLDA-J 96.74 £ 0.4008 94.68 £+ 0.480.8 86.23 + 1.1609 81.42 £ 1.070.0 94.79 £+ 0.650.5)
OMLDA-G  96.82 +0.380.8 94.59 +0.6203 86.09 £ 1.2209 80.68 & 0.881.0) 94.76 &+ 0.74(03)
MvMDA 93.78 £0.91 92.14 £ 0.68 79.27 £ 1.71 57.33 £ 1.18 78.51 £ 2.96
OMVMDA-J  96.62 +0.310s5 95.11 £0.7204 85.69 £0.8704 77.98 £ 1.2409 94.02 £ 1.5406)
OMVMDA-G 96.63 +0.3704 94.95 £0.5605 85.76 & 1.0004) 78.07 +0.8309 93.52 £ 0.5%0.0

learn projection matrices with varying dimension of the common latent subspace
k € {2,3,5:5 :30} for all data sets except k € {2, 3,4, 5, 6} for mfeat due to its
smallest view mor having only 6 features. We split each data set into training and
testing with ratio 10/90. The learned projection matrices are used to transform both
training and testing data into the latent common space, and then the classifier is trained
and tested in this space. Following [48], we employ the serial feature fusion strategy
by concatenating projected features from all views. Classification accuracy is used
to measure learning performance. Experimental results are reported in terms of the
average and standard deviation over 10 randomly drawn splits.

Table 2 shows the classification accuracies and standard deviations of 9 multi-view
feature extraction methods on five real world data sets over 10 random splits with 10%
training and 90% testing. We have observed the following:

(1) Our proposed methods consistently outperform their counterparts on all five data
sets. The least improvement is about 2% on Ads, while the largest improvement
about 20% occurs on Scenel5.
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Fig.3 Accuracies of compared methods on three data sets for k € {2, 3,4, 5,6} and 6 € [0, 1]

(i) The Jacobi-style and Gauss—Seidel-style updating on the same model achieve
similar classification accuracies with differences within 0.8%.
This is great news for the Jacobi-style updating for which there is no guarantee that
the objective value is monotonically increasing, unlike for the Gauss—Seidel-style
updating.

(iii) MvMDA on Ads fails to produce a proper latent representation since its accuracy
is 14% less than those of GMA and MLDA. However, both OMvMDA-J and
OMvVMDA-G perform very well on the same data set.

(iv) Accuracies by all three proposed models solved by two updating schemes are
comparable and very good.

This is likely due to our trace ratio formulation with its orthogonality constraints in
(5.4) that are known for their robustness [9, 48] as well as varying 6 for weighting.

In Fig. 3 (the 1st row), we also report the classification accuracies of 9 methods
with varying 6 € [0, 1]. On Caltech101-7, Caltech101-20 and mfeat, the best results
of our proposed methods are roughly around 6 = 0.5. However, different behaviors
are found on Scenel5 and Ads. 8 does not show significantly impact on Ads, but we
see better accuracy on Scenel5 as 6 increases. For almost all 8, our proposed methods
consistently outperform baselines. This demonstrates that 6 introduced in (5.4) can be
useful to find better projection matrices for multi-view feature extraction. We further
show the trend of classification accuracy by compared methods as the dimension
k of common latent space increases in Fig. reffig:thetaspsk (the 2nd row). For any
fixed k, our proposed methods outperform their counterparts. Importantly, all of our
proposed methods nearly reach their best performances at fairly small k, while baseline
methods have to use larger k to match that. This can be plausibly explained, namely,
orthonormal bases retain less redundant information than non-orthonormal ones. We
also observe that MVMDA behaves unstably for large k£ on Caltech101-7 and Scenel5
since the accuracy suffers a significant drop, which does not happen to OMvMDA-G
and OMvMDA-J. In summary, our proposed models not only demonstrate superior
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performances to baseline methods but also are more robust to data noise and can
achieve the same or better performance at smaller k. Small k implies fast computations
if an iterative eigen-solver [2, 15, 26] is used in Algorithm 4.1 and that is extremely
useful for large scale real world applications, such as cross-modal retrieval [7], for
a fast response time due to less cost for computing pairwise distances in a lower
dimensional latent space.

7 Conclusions and remarks

We have conducted an investigation, both in theory and numerical solutions, of the
trace ratio maximization problem

trace(XTAX + XTD)
max
XTx=r, [trace(XTBX)]?

(7.1)

At least three special cases of it have been well studied in the past decades because
of their immediate applications to data science. Our main results include an NEPv
(nonlinear eigenvalue problem with eigenvector dependency, a term coined in [6])
formulation of its KKT condition, necessary conditions for its local and global max-
imizers, a complete picture of the role played by D on the maximizers, a guaranteed
convergent self-consistent-field (SCF) iteration and its convergent analysis. As an
application of these results, we propose a novel orthogonal multi-view subspace
framework and experiment on its three instantiated models OGMA, OMLDA, and
OMvVMDA in either supervised or unsupervised setting. Numerical results demon-
strate the new models outperform existing baselines.

Our convergence analysis results on the SCF-type iteration for the NEPv arising
from the trace ratio maximization problem (7.1) are qualitative rather than quantitative,
i.e., lacking a quantitative estimation on the actual rate of convergence, unfortunately.
At the end of Sect. 4, we briefly commented on how to extend the approach in [3]
which deals with NEPv with a unitarily invariance property to the NEPv here, that in
general do not have the property, but only for the case when X[ D is positive definite.
In general when X D is singular, it is much more involved. Looking ahead, in [29]
we will develop a local convergence theory that covers the latter case and can yield
quantitative estimations on the actual rate of convergence.

Although we have been limiting our discussion on real matrices, the developments
in this paper can be straightforwardly extended to complex matrices with minor mod-
ifications, namely, replace all R by C (the set of complex numbers) and all transposes
T by complex conjugate transposes H.
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