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ABSTRACT
In collaborative learning, multiple parties contribute their datasets

to jointly deduce global machine learning models for numerous

predictive tasks. Despite its efficacy, this learning paradigm fails to

encompass critical application domains that involve highly sensi-

tive data, such as healthcare and security analytics, where privacy

risks limit entities to individually train models using only their own

datasets. In this work, we target privacy-preserving collaborative hi-
erarchical clustering. We introduce a formal security definition that

aims to achieve balance between utility and privacy and present a

two-party protocol that provably satisfies it. We then extend our

protocol with: (i) an optimized version for single-linkage cluster-

ing, and (ii) scalable approximation variants. We implement all our

schemes and experimentally evaluate their performance and accu-

racy on synthetic and real datasets, obtaining very encouraging

results. For example, end-to-end execution of our secure approxi-

mate protocol for over 1M 10-dimensional data samples requires

35sec of computation and achieves 97.09% accuracy.

CCS CONCEPTS
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1 INTRODUCTION
Big-data analytics is an ubiquitous practice with a noticeable im-

pact on our lives. Our digital interactions produce massive amounts

of data that are analyzed in order to discover unknown patterns
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or correlations, which help us draw safer conclusions or make in-

formed decisions. At the core of this lies Machine Learning (ML) for

devising complex data models and predictive algorithms that pro-

vide hidden insights or automated actions, while optimizing certain

objectives. Example applications that successfully employ ML are

market forecast, service personalization, speech/face recognition,

autonomous driving, health diagnostics and security analytics.

Of course, data analysis is only as good as the analyzed data, but

this goes beyond the need to properly inspect, cleanse or transform

high-fidelity data prior to its modeling: In most learning domains,

analyzing “big data” is of twofold semantics: volume and variety.
First, the larger the dataset available to an ML algorithm, the bet-

ter its learning accuracy, as irregularities due to outliers fade away

faster. Indeed, scalability to large dataset sizes is very important,

especially so in unsupervised learning, where model inference uses

unlabelled observations (evading points of saturation, encountered

in supervised learning, where new training sets improve accuracy

only marginally). Also, the more varied the collected data, the more

elaborate its analysis, as degradation due to noise reduces and do-

main coverage increases. Indeed, for a given learning objective, say

classification or anomaly detection, combining more datasets of

similar type but different origin enables discovery of more complex,

interesting, hidden structures and of richer association rules (corre-

lation or causality) among attributes. So, ML models improve their

predictive power when they are built over multiple datasets owned

and contributed by different entities, in what is termed collaborative
learning—and widely considered as the golden standard [100].

Privacy-preserving hierarchical clustering. Several learning
tasks of interest, across a variety of application domains, such as

healthcare or security analytics, demand deriving accurate MLmod-

els over highly sensitive data—e.g., personal, proprietary, customer,

or other types of data that induce liability risks. By default, since

collaborative learning inherently implies some form of data sharing,

entities in possession of such confidential datasets are left with no

other option than simply running their own local models, severely

impacting the efficacy of the learning task at hand. Thus, privacy
risks are the main impediment to collaboratively learning richer

models over large volumes of varied, individually contributed, data.

The security and ML community has embraced the concept of

Privacy-preserving Collaborative Learning (PCL), the premise being

that effective analytics over sensitive data is feasible by building

global models in ways that protect privacy. This is closely related to

(privacy-preserving) ML-as-a-Service [42, 52, 53, 104] that utilizes

cloud providers for ML tasks, without parties revealing their sensi-

tive raw data (e.g., using encrypted or sanitized data. Existing work

on PCL mostly focuses on supervised rather than unsupervised
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learning tasks (with a few exceptions such as 𝑘-means clustering).

As unsupervised learning is a prevalent paradigm, the design of

ML protocols that promote collaboration and privacy is vital.

In this paper, we study the problem of privacy-preserving hierar-
chical clustering. This unsupervised learning method groups data

points into similarity clusters, using some well-defined distance

metric. The “hierarchic” part is because each data point starts as

a separate “singleton” cluster and clusters are iteratively merged

building increasingly larger clusters. This process forms a natural

hierarchy of clusters that is part of the output, showing how the

final clustering was produced. We present scalable cryptographic

protocols that allow two parties to privately learn a model for the

joint clusters of their combined datasets. Importantly, we propose a

formal security definition for this task in the MPC framework and

prove our protocols satisfy it. In contrast, prior works for privacy-

preserving hierarchical clustering have proposed crypto-assisted

protocols but without offering rigorous security definitions or anal-

ysis (e.g., [27, 55, 57]; see detailed discussion in Section 8).

Motivating applications. Hierarchical clustering is a class of un-

supervised learning methods that build a hierarchy of clusters over
an input dataset, typically in bottom-up fashion. Clusters are initial-

ized to each contain a single input point and are iteratively merged

in pairs, according to a linkage metric that measures clusters’ close-

ness based on their contained points. Here, unlike other clustering

methods (𝑘-means or spectral clustering), different distance metrics

can define cluster linkage (e.g., nearest neighbor and diameter for

single and complete linkage, respectively) and flexible conditions on
these metrics can determine when merging ends. The final output

is a dendrogram with all formed clusters and their merging history.

This richer clustering type is widely used in practice, often in areas

where the need for scalable PCL solutions is profound.

In healthcare, for instance, hierarchical clustering allows re-

searchers, clinicians and policy makers to process medical data

and discover useful correlations to improve health practices—e.g.,

discover similar genes types [34], patient profiles most in need of

targeted intervention [80, 110] or changes in healthcare costs for

specific treatments [68]. To be of any predictive value, such data

contains sensitive information (e.g., patient records, gene informa-

tion, or PII) that must be protected, also due to legislations such as

HIPPA in US or GDPR in EU. Also, in security analytics, hierarchi-

cal clustering allows enterprise security personnel to process log

data on network/users activity to discover suspicious or malicious

events—e.g., detect botnets [46], malicious traffic [79], compromised

accounts [19], or malware [13]. Again, such data contains sensi-

tive information (e.g., employee/customer data, enterprise security

posture, defense practices, etc.) that must be protected, also due

to industrial regulations or for reduced liability. As such, without

privacy provisions for joint cluster analysis, entities are restricted

to learn only local clusters, thus confined in accuracy and effective-

ness. E.g., a clinical-trial analysis over patients of one hospital may

introduce bias on geographic population, or network inspection of

one enterprise may miss crucial insight from attacks against others.

In contrast, our treatment of clustering as a PCL instance is a

solid step towards richer classification. Our protocols for private hi-

erarchical clustering incentivize entities to contribute their private

datasets for joint cluster analysis over larger and more varied data

collections, to get in return more refined results. For instance, hospi-

tals can jointly cluster medical data extracted from their combined

patient records, to provide better treatment, and enterprises can

jointly cluster threat indicators collected from their combined SIEM

tools, to present timely and stronger defenses against attacks.
1
At

all times, data owners protect the confidentiality of their private

data and remain compliant with current regulations.

Challenges and insights. A first challenge we faced is how to

rigorously specify the secure functionality that such protocols must

achieve. A secure protocol guarantees that no party learns any-

thing about the input of the other party, except what can be inferred
after parties learn the output. But since the output dendrogram of

hierarchical clustering already includes the (now partitioned) in-

put, this problem cannot directly benefit from MPC. This issue is

partially the reason why previous approaches for hierarchical clus-

tering (see discussion in Section 8 and an excellent survey of related

work by Hegde et al. [49]) lack formal security analysis or have

significant information leakage. To overcome this, our approach is

to modify and refine what private hierarchical clustering should

produce, redacting the joint output—sufficiently enough, to allow

the needed input privacy protection, but minimally so, to preserve

the learning utility. We introduce a security notion that is based on

point-agnostic dendrograms, which explicitly capture only the merg-

ing history of formed joint clusters and useful statistics thereof, to

balance the intended accuracy against the achieved privacy. To the

best of our knowledge, our formal security definition (Section 3) is

the first such attempt for the case of hierarchical clustering.

The next challenge is to securely realize this functionality ef-

ficiently. Standard tools for secure two-party computation, e.g.,

garbled circuits [113, 114], result in large communication, while

fully homomorphic encryption [41] is still rather impractical, so

designing scalable hierarchical clustering PCL protocols is chal-

lenging. Moreover, hierarchical clustering of 𝑛 points is already

computation-heavy—of O(𝑛3) cost. As such, approximation algo-

rithms, e.g., CURE [47], are the de facto means to scale to massive

datasets, but incorporating approximation to private computation

is not trivial—as complications often arise in defining security [37].

In Section 4, we follow a modular design approach and use cryp-

tography judiciously by devising our main construction as a mixed
protocol (e.g., [28, 50, 63]). We decompose our refined hierarchical

clustering into building blocks and then we select a combination of

tools that achieves fast computation and low bandwidth usage. In

particular, we conveniently use garbled circuits for cluster merging,

but additive homomorphic encryption [86] for cluster encoding,

while securely “connecting” the two steps’ outputs.

In Section 5, we evaluate the performance and security of our

main protocol and present an optimized variant of 𝑂 (𝑛2) cost for
single linkage. In Section 6, we integrate the CURE method [47]

for approximate clustering into our design, to get the best-of-two-

worlds quality of high scalability and privacy. We study different

secure approximate variants that exhibit trade-offs between effi-

ciency and accuracy without extra leakage due to approximation.

In Section 7, we report results from the experimental evaluation of

1
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ics; e.g., AI-based clinical-trial predictions [1], threat-intelligence sharing [7, 8, 29, 36].



our protocols on synthetic and real data that confirm their practical-

ity. For example, end-to-end execution of our private approximate

single-linkage protocol for 1M 10 − 𝑑 records, achieves 97.09% ac-

curacy at very with only 35sec of computation time.

Summary of contributions. Overall, in this work our results can

be summarized as follows:

• We provide a formal definition and secure two-party protocols

for private hierarchical clustering for single or complete linkage.

• We present an optimized protocol for single linkage that signifi-

cantly improves the computational and communication costs.

• We combine approximate clustering methods with our protocols

to get variants that achieve both scalability and strong privacy.

• We experimentally evaluate the performance of our protocols

via a prototype implementation over synthetic and real datasets.

2 PRELIMINARIES
Hierarchical clustering (HC). For fixed positive integers 𝑑, 𝑙 , let

D = {𝑣𝑖 |𝑣𝑖 ∈ Z𝑑
2
𝑙
}𝑛
𝑖=1

be an unlabeled indexed dataset of 𝑛 𝑑-

dimensional points, where w.l.o.g, we set the domain to {0, . . . , 2𝑙 −
1}. Over pairs 𝑥,𝑦 ∈ D of points, point distance is measured

using the standard square Euclidean distance metric dist(𝑥,𝑦) =∑𝑑
𝑗=1 (𝑥 𝑗 −𝑦 𝑗 )2. Over pairs 𝑋,𝑌 ⊆ D of sets of points, set closeness

is measured using a linkage distance metric 𝛿 (𝑋,𝑌 ), as a function of

the cross-set distances of points contained in 𝑋 , 𝑌 . The most com-

monly used linkage distances are the single linkage (or nearest neigh-
bor) defined as 𝛿 (𝑋,𝑌 ) = min𝑥 ∈𝑋,𝑦∈𝑌 dist(𝑥,𝑦), and the complete
linkage (or diameter) defined as 𝛿 (𝑋,𝑌 ) = max𝑥 ∈𝑋,𝑦∈𝑌 dist(𝑥,𝑦).

Standard agglomerative HC methods use set closeness to form

clusters in a bottom-up fashion, as described in algorithm HCAlg
(Figure 1). It receives an 𝑛-point dataset D and groups its points

into a total of ℓ𝑡 ≤ 𝑛 target clusters, by iteratively merging pairs

of closest clusters into their union. The merging history is stored

(redundantly) in a dendrogram 𝑇 , that is, a forest of clusters of

𝑛 − ℓ𝑡 + 1 levels, where siblings correspond to merged clusters and

levels to dataset partitions, build level-by-level as follows:

• Initially, each input point 𝑣𝑖 ∈ D forms a singleton cluster {𝑣𝑖 }
as a leaf in 𝑇 (at its lowest level 𝑛).

• Iteratively, in 𝑛 − ℓ𝑡 clustering rounds, the 𝑖 root clusters (at top
level 𝑖) form 𝑖 − 1 new root clusters in 𝑇 (at higher level 𝑖 − 1),
with the closest two merged into a union cluster as their parent,

and each other cluster copied to level 𝑖 − 1 as its parent.
When a new level of ℓ𝑡 target clusters is reached, HCAlg halts and

outputs 𝑇 . The exact value of ℓ𝑡 ∈ [1 : 𝑛] is determined during

execution via a predefined condition End checked over the current

state 𝑇 and a termination parameter 𝑡 provided as additional input.

This allows for flexible termination conditions—e.g., stopping when

inter-cluster distance drops below an threshold specified by 𝑡 , or

simply when exactly ℓ𝑡 = 𝑡 target clusters are formed.

Typically, the dendrogram 𝑇 is augmented to store some associ-

ated cluster metadata, by keeping, after any union/copy cluster is

formed, some useful statistics over its contained points. Common

such statistics for cluster 𝐶 is its size 𝑠𝑖𝑧𝑒 (𝐶) = |𝐶 | and representa-
tive value 𝑟𝑒𝑝 (𝐶), usually defined as its centroid (i.e., a certain type

of average) point. Overall, for a set𝑀 of cluster statistics of interest

and specified linkage distance and termination condition, HCAlg is

viewed to operate on indexed dataset D = {𝑣𝑖 }𝑛𝑖=1 and return an

Hierarchical Clustering Algorithm HCAlg

Input: Indexed set D = {v𝑖 }𝑛𝑖=1, termination parameter 𝑡

Output: Dendrogram𝑇 , clusters𝐶 (𝑇 ) , metadata𝑀 (𝑇 )
Parameters: Linkage distance 𝛿 ( ·, ·) , termination condition End( ·, ·) ,
cluster statistics set𝑀 ⊇ {𝑟𝑒𝑝 ( ·), 𝑠𝑖𝑧𝑒 ( ·) }
[Initially, at level 𝑛]
1. Initialize dendrogram𝑇 : For each 𝑖 = 1, . . . , 𝑛:

– Create node 𝑢𝑖 as the 𝑖th left-most leaf in𝑇 .

– Set𝐶 (𝑢𝑖 ) = {v𝑖 } as the singleton cluster of 𝑢𝑖 .

– Compute𝑀 (𝑢𝑖 ) = {𝑚 (v𝑖 ) |𝑚 ∈ 𝑀 } as statistics of 𝑢𝑖 .
2. Set up linkages: Compute linkages of all pairs of

singleton clusters as a dictionary 𝐷 , where {𝐶 (𝑢𝑖 ),𝐶 (𝑢 𝑗 ) }
is keyed under 𝛿 (𝐶 (𝑢𝑖 ),𝐶 (𝑢 𝑗 )) , 1 ≤ 𝑖 < 𝑗 ≤ 𝑛.

[Iteratively, at level 𝑖 = 𝑛, . . . , ℓ𝑡 + 1]
1. Update𝑇 : If 𝑁𝑖 is the set of nodes in𝑇 at level 𝑖:

– Find in 𝐷 the min-linkage pair (𝑢,𝑢′) of nodes in 𝑁𝑖 ,

breaking ties using a fixed rule over leaf-node indices.

– Create node 𝑤 ∈ 𝑁𝑖−1 as parent of 𝑢 and 𝑢′; set
𝐶 (𝑤) = 𝐶 (𝑢) ∪𝐶 (𝑢′) ; for each node 𝑢 ∈ 𝑁𝑖 − {𝑢,𝑢′ },
create node 𝑤̄ ∈ 𝑁𝑖−1 as parent of 𝑢; set𝐶 (𝑤̄) = 𝐶 (𝑢) .
– For each node 𝑤̂ ∈ 𝑁𝑖−1, compute𝑀 (𝑤̂) .
2. Check termination: If End(𝑇, 𝑡 ) == 1, terminate.

3. Update linkages: Compute linkage 𝛿 (𝐶 (𝑤),𝐶 (𝑤̄)) , for
all 𝑤̄ ∈ 𝑁𝑖−1 − {𝑤 }, and consistently update dictionary 𝐷 .

Figure 1: Agglomerative hierarchical clustering.

𝑀-augmented dendrogram𝑇 , comprised of: (1) the forest structure of
dendrogram 𝑇 , specifying the full merging history of input points

into formed clusters (from 𝑛 singletons to ℓ𝑡 target ones); (2) the

cluster set 𝐶 (𝑇 ); and (3) the metadata set 𝑀 (𝑇 ) associated with

(clusters in) 𝑇 . Assuming that HCAlg employs a fixed tie-breaking

method in merging clusters, its execution is deterministic.

Secure computation and threat model. We consider the stan-

dard setting for private two-party computation, where two parties

wishing to evaluate function 𝑓 (·, ·) on their individual, private in-

puts 𝑥1, 𝑥2, engage in an interactive cryptographic protocol that

upon termination returns to them the common output𝑦 = 𝑓 (𝑥1, 𝑥2).
Protocol security has this semantics: Subject to certain computa-

tional assumptions and misbehavior types during protocol execu-

tion, no party learns anything about the input of the other party,

other than what can be inferred by its own input 𝑥𝑖 and the learned

result 𝑦. In this context, we study privacy-preserving hierarchical

clustering in the semi-honest adversarial model which assumes that

parties are honest, but curious: They will follow the prescribed pro-

tocol but also seek to infer information about the input of the other

party, by examining the transcript of exchanged messages—the

latter, assumed to be transferred over a reliable channel.

Although, in practice, parties may choose to be malicious, devi-

ating from the prescribed protocol if they can benefit from this and

can avoid detection, the semi-honest adversarial model still has its

merits, especially in the studied PCL setting. Namely, it provides

essential privacy protection for any privacy-aware party to enter

the joint computation to benefit from collaborative learning. We

note that, by trading off efficiency, security can be hardened via

known generic techniques for compiling protocols secure in this

model into counterparts secure against malicious parties.



Garbled circuits. One of the most widely used tools for two-party

secure computation, Garbled Circuits (GC) [113, 114] allow two

parties to evaluate a boolean circuit on their joint data without

revealing their respective inputs. This is done by generating an

encrypted truth table for each gate while evaluating the circuit by

decrypting these tables in a way that preserves input privacy. In

Appendix A, we provide more details about the GC framework.

Homomorphic encryption. This technique allows carrying out
operations over encrypted data. Fully Homomorphic Encryption

(FHE) [41] can evaluate arbitrary functions over ciphertexts, but

remains rather impractical. Partially homomorphic encryption sup-

ports only specific arithmetic operations over ciphertexts, but al-

lows for very efficient implementations [86, 91]. We use Paillier’s

scheme for Additively Homomorphic Encryption (AHE) [86], sum-

marized as follows. For security parameter 𝜆, keys generated by

running (pk, sk) ← Gen(1𝜆) and a public RSA modulus 𝑁 , the

scheme encrypts (with public key pk) any message𝑚 in the plain-

text space Z𝑁 into a ciphertext [𝑚], ensuring that decryption (with

secret key 𝑠𝑘) of any ciphertext product [𝑚] · [𝑚′] mod 𝑁 2
(com-

putable without sk) results in the plaintext sum𝑚 +𝑚′ mod 𝑁 .

Thus, decrypting [𝑚]𝑘 mod 𝑁 2
results in 𝑘𝑚 mod 𝑁 , and the

ciphertext product [𝑚] · [0] results in a fresh encryption of𝑚.

3 FORMAL PROBLEM SPECIFICATION
We introduce a model for studying private hierarchical clustering,

the first to provide formal specifications for secure two-party pro-

tocols for this central PCL problem. Importantly, we define security

for a refined learning task that achieves a meaningful balance be-

tween the intended accuracy and privacy—a necessary compromise

for the problem at hand to even be defined as a PCL instance!

We first formulate two-party privacy-preserving hierarchical

clustering as a secure computation. Parties P1, P2 hold indepen-

dently owned datasets 𝑃 , 𝑄 of points in Z𝑑
2
𝑙
, and wish to per-

form a collaborative hierarchical clustering over the combined set

D = 𝑃 ∪𝑄 . They agree on the exact specification 𝑓𝐻𝐶 of this learn-

ing task, as a function of their individually contributed datasets

that encompasses all other parameters (e.g., for termination).

LetΠ be a two-party protocol that correctly realizes 𝑓𝐻𝐶 (·, ·): Run
jointly on inputs 𝑥1, 𝑥2, Π returns the common output 𝑓𝐻𝐶 (𝑥1, 𝑥2).
Thus, parties P1, P2 can learn cluster model 𝑓𝐻𝐶 (𝑃,𝑄) by running

protocol Π on their inputs 𝑃 ,𝑄 . As discussed, Π is considered to be

secure if its execution prevents an honest-but-curious party from

learning anything about the other party’s input that is not implied

by the learned output. We formalize this intuitive privacy require-

ment via the standard two-party ideal/real world paradigm [45].

Ideal functionality. First, we define what one can best hope for.

Cluster analysis with perfect privacy is trivial in an ideal world,
where P1, P2 instantly hand-in their inputs 𝑥1, 𝑥2 to a trusted third

party, called the ideal functionality 𝑓𝐻𝐶 , that computes and an-

nounces 𝑓𝐻𝐶 (𝑥1, 𝑥2) (and explodes). Here, the use of terms “perfect”

and “ideal” is fully justified for no information about any private

input is leaked during the computation. Some information about 𝑥1
or 𝑥2 may be inferred after the output is announced, by combining

the known 𝑥2 or 𝑥1 with the learned 𝑓𝐻𝐶 (𝑥1, 𝑥2): It is the inherent
price for collaboratively learning a non-trivial function.

Ideal Functionality 𝑓 ∗
𝐻𝐶
( ·, ·)

Input: Sets 𝑃 = {𝑝𝑖 }𝑛1

1
,𝑄 = {𝑞 𝑗 }𝑛2

1

Output: Dendrogram𝑇 ∗, metadata𝑀∗ ⊇ {𝑟𝑒𝑝 ( ·), 𝑠𝑖𝑧𝑒 ( ·) }
Parameters: Linkage distance 𝛿 ( ·, ·) , termination condition End( ·, 𝑡 ) ,
cluster statistics set𝑀 , selection function S( ·)
[Pre-process] Form input of size 𝑛 = 𝑛1 + 𝑛2 for HCAlg:
1. Set D = {𝑑𝑘 }𝑛1 s.t. 𝑑𝑘 = 𝑝𝑘 , if 𝑘 ≤ 𝑛1, or else 𝑑𝑘 = 𝑞𝑘−𝑛1

.

2. Pick random permutation 𝜋 : [𝑛] → [𝑛]; set D∗ = 𝜋 (D) .
[HC-process] Run HCAlg(D∗, 𝑡 ) w/ parameters 𝛿 ,𝑀 , End.

[Post-process] Redact output𝑇 ∗,𝐶 (𝑇 ∗) ,𝑀 (𝑇 ∗) of HCAlg:
1. Set𝑀∗ = ∅; ∀𝑣 ∈ 𝑇 ∗: if S(𝑣) == 1,𝑀∗ ← 𝑀∗ ∪ {𝑀 (𝑣) }.
2. Return𝑇 ∗,𝑀∗.

Figure 2: Ideal functionality 𝑓 ∗
𝐻𝐶

for hierarchical clustering.

In the real world, P1, P2 learn 𝑓𝐻𝐶 (𝑥1, 𝑥2) by interacting in the

joint execution of a protocol Π. We measure the privacy quality of

Π against the ideal-world perfect privacy, dictating that running

Π is effectively equivalent to calling the ideal functionality 𝑓𝐻𝐶 .

Informally, Π securely realizes 𝑓𝐻𝐶 , if anything computable by an

efficient semi-honest party Pi in the real world, can be simulated

by an efficient algorithm (called the simulator Sim), acting as Pi in
the ideal world; i.e., Π leaks no information about a private input

during execution, subject to the price for learning 𝑓𝐻𝐶 (𝑥1, 𝑥2).
Next comes the question of which ideal functionality 𝑓𝐻𝐶 should

Π securely realize for private joint hierarchical clustering? Though

tempting, equating 𝑓𝐻𝐶 with the legacy algorithmHCAlg (Figure 1),
thus learning a full-form augmented dendrogram, slides us into

a degeneracy. Assume 𝑓𝐻𝐶 merely runs HCAlg on the combined

indexed setD = 𝑃∪𝑄 = {𝑑𝑘 }𝑛𝑘=1, 𝑛 = |𝑃 | + |𝑄 |.2 The learned model

is the dendrogram 𝑇 along with its associated clusters 𝐶 (𝑇 ) and
metadata𝑀 (𝑇 ). But set𝐶 (𝑇 ) itself reveals the inputD; in this case,

the price for collaborative learning is full disclosure of sensitive

data and nothing is to be protected! This raises the question of

limiting exactly what information about 𝑃,𝑄 should be revealed by

𝑓𝐻𝐶 which is the focus of the remainder of this section.

Refined cluster analysis. In the PCL setting, we need a new defi-

nition of hierarchical clustering that distills the full augmented den-

drogram {𝑇,𝐶 (𝑇 ), 𝑀 (𝑇 )} into a redacted, but still useful, learned
model, balancing between accuracy (to benefit from clustering)

and privacy (to allow collaboration). If allowing the ideal function-

ality 𝑓𝐻𝐶 to return 𝐶 (𝑇 ) is one extreme that diminishes privacy,

removing the dendrogram 𝑇 from the output—to learn only about

its associated information 𝐶 (𝑇 ),𝑀 (𝑇 )—is another that diminishes

accuracy. Indeed, if𝑇 , which captures the full merging history in its

structure, is excluded from the output of 𝑓𝐻𝐶 , a core feature in HC

is lost: the ability to gain insights on how target clusters were formed,
under what hierarchies and in which order. This renders the HC

analysis only as good as much simpler techniques (e.g., 𝑘-means)

that merely discover pure similarity statistics of target clusters.

As the motivation for studying collaborative HC as a prominent

and widely used unsupervised learning task, in the first place, lies

2
If 𝑃 ,𝑄 are indexed, then D = 𝑄 ∥𝑃 , or else a fixed ordering is used.



exactly on its ability to discover such rich inter-cluster relations,

we must keep the forest structure of 𝑇 in 𝑓𝐻𝐶 ’s output.
3

Avoiding the above two degenerate extremes suggests that the

learned model 𝑓𝐻𝐶 (𝑃,𝑄) should necessarily include the cluster

hierarchy 𝑇 but not the clusters 𝐶 (𝑇 ) themselves. Yet, the obvious

middle-point approach of learning model 𝑓𝑚
𝐻𝐶
(𝑃,𝑄) = {𝑇,𝑀 (𝑇 )}

remains suboptimal in terms of privacy protections, as the learned

output can still be strongly correlated to exact input points. Indeed,

given𝑇 and a party’s own input, inferring points of the other party’s

input simply amounts to identifying singleton clusters, which is

generally possible by inspecting and correlating the (hard-coded in

HCAlg) indices inD with the metadata associated to singletons (or

their close neighbors). For instance, if𝑤 is the parent of singleton 𝑢

and cluster 𝑢 ′ in 𝑇 , then P1 can infer input point 𝐶 (𝑢) of P2, either
directly from output𝑀 (𝑢), if 𝑢 is known to store none of its input

points, or indirectly from𝑀 (𝑢 ′),𝑀 (𝑤), if these output values imply

a value of𝑀 (𝑢) that is consistent with none of its own inputs.

Also, even without singleton clusters in the output, there is still

leakage from the positioning of the points at the leaf level of 𝑇 .

E.g., assuming 𝑃,𝑄 are ordered from left to right, a merging of two

points at the right half of the tree during the first merge reveals

to P1 that P2 has a pair of points with smaller distance than the

minimum distance observed among points in 𝑃 . Hence, it is crucial

to eliminate information about the positioning of clusters in 𝑇 .

Point-agnostic dendrogram. Such considerations naturally lead

to a new goal: We seek to refine further, but minimally so, the

middle-point model 𝑓𝑚
𝐻𝐶
(𝑃,𝑄) = {𝑇,𝑀 (𝑇 )} into an optimized

model 𝑓 ∗
𝐻𝐶
(𝑃,𝑄) = {𝑇 ∗, 𝑀∗ (𝑇 )}, whereby no private input points

directly leak to any of the parties, after the output is announced. This
quality is well-defined, intuitive and useful: Unless the intended

joint hierarchical clustering explicitly copies some of input points

to the output, the learned model 𝑓 ∗
𝐻𝐶
(𝑃,𝑄) should allow no party to

explicitly learn, that is, to deterministically deduce with certainty,

any of the unknown input points of the other party.

We accordingly set our ideal functionality 𝑓 ∗
𝐻𝐶

for hierarchical

clustering to outputs a point-agnostic augmented dendrogram, de-

fined by merely running algorithm HCAlg, subject to a twofold

correction of its input 𝑃 , 𝑄 and returned dendrogram (Figure 2):

• Pre-process input: Run HCAlg on indexed set D∗ that is a
random permutation over the combined setD = 𝑃∪𝑄 = {𝑑𝑘 }𝑛𝑘=1.
• Post-process output: Return the output 𝑇 ∗, 𝐶 (𝑇 ∗), 𝑀 (𝑇 ∗) of
HCAlg redacted as 𝑇 ∗, 𝑀∗ (𝑇 ∗) ⊂ 𝑀 (𝑇 ∗), including metadata of

only a few safe clusters in 𝑇 ∗.
Our ideal functionality 𝑓 ∗

𝐻𝐶
refines the ordinary dendrogram 𝑇 ,

𝐶 (𝑇 ),𝑀 (𝑇 ): Running HCAlg on the randomly permuted input D∗
(instead of D) results in a new randomized forest structure 𝑇 ∗ (in-
stead of𝑇 ) and, although its associated sets of formed clusters𝐶 (𝑇 ∗)
and metadata𝑀 (𝑇 ∗) remain the same, the learned model includes

no elements from 𝐶 (𝑇 ∗), but only specific elements from 𝑀 (𝑇 ∗),
determined by a selection function S(·) (as a parameter agreed upon

among the parties and hard-coded in 𝑓 ∗
𝐻𝐶

). Such metadata is safe

to learn, in the sense that it does not directly leak any input points.

3
Cluster hierarchy is vital in HC learning, e.g., in healthcare, revealing useful causal

factors that contribute to prevalence of diseases [34] and in biology, revealing useful

relationships among plants, animals and their habitat ecological subsystems [44].

We propose the following two orthogonal strategies for safe

metadata selection for point-agnostic dendrograms:

• 𝑠-Merging selection:𝑀 (𝑤) ∈ 𝑀 (𝑇 ∗) if𝑤 is the parent of 𝑢, 𝑢 ′

in 𝑇 ∗ and |𝐶 (𝑢) |, |𝐶 (𝑢 ′) | > 𝑠: any non-singleton cluster formed

by merging two clusters of size above threshold 𝑠 > 0, is safe;

• Target selection:𝑀 (𝑤) ∈ 𝑀 (𝑇 ∗) if𝑤 is root in 𝑇 ∗: any target

cluster at level ℓ𝑡 in 𝑇
∗
is safe.

Above, the first strategy ensures that no direct leakage of private

input points occurs by correlating statistics of thin neighboring

clusters; in particular, no cluster statistics are learned for singletons

or their parents (𝑠 = 1), thus eliminating the type of leakage allowed

bymodel 𝑓𝑚
𝐻𝐶
(𝑃,𝑄). The second strategy ensures that only statistics

of target clusters are learned, that is, input points may be directly

learned only explicitly as part of the intended cluster analysis.

Overall, the resulting dendrogram is point-agnostic in the sense

that neither the forest structure of 𝑇 ∗ nor the metadata𝑀 (𝑇 ∗) re-
veal which singletons a party’s points are mapped to. As points are

randomly mapped to singletons, ties in cluster merging are ran-

domly broken, and no statistics are learned for singleton (or thin)

clusters, no party can deduce with certainty any of the other party’s

input points. For instance, the applied permutation eliminates leak-

age from the positioning of the singleton cluster at the leaves that,

in our previous example, allowed one to infer whether the other

party owned points with smaller distance than its own pairs, from

the first-round clustering result. More generally, anything inferable

about a party’s private input relates to a meta-analysis that must

necessarily encompass the (unknown) input distribution and the

random permutation used by 𝑓 ∗
𝐻𝐶

. This can be viewed as an inherent
price of collaborative hierarchical clustering. The following defines
the security of privacy-preserving hierarchical clustering.

Definition 3.1. A two-party protocol Π, jointly run by P1, P2 on
respective inputs 𝑥1, 𝑥2 using individual random tapes 𝑟1, 𝑟2 that

result in incoming-message transcripts 𝑡1, 𝑡2, is said to be secure
for collaborative privacy-preserving hierarchical clustering in the

presence of static, semi-honest adversaries, if it securely realizes

the ideal functionality 𝑓 ∗
𝐻𝐶

defined in Figure 2, by satisfying the

following: For 𝑖 = 1, 2 and for any security parameter 𝜆, there exists

a non-uniform probabilistic polynomial-time simulator SimPi so

that SimPi (1𝜆, 𝑥𝑖 , 𝑓 ∗𝐻𝐶
(𝑥1, 𝑥2)) � viewAΠ

Pi
≜ {𝑟𝑖 , 𝑡𝑖 }.

4 MAIN CONSTRUCTION
We now present our main construction, protocol PHC for Private
Hieararchical Clustering that securely realizes the ideal functional-

ity 𝑓 ∗
𝐻𝐶

(of Figure 2) when jointly run by parties P1, P2.

General approach. As discussed earlier, for efficiency reasons,

we seek to avoid carrying out hierarchical clustering—a complex

and inherently iterative process of cubic costs—in its entirety by

computing over ciphertext (e.g., via GC or FHE). Instead, we adopt

a mixed-protocols design, decomposing hierarchical clustering into

more elementary tasks. We then use tailored secure and efficient

protocols for each task, and combine these components into a final

protocol, inways thatminimize the cost in converting data encoding

between individual sub-protocols. Hence, our solution is a secure

mixed-protocol specifically tailored for hierarchical clustering.

It is worth noting that generic solutions from 2-party compu-

tation (2PC) (e.g., [28]), would solve the problem but would not



Algorithm 1: PHC: Private Cluster Analysis
P1’s Input: 𝑃 = {𝑝1, . . . , 𝑝𝑛

1
}, security parameter 𝜆

P2’s Input:𝑄 = {𝑞1, . . . , 𝑞𝑛
2
}, security parameter 𝜆

Output:Merging history, {𝑟𝑒𝑝 ( ·) , 𝑠𝑖𝑧𝑒 ( ·) } of 𝑡 target nodes
Parameters: Default configurations

1 P1 : Generate (pk, sk) ← Gen(1𝜆) ; send pk to P2
2 P2 : Generate (pk′, sk′) ← Gen(1𝜆) ; send pk′ to P1
3 P1, P2 : Jointly run PHC.Setup, PHC.Cluster, PHC.Output

easily scale to large datasets. During hierarchical clustering, we

need to maintain a distance matrix between two parties with space

complexity 𝑂 (𝑛2). If one relies solely on a single generic approach

such as GC or secret sharing, the communication bandwidth would

become the bottleneck. Hence, using additively homomorphic en-

cryption during our protocol’s setup phase in order to produce a

“shared permuted” distance matrix allows us not only to hide the

correspondence between euclidean distances and original points,

but also to be more communication efficient eventually. Another ad-

vantage compared to other 2PC techniques is that our approach can

achieve better precision as we explain in more detail in Section 7.

Our protocol securely implements 𝑓 ∗
𝐻𝐶

for the configuration that

the parties specify: linkage 𝛿 (·, ·), termination condition End(·, 𝑡),
cluster statistics set 𝑀 , selection function S(·). Yet for simplicity,

hereby, we use the following default configurations, where:
(1) complete linkage over one-dimensional data is used;
(2) the termination condition results in 𝑡 target nodes;
(3) target selection is used for safe metadata selection; and

(4) only representative values and size statistics are learned.

That is, by (2) - (4) in what follows (and in our experiments in

Section 7), the set of redacted statistics 𝑀∗ consists of the repre-
sentatives 𝑟𝑒𝑝1, . . . , 𝑟𝑒𝑝ℓ𝑡 and sizes 𝑠𝑖𝑧𝑒1, . . . , 𝑠𝑖𝑧𝑒ℓ𝑡 of ℓ𝑡 = 𝑡 target

clusters (recall that representatives are a predefined type of centroid

of the cluster, e.g., average or median), where 𝑡 is fixed in advance.

Configuration 1) is used only for clarity; we discuss optimizations

for single linkage and extensions to higher dimensions in Section 5

(and we report on the evaluation of such extensions in Section 7).

Protocol overview. After choosing configurations, P1, P2 run pro-

tocol PHC (Algorithm 1), with inputs their datasets 𝑃,𝑄 of 𝑛1, 𝑛2
points, 𝑛 = 𝑛1 + 𝑛2, security parameter 𝜆, and statistical parameter

𝜅. Each party establishes its individual Paillier key-pair, and then

parties exchange their corresponding public keys.

Then, parties run sub-protocols PHC.Setup, PHC.Cluster and
PHC.Output, which comprise the threemain phases in our protocol,

in direct analogy to the three components of 𝑓 ∗
𝐻𝐶

. The general flow

of our protocol is described below, in reference to also Figure 3.

In a setup phase, sub-protocol PHC.Setup processes the 𝑛 input

points, viewed as an input array 𝐼 , and all pairwise distances among

these points, viewed as a 𝑛 × 𝑛 cluster distance matrix Δ. Here, 𝐼 ,Δ
are only virtual, corresponding to an early joint state of P1, P2 that
is actually secret-shared between them. Specifically, P1 holds an

array 𝐿 with exactly 𝐼 ’s elements but each AHE-encrypted under

P2’s secret key, and a 𝑛 × 𝑛 matrix 𝑅 with random blinding terms,
whereas P2 holds the matrix 𝐵 = Δ +𝑅 with blinded pairwise cluster
distances. Importantly, as 𝑓 ∗

𝐻𝐶
specifies, the joint state {𝐼 ,Δ} is split

only after 𝐼 ’s elements and Δ’s rows and columns are randomly
shuffled, with P1, P2 not knowing the exact shuffling used.

Figure 3: Overall workflow of our protocol PHC.

In a clustering phase, sub-protocol PHC.Cluster virtually runs

the ordinary hierarchical clustering algorithm HCAlg on matrix Δ:
P1, P2 process their individual states 𝑅, 𝐵 to iteratively merge sin-

gletons into target clusters, based on inter-cluster distances in Δ.
Each iteration merges two clusters into a new one via three tasks:

• Find pair: First, P1, P2 find the closest-cluster pair (𝑖, 𝑗) =

argMin(Δ), 𝑖 < 𝑗 , to merge, i.e., the indices in Δ of the mini-

mum inter-cluster distance 𝐷𝑖 𝑗 .

• Update linkages: Then, P1, P2 update Δ to Δ′ = 𝐵′ − 𝑅′ with
the new cluster distances after pair (𝑖, 𝑗) is merged into cluster

𝐶 = 𝐶𝑖 ∪ 𝐶 𝑗 . This entails computing (and splitting via a fresh

blinding term) distance 𝛿 (𝐶,𝐶 ′) between𝐶 and each not-merged

cluster 𝐶 ′, which equals to the largest.smallest) of 𝛿 (𝐶𝑖 ,𝐶 ′) and
𝛿 (𝐶 𝑗 ,𝐶

′) (by associativity of the max/min operator).

• Record merging: Finally, P1, P2 record in Δ′ that the new clus-

ter 𝐶 is formed by merging 𝐶𝑖 and 𝐶 𝑗 .

In an output phase, sub-protocol PHC.Output processes the final
state {𝐼 ,Δ} to compute the merging history and metadata for all

safe (target) clusters. As Figure 3 indicates, conceptually the output

can be considered to be computed in two phases: During clustering,

the indices of merged clusters learned after each clustering round

collectively encode information about the dendrogram 𝑇 ∗ and the

sizes of the 𝑡 target clusters. The output phase solely computes

the representative values of these clusters. This view is accurate

enough to ease presentation but, as we discuss later, the exact details

involve processing of carefully recorded data, after each one of the

𝑛 − 𝑡 cluster-merging rounds executed during the clustering phase.

A main consideration when devising our protocol was to im-

prove efficiency via a modular design, where separate parts can

be securely achieved via different techniques. By securely splitting

the joint state {𝐼 ,Δ} into {𝐿, 𝑅}, 𝐵, we can implement all protocol

components that involve (distance or metadata) computations over

points using Paillier-based AHE, except when computing max (or
min), for which we rely on GC. Conveniently, all protocol compo-

nents required by the setup phase to form the joint state {𝐼 ,Δ},
namely to construct, shuffle and split {𝐼 ,Δ} into {𝐿, 𝑅}, 𝐵, can be

securely implemented by relying on homomorphic encryption.

We next provide more details on how each component is im-

plemented. We assume points are unambiguously mapped into



𝜆,𝜅 security and statistical parameters

𝑡, ℓ𝑡 termination parameter, # of target clusters

(pk, sk), (pk′, sk′) public and secret keys of parties P1, P2
[𝑑 ], J𝑑K AHE-encrypted plaintext 𝑑 under pk, pk′

⟨𝑐 ⟩ AHE-decrypted ciphertext 𝑐

Σ 𝑛 × 𝑛 matrices 𝑅, 𝐵 stored by P1, P2
(𝑂1;𝑂2) ← GC(𝐼1; 𝐼2) P1, P2 run GC on 𝐼1, 𝐼2 to get𝑂1,𝑂2

𝜋1, 𝜋2 permutations contributed by P1, P2
dist(𝑝,𝑞) square Euclidean distance of 𝑝,𝑞

𝑟𝑒𝑝 ( ·), 𝑠𝑖𝑧𝑒 ( ·) representatives and sizes of clusters

Figure 4: Basic notation used in our protocol PHC.

integers in Z𝑁 and all homomorphic (resp. plaintext) operations

are reduced modulo 𝑁 2
(resp. 𝑁 ). We consistently denote the AHE-

encrypted, under pk (resp. pk′), plaintext 𝑑 by [𝑑] (resp. J𝑑K) and
the AHE-decrypted, under any key, ciphertext 𝑐 by ⟨𝑐⟩. Whenever

the context is clear, we denote each of the two 𝑛 × 𝑛 matrices 𝑅,

𝐵 (maintained by P1, P2) by Σ. Finally, we denote the joint execu-
tion by P1, P2 of a GC-based protocol GC, on private inputs 𝐼1, 𝐼2
to get private outputs 𝑂1,𝑂2, by (𝑂1;𝑂2) ← GC(𝐼1; 𝐼2). Figure 4
summarizes the used notation by our detailed protocol descriptions.

Setup phase. P1, P2 set up their states in three rounds of interac-

tions, as shown in Algorithm 2, using only homomorphic operations

over AHE-encrypted data and contributing equally to the random-

ized state permutation and splitting. Initially, P2 prepares, encrypts
under its own key and sends to P1, information related to its in-

put set 𝑄 , which includes its encrypted points among other helper

information 𝐻 , and their encrypted pairwise distances 𝐷 (lines 1-4).

Then, P1 is tasked to initialize the states 𝐿, 𝑅 and 𝐵. First, the

list 𝐿 of all encrypted (under pk′) points in 𝑃 ∪ 𝑄 is created (by

arranging the sets in some fixed ordering and then concatenating𝑄

after 𝑃 ), and all points are further blinded by random additive terms

in 𝑆 (lines 5-9). Similarly, the matrix 𝐵 of encrypted (also under

pk′) pairwise distances is computed (using the ordering induced

by 𝐿 to arrange the points), and all distances are blinded by ran-

dom additive terms in 𝑆 (lines 10-14). The computation of square

Euclidean distances across sets 𝑃,𝑄 (line 12, using also elements

in 𝐻 ) and the blinding of 𝐿 and 𝐵 (lines 8, 13) are all performed

in the ciphertext domain via the homomorphic property of AHE

encryption. All blinding terms in 𝑆 and 𝑅 are then encrypted (each

under 𝑝𝑘 , lines 9, 14) and 𝑆 , 𝐿, 𝑅 and 𝐵 are sent to P2, after their
elements are shuffled using a random permutation 𝜋1 (line 15).

Finally, P2 roughly mirrors this by further blinding the encrypted

points in 𝐿 and P1’s encrypted terms in 𝑆 by random additive terms

in 𝑆 ′ (both in the ciphertext domain, lines 16-19) and also blinding

the encrypted distances in 𝐵 and P1’s encrypted terms in 𝑅 by

random additive terms in 𝑅′ (the former in the plaintext domain

and the latter in the ciphertext domain, lines 20-22). The freshly

blinded 𝑆 , 𝐿,𝑅 are sent to P1, after their elements are shuffled using a

random permutation 𝜋2 (line 23). Finally, P1 decrypts the mutually-

contributed blinding terms in 𝑆 and 𝑅, and uses the recovered values

in 𝑆 to completely remove the terms from 𝐿 (in the ciphertext

domain, by the properties of AHE encryption, lines 24-27). Due to

this, permutation 𝜋2 ◦ 𝜋1 looks completely random to both parties,

while they have securely split joint state {𝐼 ,Δ} into {𝐿, 𝑅}, 𝐵.

Clustering phase. Once P1, P2 have set up their states, they run

the hierarchical clustering iterative process ( Algorithm 3) operating

solely on their individual matrices 𝑅, 𝐵 via two special-purpose

GC-based protocols for secure comparison. Importantly, each party

Algorithm 2: PHC.Setup: Setup Phase

1 P2 : %Create & send helper info

2 Compute matrix H: 𝐻1,𝑖 = J𝑞𝑖K, 𝐻2,𝑖 = J−2𝑞𝑖K, 𝐻3,𝑖 = J𝑞2𝑖 K 𝑖 ∈ [1 : 𝑛2 ]
3 Compute matrix D: 𝐷𝑖,𝑗 = Jdist(𝑞𝑖 , 𝑞 𝑗 )K 𝑖, 𝑗 ∈ [1 : 𝑛2 ]
4 Send {H,D} to P1
5 P1 : %Blind points, linkages

6 Compute array S: 𝑆𝑖 = 𝑠𝑖 , 𝑠𝑖
$←− {0, 1}𝜅 𝑖 ∈ [1 : 𝑛]

7 Compute array L: 𝐿𝑖 = J𝑝𝑖K, if 𝑖 ≤ 𝑛1 ; else 𝐿𝑖 = 𝐻1,𝑖−𝑛
1

8 Blind L as: 𝐿𝑖 := 𝐿𝑖 · J𝑆𝑖K
9 Encrypt S as: 𝑆𝑖 := [𝑆𝑖 ]

10 Compute matrix R: 𝑅𝑖,𝑗 = 𝑟𝑖,𝑗 , 𝑟𝑖,𝑗
$←− {0, 1}𝜅 𝑖, 𝑗 ∈ [1 : 𝑛]

11 Compute matrix B: 𝐵𝑖,𝑗 = Jdist(𝑝𝑖 , 𝑝 𝑗 )K, if 𝑖, 𝑗 ≤ 𝑛1 ;

12 𝐵𝑖,𝑗 = 𝐷𝑖−𝑛
1
, 𝑗−𝑛

1
, if 𝑛1 < 𝑖, 𝑗 ; else for 𝑖 < 𝑗 , 𝐵𝑖,𝑗 = J𝑝2

𝑖 K ·𝐻
𝑝𝑖
2, 𝑗
·𝐻3, 𝑗

13 Blind B as: 𝐵𝑖 𝑗 := 𝐵𝑖 𝑗 · J𝑅𝑖,𝑗 K
14 Encrypt R as: 𝑅𝑖,𝑗 := [𝑅𝑖,𝑗 ]
15 Permute S, L, R and B via a random permutation 𝜋1 (𝑛)
16 Send {S, L,R,B} to P2 %Send permuted blinded data

17 P2 : %Blind received data

18 Compute array S′: 𝑆′𝑖 = 𝑠′𝑖 , 𝑠
′
𝑖

$←− {0, 1}𝜅 𝑖 ∈ [1 : 𝑛]
19 Blind L as: 𝐿𝑖 := 𝐿𝑖 · J𝑆′𝑖K
20 Blind S as: 𝑆𝑖 := 𝑆𝑖 · [𝑆′𝑖 ]
21 Compute matrix R′: 𝑅′𝑖,𝑗 = 𝑟 ′𝑖,𝑗 , 𝑟

′
𝑖,𝑗

$←− {0, 1}𝜅 𝑖, 𝑗 ∈ [1 : 𝑛]
22 Decrypt and re-blind matrix B: 𝐵𝑖,𝑗 = ⟨𝐵𝑖,𝑗 ⟩ + 𝑅′𝑖,𝑗
23 Blind R as: 𝑅𝑖,𝑗 := 𝑅𝑖,𝑗 · [𝑅′𝑖,𝑗 ]
24 Permute S, L and R via a random permutation 𝜋2 (𝑛)
25 Send {S, L,R} to P1 %Send permuted points and blinding terms

26 P1 : %Store permuted points & linkages’ blinding terms

27 Decrypt S as: 𝑆𝑖 := ⟨𝑆𝑖 ⟩ 𝑖 ∈ [1 : 𝑛]
28 Unblind L as: 𝐿𝑖 := 𝐿𝑖 · J𝑆𝑖K−1
29 Decrypt R as: 𝑅𝑖,𝑗 := ⟨𝑅𝑖,𝑗 ⟩ 𝑖, 𝑗 ∈ [1 : 𝑛]

Algorithm 3: PHC.Cluster: Clustering Phase
1 P1 , P2 :
2 Initialize merging history: Σ𝑖,𝑖 = (𝑖,⊥) 𝑖 ∈ [1 : 𝑛]
3 Initialize: ℓ = 1, ℓ𝑡 = 𝑡

4 repeat
5 Jointly run (𝑖, 𝑗 ; 𝑖, 𝑗) ← ArgMin(R;B) , 𝑖 < 𝑗 %Find pair

6 foreach 𝑘 = 1, . . . , 𝑛, 𝑘 ≠ 𝑖, 𝑗 do
7 if Σ𝑖,𝑘 ≠⊥ and Σ 𝑗,𝑘 ≠⊥ then

8 P1 : 𝑋
$←− {0, 1}𝜅 %Pick new blinding term

9 P1 , P2 : Jointly run %Find re-blinded max linkage
(⊥;𝑌 ) ← MaxDist(𝑅𝑖,𝑘 , 𝑅 𝑗,𝑘 , 𝑋 ;𝐵𝑖,𝑘 , 𝐵 𝑗,𝑘 )

10 P1 : Set: 𝑅𝑖𝑘 = 𝑋 , 𝑅𝑘𝑖 = 𝑋 %Update linkages

11 P2 : Set: 𝐵𝑖𝑘 = 𝑌 , 𝐵𝑘𝑖 = 𝑌

12 Set: Σ 𝑗,𝑗 := ( (Σ 𝑗,𝑗 , ℓ), 𝑖) , Σ𝑖,𝑖 := ( (Σ𝑖,𝑖 , Σ 𝑗,𝑗 , ℓ),⊥)
13 Set: Σ𝑘,𝑗 =⊥, Σ 𝑗,𝑘 =⊥ 𝑘 ∈ [1 : 𝑛] \ { 𝑗 }
14 Set: ℓ := ℓ + 1 %Record merging

15 until ℓ > 𝑛 − ℓ𝑡 ;

encodes cluster information in the diagonal of its matrix state Σ;
initially, the 𝑖-th entry stores (𝑖,⊥), denoting the (never-merged

but already permuted) singleton of rank 𝑖 . Hierarchical clustering

runs in exactly 𝑛 − ℓ𝑡 = 𝑛 − 𝑡 iterations, or clustering rounds.

First, at the start of each iteration, P1, P2 find which pair of clus-

ters must bemerged by jointly running the GC-protocol (𝑖, 𝑗 ; 𝑖, 𝑗) ←
ArgMin(𝑅;𝐵) (line 5): The parties contribute their individual ma-

trices 𝑅, 𝐵 of blinding terms and blinded linkages, to learn the

indices (𝑖, 𝑗) of the minimum value 𝐵𝑖, 𝑗 − 𝑅𝑖, 𝑗 , with 𝑖 < 𝑗 by

convention (since 𝑅, 𝐵 are symmetric matrices). The garbled cir-

cuit for ArgMin first removes the blinding terms by computing

𝐷 = 𝐵 − 𝑅, compares all values in 𝐷 to find the minimum element

𝐷𝑖, 𝑗 = min𝑥,𝑦𝐵𝑥,𝑦 , and returns to both parties the indices 𝑖, 𝑗 . Next,



Algorithm 4: PHC.Output: Output Phase
1 P1 : %Compute encrypted point averages

2 Initialize arrays E, J: 𝐸𝑖 = 𝐽𝑖 =⊥ 𝑖 ∈ [1 : 𝑛]
3 foreach 𝑖 = 1, . . . , 𝑛 do
4 if 𝑅𝑖,𝑖 encodes a target cluster𝐶𝑖 then
5 Find the index set 𝐼𝑖 of points in cluster𝐶𝑖

6 Set 𝐸𝑖 =
∏

𝑗∈𝐼𝑖 𝐿𝑗 , 𝐽𝑖 = |𝐼𝑖 |
7 Send {E, J} to P2
8 P2 : %Compute point averages

9 Decrypt E as: 𝐸𝑖 := ⟨𝐸𝑖 ⟩ 𝑖 ∈ [1 : 𝑛]
10 Send E to P1
11 P1 , P2 : %Return output

12 Output {Σ𝑖,𝑖 , 𝐸𝑖/ | 𝐽𝑖 |, | 𝐽𝑖 | } 𝑖 ∈ [1 : 𝑛]

once pair (𝑖, 𝑗) is known to P1, P2, they proceed to jointly update

the linkages (lines 7-12). For each cluster 𝑘 in Σ, they change its

linkage to the newly merged cluster as the maximum between

its linkages to clusters 𝑖 , 𝑗 , by jointly running the GC-protocol

(⊥;𝑌 ) ← MaxDist(𝑅𝑖,𝑘 , 𝑅 𝑗,𝑘 , 𝑋 ;𝐵𝑖,𝑘 , 𝐵 𝑗,𝑘 ) (line 10): The parties

contribute the two entries from their individual matrices 𝑅, 𝐵 that

are needed for comparing the linkages 𝐵𝑖,𝑘 − 𝑅𝑖,𝑘 , 𝐵 𝑗,𝑘 − 𝑅 𝑗,𝑘 be-

tween cluster 𝑘 and clusters 𝑖 , 𝑗 , and P2 learns the maximum value

of the two but blinded by the random blinding term 𝑋 inputted

by P1. The garbled circuit for MaxDist simply returns to (only) P2
the value max{𝐵𝑖,𝑘 − 𝑅𝑖,𝑘 , 𝐵 𝑗,𝑘 − 𝑅 𝑗,𝑘 } + 𝑋 . Finally, at the end of

iteration ℓ , P1, P2 record information about the merging of clusters

𝑖 , 𝑗 , 𝑖 < 𝑗 (lines 14-15): By convention, the new cluster is stored

at location 𝑖 , by adding the rank ℓ and the information stored at

location 𝑗 (updated with a pointer to 𝑖), and by deleting all distances

related to cluster 𝑗 . Overall, the full merging history is recorded.

In Appendix B, we provide details on our implementation of

GC-protocols ArgMin, MaxDist, also used in [11, 16, 65, 120].

Output phase. Once clustering is over, P1, P2 compute in two

rounds of interaction (Algorithm 4) the common output, consisting

of the merging history and the representatives and sizes of the

target clusters using homomorphic operations over encrypted data.

First, P1 computes encrypted point averages in all target clusters,

by exploiting the homomorphic properties of AHE (lines 1-7): Using

the diagonal in matrix 𝑅, P1 first identifies each (of 𝑡 total) target

cluster𝐶𝑖 and then finds the index set 𝐼𝑖 (over permuted input points

𝜋2 ◦ 𝜋1 (𝑃 ∪𝑄)) of the points contained in 𝐶𝑖 , to finally compute∏
𝑗 ∈𝐼𝑖 𝐿𝑗 =

∏
𝑗 ∈𝐼𝑖 J𝑝 𝑗 K. The resulted 𝑡 encrypted point averages and

cluster sizes are sent to P2, who returns to P1 the 𝑡 plaintext point
averages, i.e.,

∑
𝑗 ∈𝐼𝑖 𝑝 𝑗 =

∑
𝑝 𝑗 ∈𝐶𝑖

𝑝 𝑗 for each 𝐶𝑖 (lines 8-10). At this

point, both parties can form the common output (line 12).

5 PROTOCOL ANALYSIS
Efficiency. Asymptotically, our protocol achieves optimal perfor-

mance, as it incurs no extra overheads to the performance costs

associated with running HC (ignoring the dependency on the se-

curity parameter 𝜆). The asymptotic overheads incurred on P1, P2,
during execution of each phase of PHC, are as follows: In setup

phase, the cost overhead for each party is 𝑂 (𝑛2), primarily related

to the cryptographic operations needed to populate its individual

state Σ. In clustering phase, each of the 𝑛 − ℓ𝑡 = 𝑂 (𝑛) total itera-
tions incurs costs proportional the complexity of running GC-based

protocols ArgMin,MaxDist, where the cost of garbling and evalu-

ating a circuit 𝐶 , with a total number of wires |𝐶 |, is 𝑂 ( |𝐶 |). Thus,

during the ℓ-th iteration: Evaluating circuit ArgMin entails 𝑛2 − 2ℓ
comparisons of 𝑙2-bit values (of cluster distances) and subtractions

of 𝜅-bit values (of blinding terms), for a total size of 𝑂 (𝜅 (𝑛2 − ℓ));
likewise, evaluating circuit MaxDist entails a constant number of

comparisons of 𝜅-bit values and𝑂 (𝑛) such circuits are evaluated at

iteration ℓ ; thus, the total cost during this phase is 𝑂 (𝜅𝑛3) for each
party. In output phase, the cost is𝑂 (ℓ𝑡 ) = 𝑂 (𝑛) for each party. Thus,
the total running time for both parties is 𝑂 (𝜅𝑛3). Communication

consists of 𝑂 (𝑛2) ciphertexts during setup (encrypted distances),

𝑂 (𝜅𝑛2) during each clustering round (for the garbled circuits’ truth

tables) and 𝑂 (𝑛2) ciphertexts during the output phase.

Optimized single-linkage protocol OPT. As described, our pro-
tocol exploits the associativity of operator max to update the com-

plete linkage between newly formed clusters𝐶 and other clusters𝐶 ′,
as the max of the linkages between 𝐶’s constituent clusters and 𝐶 ′,
securely realized via GC-protocol (·; ·) ← MaxDist(·; ·). Single link-
ages can be supported readily by updating inter-cluster distances be-

tween𝐶 and𝐶 ′ as themin of the distances between𝐶’s constituent

clusters and 𝐶 ′: Line 10 in Algorithm 3 now has P1, P2 jointly run

GC-protocol (⊥;𝑌 ) ← MinDist(𝑅𝑖,𝑘 , 𝑅 𝑗,𝑘 , 𝑋 ;𝐵𝑖,𝑘 , 𝐵 𝑗,𝑘 ) (see Appen-
dix B) to split the new distance Δ𝑖,𝑘 = min{𝐵𝑖,𝑘 − 𝑅𝑖,𝑘 , 𝐵 𝑗,𝑘 − 𝑅 𝑗,𝑘 }
into 𝑋 , 𝑌 = Δ𝑖,𝑘 + 𝑋 , without asymptotic efficiency changes.

More generally, the skeleton of protocol PHC allows for exten-

sions that support a wider class of linkage functions, such as average

or centroid linkage, by appropriately refining GC-protocolsArgMin,
MinDist—but still, at quadratic cost per merged cluster and cubic to-

tal cost. Yet, our single-linkage protocol can be optimized to process

each new cluster in only𝑂 (𝜅𝑛) time, for a reduced𝑂 (𝜅𝑛2) total run-
ning time, with GC-protocol ( 𝑗 ; 𝑗) ← ArgMin(𝑋 ;𝑌 ) now refined,

on input arrays 𝑋,𝑌 , to return as common output the minimum-

value index 𝑗 of 𝑌 − 𝑋 , excluding any non-linkage values.

The main idea is to exploit the associativity of operator min and

that single-linkage clustering only relates to minimum inter-cluster

distances, to find the closest pair (𝑖, 𝑗) in linear time, by looking

up an array Δ̄ = 𝐵 − 𝑅 storing the minimum row-wise distances in

Δ = 𝐵 − 𝑅 (a known technique in information retrieval [73, Section

17.2.1]). Our modified protocol takes only 𝑂 (𝜅𝑛) comparisons per

clustering, as opposed to 𝑂 (𝜅𝑛2) of our main protocol. As shown

in Section 7, this results in significant performance improvement.

Specifically, at the end of the setup phase, P1, P2 now also jointly

run ( 𝑗𝑖 ; 𝑗𝑖 ) ← ArgMin(𝑅𝑖 ;𝐵𝑖 ), 𝑖 ∈ [1 : 𝑛], to learn the minimum-

linkage index 𝑗𝑖 of the 𝑖th row 𝐵𝑖−𝑅𝑖 of Δ (excluding its 𝑖th location,

as 𝐵𝑖,𝑖 , 𝑅𝑖,𝑖 store cluster 𝑖), and they both initialize array 𝐽 as 𝐽𝑖 =

𝑗𝑖 , whereas P1 initializes array 𝑅 as 𝑅𝑖 = 𝑅𝑖, 𝑗𝑖 and P2 array 𝐵 as

𝐵𝑖 = 𝐵𝑖, 𝑗𝑖 . Then, at the start of each iteration in the clustering

phase (line 5 in Algorithm 3) and assuming that ⊥ = +∞, P1, P2
now jointly run (𝑖; 𝑖) ← ArgMin(𝑅;𝐵) to find the closest-cluster

pair (𝑖, 𝑗), 𝑗 = 𝐽𝑖 , in only 𝑂 (𝜅𝑛) time. Conveniently, as soon as

they update linkages Δ𝑖,𝑘 = Δ𝑘,𝑖 , for some 𝑘 ≠ 𝑖, 𝑗 (lines 9-12, as

𝑌 − 𝑋 with (⊥;𝑌 ) ← MinDist(𝑅𝑖,𝑘 , 𝑅 𝑗,𝑘 , 𝑋 ;𝐵𝑖,𝑘 , 𝐵 𝑗,𝑘 )), P1, P2 also
update the joint state {𝐵 − 𝑅, 𝐽 } for updated row𝑚 ∈ {𝑖, 𝑘}: First,
by jointly running (𝑧; 𝑧) ← ArgMin(𝑅; 𝐵̂) for arrays 𝑅 = [𝑋, 𝑅𝑚],
𝐵̂ = [𝑌, 𝐵𝑚] of size 2, and then, if 𝑧 = 1, by setting 𝑅𝑚 = 𝑅𝑧 ,

𝐵𝑚 = 𝐵̂𝑧 and 𝐽𝑚 = {𝑖, 𝑘} \𝑚. At the end of each iteration (lines

14-16), they also set 𝑅 𝑗 = 𝐵 𝑗 = 𝐽 𝑗 = ⊥, as needed for consistency.



Protocol extensions. Our protocol can be easily adapted to han-

dle higher dimensions (𝑑 > 1). Its sub-protocol (PHC.Cluster) com-

pares squared Euclidean distances thus it is almost unaffected by

the number of dimensions; only the setup and output phases need

to be modified, as follows. P2 computes helper information 𝐻 , rep-

resenting each point not by 3 but by 3𝑑 encryptions (i.e., line 4 of

Algorithm 2 runs independently for each dimension). Analogously,

P1, P2 compute square Euclidean distances (lines 3 and 11-12) as

the sum of squared per-dimension differences across all dimen-

sions (over AHE). Shuffling remains largely unaffected, besides lists

𝐿, 𝑆, 𝑆 ′ consisting of 𝑑𝑛 encryptions each. Finally, representatives

(line 6 in Algorithm 4) are now computed over vectors of 𝑑 values.

Our protocol can also extended to other distance metrics, e.g., 𝐿1,

𝐿2 or Euclidean, and any 𝐿𝑝 distance for 𝑝 ≥ 1, with modifications

for computing the distance matrix during setup. With squared Eu-

clidean the distances are securely computed with AHE; for other

metrics, more elaborate sub-protocol may be required.

Security. In Appendix C, we prove the following result:

Theorem 5.1. Assuming Paillier’s encryption scheme is semanti-
cally secure and that ArgMin andMaxDist are securely realized by
GC-based protocols, protocol PHC securely realizes functionality 𝑓 ∗

𝐻𝐶
.

6 SCALABILITY VIA APPROXIMATION
The cryptographic machinery of our protocol imposes a notice-

able overhead in practice. Although it is asymptotically similar

to plaintext HC, standard operations are now replaced by crypto-

graphic ones—no matter how well-optimized the code, such crypto-

hardened operations will ultimately be slower. Hence, to scale to

larger datasets, we seek to exploit approximate schemes for hierar-

chical clustering. In our case, approximation refers to performing

clustering over a high-volume dataset by applying the HCAlg al-

gorithm only on a small subset of the dataset. The effect of this

is twofold: Cluster analysis is much faster but using fewer points

lowers accuracy and increases sensitivity to outliers.

In what follows, we adapt the CURE approximate clustering al-

gorithm [47] and seamlessly integrate it to our main protocol PHC,
within a flexible design framework that offers a variety of configu-

rations for balancing tradeoffs between performance and accuracy,

to overall get the first variants of CURE for private collaborative hi-

erarchical clustering. Although, in principle, our framework can be

applied to any approximate clustering scheme (e.g., BIRCH [117]),

we choose CURE for its strong resilience to outliers and high accu-

racy (even on samples less than 1% of original data)—features that

place it among the best options for scalable hierarchical clustering.

Described in Figure 5, on input the original dataset D of size 𝑛

and a number of approximation parameters, CURE first randomly

samples 𝑠 data points from D to form sample set S. During A-

clustering, S is partitioned into 𝑝 equally-sized parts P1,P2, . . .P𝑝 ,
and the ordinary algorithm HCAlg runs 𝑝 times to form a set C𝐴 of

A-clusters: Its 𝑖th execution is on input P𝑖 , 𝑖 ∈ [1, 𝑝], until exactly
𝑠/(𝑝𝑞) clusters are formed, of which only those of size at least 𝑡1
are included in C𝐴 and the rest are eliminated as outliers. During

B-clustering, HCAlg runs once again, this time over set C𝐴 , to form
a set C𝐵 of B-clusters, from which clusters of size less than 𝑡2 > 𝑡1
are eventually eliminated as outliers. Finally, for each B-cluster in

C𝐵 a number of 𝑅 random representatives are selected, and each

The CURE approximate clustering algorithm
Input: D, 𝑛, 𝑠, 𝑝, 𝑞, 𝑡1, 𝑡2, 𝑅 Output: Clusters C over D
[Sampling] Randomly pick 𝑠 points in D to form sample S.
[Clustering A]
1. Partition S into 𝑝 partitions P𝑖 s, each of size 𝑠/𝑝 .
2. Run HCAlg to cluster each P𝑖 into 𝑠/(𝑝𝑞) target clusters.
3. Eliminate within each P𝑖 clusters of size less than 𝑡1.

[Clustering B]
1. Run HCAlg to cluster all remaining A-clusters C𝐴 in S.
2. Eliminate clusters of size less than 𝑡2 to get B-clusters C𝐵 .
3. Set 𝑅 random points in each B-cluster as its representatives.

[Classification]
1. Assign singletons in D to B-cluster of closest representative.

Figure 5: The CURE approximate clustering algorithm.

singleton point in D is included to the B-cluster containing its

closest representative. Table 1 summarizes suggested values for

each parameter as per CURE’s original description [47].

Private CURE-approximate clustering.We adapt the CURE al-

gorithm to design private protocols for approximate clustering in

our model for two-party joint hierarchical clustering. In apply-

ing our security formulation (Section 3) and our private protocols

(Sections 4, 5) to this problem instance, the following facts are vital:

1. CURE involves three main tasks: input sampling, clustering of

sample, and unlabeled-points classification.
2. Clustering involves 𝑝 + 1 invocations of HCAlg′, which extends

ordinary algorithm HCAlg to receive clusters as input and com-

pute its output over an input subset.
3. If 𝑝 = 1 and O𝐴 , O𝐵 are the A- and B-outliers, then:

i. HCAlg′ first runs on S to form C𝐴 over S𝐴 ≜ S \ O𝐴; C𝐴 is

exactly the output of HCAlg run on S𝐴; and next

ii. HCAlg′ runs on C𝐴 to form C𝐵 over S𝐵 ≜ S \ {O𝐴 ∪ O𝐵};
C𝐵 is exactly the output of HCAlg run on S𝐵 .
Fact 1 refines our protocol-design space to only securely realizing

the clustering task, where sampling and classification are viewed

as input pre-processing and output post-processing of clustering.

Specifically, P1, P2: (1) individually form random input samples

S𝑃 , S𝑄 of their own datasets 𝑃,𝑄 ; (2) compute B-clusters and their

representatives (as specified by CURE); and (3) use these B-cluster

representatives to individually classify their own unlabeled points.

As such, the default private realization of CURE would entail

having the parties perform clustering A and B jointly. Yet, since our
design space is already restricted to provide approximate solutions,

we also consider two protocol variants, where parties trade even

more accuracy for efficiency, by performing: (1) clustering A locally
and only B jointly; and, in the extreme case (2) clustering A and B
locally. We denote these protocols by PCure2, PCure1 and PCure0.

In PCure0, P1, P2 non-collaboratively compute B-clusters of their

samples and announce the representatives selected. Though a de-

generate solution, as it involves no interaction, this consideration

is still useful: First, to serve as a baseline for evaluating the other

variants, but mostly to further refine our design space. PCure0 (triv-
ially) preserves privacy during B-cluster computation, but violates

the privacy guarantees offered by our point-agnostic dendrograms,

by revealing a subset of a party’s input points to the other party.

To rectify this, present also in PCure2 and PCure1, we fix 𝑅 = 1



Parameters Description Value

𝑛, 𝑠 Sizes of dataset and its sample ≤ 1M, [102 : 103 ]
𝑝 , 𝑞 # parts, cluster/part control 𝑝 = 1, 3, 5, 𝑞 = 3

𝑡1 , 𝑡2 A-, B-cluster outlier thresholds 3 = 𝑡1 < 𝑡2 = 5

𝑅 Representatives per B-cluster 𝑅 = 1, 3, 5, 7, 10

Table 1: CURE clustering parameters and values.

and have each B-cluster be represented by its centroid. Using aver-

age values is expected to have no impact on accuracy, at least for

spherical clusters (in [47], 𝑅 > 1 is only used to improve accuracy

of non-spherical clusters). Fact 2 then ensures that B-clusters (and

their centroids) can be computed by essentially running algorithm

HCAlg, possibly with slight modifications (discussed below).

In PCure1, P1, P2 non-collaboratively compute A-clusters of

their samples and then jointly merge them to B-clusters. Semanti-

cally, they run HCAlg, not starting at level 𝑛 (singletons) but at an

intermediate level 𝑖 , where each input A-cluster contains at least

𝑡1 points. Our PHC can be employed, with one modification: At

setup, the parties’ joint state encodes their individual A-clusters

and their pairwise linkages. Accordingly, sub-protocol PHC.Setup
is modified: (1) Lines 3 and 11 now compute inter-cluster distances

(of same-party pairs), and (2) lines 2 and 12 are used as a subroutine

to compute all point distances across a given A-cluster pair, over

which inter-cluster linkages (of cross-party pairs) are evaluated

with ArgMin. The running time of modified PHC.Setup is 𝑂 (𝜆𝑠2),
as 𝑂 (𝑠2) distances are computed across 𝑂 (𝑠) A-cluster points.

In PCure2, P1, P2 jointly compute A- and B-clusters. This in-

troduces the challenge of how to transition from A to B. Simply

running 𝑝 copies of HCAlg in parallel for A-clusters does not pro-

vide the cluster linkages that are necessary for HCAlg to compute

B-clusters. Possible solutions are either to treat A-clusters as single-

tons, which can drastically impair accuracy, or running an interme-

diateMPC protocol to bootstrapHCAlgwith cluster linkages, which
can impair performance. Instead, we simply fix 𝑝 = 1, seamlessly

using the final joint state of clustering A as initial state for cluster-

ing B. Missing speedups by parallelism is compensated by avoiding

a costly bootstrap-protocol, at no accuracy loss, as our experiments

confirm (𝑝 > 1, is only suggested for parallelism in [47]).

Finally, the security of protocols PCure1 and PCure2 can be re-

duced to that of PHC. Our modular design and facts 2 and 3, ensure

that security in our private CURE-approximate clustering is cap-

tured by our ideal functionality 𝑓 ∗
𝐻𝐶

of Section 3: The intended

two-party computation merely involves computing B-cluster repre-

sentatives, which 𝑓 ∗
𝐻𝐶

provides, and any input/output modification

in HCAlg causes a trivial change to the pre-/post-processing com-

ponent of 𝑓 ∗
𝐻𝐶

, consistent to our point-agnostic dendrograms.

7 EXPERIMENTAL EVALUATION
Our main goal is to evaluate the computational cost of our protocols

and to determine the improvement of the optimized and approxi-

mate variants. We use four datasets from the UCI ML Repository [2],

restricted to numeric attributes: (1) Iris for iris plants classification
(150 records, 4 attributes); (2) Wine for chemical analysis of wines

(178 records, 13 attributes); (3) Heart for heart disease diagnosis

(303 records, 20 attributes); and (4) Cancer for breast cancer diag-
nostics (569 records, 30 attributes). As these are relatively small, we

also generate our own synthetic datasets, scaling the size to millions

of samples. Note that our protocol’s performance depends mainly

(a) Computation cost of PHC. (b) Computation cost of OPT.

(c) Real-data performance of PHC. (d) Real-data performance of OPT.

Figure 6: Performance of PHC (left) Vs. OPT (right).

on the dataset size, is invariant to actual data values, and varies

very little with data dimensionality, as our experiments confirm.

We introduced several variants of approximate clustering based

on CURE and want to evaluate their accuracy and determine pos-

sible between performance-accuracy tradeoffs. Traditionally, hi-

erarchical clustering is an unsupervised learning task, for which

accuracy metrics are not well defined. However, it is common to

evaluate the accuracy of clustering via ground truth datasets in-

cluding class labels on samples. A good clustering algorithm will

generate “pure clusters” and separate data according to the ground

truth. Each cluster will be labeled with the majority class of its

samples, and the accuracy of the protocol is defined as the fraction

of input points that are clustered into their correct class relative

to the ground truth. We employ this measure of accuracy to evalu-

ate approximate clustering variants (PCure0, PCure1, and PCure2).
Our standard privacy-preserving clustering protocol PHC and the

optimized version OPT maintain the same accuracy as the original

non-private protocol, hence we do not report accuracy for them.

We generate synthetic 𝑑-dimensional datasets of sizes up to 1M

records and 𝑑 ∈ [1, 20], using a Gaussian mixture distribution, as

follows: (1) The number of clusters is randomly chosen in [8 : 15];
(2) Each cluster center is randomly chosen in [−50, 50]𝑑 (perfor-

mance is dominated by 𝜅 but not exact data values), subject to a

minimum-separation distance between pairs; (3) Cluster standard

deviation is randomly chosen in [0.5, 4]; and (4) Outliers are selected
uniformly at random in the same interval and assigned randomly to

clusters to emulate 3 noise percentage scenarios: low 0.1%, medium

1%, and high 5%. We randomly split each dataset into two halves

which form the private inputs of the parties. We set the number of

target clusters to ℓ𝑡 = 5; as our protocol incurs costs linear in the

number of iterations (𝑛 − ℓ𝑡 ), this choice comprises a worst-case

setting, as in practice more than 5 target clusters are desired.

We adapted our protocols to support floating point numbers.

Here, due to the simplicity of the involved operations, we can

rely on fixed-precision floating point numbers and it suffices to

multiply floating point values by a constant𝐾 (e.g.𝐾 = 2
20

for IEEE



Figure 7: Accuracy of CURE, PCure∗: 𝑝 = 1 (left), 𝑝 = 5 (right),
#outliers = 0.1% (top), 1% (middle), 5% (bottom).

754 doubles). During PHC.Setup, we can achieve higher precision.

After each party decrypts the blinded values (line 22 and line 29),

they can re-scale by dividing the constant 𝐾 without affecting

precision. During Cluster, as we only merge the points based on

the comparisons between the distances, multiplying by a constant

does not affect the results.

Finally, we use the ABY C++ framework [28], 128-bit AES for

GC, 1024-bits Pailler, and set 𝜅 = 40. We use libpaillier [3] for
Paillier encryption. We run our experiments on a 24-core machine,

running Scientific Linux with 128GB memory on 2.9GHz Intel Xeon.

Protocol PHC.We first report results on the performance of our

PHC protocol from Section 4. Figure 6a shows the computational

cost for synthetic datasets of various sizes and dimensions, aver-

aged over single and complete linkages. First, consistently with our

analysis in Section 5, dimensions have minimal impact, since PHC’s
performance relates primarily to computing inter-cluster distances

that is minimally affected by 𝑑 . As expected its cubic asymptotic

complexity, the overhead increases steeply with dataset size 𝑛.

Protocol OPT. Figure 6b shows the computational costs on syn-

thetic datasets for our optimized single-linkage variant OPT (with

configurations identical to those for PHC). In line with our analysis

in Section 5, OPT significantly improves performance, reducing

running time by an order of magnitude. E.g., for datasets of 2000

20-dimensional points, the running time is approximately 230 secs,

an 8× speedup compared to PHC. The difference in our above ex-

ample,is explained by the following observations: (1) although OPT
improves performance during clustering by a linear factor, it adds

costs during setup; and (2) the involved constants of the quadratic

costs are higher for running time in setup phase, and vice versa in

clustering phase. As shown in Figure 6d,OPT significantly improves

performance over PHC, also when tested over our real datasets.

Figure 8: End-to-end computation of PCure1, PCure2.

Protocols PCure∗. Figure 7 shows the accuracy of our CURE-
variant protocols PCure0, PCure1, PCure2 from Section 6, and the

non-private CURE algorithm on synthetic datasets of 1M records

for 10
2
–10

3
samples, partition parameters 𝑝 = 1 and 𝑝 = 5, and for

low (0.1%), medium (1%), and high (5%) outliers-to-data percentages.

Clearly, PCure0, where parties run CURE on their own samples,

without any interaction besides announcing representatives for indi-

vidually computed clusters, exhibits very poor accuracy. e.g., 44.4%

loss for 1M records. For 𝑝 = 1, PCure1 and PCure2 achieve similar

accuracy, which approaches that ofCURE for large enough samples:

At 300 samples or higher, the gap is within 3%. For higher values of

𝑝 , e.g., 𝑝 = 5, PCure1 and PCure2 exhibit a difference in accuracy:

E.g., at 200 samples the accuracy for PCure1 is lower by 39.54%

than PCure2; but at 500 samples or more, they are within 3.18%.

Moreover, experimenting with all combinations of 𝑝 = 1, 3, 5

partitions and 𝑅 = 1, 3, 5, 7, 10 representatives shows that the accu-

racies of PCure2 and PCure1 are very close to CURE at 𝑠 = 1000

samples (or more). The largest observed difference between PCure1
and CURE is 3.57%, and between PCure2 and CURE is 2.7%. For

𝑝 = 1 and 𝑅 = 1 either difference is less than 1% at 1000 samples (or

more). Thus, our choice of 𝑝 = 1 and 𝑅 = 1 to protect data privacy,

as argued in Section 6, does not impact the protocol’s accuracy.

We also compare end-to-end computation for PCure1 and

PCure2 (with OPT), 𝑛 = 10
6
, 𝑑 = 10, 1% outliers, no sample

partitioning (𝑝 = 1), ℓ𝑡 = 5 target clusters, and 𝑞 = 3 for A-

Clustering. Figure 8 shows their good performance for sample sizes

𝑠 ∈ [400 : 1000]. For 103 samples, PCure2 runs in 104sec, while

PCure1 runs in 35sec – 3× faster, but with similar accuracy 97.09%.

Network Latency Impact. Although our experiments show the

efficiency of our schemes, if executed over WAN this would be

affected by network latency and data transmission. To estimate this

impact, we considered two AWS machines in us-east and us-west
and measured their latency to 50 − 60ms. Taking PCure2 with 400

samples and ℓ𝑡 = 5 as our use case, a single clustering round with

four roundtrips (assuming distance update is done with a single gar-

bled circuit) would take approximately 200-240ms. Regarding data

transmission of the two garbled circuits for finding the minimum

distance and updating the cluster distances, using the circuits for ad-

dition/subtraction, comparison, and min-index-selection from [65]

for 100, 64-bit values, we estimate their size as roughly 10MB (not

including the OT data which is dominated by the circuits). Under

the mild assumption of a 100Mbps connection, transmission would

take ∼800ms for a total of ∼1sec. In subsequent rounds, the circuits

become progressively smaller but the number of roundtrips remains

the same; even conservatively multiplying by 395 rounds, we have



approximately 400sec of total communication time. For comparison,

in Figure 8, for the same setting computation takes ∼55sec.
Hence, communication indeed becomes a bottleneck for our

schemes when run over WAN, but not to the point where they are

entirely impractical. Furthermore, our goal when implementing our

schemes was not to minimize end-to-end latency but computation,

so there is plenty of room for optimizations. E.g., our protocols can

be run in “round batches” merging 𝑘 clusters with one interaction

(by larger circuits) which would decrease RTTs by a factor of 𝑘 .

Finally, dedicated cloud technologies, such as AWS VPC [4], can

offer private connections drastically reducing communication time.

8 RELATED WORK
Secure machine learning. There exists a rapidly growing line of

works that propose secure protocols for a variety of ML tasks. This

includes constructions for private classification models in the super-

vised learning setting (such as decision trees [70], SVM classifica-

tion [108], linear regression [31, 32, 94], logistic regression [38] and

neural networks [12, 85, 93]), as well as federated learning tasks [15].

Another focus has been on proposing MPC-based protocols that are

provably secure under a well-defined real/ideal definition, similar

to ours (e.g., [9, 16, 20, 22, 40, 42, 43, 51, 61, 67, 72, 77, 81, 90, 92]), for

numerous tasks with a focus on neural networks and deep learning.

The above works can be split into two categories: those that

focus on private model training and those that focus on private

inference/classification. In our unsupervised setting, our protocol

protects the privacy of the parties’ data during the clustering phase.

Deployed techniques. In terms of techniques, most works use

(some variant of) homomorphic encryption (e.g., [41, 86]). More

advanced ML tasks often require hybrid techniques, e.g., combin-

ing the above with garbled circuits (e.g., [92]) or other MPC tech-

niques [75, 90]. Our construction adopts such “mixed” techniques

for the problem of hierarchical clustering. More recently, solutions

have been proposed based on trusted hardware (such as Intel SGX),

e.g., [21, 82, 105]. This avoids the need for “heavy” cryptography,

however, it weakens the threat model as it requires trusting the hard-

ware vendor. Finally, a different approach seeks privacy via data

perturbation [5, 23, 24, 83, 97, 99], by adding statistical noise to hide

data values, e.g., differential privacy [33]. Such techniques are or-

thogonal to the cryptographic methods that we apply here but they

can potentially be combined (e.g., as in [87]). Using noise to hide

whether a specific point has been included in a given cluster would

be complement very nicely our cluster-information-reduction ap-

proach, potentially leading to more robust security treatment.

Privacy-preserving clustering. Many previous works proposed

private solutions for different clustering tasks with the majority fo-

cusing on the popular, but conceptually simpler, 𝑘-means problem

(e.g., [18, 30, 35, 58–60, 64, 76, 89, 107]) and other partitioning-based

clustering methods (e.g., [62, 116]). Fewer other works consider pri-

vate density-based [17, 25, 115] or distribution-based [48] clustering.

An in-depth literature survey and comparative analysis of private

clustering schemes can be found in the recent work of [49].

Focusing on private hierarchical clustering, no previous work

offers a formal security definition, relying instead on ad-hoc anal-

ysis [27, 55–57, 96]. Moreover some schemes leak information to

the participants that can clearly be harfmul—and is much more

than what our protocol reveals—e.g., [95, 106] reveal all distances

across parties’ records. One notable exception is the scheme of Su et

al. [102] which, however, is designed specifically for the case of doc-

ument clustering. Here, we proposed a security formulation within

the widely studied read/ideal paradigm of MPC that characterizes

precisely what information is revealed to the collaborating parties.

Besides making it easier to compare our solution with potential

future ones that follow our formulation, this is, to the best of our

knowledge the only private hierarchical clustering scheme with

formal proofs of security. Finally, it is an interesting problem to

combine optimizations for “plaintext” clustering (e.g.,[26, 78, 84])

with privacy-preserving techniques to improve efficiency.

Secure approximate computation. The interplay between cryp-

tography and efficient approximation [37] has already been studied

for pattern matching in genomic data [10, 109], 𝑘-means [101], and

logistic regression [103, 111]. To the best of our knowledge, ours

is the first work to compose secure cryptographic protocols with

efficient approximation algorithms for hierarchical clustering.

Leakage inmachine learning. The significant impact of informa-

tion leakage in collaborative, distributed, or federated learning has

been the topic of a long line of research (e.g., see [6, 66, 71, 97]). Vari-

ous practical attacks have been demonstrated that infer information

about the training data or the ML model and its hyper-parameters,

(e.g., [39, 54, 98]). This is even more important in collaborative

learning where parties could otherwise benefit from sharing data

but such leakage may stop them (e.g., [74, 112, 118, 119]). Hence,

it is crucial for our protocol to formally characterize what is the

shared information for the two parties.

9 CONCLUSION
We propose the first formal security definition for private hierarchi-

cal clustering and design a protocol for single and complete linkage,

as well as an optimized version. We also combine this with approx-

imate clustering to increase scalability. We hope this work moti-

vates further research in privacy-preserving unsupervised learning,

including secure protocols for other linkage types (e.g., Ward), al-

ternative approximation frameworks (e.g., BIRCH [117]), different

tasks (e.g., mixture models, association rules or graph learning),

or schemes for more than two parties to benefit from larger-scale

collaborations. Specific to our definition of privacy, we believe it

would be helpful to experimentally and empirically evaluate the

impact (even our significantly redacted) dendrogram leakage can

have, e.g., by demonstrating possible leakage-abuse attacks.
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A GARBLED CIRCUITS
Garbled circuits (GC) [113, 114] provide a general framework for

securely realizing two-party computation of any functionality. The

framework has been thoroughly studied in the literature (e.g., see

formal treatments of the topic [14, 69]) and we here overview the

specific procedures involved in it.

In our running example, parties P1 and P2 wish to evaluate a

specific function 𝑓 over their respective inputs 𝑥1, 𝑥2 and engage

in an interactive 2-phase protocol, where one party plays the role

of the garbler and the other the role of the evaluator. Without loss

of generality, P1 is the garbler and P2 is the evaluator, and their

interaction proceeds as follows.

In phase I, P1 expresses 𝑓 as a Boolean circuit C𝑓 , i.e., as a directed
acyclic graph of Boolean AND and OR gates, and then sends a

“garbled,” i.e., encrypted, version of C𝑓 to P2.
In our example, C𝑓 corresponds to a circuit of two AND gates

𝐴, 𝐵 and an OR gate 𝐶 , shown in Figure 9: Inputs 𝑥1, 𝑥2 are 11 and

01, and output 𝑓 (𝑥1, 𝑥2) is 1, computed by feeding to the OR gate

the two bitwise ANDs of the inputs.

To garble C𝑓 , P1 first maps (the two possible bits 0, 1 of) each

wire 𝑋 in C𝑓 to two random values𝑤0

𝑋
,𝑤1

𝑋
(from a large domain,

e.g., {0, 1}128), called the garbled values of 𝑋 .
Specifically, P1 maps the output wires of gates𝐴, 𝐵, and𝐶 to ran-

dom garbled values {𝑤0

𝐴
,𝑤1

𝐴
}, {𝑤0

𝐵
,𝑤1

𝐵
} and respectively {𝑤0

𝐶
,𝑤1

𝐶
},

and also maps the two input wires of gate 𝐴 (respectively, gate

𝐵) to random garbled values {𝑤0

11
,𝑤1

11
}, {𝑤0

21
,𝑤1

21
} (respectively,

{𝑤0

12
,𝑤1

12
}, {𝑤0

22
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22
}), where mnemonically the 𝑖-th input bit of

party P𝑗 corresponds to the 𝑖 𝑗-wire, 𝑖, 𝑗 ∈ {1, 2}.
Next, P1 sends to P2 the garbled truth table of every Boolean

gate in C𝑓 , which is the permuted encrypted truth table of the gate,

where row in the truth table is appropriately encrypted using the

garbled values of its three associated wires. We only specify the

garbled truth table of the AND gate𝐴, as other gates can be handled

similarly. The row (1, 1) → 1 in the truth table of𝐴 dictates that the
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Figure 9: Garbled circuit C𝑓 of a specific function 𝑓 that com-
putes the OR over the pairwise ANDs of the 2-bit inputs.

https://doi.org/10.1109/GlobalSIP.2013.6736861
https://doi.org/10.1109/GlobalSIP.2013.6736861
https://arxiv.org/abs/1712.05855
http://arxiv.org/abs/1712.05855
https://doi.org/10.1002/sec.811
https://doi.org/10.1002/sec.811
http://jmlr.org/proceedings/papers/v63/takada48.html
http://jmlr.org/proceedings/papers/v63/takada48.html
https://openreview.net/forum?id=rJVorjCcKQ
https://openreview.net/forum?id=rJVorjCcKQ
https://doi.org/10.1007/s10115-007-0073-7
https://doi.org/10.1007/s10115-007-0073-7
https://doi.org/10.1145/2810103.2813725
https://doi.org/10.1145/2810103.2813725
https://arxiv.org/abs/1611.01170
http://arxiv.org/abs/1611.01170
https://doi.org/10.1016/j.ins.2020.09.064
https://doi.org/10.1109/SFCS.1982.38
https://doi.org/10.1109/SFCS.1986.25
https://doi.org/10.1109/SP.2013.40
https://doi.org/10.1109/TBDATA.2017.2701816
https://doi.org/10.1109/TIFS.2019.2939713
https://doi.org/10.1109/TIFS.2019.2939713
https://doi.org/10.1002/int.22241


output is 1when input is 1, 1 or, using garbled values, that the output

is 𝑤1

𝐴
when input is 𝑤1

11
,𝑤1

21
. Accordingly, using a semantically-

secure symmetric encryption scheme 𝐸𝑘 (·) (e.g., 128-bit AES), P1
can express this condition as ciphertext 𝐸𝑤1

11

(𝐸𝑤1

21

(𝑤1

𝐴
)), where the

output 𝑤1

𝐴
is successively encrypted using the inputs 𝑤1

11
,𝑤1

21
as

encryption keys. P1 produces a similar ciphetext for each other row

in the truth table of 𝐴 and sends them to P2, permuted to hide the

order of the rows. Observe that one can retrieve𝑤1

𝐴
if and only if

they possess both 𝑤1

11
,𝑤1

21
, and that if one possesses only 𝑤1

11
,𝑤1

21
,

all other entries of the garbled truth table of 𝐴 (besides 𝑤1

𝐴
) are

indistinguishable from random, due to the semantic security of the

encryption scheme 𝐸𝑘 (·).
Finally, to allow P2 to retrieve the final output 𝑓 (𝑥1, 𝑥2), P1 also

sends the garbled values𝑤0

𝐶
,𝑤1

𝐶
of the output wire together with

their corresponding mapping to 0 and 1. Note that P2 is no privy
to any other mappings between wires’ garbled values and their

possible bit values.

In phase II, P2 evaluates the entire circuit C𝑓 over the received

garbled truth tables of the gates in it, by evaluating gates one by

one in the ordering hierarchy induced by (the DAG structure of)

C𝑓 . Indeed, if P2 knows the 𝑤 value of each input wire of a gate

and its garbled truth table, P2 can easily discover its output value,

by attempting to decrypt all rows in the table and accepting only

the one that returns a correct output value. For example, if P2 has
𝑤1

11
,𝑤0

21
, P2 can try to decrypt every value in the garbled truth

table of 𝐴, until P2 finds the correct value𝑤1

𝐴
.
4

To initiate this circuit-evaluation process, P2 needs to learn the

garbled values of each of the input wires in C𝑓 , which is achieved as
follows: (1) P1 sends to P2 the𝑤 values𝑤1

11
,𝑤1

12
corresponding to

the input wires of P1 in the clear (note that since these are random

values, P2 cannot map them to 0 or 1, thus P1’s input is protected);
(2) P2 privately query from P1 the𝑤 values𝑤0

21
,𝑤1

22
corresponding

to the input wires of P2, that is, without P1 learning which garbled

values were queried, via a two-party secure computation protocol

called 1-out-of-2 oblivious transfer (OT) [88]. At a very high level,

and focusing on a single input bit, OT allows P2 to retrieve from

P1 exactly one value in pair (𝑤0

21
,𝑤1

21
) without P1 learning which

value was retrieved. After running the OT protocol for every input

bit, P2 can evaluate C𝑓 , as above, to finally compute and send back

to P1 the correct output 𝑓 (𝑥1, 𝑥2) = 1, deduced by the final garbled

value𝑤1

𝐶
of the output wire.

B SECURE min-SELECTION PROTOCOLS
Here, we overview the design of GC-based protocols ArgMin and

MaxDist/MinDist for secure selection of min/max values, or their

index/location, over secret-shared data. These protocols have been

defined in Sections 4 and 5 and comprise integral components of

our solutions. We provide the exact two circuits over which we can

directly apply the garbled-circuits framework (see Appendix A) to

get GC-protocols ArgMin and MinDist, noting that the circuit in

support of MaxDist is similar to the case of MinDist.
4
For this, we need to assume that the encryption scheme allows detection of well-formed decryp-

tions, i.e., it is possible to deduce whether the retrieved plaintext has a correct format. This can be

easily achieved using a blockcipher and padding with a sufficient number of 0’s, in which case well-

formed decryptions will have a long suffix of 0’s and decryptions under the wrong key will have a

suffix of random bits. This property is referred to as verifiable range in [69].

Recall that data consists of 𝜆-bit values and is secret shared

among the two parties as 𝜅-bit random blinding terms, 𝜅 > 𝜆, and

𝜅 + 1-bit blinded values, each resulted by adding a random blinding

term to an ordinary data value.

Our circuits use as building blocks the following gates, efficient

implementations of which are well studied [65]:

• ADD/SUB that adds/subtracts 𝜅 + 1-bit integers;
• MIN/MAX that selects the min/max of two 𝜆-bit integers,
using a one-bit output to encode which input value is the

min/max value (e.g., on input 3, 5 MIN outputs 0 to indicate

the first value is smaller);

• a multiplexer gateMUX𝑖 that on input two 𝑖-bit inputs and a

selector bit 𝑠 , outputs the first or the second one, depending

on the value of 𝑠; and finally

• hard-coded in the circuit constant gates CON𝑖 , 1 ≤ 𝑖 ≤ 𝑛,
that always output the (log𝑛)-bit fixed value 𝑖 (e.g., CON3

outputs the binary representation of 3).

SUB SUB

MIN

MUX�

MUXlogn

CON1 CON2

SUB

MUXlogn

MIN

MUX�

CON3

MUXlogn

SUB

MIN

MUX�

CONn

· · ·· · ·

· · ·
v1 r1 r2v2 vn rnv3 r3

Figure 10: The circuit for protocol ArgMin.

Figure 10 shows the circuit of protocol ArgMin for selecting

the index of the minimum value in an array of 𝑛 different values.

On input 𝑛 𝜅 + 1-bit values 𝑣1, . . . , 𝑣𝑛 and 𝑛 𝜅-bit blinding terms

𝑟1, . . . , 𝑟𝑛 , the circuit first uses 𝑛 SUB gates to compute (the secret)

values 𝑣𝑖−𝑟𝑖 , 𝑖 = 1, . . . , 𝑛, and then selects the index of the minimum

such value in 𝑛 − 1 successive comparisons as follows. In the 𝑖th

comparison, a MIN gate compares the currently minimum value

𝑚𝑖 of index 𝑙𝑜𝑐𝑖 (initially,𝑚1 = 𝑣1 − 𝑟1, 𝑙𝑜𝑐1 = 1) to value 𝑣𝑖+1 − 𝑟𝑖+1
of index 𝑖 + 1, and its output bit is fed, as the selector bit, to two

multiplexer gates MUX𝜇 :
• 𝜇 = log𝑛: once for selecting among two (log𝑛)-bit indices
𝑙𝑜𝑐𝑖 and 𝑖+1, the latter conveniently encoded as the output of
constant gate CON𝑖+1 (such hard-coded indices significantly

facilitate their propagation in the circuit, compared to the

alternative of handling indexes as input and carrying them

over throughout the circuit); and

• 𝜇 = 𝜆: once for selecting among two 𝜆-bit values 𝑚𝑖 and

𝑣𝑖+1 − 𝑟𝑖+1,
overall propagating the updated minimum value𝑚𝑖+1 = min{𝑎, 𝑏}
and its index 𝑙𝑜𝑐𝑖+1 to the next (𝑖 + 1)th comparison. The final

output (see arrow wire) corresponds to the output of the (𝑛 − 1)th
index-selection multiplexer gate.

Figure 11 shows the circuit for protocolMinDist for selecting and
re-blinding the minimum value among two secret-shared values.

On input two 𝜅 + 1-bit blinded values 𝑢, 𝑣 and three 𝜅-bit blinding

terms 𝑟1, 𝑟2, 𝑟
′
, the circuit first computes𝑢−𝑟1, 𝑣−𝑟2 using two SUB

gates, then computes the minimum of these two values using aMIN
gate, and its output bit is fed, as the selector bit, to a multiplexer

gate MUX𝜆 for selecting the minimum among two 𝜆-bit values

𝑢 −𝑟1 and 𝑣 −𝑟2, which is becomes the final output (see arrow wire)
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Figure 11: The circuit for protocol MinDist.

after it is blinded by adding the input blinding term 𝑟 ′ through a

ADD gate. (The circuit for protocol MaxDist is the same with a

MAX gate replacing the MIN gate.)

C PROOF OF THEOREM 5.1
We begin by recalling that, under the assumption that the oblivious

transfer protocol used is secure, there exists simulator Sim𝑂𝑇 that

can simulate the views of each of the parties P1, P2 during a single

oblivious transfer execution when given as input the corresponding

party’s input (and output, in case it is non-empty) and randomness.

The core idea behind our proof is that, since all values seen by the

two parties during the protocol execution (apart from the indexes of

the merged clusters at each clustering round) are “blinded” by large

random factors, these values can be perfectly simulated, as needed

in our proof, by randomly selected values. For example, assuming all

values 𝑝𝑖 , 𝑞𝑖 are 32-bits and the chosen random values are 100-bits,

it follows that the sum of the two is statistically indistinguishable

from a 100-bit value chosen uniformly at random. In particular,

this allows the simulator to effectively run the protocol with the

adversary by simply choosing simulated values for the other party

which he chooses himsellf at random (in the above example these

would be random 32-bit values).

We handle the two cases of party corruption separately.

Corruption of P2. The view of P2 during the protocol execution
consists of:

(1) Encrypted matrices 𝐵, 𝑅 and encrypted arrays 𝐿, 𝑆 .

(2) For each clustering round ℓ , messages received during the

oblivious transfer execution for ArgMin, denoted by𝑂𝑇ℓ and
the min/max index 𝛼ℓ .

(3) During each clustering round ℓ , for each execution of

MinDist/MaxDist for index 𝑘 , messages received during

the corresponding oblivious transfer execution, denoted by

𝑂𝑇ℓ,𝑘 , corresponding garbled circuit𝐺𝐶ℓ,𝑘 , and output value

𝑣ℓ,𝑘 .

(4) Encrypted cluster representative values 𝐸1, . . . , 𝐸ℓ𝑡 .

The simulator Sim𝑃2 , on input the random tape 𝑅2, points

𝑞1, . . . , 𝑞𝑛2
, outputs (𝑟𝑒𝑝1/|𝐽1 |, |𝐽1 |, . . . , 𝑟𝑒𝑝ℓ𝑡 /|𝐽ℓ𝑡 |, |𝐽ℓ𝑡 |), 𝛼1, . . . , 𝛼ℓ𝑡 ,

computes the view of P2 as follows.
• (Ciphertext computation) Using random tape 𝑅2, the sim-

ulator runs the key generation algorithm for P2 to receive

𝑠𝑘 ′, 𝑝𝑘 ′. He then chooses values 𝑝 ′
1
, . . . , 𝑝 ′𝑛1

uniformly at ran-

dom from {0, 1}𝑑 . These will act as the “simulated” values

for player P1. He then runs protocol PHC honestly using

the values 𝑝 ′
𝑖
as input for P1 (and the actual values 𝑞𝑖 of P2),

with the following modifications.

• (Oblivious transfer simulation for 𝑂𝑇ℓ ) For ℓ = 1, . . . , ℓ𝑡
let𝑊ℓ be the set of garbled input values computed by P2 for
the garbled circuit that evaluates MinDist/MaxDist at clus-
tering round ℓ . Since we are in the semi-honest setting, the

corrupted P2 computes these values uniformly at random.

Therefore, the simulator can also compute them using 𝑅2.

Then, for 𝑖 = 1, . . . , ℓ, the simulator includes in the view (in-

stead of 𝑂𝑇ℓ ) the output 𝑂𝑇
′
ℓ
produced by simulator Sim(2)

𝑂𝑇

on input𝑊ℓ .
5
Note that P2 does not receive any output from

this oblivious transfer execution, thus Sim(2)
𝑂𝑇

only works

given the input.

• (Oblivious transfer simulation for Argmin) For each

clustering round ℓ , the simulator includes in the view, the

index 𝛼ℓ .

• (Garbled circuit simulation for 𝐺𝐶ℓ,𝑘 ) Next, the simula-

tor needs to compute the garbled circuits 𝐺𝐶ℓ,𝑘 . The simu-

lator uses the corresponding values from R (as computed

so far) and a “new” blinding factor 𝜌ℓ,𝑘 for P1’ inputs and
computes a garbled circuit for evaluating ArgMin honestly.

The simulator also includes in the view of P2 the garbled
inputs for the corresponding elements from R.
• (Oblivious transfer simulation for 𝑂𝑇ℓ,𝑘 ) Let 𝑦ℓ,𝑘 be the

input of P2 for the circuit𝐺𝐶ℓ,𝑘 (i.e., the execution of ArgMin
for index 𝑘 during clustering round ℓ). Since we are in the

semi-honest case, the corrupted P2 will provide as input

the values that have been established from the interaction

with P1 (using the points 𝑝 ′
𝑖
) up to that point, therefore

𝑦ℓ,𝑘 can be computed by the simulator. In order to compute

the parts of the view that correspond to each of 𝑂𝑇ℓ,𝑘 the

simulator includes in the view the output of Sim𝑂𝑇 on input

𝑦ℓ,𝑘 and the corresponding choice from each pair of garbled

inputs he chose in the previous step (as dictated by the bit

representation of 𝑦ℓ,𝑘 ), which we denote as 𝑂𝑇 ′
ℓ,𝑘

.

• (Encrypted representatives computation) For ℓ =

1, . . . , ℓ𝑡 , the simulator computes 𝑟𝑒𝑝ℓ = ⌈𝑟𝑒𝑝ℓ/|𝐽ℓ | · |𝐽𝑖 |⌉
and 𝐸ℓ = [𝑟𝑒𝑝ℓ ], where encryption is under (the previously

computed) 𝑝𝑘 .

We now argue that the view produced by our simulator is indis-

tinguishable from the view of P2 when interacting with P1 running
PHC. This is done via the following sequence of hybrids.
Hybrid 0. This is the view viewAPHC

𝑃
2

, i.e., the view of P2 when

interacting with P1 running PHC for points 𝑝𝑖 .

Hybrid 1. This is the same as Hybrid 0, but the output of 𝐺𝐶ℓ in

viewAPHC
𝑃
2

is replaced by 𝛼ℓ . This is indistinguishable from Hybrid

0 due to the correctness of the garbling scheme. Since we are in the

semi-honest setting, both parties follow the protocol, therefore the

outputs they evaluate are always 𝛼ℓ .

Hybrid 2. This is the same as Hybrid 1, but values in 𝐵, 𝐿 are

computed using values 𝑝 ′
𝑖
. This is statistically indistinguishable

fromHybrid 1 (i.e., even unbounded algorithms can only distinguish

between the two with probability𝑂 (2𝜅 ) since in viewAPHC
𝑃
2

, each of

the values in 𝐵, 𝐿 are computed as the sum of a random value from

{0, 1}𝜅 and a distance between two clusters.

5
And corresponding randomness derived from 𝑅2 .



Hybrid 3. This is the same as Hybrid 2, but all values in 𝑅, 𝑆 are re-

placed with encryptions of zero’s. This is indistinguishable fromHy-

brid 2 due to the semantic security of Paillier’s encryption scheme.

Hybrid 4. This is the same as Hybrid 3, but each of𝑂𝑇ℓ is replaced

by 𝑂𝑇 ′
ℓ
, computed as described above. This is indistinguishable

from Hybrid 3 due to the security of the oblivious transfer protocol.

Hybrid 5. This is the same as Hybrid 4, but the garbled inputs

given to P2 for 𝐺𝐶ℓ,𝑘 are chosen based on the values that have

been computed using values 𝑝 ′
𝑖
. Since garbled inputs are chosen

uniformly at random (irrespectively of the actual input values), this

follows the same distribution as Hybrid 3.

Hybrid 6. This is the same as Hybrid 5, but each of 𝑂𝑇ℓ,𝑘 is re-

placed by output of 𝑂𝑇ℓ,𝑘 computed as described above. This is

indistinguishable from Hybrid 5 due to the security of the oblivious

transfer protocol.

Hybrid 7. This is the same as Hybrid 6, but each value 𝐸𝑖 sens to

P2 is computed as [⌈𝑟𝑒𝑝𝑖/|𝐽𝑖 | · |𝐽𝑖 |⌉] using public key 𝑝𝑘 ′. This is
indistinguishable from Hybrid 6 since we are in the semi-honest

setting and both parties follow the protocol therefore the outputs

they evaluate are always 𝑟𝑒𝑝𝑖/|𝐽𝑖 |.
Note that Hybrid 7 corresponds to the view produced by our sim-

ulator and Hybrid 0 to the view that P2 receives while interacting
with P1 during 𝜋𝐻𝐶 which concludes this part of the proof.

Corruption of P1. The case where P1 is corrupted is somewhat

simpler as he does not receive any outputs from the circuits 𝐺𝐶ℓ,𝑘 .

The view of P1 during the protocol execution consists of:

(1) Encrypted tables 𝐷, 𝑅 and encrypted arrays 𝐻, 𝐿, 𝑆 .

(2) For each clustering round ℓ , a garbled circuit 𝐺𝐶ℓ for evalu-

ating ArgMin, messages received during the corresponding

oblivious transfer execution denoted by 𝑂𝑇ℓ .

(3) During each clustering round ℓ , for each execution of

MinDist/MaxDist for index 𝑘 , messages received during the

corresponding oblivious transfer execution denoted by𝑂𝑇ℓ,𝑘 .

The simulator Sim𝑃1 , on input the random tape 𝑅1, points

𝑝1, . . . , 𝑝𝑛1
, outputs (𝑟𝑒𝑝1/|𝐽1 |, |𝐽1 |, . . . , 𝑟𝑒𝑝ℓ𝑡 /|𝐽ℓ𝑡 |, |𝐽ℓ𝑡 |),𝛼1, . . . , 𝛼ℓ𝑡 ,

computes the view of P1 as follows.
• (Ciphertext computation) Using random tape 𝑅1, the sim-

ulator runs the key generation algorithm for P1 to receive

𝑠𝑘, 𝑝𝑘 and computes a pair 𝑠𝑘 ′, 𝑝𝑘 ′ for himself. He computes

𝐷,𝐻, 𝐿 consisting of encryptions of zeros under 𝑝𝑘 ′. More-

over, he computes 𝑅,𝑆 consisting of encryption of values

chosen uniformly at random from {0, 1}𝜅 and encrypted

under 𝑝𝑘 .

• (Garbled circuit simulation for 𝐺𝐶ℓ ) Next the simula-

tor needs to provide garbled circuits for the evaluation of

ArgMin for each clustering round ℓ . For this, the simulator

creates a “rigged” garbled circuit𝐺𝐶 ′
ℓ
that always outputs 𝛼ℓ ,

irrespectively of the inputs. This is achieved by forcing all

intermediate gates to always return the same garbled output

and by setting the output translation temple to always to de-

code to the bit-representation of 𝛼ℓ (this process is explained

formally in [69]).

• (Oblivious transfer simulation for ArgMin) Let 𝑊 (1)
ℓ

,

𝑊
(2)
ℓ

be the sets of pairs of input garbled values that the sim-

ulator choses while creating 𝐺𝐶 ′
ℓ
as described above (where

the former corresponds to the input of P1 and the latter to

the input of P2). The simulator includes in the view a random

choice from each pair in𝑊 (2) . Moreover, he replaces the

messages in the view that correspond to the execution of

𝑂𝑇ℓ,𝑘 , by the output of Sim(1)
𝑂𝑇

on input (𝑦ℓ ,𝑊 (1)ℓ
), where 𝑦ℓ

is the bit description of the input of P1 for 𝐺𝐶ℓ (which can

be computed with the simulator since he has access to 𝑝𝑖 ,

𝑅1).

• (Oblivious transfer simulation for MinDist/MaxDist)
For each 𝐺𝐶ℓ,𝑘 let 𝑊ℓ,𝑘 be the set of garbled input val-

ues computed by P1 for the garbled circuit that evaluates

MinDist/MaxDist at clustering round ℓ and cluster 𝑘 . Since

we are in the semi-honest setting, the corrupted P1 computes

these values uniformly at random. Therefore, the simulator

can also compute them using random tape 𝑅1. Then, for each

ℓ, 𝑘 the simulator includes in the view (instead of 𝑂𝑇ℓ,𝑘 ) the

output 𝑂𝑇 ′
ℓ,𝑘

produced by simulator Sim(1)
𝑂𝑇

on input𝑊ℓ,𝑘

(and corresponding randomness derived from 𝑅1). Note that

P1 does not receive any output from this oblivious transfer

execution, thus Sim(1)
𝑂𝑇

only works given the input.

We now argue that the view produced by our simulator is indis-

tinguishable from the view of P1 when interacting with P2 running
PHC. This is done via the following sequence of hybrids.
Hybrid 0. This is the view viewAPHC

𝑃
1

, i.e., the view of P1 when

interacting with P2 running 𝜋𝐻𝐶 for points 𝑞𝑖 .

Hybrid 1. This is the same as Hybrid 0, but all values in 𝐷,𝐻 ′, 𝐿
are replaced with encryptions of zero’s. This is indistinguishable

from Hybrid 1 due to the semantic security of Paillier’s encryption

scheme.

Hybrid 2. This is the same as Hybrid 1, but values in 𝑅, 𝑆 are

computed as encryptions of values chosen uniformly at random

from {0, 1}𝜅 under key 𝑝𝑘 . This is statistically indistinguishable

from Hybrid 1 for the same reasons as for the case of P2 above.
Hybrid 3. This is the same as Hybrid 2, but each of𝐺𝐶ℓ is replaced

by 𝐺𝐶 ′
ℓ
, computed as described above (including the values from

𝑊(2) ) This is indistinguishable from Hybrid 2 due to the security of

encryption scheme used for the garbling scheme (this is formally

described in [69]).

Hybrid 4. This is the same as Hybrid 3, but each of𝑂𝑇ℓ is replaced

by 𝑂𝑇 ′
ℓ
, computed as described above. This is indistinguishable

from Hybrid 3 due to the security of the oblivious transfer protocol.

Hybrid 5. This is the same as Hybrid 4, but each of𝑂𝑇ℓ,𝑘 is replaced

by 𝑂𝑇 ′
ℓ,𝑘

computed as described above. This is again indistinguish-

able from Hybrid 5 due to the security of the oblivious transfer

protocol.

Note that Hybrid 5 corresponds to the view produced by our sim-

ulator and Hybrid 0 to the view that P2 receives while interacting
with P1 during PHC which concludes this part of the proof.
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