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Abstract—The computing landscape has been increasingly
characterized by processor architectures with increasing core
counts, while a majority of the software applications remain
inherently sequential. Although state-of-the-art compilers fea-
ture sophisticated optimizations, a significant chunk of wasteful
computation persists due to the presence of data-dependent
operations and irregular control-flow patterns that are unpre-
dictable at compile-time. This work presents speculative code
compaction (SCC), a novel microarchitectural technique that
significantly enhances the capabilities of the microcode engine to
aggressively and speculatively eliminate dead code from hot code
regions resident in the micro-op cache, and further generate a
compact stream of micro-ops, based on dynamically predicted
machine code invariants. SCC also extends existing micro-op
cache designs to co-host multiple versions of unoptimized and
speculatively optimized micro-op sequences, providing the fetch
engine with significant flexibility to dynamically choose from
and stream the appropriate set of micro-ops, as and when
deemed profitable.

SCC is a minimally-invasive technique that can be imple-
mented at the processor front-end using a simple ALU and a
register context table, and is yet able to substantially accelerate
the performance of already compile-time optimized and machine-
tuned code by an average of 6% (and as much as 30%),
with an average of 12% (and as much as 24%) savings in
energy consumption, while eliminating the need for profiling
and offering increased adaptability to changing datasets and
workload patterns.

Keywords-Microarchitecture, Speculation, Optimization

I. INTRODUCTION

The slowdown of Moore’s law has driven the micro-
processor industry to a formidable inflection point that
has been characterized by consistently diminishing rates of
improvement in the execution efficiency of modern general-
purpose processors, which continue to drive a substantial
chunk of the world’s computational demands. The software
landscape, on the other hand, has evolved rapidly over the
years, resulting in the emergence of complex workloads with
vastly diverse execution characteristics, exposing the already
widening semantic gap between the executable code and the
execution hardware.

Modern workloads, such as graph, media, and healthcare
analytics, increasingly feature data-dependent computation
and control flow patterns that often vary considerably with
changing datasets and configuration parameters [1], [2], [3],
[4]. This has greatly reduced the effectiveness of conven-
tional compiler optimizations that rely on hoisting program
invariants identifiable at compile-time to eliminate redundant
computation and further apply machine-specific optimizations
to the residual code. Run-time optimizations [5], [6], [7],
[8], [9], on the other hand, have largely been profile-guided
and conservative in nature, significantly limiting their ability
to adapt to changing execution profiles as datasets evolve,
notwithstanding high profiling overheads and deployment
costs. These obstacles have highlighted the pressing need for
systems that can aggressively and yet seamlessly optimize
machine code, adapting to the execution environment, even
post-compilation and post-deployment.

The key to this research is the observation that modern
datasets offer remarkable predictability, because data access
and control flow patterns in many workload-dataset pairs
manifest as invariants across long execution intervals, some-
times even spanning multiple program phases, unmasking a
heretofore untapped pocket of opportunity for speculatively
optimizing such code paths at run-time. This paper presents
speculative code compaction (SCC), a novel scheme for
speculatively optimizing machine code in execution to expose
and eliminate dead code, entirely at runtime within the
processor, based on dynamically predicted data and control
invariants, thereby enabling the continuous optimization of
inherently sequential code.

SCC is a prediction-driven microarchitectural technique
that advances state-of-the-art dynamic binary optimization
schemes in several important ways. First, it leverages the
rich contextual knowledge available from a wide array of
in-processor speculation techniques such as branch pre-
diction, address prediction, and value prediction to track
deterministic computational patterns in hot code regions and
further transform an instruction sequence in execution into



a compact stream of speculatively optimized instructions.
Second, it opens the door to the deployment of aggressive
and speculative dead-code elimination techniques that have
been traditionally deemed unsafe, thanks to the processor’s
ability to rollback execution to a safe point in the event of a
misprediction by flushing speculatively optimized instructions
and redirecting execution to the corresponding stream of
unoptimized instructions. Third, by exploiting predictability
as the basis for optimization, it offers seamless adaptability
to changing datasets and workload patterns, unlike existing
schemes that either require extensive profiling or tend to
make conservative assumptions when they lack adequate
context about the dynamic execution behavior.

More importantly, SCC is a minimally-invasive, hardware-
only strategy that neither requires the construction and
analysis of control-flow graphs or dynamic execution traces,
nor entails the application of multiple passes of sophisticated
optimizations, and is yet able to look ahead multiple hot
basic blocks (e.g., those that are resident in the micro-op
cache) to eliminate dead code in one single pass. In fact,
by extending the processor’s microcode engine to include a
simple ALU and a small architectural register file to track
data invariants, SCC is able to apply a suite of standard
peephole optimizations, including constant folding, constant
propagation, branch folding, and dead code elimination, in a
single pass, to speculatively transform a given sequence of
hot micro-ops into a more compact stream.

Due to the inherently speculative nature of our technique,
its profitability depends greatly upon the number and range of
speculatively identified data/control invariants, the confidence
in our predictions, and the overall coverage we are able to
achieve. Relying on only high confidence predictions might
yield fewer speculative invariants, resulting in low overall
code compaction. On the other hand, liberal use of invariants
predicted with low confidence might potentially allow for
more aggressive code compaction, but also significantly
increases the risk of squashing due to frequent mispredictions.
One of the major contributions of this work is an extensive
profitability analysis to identify an appropriate set of target
code regions that are amenable to run-time speculative trans-
formations, along with their associated predicted invariants
that yield the maximum gains. As a by-product of this
analysis, we arrive at several interesting insights that redefine
conventional branch and value prediction design practices,
in the renewed context of speculative code compaction.

Furthermore, to avoid the repeated cost of applying our
speculative transformations on the same code region, we
propose novel extensions to existing micro-op cache designs
to co-host multiple (unoptimized and speculatively optimized)
versions of micro-op sequences, enabling the processor
front-end to dynamically choose from alternate versions
based on the profitability analysis, and further stream the
appropriate set of instructions out of the micro-op cache.
There are substantial benefits to providing the front-end with

this choice and flexibility. First, it allows us to gracefully
recover from mispredictions by seamlessly switching to the
appropriate unoptimized micro-op sequence in the micro-
op cache, when available. Second, it allows us to cater to
oscillating data and branch access patterns by appropriately
chaining together multiple versions of speculatively optimized
micro-op sequences. Third, it equips us with the ability to
quickly react to changes in the dynamic execution behavior
(e.g., reaching the end of a hot loop) where a predicted
invariant may no longer continue to hold.

In summary, we make the following major contributions:

« We introduce SCC, a novel microarchitectural technique
that has the ability to leverage speculatively identified
program invariants to accelerate inherently sequential
and statically compile-time optimized code, without the
need for profiling, compiler metadata, or other source-
level information.

¢ Our technique is minimally invasive and can be imple-
mented completely within the processor front-end at
less than 1.5% in area overhead.

« We propose novel micro-op cache extensions to co-
host unoptimized and speculative optimized instruction
sequences, providing the front-end with significant
flexibility to choose from and stream the most profitable
instruction sequence at run-time.

« We conduct extensive profitability analyses and sensi-
tivity studies to understand the impact of speculative
processor features such as branch and value predictors
in the context of speculative code compaction.

e Overall, we achieve an average speedup of 6% and
as much as 30%, while saving an average of 12% on
average and as much as 24% in energy consumption.

II. RELATED WORK

In this section, we discuss relevant literature that is
most closely related, and further elucidate the distinguishing
aspects of the proposed work.

Dynamic Binary Optimization. Multiple software-
based dynamic binary instrumentation frameworks, such
as PIN [10], Valgrind [11], and DynamoRio [12], have
been proposed for program inspection, shepherding, security
hardening, performance analysis, binary lifting, and dynamic
optimizations among other applications [5], [6], [7], [8],
[91, [13], [14], [15], [16], [17], [18], [19], [20], [21], [22].
These techniques rely on heuristics and profiling information
to identify data and branch access patterns useful for
dynamic optimizations and machine-specific tuning. While
offline profiling requires multiple representative runs of
the application to accurately capture stable, representative
execution characteristics, online profiling may be limited to
certain hot-code regions to amortize the high cost of dynam-
ically probing performance counters and other management
overhead, resulting in low coverage for many applications.
These approaches also typically rely on a software-based code



cache to store optimized code regions that are sufficiently hot,
thereby avoiding the repeated cost of run-time optimization.
However, unlike SCC, these approaches lack the flexibility of
automatically switching back and forth between unoptimized
and different speculatively optimized versions of the code,
seamlessly adapting to changing workload patterns.

Superoptimization. Massalin [23] first introduced the
idea of superoptimization — a technique that can further
reduce a compile-time optimized machine code sequence
into a functionally equivalent, but more compact and optimal
instruction sequence, greatly enhancing the quality of the
generated code. Since then, a number of superoptimiza-
tion [24], [25], [26], [27], [28], [29], [30], [31], [32],
[33] strategies have been described, with some relying on
classical peephole rules (e.g., constant folding, simple if-
conversion, redundant load elimination, etc.), and some others
automatically generating rules for optimization via stochastic
methods, implemented using standard static and dynamic
binary translation techniques. While SCC shares their goal
of optimizing already compile-time optimized machine code,
the microcode transformations that it deploys are aggressively
speculative and completely realized in hardware, and more
importantly, do not require functional equivalency tests.

Trace Caches and Trace Processors. Rotenberg, et
al. [34] introduced trace caches, which augment the pro-
cessor’s front-end with the ability to construct and cache
long streams of dynamic instructions called traces that span
multiple hot basic blocks that are not necessarily contiguous
in the instruction cache, implicitly predicting or “folding”
branches and thereby greatly improving the fetch throughput.
They further propose trace processors [35] that allow for the
parallel scheduling and execution of multiple independent
traces as a unit, opening the door to a variety of ILP-
enhancing optimizations [36], [37], [38], [39], [40], [41],
including instruction scheduling, move elimination, constant
propagation, and collapsing dependency chains.

Despite their potential benefits, trace processors tend to
suffer from inefficiencies that arise due to management and
storage overheads. In particular, trace-based optimizations
have been shown to be profitable only when multiple
independent execution traces that are sufficiently long are
made available for optimization. However, capturing and
caching long traces that don’t overlap is known to incur non-
trivial overheads in terms of latency, power, and hardware
complexity [42], [43], [44], [45]. The effectiveness of trace
caches and trace processors is also highly dependent on
their ability to accurately predict branch directions and
confidence, in order to construct stable traces [46]. Although
Intel’s Pentium 4 based on the Netburst microarchitecture
featured trace caches, they were discontinued in subsequent
generations and have since been replaced by simpler micro-
op caches [47] used to store decoded micro-ops, eliminating
the repeated cost of decoding complex x86 instructions into
internal micro-ops when cached translations are available.

Micro-op caches have been staple feature of Intel processors
since the Sandy Bridge microarchitecture.

SCC differs from trace processors in several key ways.
First, SCC is a lightweight, frontend-only enhancement
geared toward supplying the execution engine with a compact
instruction stream that is devoid of dead code, unlike trace
processors, whose primary goal is to extract and exploit
greater instruction-level parallelism by creating, scheduling,
and executing multiple independent traces in parallel using
dedicated trace processing engines. Second, unlike trace
processors, SCC does not construct long execution traces,
but simply generates a more compact version of decoded
micro-ops that are already resident in the micro-op cache,
thereby considerably alleviating concerns related to creation,
storage, and management of long traces. Third, while trace
processors also rely on value prediction to predict live-ins
to individual traces for enabling trace-level parallelism, SCC
takes a general and more aggressive approach by using
high-confidence predictions for potentially every instruction
during the compaction process. This allows for greater code
compaction even for highly optimized and machine-tuned
code, unlike trace-based optimizations whose effects tend to
wane as the level of optimization increases [48]. Fourth, by
allowing the fetch engine to choose from multiple versions of
optimized and unoptimized micro-op streams, SCC provides
significant flexibility by enabling speculative optimizations
only when deemed profitable.

Decode- and Rename-Time Code Customization. Code-
morphing architectures such IBM’s DAISY [30], Transmeta’s
Crusoe [49], and Nvidia’s Tegra K1 Denver [50] feature
a software- or firmware-based binary translation layer to
dynamically translate and optimize machine code from one
instruction set architecture to another. Further, several other
lightweight schemes for editing and customizing dynamic
instruction streams have been proposed in the literature for a
wide range of applications including silent store elimination,
reference combining, bounds checking, code decompression,
debug support, and on-demand de-vectorization [51], [52],
[53], [54], [55], [56], [57], [58], [59], [60]. In addition, Kotra,
et al. [61] demonstrate that micro-op cache is fragmented due
to terminating conditions and propose a Cache Line boundary
AgnoStic uoP cache design (CLASP) and compaction to
address the fragmentation. While some of these schemes
are deployed at the microcode engine, none of them take
advantage of data/control predictability to transform decoded
micro-op sequences into a more compact stream of specu-
latively optimized micro-ops, and most of them introduce
greater hardware complexity and power/area overhead, in
comparison to SCC that incurs just 1.5% in area overhead.

Furthermore, register renaming in modern out-of-order
superscalar processors offers an important avenue for opti-
mizing away redundant operations. This has been exploited
in multiple prior academic works [62], [63], [64] to per-
form move elimination, reassociation, constant propagation,



redundant-load elimination, and silent-store elimination,
among other optimizations. Recent Intel microarchitectures
feature several rename-time optimizations including move
elimination and zero/one idiom evaluation. However, the
key difference here is that SCC applies its transformations
based on dynamically-predicted program invariants rather
than the current register state, allowing for the exploitation
of a larger window of opportunity, resulting in a substantially
greater reduction in the overall dynamic instruction count.
In addition, EOLE [65] proposes an early execution scheme
such that instructions whose operands are immediate or
predicted can be executed in place, in-order without being fed
into the out-of-order engine. Finally, Perais [66] shows that
rename-time move elimination and zero/one idiom evaluation
may be leveraged to speculatively eliminate instructions
whose operands may be predicted. While SCC also leverages
value prediction to speculatively identify data invariants and
eliminate instructions, it does so earlier in the pipeline by
tracking hot code regions in the micro-op cache and employs
a wider range of optimizations.

Event-Driven Optimization. The literature also describes
several hardware-based event-driven and lead-follower ap-
proaches to dynamically optimize machine code in execution.
These approaches typically leverage a spare hardware context
to deploy a helper thread whose goal is to accelerate a given
main thread in execution by targeting a wide range of low-
level optimizations including prefetching, folding delinquent
branches, eliminating redundant computation along forward
load slices, and speculative parallelization of hot loops [67],
[68], [69], [70], [71]. In contrast, SCC does not need a spare
hardware context and is able to apply all of its speculative
transformations in a single pass.

Transactional Memory. Transactional Memory (TM) [72]
introduced the idea of executing code as a sequence of atomic
transactions, such that each transaction is validated before
committed, and if validation does not pass, the transaction
is aborted with no side effects and re-executed. While
Hardware Transactional Memory (HTM) entails significant
additional hardware complexity, Software Transactional Mem-
ory (STM) [73] can be implemented using first class C/C++
constructs [74] to block non-transactional accesses to a
memory location being accessed by an unfinished transaction.
However, software-based isolation barriers might incur a
high performance penalty, calling for sophisticated barrier
optimization techniques [75].

TM can also be used to support Thread Level Speculation
(TLS) [76], [77]1, [78], [79], a runtime technique that allows
multiple parts of sequential code to be run in parallel by
opportunistically assuming that they can be run in parallel
and rolling back upon violations. Our work falls into the
same general realm of dynamic optimization techniques, but
TM has not been applied to instruction-level optimizations
such as the ones discussed in this paper. Further, although
TM semantics include the ability to roll back state due to

instructions already retired from the reorder buffer, they may
be too heavyweight for tasks such as code compaction. It is,
however, an interesting direction for future work.

III. ARCHITECTURAL OVERVIEW

The key motivation behind this research is that modern
workloads spend a substantial chunk of their lifetime exe-
cuting a small number of hot-code regions, characterized by
predictable computational patterns that tend to manifest as
invariants over long execution intervals.

Modern processor front-ends and microcode engines have
the ability to not only track and cache hot code regions
in on-chip buffers such as the micro-op cache, but also
provide valuable snapshots of predictable computational
patterns through speculative features such branch and value
predictors. In this section, we provide a detailed architectural
overview of SCC that exploits and extends these fundamental
processor features to realize substantial gains in single thread
performance and efficiency.

Speculative Code Compaction. The central element of our
architecture is a speculative code compaction unit (shown in
Figure 1) that leverages these fundamental processor features
to analyze and transform hot micro-op sequences in the
micro-op cache, spanning as many as three micro-op ways
within a set (roughly 18 fused micro-ops or a 32-byte native
x86 code region), into one or more compact and speculatively
optimized micro-op sequences. In particular, when a micro-
op cache line reaches a preset hotness threshold, a code
compaction request is initiated by the processor front-end
and is queued up in a request queue that is appropriately sized
based on the fetch width of the processor. Our experiments
indicate that, on a processor modeled after Intel’s Icelake
architecture, even a request queue with as low as 6 entries
is capable of identifying several hot code regions amenable
for speculative code compaction.

In the next cycle, the request is dispatched to the SCC
unit, if available, at which point, it speculatively transforms
the micro-op sequence at the requested address, processing
one instruction every cycle, based on dynamically predicted
program invariants leveraging hints from in-processor features
such as the branch predictor, loop stream detector, and value
predictor. The SCC unit itself includes: (1) a register file
to track speculatively identified live integer and condition-
code registers, and (2) a simple integer ALU to evaluate
and speculatively eliminate dead code. Due to the front-
end placement of the integer ALU, we take a conservative
latency/power-sensitive approach by restricting the range of
operations it can perform to only simple integer arithmetic,
logic, and shift operations; as a result, the SCC unit in
our implementation forgoes optimization of floating-point
arithmetic, loads and stores, and complex integer operations
such as multiply and divide, but this would be an interesting
area for future work. However, despite this restriction, we
observe substantial reductions in the dynamic instruction
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Figure 1: Architectural Overview of Speculative Code Compaction

count for most applications, including some that feature
intense floating-point activity, due to the sheer ubiquity of
code regions that use integer arithmetic and logic operations.

The SCC unit also interfaces with predictor units in the
processor to identify potential data and control invariants
that can be confidently predicted. In our experiments, we
observe that most 32-byte code regions are small enough
that they tend to use no more than four data invariants and
two control invariants that are speculatively identified. Based
on the type of the micro-op being processed and the set of
data and control invariants, the SCC unit is able to either
evaluate and speculatively eliminate the micro-op leveraging
the ALU or speculatively perform a suitable addressing
mode transformation on it, such as constant propagation
by conversion from register-register to register-immediate
format. The transformed micro-op is then placed in an
appropriately sized write buffer (can store 18 micro-ops
in our implementation modeled after Icelake), so that the
SCC unit can proceed to the next micro-op in sequence in
the next cycle.

Since the SCC unit operates in parallel with other existing
fetch logic that probes the predictors, we double the pre-
diction width (along with the associated logic) to allow the
fetch engine to simultaneously read two predictor entries at

once. We model this in CACTTI [80] and report the associated
area and peak power overheads in Section VII. We also note
that a single copy of the prediction histories is maintained
in the predictor and therefore, when the SCC unit probes
the predictor for speculatively identifying potential data or
control invariants, it will provide a prediction based on the
current execution state, rather than the state it would be
in when the corresponding compacted instruction stream is
about to execute post-optimization. This limitation means that
when an optimized sequence of micro-ops is streamed, the
associated invariants might be identified using histories that
are potentially out-of-date. However, as detailed in Section V,
our profitability analysis unit ensures that an optimized micro-
op sequence is streamed only if the predicted invariants match
up with the current state of the predictor, thereby eliminating
potential squashing scenarios due to stale predictions.

The code compaction process is considered complete once
an appropriate stopping condition is reached. This is similar
to the criteria used in Intel processors to decide when to
stop streaming micro-ops from micro-op caches. In this
particular implementation of SCC, a stopping criteria is
satisfied when (a) the end of a 32-byte code region is reached,
(b) a micro-op cache miss occurs, or (c) more than two
branches are encountered in a 32-byte code region. The
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Figure 2: Extensions to the Micro-Op Cache Organization and Line Selection Logic

resulting compacted instruction stream in the write buffer is
committed to the appropriate location in the micro-op cache,
if a predefined compaction threshold is reached, failing which
the contents of the write buffer are discarded.

Furthermore, while SCC is able to perform speculative
optimizations across basic blocks by identifying control
invariants and folding branches, it does not have the ability
to do so when presented with self-looping instructions where
the macro-operation is broken down into several micro-ops
with one of them being a branch micro-op whose target lies
within the same macro-operation (a common occurrence in
x86-based string manipulation instructions). When such self-
looping instructions are encountered or when self-modifying
code is detected, the compaction process is considered
aborted. However, we note that our ability to detect self-
modifying code during speculative code compaction is
limited to identifying stores whose addresses: (a) manifest
as speculative data invariants, and (b) occur in the same
32-byte code region that is currently being optimized (i.e.,
same index and tag bits).

Micro-Op Cache Extensions. In accordance with our goal
of timely acceleration of sequential code, we extend existing
micro-op cache designs to co-host multiple (both unoptimized
and optimized) versions of micro-op sequences, to avoid the
repeated cost of dynamic code transformation. Similar to
multithreaded implementations of Intel micro-op caches [81],
[82], [83], we divide the micro-op cache to include separate
partitions for unoptimized and optimized micro-op sequences
(as shown in Figure 2). The fetch state machine at the front-
end is also suitably modified with the ability to dynamically
choose from the different versions when available and further
stream the appropriate set of micro-ops out of the micro-op
cache. In particular, the index bits of the address is used
to simultaneously index into both partitions and then tag
comparison is performed to identify the appropriate line.

However, due to the fact that multiple optimized versions of
a given code region may be found in the micro-op cache, it is
possible that we produce one hit in the unoptimized partition
and multiple hits in the optimized partition. To identify the
most profitable instruction sequence to stream, we extend the
line selection logic for the optimized partition to only select
those lines that meet a dynamically identified confidence
threshold (see Section V) and then compute a profitability
score (which is essentially a sum of all confidence counters
and the compaction potential measured as the shrinkage in
the number of instructions) that allows it to select the most
profitable instruction stream.

We also extend the tag array of the unoptimized partition
to include a lock bit per cache line that will be turned on
for those lines currently under code compaction to ensure
that they do not get evicted. Note that a maximum of 3
cache lines (i.e., 18 fused micro-ops that belong to the same
32-byte code region) may be locked at any point of time,
as that is the granularity of optimization, unlike trace-based
architectures that tend to benefit from longer traces. Further,
compacted streams that correspond to a 32-byte code region
in the optimized partition are tagged by a set of saturating
counters to track confidence for each of the predicted invariant
(both data and control) in the compacted streams. In our
experiments, we find that the best performance benefits are
derived through aggressive speculation, and as a result we use
4-bit saturating counters for each of the predicted invariant,
allowing us to track a large spectrum of confidence levels.
As described in Section V, these counters are updated during
instruction execution whenever a prediction is validated.

Fetch Streaming Decisions. Given that the micro-op cache
can contain multiple versions of speculatively compacted
micro-op sequences, the fetch engine is tasked with the
decision of choosing from and streaming the most profitable
micro-op sequence into the pipeline, among the various



1ld t1, [ADDR]
addi t2, t1, 7
add t3, t2, t5

// predict: tl =5

// propagate: t2 = 12

unoptimized micro-op stream

// propagate: t2 = tl + 7 = 12

1d tl, [ADDR]
addi—t2—t1—7F
addi t3, t5, 12
live outs: t2 = 12

// predict: tl =5
// eliminate dead code
// propagate: t2 = 12

speculatively optimized micro-op stream

(a) Dead Code Elimination by Exploiting Speculative Data Invariants

1d tl1, [ADDR]
1d t2, [ADDR + 8]
addi t3, t2, 2

beq tl, t3, target

// predict: tl =7

// predict: t2 =75

// propagate: t3 = t2 + 2 =7
// propagate: tl == t3 == 7

target: add t4, t5, t6

1d t1, [ADDR]

1d  t2, [ADDR + 8]

begq—ti—t3—target
target: add td4, t5, t6
live outs: t3 = 7

// predict: t1 =7
// predict: t2 =75

// eliminate dead code

// branch elimination

unoptimized micro-op stream

speculatively optimized micro-op stream

(b) Branch Elimination by Exploiting Speculative Data Invariants

loop: 1d t1l, 400(t2)
add t2, t1, t3
addi t3, t1, 7
beq t1, t5, loop

unoptimized micro-op stream

loop: 1d  t1, 400(t2) // predict: t1 =5
addi t2, t3, 5 // propagate: tl =5
addi—+3—+1—7F // propagate: t3 = tl + 7 = 12
beq tl, t5, loop // predict: taken
1d  t1, 400(t2) // predict: tl =6
mdd—e2—t3—£3 // propagate: t1 = 6, t3 = 12
addi—£3—t3—7 // propagate: tl = 6
beq t1, t5, loop

live outs: t2 = 18, t3 = 13

speculatively optimized micro-op stream

(c) Dead Code Elimination by Exploiting Speculative Data and Control Invariants

Figure 3: Example illustrating Speculative Code Compaction

choices available. To this end, the fetch engine is equipped
with a profitability analysis unit that makes a decision
based on three important heuristics — (a) code compaction
potential, (b) confidence levels of predicted invariants, and
(c) hotness of the compacted code region. It is important to
examine all three heuristics in unison since the greatest
performance benefits can be derived only by streaming
hot code regions that are characterized by both high code
compaction potential and low risk of squashing due to
mispredictions. The code compaction potential is measured as
the number of instructions eliminated by SCC for a particular
unoptimized micro-op sequence, and the confidence levels of
the predicted invariants are tracked using confidence counters
in the extended tag array. The hotness of any given line (in
both optimized and unoptimized partitions) is tracked using
hotness counters that get incremented every time the line is
accessed and decremented periodically. Note that we identify
the time period for decreasing hotness through a design
exploration that identifies the best threshold (at which the
highest performance is observed) for both the baseline and
SCC (specifically, every 3 cycles for optimized code and
every 28 cycles for unoptimized code).

Misprediction Recovery. Due to the aggressive application
of speculative transformations and the fact that the processor
front-end typically churns instructions at a much higher rate
than the rest of the pipeline, our proposed approach is prone
to occasional misspeculation scenarios. Therefore, it is critical
that we detect and recover from such scenarios as early in the
pipeline as possible, to preserve the performance gains due

to speculative code compaction. To this end, we leverage and
extend already-existing misprediction recovery mechanisms
in modern processors to minimize wasted processor cycles
due to misspeculation and further seamlessly redirect control
to the appropriate unoptimized micro-op sequence in the
micro-op cache when present, to ensure a quick turnaround.

However, as part of the prediction resolution/recovery
process, we also update invariant confidences for a compacted
instruction stream when a squash or commit signal is received.
This allows us to not only reward profitable instruction
streams whose predicted data and control invariants continue
to hold with high confidence for a long period of time, but
also gradually phase out stale ones whose predicted invariants
no longer, hold from the micro-op cache.

IV. SPECULATIVE CODE COMPACTION

The speculative code compaction process outlined in
the previous section entails the application of one of the
following speculative transformations on each micro-op being
processed. Note that the SCC unit processes micro-ops from
the unoptimized partition one at a time, and in program order.

Speculative Data Invariant Identification. Recall that
the SCC unit maintains an architectural register file to track
potential live values generated along the way. For any micro-
op being processed by the SCC unit, its corresponding source
operands are first looked up in the register file. If no live
values are found, it attempts to speculatively identify a
potential invariant by probing the value predictor for the
predicted outcome of the micro-op. If a sufficiently high-
confidence prediction is available, the predicted outcome is



recorded as a speculative data invariant in the SCC register
file, so that it can potentially be used while performing
speculative transformations such as constant propagation or
constant folding on a subsequent dependent micro-op.

If a speculative invariant is identified for a given micro-
op, it is marked as a prediction source and is retained in
the compacted instruction stream to allow us to recover
from a potential value misprediction. Note that prediction
sources may not be eliminated as they are used for validating
predictions. This is illustrated in Figure 3(a), where the load
micro-op is speculatively identified as a prediction source
and the register ¢/ as a speculative data invariant. We find
that redundant loads that access hot data structures, such as
large matrices that are infrequently updated, but frequently
accessed, are one of the prime sources of speculative data
invariants, in addition to highly predictable program counter-
relative loads that access data from constant pools.

Speculative Constant Folding. If the values of all
the source operands of the micro-op being processed are
available and valid in the SCC register file (i.e., they were
identified as speculative invariants by an older micro-op in
the unoptimized instruction stream being processed), they
are fed as live input values to the SCC ALU, which then
speculatively evaluates the micro-op as a constant expression,
and subsequently eliminates it as dead code. Following our
example in Figure 3(a), the addi instruction has one of its
source operands register tl available in the SCC register
file as a live value (previously identified as a speculative
invariant). Since its other source operand is an immediate
value, the entire operation can be speculatively folded away,
eliminating the entire micro-op. The destination register 2
is recorded as a live out in the SCC register file with its
speculatively folded value (in this case, 12).

Speculative Constant Propagation. If the values of only
some source operands are available in the SCC register file,
an addressing mode transformation is applied such that the
micro-op is converted to its corresponding immediate version.
That is, speculative data invariants that manifest as constants
are encoded in the immediate fields of the micro-op. This
entails editing appropriate fields in the decoded micro-op to
ensure that the respective source operands are immediately
available as constants rather than requiring a register lookup.
In our example from Figure 3(a), this transformation is
applied on the add micro-op, since its source operand z5
is not available as a live value in the SCC register file,
although its other source operand ¢2 is. Note that constant
propagation reduces the number of renaming operations
and register lookups, while simultaneously improving the
effective instruction-level parallelism, due to fewer overall
read-after-write dependencies.

Speculative Branch Folding. If the micro-op is a control
instruction, but the branch direction and target can be deduced
based on the speculatively identified live values in the SCC
register file, the entire branch can be eliminated. Further, the

SCC unit is then instructed to pivot and start processing micro-
ops at the speculatively identified branch target, in the next
cycle, provided that they are resident in the micro-op cache.
This is illustrated in our example from Figure 3(b), where the
beq instruction gets eliminated since the branch direction and
target can be evaluated based on the speculatively identified
live values of its source registers ¢/ and ¢3. In this particular
case, the branch direction speculatively evaluates to faken,
and the SCC unit is instructed to pivot to the add micro-op
that can be found at the branch rarger.

Speculative Control Invariant Identification. Similar to
the case of speculative data-invariant identification, the SCC
unit may also probe the branch prediction unit to identify
potential control invariants, in case the micro-op being
processed is a branch operation that cannot be folded. Again,
if a high-confidence prediction is available, the instruction
is marked as a prediction source and therefore may not
be eliminated). Just like the case of speculative branch
folding, the predicted target is then used in the next cycle
to obtain the next micro-op to be processed, as long as it
is resident in the micro-op cache. This can be observed
from our example in Figure 3(c), where the beqg instruction
is speculatively identified as a prediction source, and is
predicted by the branch predictor to be faken with high
confidence. As a result, the SCC unit starts processing micro-
ops at the predicted target (i.e., loop) in the next cycle.
This allows us speculatively identify values that manifest as
invariants across different basic blocks, uncovering greater
potential for dead code elimination, as shown in the example.

Inlining Live Outs. Finally, for every micro-op that
is a prediction source (both data and control sources),
all speculatively identified live data values in the SCC
register file, excluding the one generated by that micro-
op, are marked as live outs, to be made visible at the
time of instruction rename, similar to existing rename-time
optimizations such as move elimination. This ensures that the
register state remains consistent in the event of a potential
value misprediction. Live outs are also inlined at the end
of every compacted instruction stream (i.e., when the last
micro-op of a compacted instruction stream is issued), so that
they become immediately available to subsequent younger
instructions in the pipeline. To perform this efficiently, we
leverage existing rename-time schemes such as Physical
Register Inlining [84] that has the ability to efficiently track
constants of narrow widths in renaming structures, thereby
limiting the impact on access latency and hardware overhead,
and then propagate them to dependent instructions. We
include a sensitivity analysis in Section VII to evaluate the
feasibility of leveraging such techniques.

To illustrate the full process of speculative code compaction
for a given hot code region resident in the micro-op cache,
consider Figure 4, which shows (a) a compiler-optimized
basic block in the SPEC CPU 2017 benchmark, xalancbmk,
that consists of 7 native x86 instructions, (b) its corresponding



Il-1: «rdip t1, %ctrll53
I1-2: limm  t2, ffffffde
I1-3: wrip tl1, t2
I2-1: 1d rax, (rl5)
I1: je 497740 I3-1: test eax, eax
12: mov (3rl5), Srax I4-1: «rdip tl, %ctrll53
13: test srax, Srax I4-2: limm t2, ffffffde
14: je 4977f€1 I4-3: wrip tl1, t2
15: mov ($rax), %eax =—|15-1: 1d eax, (rax)
16: test  %eax, Seax I6-1: test eax, eax
70 e 4977£1 I7-1: rdip tl, %ctrll53
I7-2: limm  t2, 79
I17-3: wrip t1, t2

I1-3: wrip t1, t2 // predict: tl1 = 0x497782
=——>|12-1: 1d rax, (rl5) // predict: rax = 0xac74d0

I15-1: 1d eax, (rax) // predict: eax = 0x1

I17-3: wrip t1, t2 // predict: tl = 0x49778

(a) x86 Assembly Code Stream (b) Unoptimized Micro-op Stream

(c) Speculatively Optimized Micro-op Stream

Figure 4: Speculative Code Compaction on a hot kernel found in the SPEC CPU 2017 application xalancbmk
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Figure 5: Fetch State Machine extended for SCC

micro-op translation, which consists of 13 micro-ops, and (c)
the compacted version of the given unoptimized micro-op
sequence, which consists of just 4 micro-ops, completely fold-
ing away the branch, redirecting execution to the appropriate
branch target.

V. THE FETCH STATE MACHINE

In this section, we describe extensions to the fetch unit
that allow us to make profitable streaming decisions and
gracefully recover from misspeculation, thereby maximizing
the gains due to speculative code compaction.

Figure 5 shows the modified state machine for an x86-
based fetch engine that already has the ability to switch back
and forth between the micro-op cache and the traditional
decode pipeline. Note that SCC introduces an additional
source for fetching micro-ops, i.e., the optimized micro-op
cache partition, and in ensuring that micro-op sequences
are sourced profitably from the appropriate partitions, it
introduces a few additional transitions to the fetch state
machine, the rationale for which is described below.

Profitability Analysis. Given the inherently speculative

nature of the proposed transformations, it is imperative that
the fetch engine selectively optimizes only those micro-op
sequences where the benefits of SCC outweigh the potential
squashing overheads. To this end, we modify the fetch engine
such that it is able to (a) dynamically identify and reward
well-behaving speculatively-optimized instruction streams
that are characterized by high compaction but incur few
mispredictions if any, and (b) penalize and eventually phase
out instruction streams whose predicted invariants have
become stale over time, not only limiting squashing, but
also making room in the micro-op cache for newer and
potentially more useful instruction streams.

To identify well-behaving and profitable instruction
streams, the fetch engine is equipped with a profitability
analysis unit that is triggered when multiple versions of a
micro-op sequence (both unoptimized and speculatively opti-
mized) are available in the micro-op cache for streaming. The
profitability analysis unit determines that the speculatively-
optimized instruction sequence is indeed profitable for stream-
ing if the following conditions are met: first, the saturating
confidence counters for the speculatively identified control
invariants indicate that the instruction stream has not crossed
a dynamically identified threshold of mispredictions (that is
tuned on the basis of the rate at which mispredictions increase
or decrease); second, all of the predicted data invariants match
up with the current state of the value predictor, indicating that
the invariants identified at the time of optimization continue
to hold; third, the instruction stream is characterized by high
compaction potential in terms of the number of micro-ops
deemed speculatively dead and eliminated; and finally, the
instruction stream meets a predefined hotness threshold.

Further, when multiple speculatively-optimized instruction
streams are available due to difference in the number, range,
and confidence of predicted invariants used for optimization,
the instruction stream that has the highest data invariant
confidence and provides the greatest compaction is chosen.
Hosting and streaming from multiple speculatively-optimized
instruction streams is a unique feature of this work, and we
observe that this is especially useful for code regions where



Baseline Processor
Frequency 2.4 GHz ICache 32 KB, 8-way
Fetch width 6 fused pops DCache 48 KB, 8-way
pop cache 2304 pops, 8-way IDQ 140 entries
Branch LTAGE Value H3VP
Predictor Predictor
RAS 64 entries BTB 4096 entries
Dispatch width 10 unfused pops ROB 352 entries
Register file 256 INT/FP LQ/SQ 128/72 entries
Commit width 10 unfused pops Functional Int ALU (6)
Squash width 10 unfused pops Units FPALU (3)
L2 Cache 512 KB 8-way L3 Cache 8 MB 16-way
L1I/L1D Repl. Pol. | LRU L2/L3 Repl. Pol. Random

Table I: Microarchitectural Configuration Parameters

the outcome of an instruction oscillates predictably, with
high confidence, albeit between a limited set of data values.

Misspeculation Recovery. To limit the squashing over-
heads introduced by a few select instruction streams that
feature aggressive speculation, we extend the misprediction
recovery mechanism to ensure that, regardless of the decision
made by the profitability analysis unit, we automatically
select the unoptimized micro-op cache partition as our
fetch source when the following conditions are met (as
shown in Figure 5): first, the offending instruction that
caused the misprediction was issued out of the speculatively-
optimized micro-op cache partition and was marked as a valid
prediction source by the SCC unit; second, the reason for
misspeculation is due to a speculative processor feature that
is related to the optimizations enabled by SCC (for example,
it is not due to speculative memory disambiguation). These
conditions are instrumental in ensuring that we stop fetching
stale instruction streams from the optimized partition whose
predicted invariants no longer continue to hold, and as a
result get gradually phased out and replaced by newer, more
relevant, and hot instruction streams.

Finally, we also ensure that confidence counters in specu-
lation structures such as the branch and value predictors are
always updated, even if the squash/commit signal is received
due to a speculatively optimized instruction. This is important
because it ensures that predictor state always remains current
and does not go out-of-sync when speculatively-optimized
instruction streams are being executed.

VI. METHODOLOGY

This section describes our baseline architecture, modeling
assumptions, and experimental methodology.

Baseline and Modeling Assumptions. Table I describes
the microarchitectural configuration of our baseline processor,
which is modeled after Intel’s Icelake microarchitecture. We
use the gem5 [85] architectural simulator for performance
evaluation and the McPAT [80] framework for modeling
area and power overheads due to the additional structures
introduced in SCC. We integrate the H3VP [86] and
EVES [87] predictors from the 2019 Championship Value
Prediction (CVP) into our simulator framework, as we use
value prediction as our primary mechanism to predict data
invariants. Finally, we also extend both gem5 and McPAT

to model micro-op caches and micro-op fusion as described
in Intel’s Architecture Optimization Manual [81], with a
hotness-based replacement policy as described by Ren, et
al. [82]. While these extensions allow us to model Intel’s
front-end microarchitecture as closely as possible, on par
with or ahead of contemporary research in the field, certain
simulator-imposed limitations still exist. In particular, due
to the propreitary nature of the macro-to-micro-op mapping
used by Intel, we rely on the mapping scheme provided by
the gem5 simulator, which might not necessarily capture
potential optimized mapping schemes used in state-of-the-art
commercial implementations.

Workload Selection. To evaluate the performance and
energy savings potential of SCC, we construct workloads
using 11 benchmarks from the SPEC CPU 2017 benchmark
suite [88] and 8 benchmarks from the PARSEC 3.0 bench-
mark suite. We include all SPEC CPU 2017 INT applications
except x264 and omnetpp. We were unable to successfully
run x264 on gemS5 (even on the latest version without our
changes) due to a bug in the implementation of certain
x86 SSE instructions that the benchmark uses. However, we
include the PARSEC version of the benchmark x264 in our
analysis. Furthermore, our checkpoint generation simulations
for omnetpp failed due to high memory usage, as a result
of which we were able to generate a checkpoint for one
only simpoint (with a weight of 0.16). While we observe a
speedup of 48% for this simpoint, we did not include it in
the paper as it is not representative of the entire application
and could potentially artificially inflate our speedup.

To account for phase behavior, we use the SimPoint [89]
methodology to break down each application into multiple
simpoints that include representative runs of 100 million
dynamic instruction intervals sampled using the PIN instru-
mentation framework [90]. Since our goal is to speculatively
optimize already compile-time optimized code, we compile
all benchmarks with the highest level of optimization using
the LLVM compiler framework [91].

VII. RESULTS

In this section, we first discuss results from our best
microarchitectural configurations and then delve into detailed
sensitivity studies that show the effect of various parameters
and microarchitectural structures on our ability to successfully
optimize inherently sequential code.

A. Performance Evaluation

Code Compaction Potential. Figures 6 (top panel) shows
the compaction potential of SCC (broken down by each
individual optimization) measured in terms of the dynamic
committed instruction count reduction achieved on already
compile-time optimized code. Note that we also include the
partitioned baseline (although it performs similarly to the
original baseline) as it is an important step in enabling SCC.
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Figure 6: Performance Evaluation: Code Compaction Potential and Normalized Execution Time Comparison

We make several key observations from this experiment.

First, we find that the majority of our code compaction
benefits arise from applying speculative optimizations on
short micro-op sequences that occur within a basic block.
This includes identifying speculative data invariants and
then performing constant folding and propagation (fourth
bar from the left). Second, we observe that a considerable
chunk of the micro-ops eliminated via constant folding are
comprised of register-immediate move instructions (third
bar from the left), calling for more aggressive move and
zero/one idiom elimination at the front-end of the pipeline,
even before the rename stage. Third, although we observe
that speculative data invariants get routinely propagated as
constants to dependent instructions across branch boundaries,
the potential for speculative folding constants and thereby
eliminating instructions across basic blocks seems to be
limited. While more code compaction is possible through
the aggressive application of speculative optimizations across
different basic blocks, such instruction streams are also
more prone to squashing and are deemed less profitable
for streaming.

Overall, we see uniformly high instruction count reduction
on all applications, except the benchmarks /bm, wrf, and
x264 that spend most of their time executing floating-point
and SIMD instructions that are currently unoptimizable by
SCC. On average, we are able achieve an instruction count
reduction of 7.63% for SPEC and 9.86% for PARSEC.

While the goal of SCC is to eliminate wasteful computation
and generate compact instruction streams, it also does so
speculatively and therefore runs the risk of incurring more

than usual squashing overheads. As a result, dynamic instruc-
tion count as a metric, while useful to understand the extent
of achievable code compaction, does not provide sufficient
insights into the overall profitability of the technique.

Impact on Execution Time. To examine its performance
potential, we next turn to Figure 6 (middle panel) that
compares SCC with the baseline architecture, in terms of the
normalized execution time, again broken down by different
optimizations. We notice several interesting trends and make
high-level observations about the different benchmarks. First,
workloads with high data and control predictability such as
fregmine, perlbench, and xalancbmk, benefit the most from
SCC. In these applications, we observe that as the level
of optimization increases, there is also a small uptick in
the squashing overhead (as seen from the bottom panel of
Figure 6 that counteracts the benefit due code compaction.
Second, in benchmarks such as vips and exchange, we observe
a significant speedup due to speculative move elimination
alone, despite its limited ability to reduce the dynamic
instruction count on those benchmarks. Upon further analysis,
we are able to uncover an interesting side-effect of SCC that
significantly improves the predictability of certain hard-to-
predict branches. More specifically, we observe that the top
ten critical branches in these applications occur as part of
compacted instruction streams that are deemed profitable,
reducing their misprediction rate over the course of execution.
We attribute this to the fact that the confidence counters
associated with each compacted instruction stream (stored
as part of the extended tag array in the micro-op cache)
also act as local predictors for branches occurring in those
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Figure 8: Energy Savings Potential of SCC

streams, providing high confidence predictions and in many
cases, limiting the impact of negative branch interference.
Third, we observe that inherently memory-bound applications
such as mcf and xz do not benefit from SCC from a
performance standpoint, despite their potential for high
instruction count reduction. Similarly, we do not observe a
speedup on low ILP application such as leela and swaptions
due to frequent reorder buffer full scenarios. In contrast, on
high ILP applications such as deepsjeng and streamcluster,
we observe a limited speedup as they are bottlenecked by a
finite instruction queue.

Overall, we outperform the baseline architecture by an
average of 5.81% for SPEC and 5.80% for PARSEC.

Impact on Micro-Op Cache Utilization. One of the major
features of SCC is its ability to co-host unoptimized and
optimized micro-op sequences in the micro-op cache, and
allow the fetch engine to choose from and stream different
versions of unoptimized and optimized micro-op sequences
based on the profitability heuristics. Figure 7 shows the
number of micro-ops sourced by the fetch engine from: (a)
the instruction cache, (b) the unoptimized micro-op cache
partition, and (c) the optimized micro-op cache partition, for
both SCC (right bar) and the baseline (left bar). We draw
two major conclusions from this result. First, the number
of instruction cache accesses for SCC is consistently lower
than that of the baseline across most benchmarks, indicating
that the micro-op cache utilization improved, despite it being
partitioned amongst unoptimized and optimized instruction

sequences. This is because partitioning the micro-op cache
has limited impact on performance (as shown in Figure 6)
due to the already high number of conflict misses in certain
critical cache sets, but more importantly, top hot code regions
in the micro-op cache tend to get optimized by SCC, and
if deemed profitable, tend to stay in the optimized partition,
freeing up space in the micro-op cache, resulting in fewer
micro-op cache misses and saving the relatively expensive
trip (in terms of both time and energy) to the instruction
cache. In other words, organizing the micro-op cache into
optimized and unoptimized partitions also has the side-effect
of improving the associativity of certain critical code regions
that map to the same set. This phenomenon can be evidenced
in the application x264 where the micro-op cache hit rate
gets almost doubled due to fewer conflicts in certain critical
sets. Second, for most benchmarks, the fraction of micro-
ops streamed from the optimized partition dominates the
overall fetch bandwidth. This implies that not only do we
have the ability to aggressively optimize hot code regions
in the micro-op cache, but our profitability heuristics allow
us to successfully ensure that the most profitable compacted
instruction streams stay in the optimized partition.

B. Power, Area, and Energy Evaluation

We next turn our attention to the energy savings potential
of SCC (considering the entire chip). Clearly, from Figure 8,
we see that the energy savings benefits of SCC is even
greater than its performance potential. In fact, even though
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we observe only a small speedup in benchmarks such as
xz and mcf, we consistently save more than 20% in energy
for most applications, going up to 24% for SPEC and 22%
for PARSEC. This is not only due to the elimination of
dead code propagating through much of the processor’s back
end, but also because we have greatly improved the hit rate
and average residency in the micro-op cache, by dividing it
into optimized and unoptimized partitions, converting several
misses into hits, significantly reducing the energy expended
while making instruction cache accesses.

Furthermore, recall that SCC is a minimally-invasive
technique that only adds a small integer ALU and a register
file to keep track of speculatively identified live values; the
resulting area and peak power overheads of these minor
extensions to the front-end are a meagre 1.5% and 0.62%
respectively. Overall, we achieve an average of 12% savings
in energy consumption.

C. Sensitivity Analysis

Value Predictor Configurations. We explore two state-
of-the-art value predictors from the Championship Value

Prediction workshop: (a) H3VP, which is a 3-period predictor
that captures oscillating patterns, and (b) EVES, which
leverages enhanced stride history. Figure 9 shows the result
of this exploration. We observe that both predictors perform
similarly across most benchmarks in the specific context
of SCC, despite the fact that EVES is known to provide
higher accuracy and avoid penalties due to squashing, as
can be seen from the middle and bottom panels of the
figure. Notable exceptions include xalancbmk, where H3VP
outperforms EVES, suggesting that the application benefits
from aggressive speculative optimizations. In this particular
case, we observe that our profitability analysis unit already
takes care of penalizing and phasing out speculatively
optimized instruction streams with high misprediction rate.
However, this depends highly on the nature of the workload.
For example, on applications such as gcc, we observe that
EVES provides better performance with SCC by avoiding
expensive squash penalties, while simultaneously identifying
a tangible set of instruction sequences that can benefit from
speculative code compaction.
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Micro-op Cache Partition Sizes. We next examine the
sensitivity of SCC to the micro-op cache partition sizes. We
explore three configurations where we allocate — (a) one-third
(12 sets), (b) half (24 sets), and (c) two-thirds (36 sets), to
the optimized partition of the micro-op cache (as shown in
Figure 10). We find that best benefits are obtained when the
unoptimized partition is larger than the optimized partition
(i.e., 12 sets and 36 sets respectively). We attribute this
to the following major reasons. First, a larger unoptimized
partition allows us to track a greater chunk of hot code regions
and thereby facilitate greater code compaction. Second, the
optimized partition typically also exhibits greater utilization
due to the fact it stores compacted instruction streams with
high shrinkage that have been deemed profitable over the
course of the application’s execution.

Constant Widths. Finally, recall that, for every prediction
source, speculatively computed live-outs need to be made
available to dependent instructions in their immediate form,
to ensure a consistent register state in the event of a potential
misprediction. To examine the feasibility of efficiently
performing this by leveraging a low-overhead rename-time
approach such as physical register inlining [84], we explore
multiple constant widths. Figure 11 shows the result of this
experiment. We observe that we are able to retain most of
our benefits even when we are restricted to only propagate
constants that are 16-bit wide, and a further restriction to
propagating only 8-bit constants impacts instruction count
reduction by 6.8% and slows down performance by only
4.9% on average in comparison to no restriction on the
constant widths. Furthermore, we observe only 0.78% of the
dynamic instructions (averaged across all benchmarks) carry
live-outs over the course of execution, with 0.62% carrying
only one live-out and 0.11% carrying two live-outs. This

effectively allows us to propagate live-out values in rename-
time structures such as the map table without significant
impact on latency and hardware overhead.

VIII. CONCLUSION

This work proposes Speculative Code Compaction (SCC),
an aggressive scheme of dynamic binary optimizations, im-
plemented entirely in hardware within the processor, while in-
curring just 1.5% in area overhead. It speculatively compacts
hot code regions in the micro-op cache by leveraging a wide
array of existing speculation techniques in modern processors,
such as branch prediction and value prediction. Due to
the aggressive deployment of speculative transformations,
SCC outperforms a baseline processor architecture modeled
after Intel’s Icelake by as much as 18% for SPEC and
30% for PARSEC, providing speedups on traditionally low
ILP applications, and saves as much as 22% in energy for
PARSEC and 24% for SPEC.
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APPENDIX

A. Abstract

The artifact for this paper describes the frameworks used
for our evaluations. It consists of a simulation infrastructure
that evaluates the performance and power usage of SCC. The



main results of the paper from Figure 6 can be reproduced
using the gem5 simulator. The power results in Figure 8 can
be reproduced using McPAT. Specifically, we provide scripts
to reproduce results for:

o Figure 6 (Top): Executed Micro-op Count for both Baseline

and SCC
o Figure 6 (Middle): Speedup for both Baseline and SCC
o Figure 8: Energy Consumption for both Baseline and SCC

Please note that the scripts can be modified to reproduce
any of the results presented in the paper, including the
sensitivity experiments.

B. Artifact check-list (meta-information)

e Program: SPEC CPU2017 and PARSEC 3.0

o Compilation: LLVM with -O3

¢ Run-time environment: All simulations were preformed on
CentOS Linux release 7.9.2009

« Hardware: Gem5 simulator

e Metrics: Execution time, instruction count reduction, and
dynamic energy consumption

o Output: The gem5 simulations provides a statistics output file,
containing cycles spent and overall dynamic instruction count.
MCcPAT provides detailed power consumption characteristics.

« Experiments: Scripts and instructions are provided in the
artifact README files.

« How much disk space required (approximately)?: About
250 GB of disk space is required for the SPEC 2017 simpoints,
and around 5 GB is needed for the gem5 code and binaries.

e How much time is needed to prepare workflow (approxi-
mately)?: About 30 minutes to download the frameworks and
install requirements, and around 30 minutes to compile gem5.

o How much time is needed to complete experiments
(approximately)?: Assuming enough available parallelism,
the gem5 experiments need at least 6 hours.

« Publicly available?: Yes, the code is available on Github (see
Section A.3.1).

o Code licenses (if publicly available)?: GPL v3

« Workflow framework used?: Yes, bash and slurm scripts are
provided.

o Archived: 10.5281/zenodo.7018601

C. Description

1) How to access: The artifact is available on github at
the following URL: https://github.com/logangregorym/gemS5-
changes.

2) Hardware dependencies: Any modern Linux cluster
should be able to reproduce these experimental results.

3) Software dependencies: We provide Simpoints created
from SPEC 2017 benchmarks for the artifact evaluators, but
we cannot publish them as they are under copyright. Other
programs used for evaluations are publicly available.

D. Installation

The artifact provides scripts to install requirements as well
as building the provided tools.
E. Experiment workflow

This section provides a high-level overview of the ex-
perimental workflow. Please follow the instructions in the
README for a detailed, step-by-step guide.

For the performance evaluation, we need to first compile
the gem5 code and prepare our benchmark programs. Then,
we run multiple gem5 simulations for each set of benchmark
programs. Each experiment is configured to represent one of
the following optimization levels: (1) a baseline with classic
value prediction, (2) the same baseline with half the micro-op
cache size, (3) SCC with simple move elimination, (4) SCC
with propagation, constant folding, and move elimination, (5)
SCC with propagation, constant folding, branch folding, and
move elimination, and (6) full Speculative Code Compaction.
For artifact evaluation we provide scripts for reproducing the
main result, (1) and (6). However, the scripts can be easily
modified to produce any of the listed experiments. Finally,
once the simulations are completed, we run the provided
scripts to extract the results from gem5 simulations and plot
the figures.

To obtain power results, we run McPAT on the completed
gemS5 simulation stats files to obtain dynamic energy con-
sumption numbers. Then a script to extract the numbers and
plot the graphs is provided.

F. Evaluation and expected results

The gem5 simulations should result in performance,
instruction count, and energy numbers that match exactly
those presented in the paper.

G. Experiment customization

All gem5 options can be viewed by running the command:

./build/X86/gem5.opt ./configs/example/se.py \\
——help

The options for running baseline simulations are:

-—caches —--l2cache —--cpu-type=03_X86_icelake_1 \\
-—mem—-type=DDR4_2400_16x4 —--mem-size=64GB \\
-—-mem—-channels=2 --enable-microop-cache \\
-—enable-micro-fusion —--lvpredType=eves \\
—--predictionConfidenceThreshold=15 --13cache\\
—-—enableValuePredForwarding \\
——predictingArithmetic=1 \\
-—enableDynamicThreshold —-forceNoTSO \\
—-—uopCacheNumSets=48 —--uopCacheNumWays=8 \\
——uopCacheNumUops=6

The options for running SCC simulations are:

-—caches —--l2cache --cpu-type=03_X86_icelake_1 \\
—--mem-type=DDR4_2400_16x4 --mem-size=64GB \\
-—-mem-channels=2 --enable-microop-cache \\
—-—enable-micro-fusion —--lvpredType=eves \\
——enable-superoptimization \\
—-—predictingArithmetic=1 \\
-—usingControlTracking=1 —--usingCCTracking=1 \\
-—predictionConfidenceThreshold=5 \\
—-—-uopCacheNumSets=24 --uopCacheNumWays=8 \\
——uopCacheNumUops=6 —--specCacheNumWays=4 \\
——specCacheNumSets=24 --specCacheNumUops=6 \\
—-13cache —-lvpLookupAtFetch \\
——enableDynamicThreshold —--forceNoTSO



H. Methodology

Submission, reviewing, and badging methodology:

[2

—

(3]

[4

—_

[5

—_

[6

—_

[7

—

(9]

[10]

https://www.acm.org/publications/policies/artifact-
review-badging
http://cTuning.org/ae/submission-20201122.html
http://cTuning.org/ae/reviewing-20201122.html
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