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ABSTRACT

Orthogonality has been demonstrated to admit many desirable properties such as noise-tolerant, good for
data visualization, and preserving distances. However, it is often incompatible with existing models and
the resulting optimization problem is challenging even if compatible. To address these issues, we propose
a trace ratio formulation for multi-view subspace learning to learn individual orthogonal projections for
all views. The proposed formulation integrates the correlations within multiple views, supervised dis-
criminant capacity, and distance preservation in a concise and compact way. It not only includes several
existing models as special cases, but also inspires new models. Moreover, an efficient numerical method
based on successive approximations via eigenvectors is presented to solve the associated optimization
problem. The method is built upon an iterative Krylov subspace method which can easily scale up for
high-dimensional datasets. Extensive experiments are conducted on various real-world datasets for
multi-view discriminant analysis and multi-view multi-label classification. The experimental results
demonstrate that the proposed models are consistently competitive to and often better than the com-

pared methods.

© 2022 Elsevier B.V. All rights reserved.

1. Introduction

Multi-view data are increasingly collected for a variety of
applications in the real world. They usually contain complemen-
tary, redundant, and corroborative contents and so are more infor-
mative than single-view data when it comes to characterize objects
of the real-world. It is rather natural for human beings to perceive
the world through comprehensive information collected by multi-
ple sensory organs, but it is an open question on how to endow
machines with analogous cognitive capabilities to do the same.
To take full advantage of multi-view data, multi-view learning
has attracted increasing attention due to its wide applications such
as dimensionality reduction [1], cross-view recognition [2,3], clus-
tering [4,5], classification [6], and multi-label learning [7,8]. Many
learning criteria have been explored to capture the relations
among multiple views including subspace learning methods
[9,10], tensor approaches [11,12] and the deep learning [13-15].

Although great progress has been made by existing multi-view
learning methods, there are still challenges. One of the
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fundamental challenges is how to represent and summarize
multi-view data in such a way that comprehensive information
concealed in multi-view data can be properly exploited by learning
models. The heterogeneity gap [16] among multiple views makes it
difficulty to construct such representations since features
extracted from different views with similar semantics may be
located in completely different subspaces, e.g., text is often sym-
bolic while audio and image are signals. Another challenge is to
deal with multi-view data of small to medium sizes. Notice that
deep learning models have recently achieved impressive perfor-
mance for various multi-view learning tasks [13-15], but they typ-
ically require much larger data sets and their learning complexity
is significantly higher than shallow models [17].

A significant research effort has been about addressing the chal-
lenges by seeking a common semantic subspace into which the
heterogeneous features from different views are projected. Multi-
view subspace learning, as the most popularly studied methodol-
ogy for multi-view learning [18,19], aims to narrow the hetero-
geneity gap under the assumption that all views are generated
from a common latent space via some unknown transformations
in the first place. The most representative subspace learning model
is the canonical correlation analysis (CCA) [20], which was
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originally proposed to learn two linear projections by maximizing
the cross-correlation between two views in a common space. It has
since been extended to more than two views [21], nonlinear pro-
jections via kernel trick [22] and deep representation [23], super-
vised learning [24-27], sparse learning [28,9], and multi-output
learning such as multi-label classification [29] and multi-target
regression [30]. Recently, orthogonality has also been successfully
explored in multi-view subspace learning, including orthogonal
CCA (OCCA) [30-33], orthogonal multiset CCA (OMCCA) [33,34],
and multi-view partial least squares (PLS) [35]. However, most
multi-view subspace learning methods stay clear from orthogonal-
ity constraints [24,25] due to issues including model incompatibil-
ity (adding orthogonality constraints may cause incompatibility to
inherent constraints already there in existing models) and opti-
mization difficulty (even if there is no incompatibility issue, the
resulting optimization problem is generally hard to solve under
orthogonality constraints), let alone integrate with other learning
criteria such as supervised information.

To address the above issues, we propose a trace ratio formula-
tion for multi-view analysis with orthogonality constraints and
an efficient method to solve the resulting optimization problem.
To resolve the model incompatibility issue, we take the trace ratio
formulation to model the pairwise correlations of multiple views
by strictly following their original definitions. With the trace ratio
formulation, orthogonality constraints are added without causing
any incompatibility issue. Moreover, supervised information can
be incorporated into the numerators or denominators of the trace
ratios in order to capture the class separability or coherence.
Although the trace ratio formulation is flexible, the resulting opti-
mization problem is a challenging one. To solve the challenging
problem, we propose an efficient optimization method called
orthogonal successive approximation via eigenvectors (OSAVE).

Contributions. The main contributions of this paper are sum-
marized as follows:

e We propose a trace ratio formulation for multi-view subspace
learning, which can naturally integrate the dependency among
multiple views, supervised information, and simultaneously
learn orthogonal projections in a concise and compact form.
We show that orthogonal linear discriminant analysis (OLDA),
OCCA and OMCCA are special cases of the proposed formulation.
Our formulation can be flexibly adapted for various learning
scenarios. To justify the flexibility, we instantiate several new
models from the proposed formulation. Three models are pro-
posed for multi-view feature extraction, and two models for
multi-view multi-label classification. Different from existing
ones, our models are directly built on the essential trace ratio
formulation with orthogonality constraints.

To solve the challenging optimization problem of the proposed
formulation, we present a successive approximation algorithm,
which is built upon well-developed numerical linear algebra
techniques. We describe an iterative Krylov subspace method
for calculating the top eigenvector of generalized eigenvalue
problem Ax = /Bx with possibly a singular B. The Krylov sub-
space method can serve as the workhorse for scalability.
Extensive experiments are conducted for evaluating the pro-
posed models against existing learning methods in terms of
two learning tasks: multi-view feature extraction and multi-
view multi-label classification. Experimental results on various
real-world datasets demonstrate that our proposed models per-
form competitively to and often better than baselines.

Paper organization. We first present the scope of this paper in
Section 2 and briefly review the relevant existing models in Sec-
tion 3. In Section 4, we propose the novel trace ratio formulation
for orthogonal multi-view analysis, and their instantiated models
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for multi-view discriminant analysis and multi-view multi-label
classification. The proposed successive approximation algorithm
is presented in Section 5 with its key component in A. Extensive
experiments are conducted in Section 6. Finally, we draw our con-
clusions in Section 7.

2. Problem Setup and Necessary Statistics

Feature extraction is an important tool for multivariate data
analysis. As multiple inputs may come from different sources
(views), they are most likely heterogeneous and have large dis-
crepancy among views. The aim of multi-view feature extraction
is to exploit consensual, complementary, and overlapping informa-
tion among views. In what follows, we first present the scope of
this paper and then formulate some important statistics used
through this paper.

2.1. Problem Description

n
Let {(xﬁ”, .. ,xgz’),yi) }  be a dataset of v views, where the ith
.

data points xﬁs) € R% of all views (1 < s < v) are assumed to share
the same class labels in y; of ¢ labels. The class labels can have dif-
ferent interpretations, dependent of the underlying learning task.
For multi-output regression, y; € RS, and it reduces to a scalar for
the classical regression for which ¢ = 1. For multi-label classifica-
tion, y; € {0,1}° with an understanding that the ith data points of
all views have the class label r if (y;), = 1 and otherwise 0, where
(;), is the rth entry of y,. If 17y, = 1, then multi-label classification
becomes a problem of c-class classification since one and only one
class label is assigned to each instance of data points of all views. In
particular, if c=2 and 11y, =1, then it is just the binary
classification.

In this paper, objective fulfilling linear transformations are
sought to extract the latent representation for each view. Com-
pared to deep neural networks, the studied shallow model can
effectively work with multi-view data of small to medium sizes
and orthogonality constraints. Therefore, this paper mainly con-
centrates on small- to medium-sized multi-view data. Let
P; € R%*k be the projection matrix for view s to transform x,@ from

R% to 2! = PIx® in the common space R. Represent the n data
points of view s by X; = [xf), . ,xif)] € R%*" and its latent repre-

sentation by Z; = [zf), ... ,zﬁf)} = PIX; € R*", The goal of this paper

is to learn projections {Ps} from multi-view data with class labels.
In addition, we focus on two learning tasks, i.e., multi-view feature
extraction and multi-view multi-label classification, and using the
latent representations learned from multi-view data to improve
single-view classification performance. We first use a multi-view
subspace learning method as a supervised dimensionality reduc-
tion step so that the embeddings obtained by the method hopefully
encode important correlations among multiple views and their
output labels, and then a base classification model is evaluated in
the common space, e.g., one nearest neighbor classifier for multi-
class classification [33] and multi-label k-nearest neighbor (ML-
kNN) in the common space as the backend multi-label classifier
[36]. It is expected to have better performance for the multi-view
approach than any single-view method applied to each view only
or to the naive concatenation approach in terms of both multiclass
classification and multi-label classification.

2.2. Necessary Statistics

We denote the centered matrix of view s and the label matrix by
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Xs = XSH57
Y= [‘Y17"~7yn]7

respectively, where H, = I, —}—11”1; The sample cross-covariance
between view s and view t is

(1)
(2)

Cor = XsXT = XHoX] . 3)

In particular, Cs; is the covariance of view s.

For the c-class classification, i.e., Y € {0,1}" and 1y, = 1, we
have the following properties:

Y'1, =1, =YY" =diag(ny,....n), (4)

a diagonal matrix with the rth diagonal entry n, = 3° | (¥;), being

the number of data points in class r. Let Q =Y'="'Y. The
between-class scatter matrix is

1
S :xS<Q—HI,,1§>x§, (5)
and the within-class scatter matrix takes the form
S¥ = Cys = S = X,(I - Q)XL. (6)

3. Related Work

In this section, we briefly review the representative multi-view
subspace methods with linear projections from unsupervised and
supervised multiclass classification, as well as multi-label
classification.

3.1. Unsupervised Methods
PLS and CCA can be directly applied to two-view data (v = 2)

simply by replacing Y and the projection matrix of Y with X, and
P, of view 2, respectively. For v > 2, the multi-set CCA (MCCA) [21]

v v
max tr(P'C,,P, 7a
{Pyekts k) ; ; ( st ‘> (72)
v
sty PiCosPs =1, (7b)

s=1

is the most popularly used, chiefly due to its analytic solution via
the generalized eigen-decomposition that has been well studied
[37,38]. Orthogonal multiset CCA (OMCCA)

tr(PLCs P
max, 33 icr) (8a)
{Pert ) T S \/tr(P}cs_SPS>PIwr(PICMP[)
S.tPTP; = I, Vs (8Db)

is proposed in [33]. Its special case v =2 is the orthogonal CCA
(OCCA) [30-32]. In [34], a variant of (8) was studied. The key in
(7) and (8) is the use of pairwise cross-covariance matrices {Cs}
to capture the consensus among the v views. Recently, PLS is
extended for » > 2 in [35], too, where the orthogonality constraints
PzPS = I, for all s are imposed. Different from CCA, the cross-
regression for multi-view feature extraction (CRMvFE) [10] is built
on a regression model to learn two sets of projection matrices
{Ps € R%**} and {F; € R*%} by solving the following optimization
problem
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v
: TpT 2 2
U}}g}{lgs};\lxs — FSPXi[[F + v;HFsIIF (9a)
v
sty PP =1y, (9b)
s=1

and the robust CRMVFE (RCRMVFE) is also presented by replacing
square loss with the ¢, ; norm. Instead of learning linear transfor-
mation functions, the low-dimensional representations can be
directly optimized such as the similarity-consensus regularized
multi-view manifold learning [ 1] and the multi-view Laplacian least
squares [39]. The graph regularized MCCA[40] seeks both orthogo-
nal common low-dimensional representations and single-view pro-
jection matrices by accounting for graph-induced knowledge of
common sources. In addition to OMCCA and PLS, the above-
mentioned methods do not attempt to obtain orthonormal projec-
tion matrices.

3.2. Supervised Methods

For supervised learning with multiclass labels, the output label
Y can be naturally considered as a view of input [29]. However, the
special structure of label information is neglected. To compensate
that negligence and to take full advantage of multiclass label data,
sophisticated multi-view feature extraction methods have been
proposed. In [24], generalized multi-view analysis (GMA) is formu-
lated, by integrating LDA (or some variants of it) and CCA, as

v v v
max tr(PISPP) + 3 > atr(PIC, ;) (10a)
{Ps} s=1 s=1t=1t#s
S.LPISEPs = I, Vs, (10b)

where o, is the weight for cross-covariance between view s and
view t. Unfortunately, this is a difficult optimization problem whose
KKT condition leads to a multi-parameter eigenvalue problem like
(28) later for which there is no efficient numerical method for its
solution. For that reason, authors in [24| proposed to solve, instead,
a relaxed problem, the same objective but a constraint different
from (10b):

v
> 0 PiSYPs = I, (11)
s=1

resulting in a generalized eigenvalue problem [38], where {#,} are
parameters to balance v independent constraints. S’ and S{ can
be the ones for the classical LDA. Multi-view uncorrelated linear
discriminant analysis (MULDA) [26] was proposed to replace
(10b) with the uncorrelated constraints and
v

> N PICosPs = 1. (12)
s=1

Multi-view modular discriminant analysis (MvMDA) [25] aims

to maximize the distances between different class centers across
different views and minimize the within-class scatter

maxiitr(PIXSAXIPt) : s.t.ipjsgj)Ps =1,
P} =13 s=1

(13)
where A=Y"S"'H.2"'Y. In addition, other learning criteria have
been explored for the integrated model of supervised information
and CCA. The sparse additive discriminative CCA (SaDCCA) [9] inte-
grates supervised information into CCA with local diffusion process
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to reflect the high-order characteristics of intra-class and the sepa-
rability of inter-class as well as the sparsity of the projection matri-
ces. SaDCCA is formulated as

max > tr(PISP) + Y tr(PICs.P) (14a)
P} 7 s#t
st S PICPs = I, [P, < &, Vs, (14b)

s=1

where S is the local inter-class scatter matrix based on diffusion
on the tensor product graph, and & is a small constant to control
the ¢; norms of projection matrices to induce sparsity in the matri-
ces. In [2], the cross-view semantic consistency in the sample space,
instead of the feature space, is proposed. In [41], a fractional-order
embedding is learned to suppress the increase of eigenvalues calcu-
lated from noisy data with a small number of samples of high
dimensions. A regression-based approach has also been explored
to incorporate supervised information for multi-view learning. In
[42], the robust adaptive weighting multi-view classification algo-
rithm (RAMC) using robust loss with view importance learning
and nonnegative e-dragging to the label matrix is used to reduce
the impact of outliers and noise in multi-view data. RAMC is formu-
lated as the following problem

v v
. ) 2
R 2P Xs = (Y Y © M)l + 23 [P (15a)
sta>0Ta=1, (15b)

where ¢ is the Hadamard product operator, M is the e-dragging
matrix, and o is the vector of view importance. RAMC shows supe-
rior classification performance to the adaptive-weighting discrimi-
native regression model [6].

It is worth noting that imposing orthogonality constraints has
attracted much attention in multi-view feature extraction in unsu-
pervised learning, but it is seldom explored in supervised learning.

3.3. Multi-label Learning

Multi-label classification [43] is a kind of classification where
one instance may have multiple labels from a set of predefined cat-
egories, i.e., a subset of labels. Because of multiple views of every
instance, the multi-view multi-label classification data consist of
multiple views. The situation is different from multi-view feature
extraction, where each instance only has a single label. As there
are a plenty of single-view multi-label methods in the literature
[44,45], we will not review them all but apply ML-KNN [36] as
the backbone of our multi-label classifier for multi-view multi-
label classification since its good performance has been well veri-
fied on various single-view multi-label data sets.

Recently, a few multi-view multi-label classification methods
have been proposed based on different learning criteria, including
matrix factorization methods [46-48], CCA-based methods [49-
51], a tensor-based method [52], a probabilistic model [7] and
the deep learning method [8]. Note that matrix factorization meth-
ods often perform classification in the transductive semi-
supervised manner, so it is not easy to be applied to unseen data.
Among the other methods, CCA-based methods are most relevant
to our proposed models. The methods [49,50] only work for
cross-modal retrieval from one view to the other with provided
labeled data as the supervised information, so they cannot be used
for more than two views. The supervised multi-view multi-label
canonical correlation projection (sM2CP) [51] extends the work
in [49] for multi-view multi-label classification with more than
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two views. Specifically, SsM2CP solves the following problem to
obtain linear transformation matrices {P;}:

max tr(PEASIPS> :S.tPICoPs = I, (16)

{Ps} <=

where A, = XTA™!X, is the covariance matrix encoded with the

multi-label class information through the cosine similarity A™!"

vy
lwilllly; I
explored for multi-view multi-label data such as missing or incom-
plete data [53,54] and feature selection [55], they are different from

the focus of this paper.

whose (i, j)th entry is Although some other settings have been

4. Orthogonal Multi-view Analysis

We propose a novel trace ratio formulation for multi-view dis-
criminant analysis in order to learn orthogonal projections onto a
latent common space.

4.1. Orthogonality and its Challenges

Researches have previously demonstrated that orthogonality
built into single-view subspace learning models possesses desir-
able advantages such as more noise-tolerant, better suited for data
visualization and distance preservation [56-61]. Among these
advantages, distance preservation is one of the most important
learning criteria, which has been successfully demonstrated in
learning methods such as kernel learning [62] and density estima-
tion [63,64].An orthogonal projection is able to preserve the pair-
wise distance if the vectors to be projected live in the range of

the projection. Specifically, if xﬁ” € #(Ps), the column subspace
spanned by the columns of Ps, for all i and PEPS = I, then we have
X% =Pz% for z = PIx:

Pz = P(Pix”) = P PP 2 = Pz = x?.
——
Now, the pairwise Euclidean distance between xf,s) and xj(.”

2z

2 2 2
%7 %21 = 1Py (27 =2 )I1* = 12 — 2|

(17)
is preserved in the projected space.

In addition, we observed that existing supervised multi-view
feature extraction methods such as GMA, MLDA and MvMDA
encounter issues, including (i) the embeddings on the training data
are often contaminated by noise or outliers; (ii) the generalization
to unseen data often leads to different clustering patterns from the
training data. These issues will be illustrated later in Fig. 4 on
multi-view data mfeat. By introducing orthogonality constraints,
all these issues can be addressed as our proposed models will
demonstrate. Empirical results via data visualization can be found
in Section 6.1.6 in detail.

For multi-view learning, orthogonal projection has already been
explored in CCA with two views [30-32] and MCCA with more than
two views [33,34] for unsupervised multi-view feature extraction.
However, imposing orthogonality constraints has not yet been well
studied for supervised multi-view subspace learning. Most existing
multi-view subspace learning methods encounter the following
two issues when attempting to add orthogonality constraints:

(1) model incompatibility. Adding orthogonality constraints
may cause incompatibility to inherent constraints already
there in existing models. The incompatibility issue can be
verified by the following facts. Most of methods [24-26]
have their original constraints like (10b), (11), or (12). These
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GMA training GMA testing

OGMA training OGMA testing

gt

MLDA testing

OMLDA testing

. 15 |

MvMDA training MvMDA testing

OMvMDA testing

sccuracy=09394

o
s s

e N

£
o

#
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Y
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Fig. 4. Data visualization by the 6 methods in the 2-D space via t-SNE on one random split of mfeat (10% training and 90% testing) where the best o of GMA and MVvMDA
tuned within {0.01,0.1,1,10, 100} in terms of accuracy by one-nearest neighbor classifier on the testing sets are used..

constraints may conflict with orthgonality constraints
PIP, = I;,Vs. To see that, we note that PIS'P; = AminPIPs
where /nin is the smallest eigenvalue of Sf,j), and so if
Jmin > 1, then there is no way to satisfy both constraints at
the same time. The same conclusion can be achieved for con-
straints (11) and (12) after concatenating all projection
matrices as P = [Py, ..., P].

optimization difficulty. Even if there is no incompatibility
issue, the resulting optimization problem is generally hard
to solve under orthogonality constraints. Generic optimiza-
tion methods are often too slow even for datasets of modest
scale and practically infeasible for high dimensional data. As
a result, most existing learning methods [24,25,65] resort to
solving certain related relaxed problems of their original for-
mulations as generalized eigenvalue problems, for which
well-developed numerical linear algebra techniques can be
readily deployed to handle high-dimensional datasets but
at a price of degrading learning performance.

—
N
—

4.2. A Trace Ratio Formulation

To address the model incompatibility challenge, we seek to the
trace ratio formulation, which has been previously studied in the
case of the trace ratio formulation vs. the ratio trace formulation
for single-view dimensionality reduction in the context of LDA.
Authors in [58] argued that the trace ratio formulation with the
orthogonality constraint is essential and can lead to superiority
over the ratio trace formulation which is a relaxation of the trace
ratio formulation as a generalized eigenvalue problem. The cross-
correlation between two views in CCA is inherently defined as a
trace ratio formulation [20]. Moreover, the objective function of
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the trace ratio formulation is invariant under any orthogonal trans-
formation, which is more beneficial to classification and clustering
in the reduced space than the ratio trace formulation that is invari-
ant under any non-singular transformation. This motivates the
study of orthogonal LDA (OLDA) [58,59] and orthogonal CCA
(OCCA) [32]. However, no orthogonal extension to supervised
multi-view subspace learning has yet been explored.

Motivated by the above observations, we propose a novel trace
ratio formulation for unified orthogonal multi-view subspace
learning (OMvSL) given by

v v tr( PT @, P,
mpaxzz ( o ) (18a)
R \/tr(pgq!s’sps) Pf\/tr(Pf‘I’t_[Pt)
s.t. PIPy =}, Vs, (18b)
where ¥, for s=1,..., v are positive semi-definite matrices. As

stated in [58], the trace ratio formation is an essential formulation
for general dimensionality reduction and may lead to solutions that
are superior to the ones from the ratio trace formulation.

The proposed OMVSL (18) encompasses OLDA and OMCCA as
special cases:

1. For v =1, (18) with ¥;; =S\" and ¥, ; = S{}’ reduces to OLDA.
2. For v > 2, (18) with ®,; = C;; and ¥, = ;s becomes OMCCA
(8).

OMVSL (18) can be used to inspire various models in the form of
trace ratio formulations. We shall present various novel models
instantiated from OMVSL (18) for multi-view discriminant analysis
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in SubSection 4.3 and multi-view multi-label classification in
SubSection 4.4.

OMVSL is a versatile framework, but it presents a difficult opti-
mization problem to solve. Generic optimization techniques [66-
68] can always be applied, but they ignore the special form in
the objective, are usually not so efficient as customized algorithms,
and, worst of all, are not practically feasible even for datasets of
modest scale. In Section 5, we will present a successive approxima-
tion algorithm that approximately solves OMvSL efficiently to
address the optimization difficulty issue.

4.3. Novel Multi-view Discriminant Analysis Models

Three orthogonal multi-view discriminant analysis models are
proposed, inspired by existing models similar to (18) for multi-
class classification where y; € {0,1}° and y/1. =1 [24-26]. Each
new model is intrinsically different from its corresponding existing
model due to the trace ratio formulation (18a) and orthogonality
constraints (18b).

Orthogonal GMA. The proposed orthogonal variant of GMA
(10), called Orthogonal GMA (OGMA), is (18) with

sy,
OCs.tCs,ta
S

W "

s=t,

(Ds‘t =
S#L,

(19a)

Y = (19Db)

Orthogonal MLDA. The proposed orthogonal variant of MLDA
(10a) with (12), called Orthogonal MLDA (OMLDA), is (18) with
(19a) and

lI"s,s = Cs,s- (20)

Orthogonal MvMDA. The proposed orthogonal variant of
MvMDA (13), called Orthogonal MvMDA (OMvMDA), is (18) with

D5 = A, P55 =SY. (21)

4.4. Novel Multi-view Multi-label Classification Models

In multi-view multi-label classification, the output y; € {0,1}°
with ¢ labels and {xl?”,...,xﬁ”),yi}l_1
i

the proposed formulation (18), we can come up the following
two strategies to incorporate output data for multi-view multi-
label classification:

Orthogonal Multi-view Multi-label CCA (OMZ2CCA). This
approach is proposed to take the output labels in
Y=, ¥ €{0,1}" as the (v+1)st view X, :=Y in
OMCCA [29]. Together with v input views, there are v + 1 views.
OMCCA is employed to learn projection matrices {P;} and
P,.1 := Py in a latent common space, where Py is the projection
matrix of Y. This idea has been explored for » =1 in [29,30,33].
OMCCA is instantiated from (18) with

: is the paired data. Under

0 s=t
O, = ’ ) 22a
Y {Cs,t, s#L, (222)
lI"s,s = CS,57 (22b)
fors,t=1,...,v+1, where C .1 = X;HY =}, .
Orthogonal Hilbert-Schmidt Independence Criterion

(OHSIC). This approach is proposed to take the HSIC criterion
[69] for learning embedding of each input view. The estimator of
HSIC is defined as

1

HSIC(Z,,Y) =
@)=

5 tr (z}stn YTYH,,) ., (23)
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where Z; = PZXS and Z}ZS is the linear kernel of the projected data of
view s. To achieve the best alignment between Z; and Y, the maxi-
mization of HSIC with respect to P; is expected. The proposed HSIC
method is instantiated from (18) with

(Ds.t = {

fors,t =1,...,v. Different from (22), this approach does not learn
Py.

XH,Y'YH XI, s=t,

24a)¥;;s = Css, (24b
aS.ICS,U Ss#* t7 ( ) * * ( )

5. The Proposed Optimization Algorithm for OMvSL

For ease of presentation, we rewrite OMvVSL (18) as

n{lpa}xg({Ps}) : S.t.PzPs = Iy, Z(Ps) C R(¥s5) Vs,

where %(%¥;;) is the column subspace of ¥, and

gUPH = >

s=1t=1

tr (P}cbs_fpt)

\/tr<Pz‘}’5‘sPs>PI\/tr<Pf‘PmPf) .

For k = 1, all P are column vectors. By convention that we use
lowercase letters for vectors, we will replace them by p, instead.
Since g({p,}) is homogeneous in each p, i.e., g({p,/o%}) = g({p;})
for any scalar o5 > 0, the constraint pIp; =1 is inconsequential.
In fact, (25) is equivalent to

max f({p}) : s.t. p;¥ssps = 1, ps € 2(¥ss) V5, (26)
{pert}
where f({p,}) is given by
fAp}) =Y pidup. (27)

s=1 t=1

The KKT condition of (26) gives rise to a multi-parameter eigen-
value problem:

AP = BAp, p € R(B), (28a)
where
Oy Dp @y, Y1
Dy Dy ®,, ) Yo
‘Q/ = . . . 7% = . )
(Dvl (DvZ (va \va
(28b)
;vlld] p
Jolg, !
A= ,P= (28C)
Jola, D,

This is also a long standing problem in statistics, and there is no
existing numerical technique that is readily available to solve it
with guarantee. Existing methods include variations of the power
method for matrix eigenvalues [70], which are simple to use but
often slowly convergent, and adaptations of common optimization
techniques onto Riemannian manifolds to solve (26) [71,72], which
often converge faster but use the gradient or even Hessian of fand,
as a result, are not particularly well suited for large scale problems.
None of those methods guarantee to deliver the global optimum of
(26).
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In many real-world applications, an approximate solution is just
as good as a very accurate solution. A relaxed problem to (26) is

maxf ({q,}) : st Zq ¥isq, =1, q, € A(Vs5) Vs. (29)
The KKT condition for (29) is
oAq =289, q € R(B) (30)

which is a generalized eigenvalue problem that has been well stud-
ied, where .# and # are as given by (28b). Often

A1) C R(B)

which we will assume in this paper and the top eigenvector q is the
maximizer of (29). Even though 4 is positive semi-definite, it is pos-
sible that # is singular. That can cause serious numerical problems
and degrade solution effectiveness to the underlying data science
application which we will elaborate on in A, where a Krylov sub-
space projection method, Algorithm2, will be proposed to solve
(30) for its top eigenpair in such a way that singular # does not
matter.

We propose to construct an approximation solution for (26),
and thereby for (25) with k=1, from the solution to (29) for
k=1 as follows. Let (11,4°" = [q*]) with ¢** € R* be the top
eigenpair of the eigenvalue problem (30). An approximate solution
is then constructed by

= (1G5, PP = /7 s.
This solves (25) with k = 1 approximately, or finds an approxi-
mation to the first columns of optimal Ps; of (25). Suppose that

approximations to the first ¢ columns, say p{ € R* for 1 <j < ¢,
of nearly optimal P of (25) are obtained and ¢ < k. Let

1)

(0 _ [p§”,p§2),..-,p§”] c Rdsxl/7 Vs. (32)
It is reasonable to assume
T
[Pg)] Pgﬂ) — Iév L%(Pé/)) gt%(lps_s), Vs, (33)

We propose to find the next columns of nearly optimal P; for all
s of (25) by solving

ma }f({qs} Y e -1 gAY, (343)
R s=1
qIPY = 0's, (34b)

and then normalize each g, of the optimizer of (34) as in (31) to
construct the next p{*".

Theorem 1. Given P\"
equivalent to

as in (32) satisfying (33), problem (34) is

(max fila: st Z g =1, g, € 2(WL) v, (35)
where

n =1, — PO [Pg’)] B (36a)
o) =", 1119, P¢) = ¥, 1 (36b)
fia}) = Zqi%qt (36¢)

We defer the proof of this theorem to B. In view of our previous
discussion, problem (35) is equivalent to finding the top eigenpair
of
oq =

2#"q  withq € 2(2"), (37)
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where .z and 2 take the same form as . and £ in (28b), except
with all &, and W, replaced by (I>§ and ‘I’SS, respectively. Note
now that 2 is guaranteed singular for ¢ > 1 because for each s,

rank (qufg) = rank (1‘[§Z> P! éz)

f) rank(‘l‘”z>}

< rank(l’[ﬁ‘")) =d, —¢.

< mm{rank(

Hence the range constraint q € #(#") is indispensable. Any
straightforward application of existing eigen-computation routine
to ) — 22" will likely encounter some numerical issue. But we
will again resort to Algorithm2 in A to solve it. Note that

q <€ 2(#") is equivalent to g, € 2 (‘P&)) Vs in (35).

Algorithm1: OSAVE: Orthogonal Successive Approximation
via Eigenvectors

Input: {lI)S,r eRG*d | <5t < 2/}, {‘Ifs,s eR%¥ds [ <5 1/},
<k <min{ds,...,dy};
Output: {Ps € @d“k}, the set of most correlated matrices.

integer 1

1: compute the top eigenvector [q},q} ... ,qf,]T of .o/ — 1% by

Algorithm?2 in A, where g, € R%;

2: plV =q,/||qsl, fors=1,2,...,v

3:for¢=1,2....,k—1do

4: compute the top eigenvector [q},q7 ... ,q}]T of
9 — )% by Algorithm?2 in A, where g, € R%;

5: pi*Y =qy/llgll, fors =1,2,.

6: end for

7: Ps = [ §]),.H,p§k)] fors=1,2,...,v

8: return {PS € @d“"}.

Algorithm1 summarizes our range constrained successive
approximation method for solving OMvSL.

5.1. Implementation Details

According to Algorithm2 in A, the efficiency of Algorithm 1 crit-
ically depends on the execution of matrix-vector products by .z(*)
and #. Noting that how .z and 2 are defined, together with
(36a) and (36b), we find that

2O — T o/T1O. 30 — 110 511

where I = diag(I1},...,T1;). Thus y := #“x where % is either .«
or # can be done in three steps:

x— % (38a)
Yy — %, (38b)
y — %. (38¢)

The operations in (38a) and (38c) are the same one, and should
be implemented as follows. In the case of (38a), write

T
x=[x],...,xT] where x, ¢ R* and do

X — X, — PV ({Pﬁ“]k) Vs,

where the bracket must be respected for maximum computational
efficiency. The operation in (38b) can be broken into many mini-
ones @ x;, ¥, ;x; for all s, t whose calculations depend on the struc-
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tures in @, and ¥, from the underlying task. While it is impossible
for us to offer recommendations on a very general setting, a fre-
quent scenario where OMVSL is needed has @, and ¥, taking
the form

O = AsA-[r; ‘"Ps‘s = BSBE (39&)
where

A=A <1n - % mﬁ) € R%*M, (39b)
B, = B (In - % 1,,1}) € R%*M. (39¢)

Here A" and B represent raw input data matrices from an
application, which may also be sparse. In such a scenario, A; and
Bs should not be formed explicitly in a large scale application,
i.e., at least one of d; and n is large, say in the tens of thousands
or more, and neither should ®&;; and W¥;. As an example,
¥, := &, x; can be executed in the order as follows:

T
z— (A™) %z -2 I:Iz

Y — Az,

5.2. Complexity Analysis

To get a sense of the computational complexity of OSAVE (Algo-
rithm1), in what follows we present a rough estimate, assuming
@, and ¥, are given and dense. For the ¢th loop: lines 3-6 of Algo-
rithm1 which calls Algorithm?2 in A, we have, for the leading cost
terms for one loop of Algorithm?2 (lines 6-10),

Y and

(a) matrix-vector products

A0 20, (& + S, + 8de),
(b) orthgonalization in generating W : 6dn,,, if by the Lanczos
if also with full

by

process or 2cln,2Ikry reorthgonalization

(recommended),
(c) forming WTAW and W'BW (assuming AW and BW built
along the way are reused): 4dn’

Niry?

(d) solving WTAW — JW'BW : 14n;  [p.500] [38].

Here d = }".d; and these estimates work for ¢ =0, i.e., line 1 of
Algorithm 1, too. For simplicity, let us assume that on average Algo-
rithm?2 takes m iterations to finish, and full reorthgonalization is
used for robustness. Then the overall complexity estimate is

m{knnkw

where we have dropped the cost in solving W'AW — 2WTBW due to
that n,,, is usually of O(1), and we have assumed k < d in practice.
Further improvement in complexity is possible if A; and B in (39)
are very sparse, and then d” in (40) can be replaced by the total
number of nonzero entries in A; and B, for all s. For the ease of com-
parison, we summarize the computational complexity of several

2d* + Y} + 6dn,

- 8n,,kwdk2} ~ 2mkny, &>, (40)

related methods in Table 1, where O(d2n> in most of the complexity

estimates is for forming all ®;; and ¥,. Note that ny,, is small, e.g,,
10 as used in our implementation and the number m of iterations in
OSAVE is usually small, e.g., around 10. We include a parameter m
(the number of iterations) in the complexity for SaDCCA as it has to
be solved iteratively and it is often rather large for a reasonable pre-
cision requirement. It is clear that OSAVE has complexity depending

only on d’ instead of d® of others except RAMC. Hence OSAVE is
more efficient for high-dimensional data and more views.
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Table 1

Computational complexity where d = "7 ,d;, m is the number of iterations for those
that are solved iteratively, k is the reduced dimension, c is the number of class labels,
and ny,y is the order of the Krylov space in OSAVE.

method complexity
GMA o(d3 + dzn)
MvMDA o(d3 + dzn)
MLDA O(d3 4 dzn)
MULDA O(md3 + dzn)
SaDCCA O(mdzn)
CRMVEE o(cF 4 dzn)
RAMC O(m [nc + rnin{cl3 +nd* n? + nzd}])
OSAVE

O(mknkwdz + dzn)

6. Experiments

In this section, we will evaluate the effectiveness of our pro-
posed models instantiated from the unified framework (18) by
comparing with existing methods on two learning tasks: multi-
view feature extraction in SubSection 6.1 and multi-view multi-
label classification in SubSection 6.2.

6.1. Multi-view Feature Extraction

6.1.1. Datasets

Five datasets in Table 2 are used to evaluate the performance of
the proposed models: OGMA, OMLDA, and OMvMDA in terms of
multi-view feature extraction. We apply various feature descrip-
tors, including CENTRIST [73], GIST [74], LBP [75], histogram of ori-
ented gradient (HOG), color histogram (CH), and SIFT-SPM [76], to
extract features of views for image datasets: Caltech101'[77] and
Scene15? [76]. Note that we drop CH for Scenel5 due to the gray-
level images. Multiple Features (mfeat)® and Internet Advertise-
ments (Ads)* are publicly available from UCI machine learning
repository. The dataset mfeat contains handwritten numeral data
with six views including profile correlations (fac), Fourier coeffi-
cients of the character shapes (fou), Karhunen-Love coefficients
(kar), morphological features (mor), pixel averages in 2 x 3 windows
(pix), and Zernike moments (zer). Ads is used to predict whether or
not a given hyperlink (associated with an image) is an advertisement
and has three views: features based on the terms in the images URL,
caption, and alt text (url + alt + caption), features based on the terms
in the URL of the current site (origurl), and features based on the
terms in the anchor URL (ancurl).

6.1.2. Compared Methods

As shown in SubSection 4.3, our proposed models, although
instantiated from the proposed framework (18), are inspired by
some of the existing ones. Hence, the three proposed models have
close counterparts via solving generalized eigenvalue problems.
Specifically, the compared methods are.

e GMA [24]: (10a) with constraint (11);

e MLDA and MLDA-m with modifications [26]: (10a) with con-
straint (12) and its variant;

e MVMDA [25]: (13);

e MULDA and MULDA-m with modifications [26]: MLDA and

http://www.vision.caltech.edu/Image_Datasets/Caltech101/
https://figshare.com/articles/15-Scene_Image_Dataset/7007177
https://archive.ics.uci.edu/ml/datasets/Multiple + Features
https://archive.ics.uci.edu/ml/datasets/internet + advertisements
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Table 2
Datasets for feature extraction (followed by classification), where the number of features for each view is shown inside the bracket.
Dataset n c view 1 view 2 view 3 view 4 view 5 view 6
mfeat 2000 10 fac (216) fou (76) kar (64) mor (6) pix (240) zer (47)
Caltech101-7 1474 7 CENTRIST (254) GIST (512) LBP (1180) HOG (1008) CH (64) SIFT-SPM (1000)
Caltech101-20 2386 20 CENTRIST (254) GIST (512) LBP (1180) HOG (1008) CH (64) SIFT-SPM (1000)
Scenel5 4310 15 CENTRIST (254) GIST (512) LBP (531) HOG (360) SIFT-SPM (1000) -
Ads 3279 2 url + alt + caption (588) origurl (495) ancurl (472) - - -

MLDA-m with additional uncorrelated constraints, respectively;

e CRMVFE and RCRMVFE [10]: (9) and its variant by replacing
square loss with the 4, ; norm;

e SaDCCA [9]: (14);

o RAMC [42]: (15);

e OGMA: proposed model instantiated from (18) with (19);

e OMLDA: proposed model instantiated from (18) with (19a) and
(20);

e OMVMDA: proposed model instantiated from (18) with (21).

Except for MVMDA and OMvMDA, all methods share the same
trade-off parameter to balance the pairwise correlation and super-
vised information. In our experiments, we set o, = ®, Vs— = t SO as
to reduce the complexity of model selection and tune
o € {0.01,0.1,1,10, 100} for proper balance in supervised setting.
To prevent the singularity of matrices {¥,s}, we add a diagonal

matrix with a small value, e.g., 1078, to ¥, Vs for all compared
methods.

6.1.3. Classification

To evaluate the learning performance of compared methods, the
1-nearest neighbor classifier as the base classifier is employed. We
run each method to learn projection matrices by varying the
dimension of the common subspace k € [2,30] for all datasets
except for mfeat with k € [2, 6] due to the smallest view of 6 fea-
tures. We split the data into training and testing with ratio
10/90. The learned projection matrices are used to transform both
training and testing data into the latent common space, and then
classifier is trained and tested in this space. Following [34,33,30],
the serial feature fusion strategy is employed by concatenating
projected features from all views. Classification accuracy is used
to measure the learning performance. Experimental results are
reported in terms of the average and standard deviation over 10
randomly drawn splits.

Table 3 shows the best results of 13 compared methods on 5
multi-view datasets with 10% training and 90% testing over all
tested ks and «s (the analysis on parameter sensitivity and training
sample size will be discussed in SubSections 6.1.4 and 6.1.5,
respectively). From Table 3, we have the following observations:

Table 3

(i) our proposed models instantiated from (18) generally outper-
form their counterparts which resort to relax their respective orig-
inal problems to generalized eigenvalue problems for the
convenience of their numerical computations; (ii) our proposed
models instantiated from (18) outperform the four most recently
methods; (iii) three proposed models produce best results on dif-
ferent datasets, while OGMA and OMLDA perform consistently bet-
ter than OMvMDA on four of the five datasets. This empirically
shows that the model hypothesis in each model is data-
dependent, but our proposed trace ratio formulation with orthog-
onality constraints can help boost the performance of their coun-
terparts with large margins over three of the five datasets.

6.1.4. Parameter Sensitivity Analysis

The sensitivity analyses on parameters k and o are performed
by varying one of them while recording the best average accuracy
over the other within its testing range.

Fig. 1 shows the results of 13 methods on 5 datasets as k varies.
Most compared methods demonstrate the increasing trend in
accuracy when k increases. The proposed methods produce consis-
tently better accuracies than others. On Ads, Caltech101-7 and
Reuters, our methods show the saturation on accuracy, while
MvMDA shows a significant drop after the certain k on three of five
datasets.

We further investigate the impact of parameter o« on GMA,
OGMA, MLDA and OMLDA except MvMDA and OMvMDA since
both methods do not contain parameter «. In Fig. 2, GMA and
OGMA demonstrates quite robust to «, and the best accuracy can
be obtained around o = 1072, However, MLDA and OMLDA are
quite sensitive to o and the accuracy decreases significantly espe-
cially for « > 0.1. These observations imply that more contribution
from pairwise correlation may hurt MLDA and OMLDA, but no
noticeable impact on GMA and OGMA. Over all tested «s, our pro-
posed methods outperform their counterparts.

6.1.5. Impact on Training Sample Size

We further show the impact of training sample size on the
compared methods by varying the ratio of training data from
10% to 60%. The best average results over 10 randomly drawn

Means and standard deviations of accuracy by the 1-nearest neighbor classifier on embeddings by 13 methods on 5 multi-view datasets over 10 random draws (10% training and
90% testing). N/A in RCRMVPE for Ads is due to its numerical difficulty in producing a result.

Scenel5

Caltech101-7

Caltech101-20

method mfeat Ads

GMA 0.9399 + 0.0087 0.9261 + 0.0176
MLDA 0.9284 + 0.0052 0.9309 + 0.0079
MvMDA 0.9378 + 0.0091 0.7796 + 0.0360
MULDA 0.9523 + 0.0046 0.9249 + 0.0352
MLDA-m 0.9309 + 0.0079 0.9418 + 0.0061
MULDA-m 0.9512 + 0.0044 0.9282 + 0.0362
CRMVFE 0.9545 + 0.0032 0.9312 + 0.0058
RCRMVFE 0.9402 + 0.0089 N/A

SaDCCA 0.8963 + 0.0105 0.8930 + 0.0127
RAMC 0.9008 + 0.0093 0.9257 + 0.0122

0.6166 + 0.0120
0.5468 + 0.0137
0.6088 + 0.0146
0.5789 + 0.0121
0.5699 + 0.0120
0.5795 + 0.0154
0.6190 + 0.0061
0.6378 + 0.0090
0.6307 + 0.0213
0.6268 + 0.0598

0.9325 + 0.0104
0.9229 + 0.0079
0.9265 + 0.0078
0.9265 + 0.0083
0.8978 + 0.0098
0.9259 + 0.0099
0.9350 + 0.0089
0.9310 + 0.0081
0.8935 + 0.0127
0.9278 + 0.0085

0.8130 + 0.0106
0.7659 + 0.0117
0.8050 + 0.0132
0.8220 + 0.0109
0.7377 + 0.0114
0.8217 + 0.0058
0.8251 + 0.0095
0.8198 + 0.0069
0.7726 + 0.0105
0.8241 + 0.0103

OGMA (proposed)
OMLDA (proposed)
OMvVMDA (proposed)

0.9609 -+ 0.0060
0.9571 + 0.0064
0.9599 + 0.0063

0.9412 + 0.0114
0.9410 + 0.0115
0.9423 + 0.0103

0.7359 + 0.0156
0.7547 + 0.0105
0.7198 + 0.0191

0.9501 =+ 0.0052
0.9498 + 0.0048
0.9471 + 0.0072

0.8600 + 0.0103
0.8685 + 0.0100
0.8428 + 0.0102
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Fig. 1. Classification accuracy of 13 methods on 5 datasets over 10 random splits (10% training and 90% testing), as k varies..

splits are reported. Fig. 3 shows the accuracy improves when the
training ratio is increasing on Ads and Caltech101-7. It is
observed that (i) all methods show better performance when
training sample size increases, (ii) our proposed methods show
consistently better results than others, and (iii) all methods con-
verge to similar results when training sample size becomes very
large except MvVMDA.
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6.1.6. Exploratory Analysis via Data Visualization

We further investigate the embeddings learned by our proposed
methods and their counterparts, especially for the impact of
orthogonality constraints, including three existing methods:
GMA, MLDA and MvMDA, and three newly proposed methods:
OGMA, OMLDA and OMvMDA. We randomly draw 10% instances
from mfeat for training, and the rest 90% for testing. Each method
is used to learn projection matrices from training data, and then
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Fig. 2. Classification accuracy by 4 methods on mfeat and Ads over 10 random splits (10% training and 90% testing), as « varies in {10’5, 102].
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Fig. 3. Classification accuracy by all 13 methods on Ads and Scene15 as the ratio of training data varies from 10% to 60%..

Table 4
Multi-view multi-label datasets for classification

samples (n) labels views (v)
emotions 593 6 2
Corel5k 4999 260 7
espgame 20770 268 7
pascal07 9963 20 7

transforms both training and testing data to the common space R,
The concatenation of projected points for each instance in all 6
views is used as the low-dimensional representation of the
instance. t-SNE [78] is used to obtain the 2-D embeddings of the
low-dimensional representations for training and testing sets,
respectively. Except MVMDA and OMvMDA, the other four meth-

ods have a hyperparameter «, which is tuned with the set
{0.01,0.1,1,10, 100} for the best testing accuracy. The 2-D embed-
digns of six methods on both training and testing sets are shown in
Fig. 4. We have the following observations: (i) methods without
orthogonality constraints suffer from noisy or outliers in embed-
dings of training data, while methods with orthogonality con-
straints do not; (ii) the generalization performance in terms of
both accuracy and visual pattern of clustering structure by our
methods which have orthogonality constraints are superior to their
counterparts. These observations are consistent with our motiva-
tion we laid out in Section 4.1, that is that orthogonality con-
straints can admit robustness to data noise and are advantageous
for data visualization, and also possess better generalization
performance.

Table 5

Results in terms of 7 metrics on emotions over 10 random splits (10% for training and 90% for testing). Best results are in bold.
method Hamming Loss | One Error | Coverage | Average Precision 1 Accuracy T macroF1 | microF1 |
view-1 0.3060+0.0156 0.4672+0.0312 2.4903+0.1790 0.6647+0.0181 0.2900+0.0612 0.3164+0.0454 0.3971+0.0678
view-2 0.34034-0.0247 0.5949+4-0.0422 3.1069+0.0625 0.5678+0.0174 0.18324-0.0320 0.20104-0.0454 0.2696+0.0410
concat 0.3046+0.0155 0.4869+0.0359 2.8039+0.1208 0.6290+0.0232 0.2476+-0.0462 0.2661+0.0466 0.3557+0.0410
sM2CP 0.3770+0.0298 0.6315+0.0383 3.0390+0.2060 0.5552+0.0275 0.2273+0.0225 0.2840+0.0576 0.3227+0.0407
MCCA 0.3661+0.0267 0.6399+0.0321 3.1830+0.1291 0.5468+0.1291 0.17604-0.0651 0.19534+0.0724 0.2546+0.0771
OM?3CCA 0.3006+-0.0124 0.4948+-0.0488 2.57404+0.1779 0.6492+0.1777 0.27404+0.0512 0.34124-0.0580 0.3949+4-0.0578
HSIC-GEV 0.3646+0.0241 0.6223+0.0466 3.0798+0.1888 0.5553+0.1888 0.2561+0.0330 0.2470+0.0426 0.3363+0.0350
OHSIC 0.2953+0.0110 0.4655+0.0342 2.4850+:0.1222 0.6662+:0.1222 0.3116+0.0380 0.3554+0.0476 0.4325+0.0359
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Table 6

Results in terms of 7 metrics on Corel5k over 10 random splits (10% for training and 90% for testing). Best results are in bold.
method Hamming Loss | One Error | Coverage | Average Precision 1 Accuracy 1 macroF1 1 microF1 |
view-1 0.0131+0.0001 0.7153+0.0147 95.3444+1.4930 0.2637+0.0055 0.0177+0.0094 0.0074+0.0042 0.0351+0.0185
view-2 0.0131+0.0001 0.7031+0.0110 94.9287+1.6843 0.2689+0.0047 0.0190+0.0063 0.0088+0.0042 0.0374+0.0131
view-3 0.0131+0.0001 0.6606+0.0072 95.3894+1.7478 0.2862+0.0035 0.0322+0.0066 0.0082+0.0017 0.0604+0.0123
view-4 0.0131+0.0000 0.7187+0.0154 97.7932+1.6951 0.2592+0.0045 0.0137+0.0071 0.0048+0.0020 0.0259+0.0133
view-5 0.0131+0.0000 0.7366+0.0107 96.2485+1.4062 0.2502+0.0039 0.0099+0.0035 0.0037+0.0018 0.0195+0.0064
view-6 0.0131+0.0000 0.7365+0.0137 96.2007+1.3439 0.2520+0.0060 0.0103+0.0052 0.0050+0.0023 0.0209+0.0110
view-7 0.0131+0.0000 0.6906+0.0065 96.3108+1.3974 0.2716+0.0035 0.0137+0.0052 0.0059+0.0018 0.0265+0.0099
concat 0.0131+0.0001 0.6591+0.0135 92.5057+2.1126 0.2999+0.0063 0.0291+0.0083 0.0135+0.0039 0.0556+0.0156
sM2CP 0.0131+0.0000 0.7799+0.0109 105.1170+1.4039 0.212040.0024 0.0000+0.0000 0.0000+0.0000 0.0000-+0.0000
MCCA 0.0131+0.0000 0.7799+0.0115 104.9648+1.4837 0.2121+1.4837 0.0000+0.0000 0.0000+0.0000 0.0000+0.0000
OM?2CCA 0.0130-+0.0000 0.6982+0.0106 94.7535+1.4380 0.2729+1.4651 0.0244+0.0080 0.0126+0.0045 0.0487+0.0158
HSIC-GEV 0.0131+0.0000 0.7885+0.0161 104.6444+1.5763 0.2011+1.6329 0.0169+0.0247 0.0010+0.0017 0.0270+0.0393
OHSIC 0.0130-+0.0001 0.6374+0.0126 91.8414+1.5051 0.3022+1.3774 0.0879-:0.0092 0.0230-:0.0032 0.1538+0.0136

Table 7

Results in terms of 7 metrics on espgame over 10 random splits (10% for training and 90% for testing). Best results are in bold.
method Hamming Loss | One Error | Coverage | Average Precision T Accuracy T macroF1 1 microF1 7
view-1 0.0174+0.0000 0.6762+0.0052 134.8974+0.5372 0.2235+0.0014 0.0216+0.0032 0.0042+0.0005 0.0340+0.0051
view-2 0.0174+0.0000 0.6766+0.0058 134.6899+0.6207 0.2238+0.0013 0.0214+0.0041 0.0044+0.0006 0.0347+0.0061
view-3 0.0175+0.0000 0.7213+0.0049 129.8373+0.4775 0.2185+0.0015 0.0082+0.0033 0.0048+0.0010 0.0176+0.0067
view-4 0.0175+0.0000 0.7169+0.0032 129.1738+0.7794 0.2201+0.0013 0.0084+0.0017 0.0080+0.0014 0.0183+0.0038
view-5 0.0174+0.0000 0.6668+0.0051 135.3101+0.4779 0.2262+0.0016 0.0229+0.0016 0.0043+0.0004 0.0351+0.0028
view-6 0.0174+0.0000 0.6687+0.0033 135.4435+0.4592 0.2252+0.0010 0.0225+0.0035 0.0043+0.0006 0.0348+0.0057
view-7 0.0175+0.0000 0.7279+0.0049 130.7208+0.5104 0.2160+0.0016 0.0079+0.0022 0.0046+0.0006 0.0171+0.0044
concat 0.0175+0.0000 0.6989+0.0063 128.8904-:0.6606 0.2283+0.0010 0.0117+0.0021 0.0087+0.0017 0.0254+0.0047
SM2CP 0.0177+0.0002 0.6981+0.0263 136.3555+1.1158 0.2075+0.0079 0.0670+0.0142 0.0221+0.0090 0.1256+0.0233
MCCA 0.0174+0.0001 0.6784+0.0518 134.1460+1.9614 0.2249+1.9531 0.0190+0.0112 0.0045+0.0027 0.0306+0.0191
OM?2CCA 0.0174-+0.0000 0.6283+0.0040 132.0874+0.5329 0.2454+0.5074 0.0306+0.0035 0.0068+0.0006 0.0490+0.0055
HSIC-GEV 0.0174-+0.0000 0.6236+0.0053 131.9247+0.6241 0.2481+0.6241 0.0900--0.0026 0.0244-+0.0013 0.1606--0.0039
OHSIC 0.0174-+0.0000 0.6207+0.0053 131.5208+0.5965 0.2495+0.5965 0.0362+0.0036 0.0077+0.0007 0.0604+0.0061

Table 8

Results in terms of 7 metrics on pascal07 over 10 random splits (10% for training and 90% for testing). Best results are in bold.
method Hamming Loss | One Error | Coverage | Average Precision Accuracy 1 macroF1 | microF1 |
view-1 0.0730+0.0005 0.5946+0.0029 6.9247+0.1447 0.4425+0.0029 0.0686+0.0256 0.0240+0.0074 0.1299+0.0424
view-2 0.0729+0.0002 0.5950+0.0031 6.7332+0.1332 0.4466+0.0033 0.0744+0.0231 0.0246+0.0036 0.1397+0.0364
view-3 0.0715+0.0005 0.5819+0.0044 5.9969+0.1021 0.4800+0.0043 0.0824+0.0238 0.0368+0.0101 0.1500+0.0401
view-4 0.0702+0.0003 0.5656+0.0042 5.8909+0.0956 0.4928+0.0034 0.1320+0.0252 0.0574+0.0071 0.2247+0.0337
view-5 0.07160.0004 0.5941+0.0026 6.7623+0.0936 0.4482+0.0032 0.0950+0.0247 0.0284-+0.0056 0.1720+0.0387
view-6 0.0719+0.0006 0.5945+0.0022 6.7054+0.0993 0.4498+0.0023 0.0977+0.0270 0.0299+0.0058 0.1764+0.0403
view-7 0.0699+0.0005 0.5617+0.0049 5.6492+0.0718 0.5006+0.0040 0.1206+0.0196 0.0505+0.0064 0.2110+0.0277
concat 0.0700+0.0003 0.5634+0.0061 5.7465+0.1130 0.4996-0.0047 0.1405+0.0165 0.0656+0.0096 0.2385+0.0230
sM2CP 0.1198+0.0165 0.7706+0.0301 9.8902+0.5857 0.3023+0.0419 0.1255+0.0251 0.0704+0.0119 0.1974+0.0328
MCCA 0.0691+0.0002 0.5700+0.0054 5.5241+0.0599 0.4991+0.05993 0.0935+0.0571 0.0203+0.0098 0.1553+0.0837
OM?CCA 0.0694+0.0003 0.5723+0.0060 5.5003+0.0788 0.4960+0.0714 0.1268+0.0220 0.0473+0.0078 0.2231+0.0288
HSIC-GEV 0.0678--0.0004 0.5569--0.0046 5.4652+0.1018 0.5088-+:0.1018 0.1446+0.0134 0.0479+0.0071 0.2357+0.0126
OHSIC 0.0678-:0.0004 0.5604+0.0046 5.3753+0.0679 0.5073+0.0525 0.1816+0.0116 0.0681+0.0115 0.2908-:0.0131

6.2. Multi-view Multi-label Classification

6.2.1. Datasets

The statistics of four publicly available datasets are shown in
Table 4, and they are employed to evaluate the proposed methods
for multi-view multi-label classification. Dataset emotions® has
two feature views: 8 rhythmic attributes and 64 timbre attributes.
Corel5k [79] is a benchmark dataset for keyword based image retrie-
val and image annotation. Dataset espgame [80] is obtained from an
online game where two players gain points by agreeing on words
describing the image. Dataset pascal07 [81] is collected from the
Flickr website. The last three datasets have been preprocessed with
various feature descriptors and are publicly available® [82,83]. In our
experiments, we choose 7 descriptors: DenseHue (100), Dense-

5 http://mulan.sourceforge.net
6 http://lear.inrialpes.fr/people/guillaumin/data.php

HueV3H1 (300), DenseSift (1000), Gist (512), HarrisHue (100), Har-
risHueV3H1 (300), and HarrisSift (1000).

6.2.2. Compared Methods
We compare the following multi-view subspace learning
approaches for multi-label classification:

e view-s: the embeddings are obtained by PCA on the sth view.

e concat: the concatenation of embeddings of all views by PCA.

e MCCA [21]: the output labels considered as an additional view.
Hence, there are v + 1 views. The projection matrix for the out-
put labels is learned but not used.

e sM2PC [51]: (16) with supervised information encoded in the
CCA-based model.

e HSIC-GEV: proposed model solved as a generalized eigenvalue
problem, which is similar to MLDA, but ®;; is defined in (24a)
catering for multi-label outputs.
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Fig. 5. Results with respect to seven metrics by compared methods on Corel5k (first and second rows) and pascal07 (third and fourth rows) over 10 random splits (10%

training and 90% testing), as k varies..

e OM?2CCA: the proposed model instantiated from (18) with v + 1
views using (22). Different from [33], all multiple views as input
are used.

e OHSIC: proposed model instantiated from (18) with (4).

After the projection matrices are learned, we apply ML-kNN in
the common space as the backend multi-label classifier [36], which
has demonstrated good performance over various datasets.

6.2.3. Performance Evaluation

Seven widely-used metrics are used to measure performance,
including Hamming Loss, One Error, Coverage, Average Precision,
Accuracy, macroF1 and microF1. Each evaluates the performance
of a multi-label predictor from different aspects. Their concrete
definitions can be found in [44,84]. In particular, the larger the last
four metrics are, the better the performance, while for the other
three metrics, the smaller the value the better the performance.
Following [36], for each method we report the best results and
their standard deviations over 10 random training/testing splits
in each of the five metrics.

Results by compared methods are shown in Tables 5-8, in
which  the best results are reported by tuning
o € {0.01,0.1,1,10,100} and k € {2,5 : 5 : 50} except for emotions

7 http://lamda.nju.edu.cn/files/MLKNN.rar
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and pascal07 (MCCA and OM?CCA cannot have k larger than the
number of labels), over 10 random splits of 10% training and
90% testing. It can be observed that (i) the joint subspace learning
methods generally work better than PCA and the concatenation of
individually projected views by PCA; (ii) the proposed OHSIC con-
sistently outperform others except in some cases that sM2CP
works best on pascal07 in terms of macroF1 and concat works best
on espgame in terms of Coverage.

We further investigate the impact of parameter k on each of the
four metrics. Fig. 5 shows the trends of four metrics on Corel5k and
pascal07 as k varies. It is observed that a large k generally leads to
better performance for all methods, as it should be. Although Ham-
ming Loss on Corel5k shows some fluctuation, the absolute differ-
ence is negligibly in the order of 10~°. In summary, OHSIC can work
consistently well over all tested ks.

7. Conclusions

In this paper, we start by proposing a trace ratio formulation for
multi-view subspace learning, which aims to learn a set of orthog-
onal projections for desirable advantages such as more noise-
tolerant, better suited for data visualization and distance preserva-
tion. The proposed formulation can be easily extended for single-
view and multi-view learning in the settings of both unsupervised
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and supervised learning. An efficient successive approximations
via eigenvectors method (OSAVE) is designed to approximately
solve the optimization problem resulted from the proposed formu-
lation. It is built upon well developed numerical linear algebra
technique and can handle large scale datasets. To verify the capa-
bility of the proposed formulation and the approximate optimiza-
tion method, we showcase six new models for two learning tasks.
Experimental results on various real-world datasets demonstrate
that our proposed models solved by our OSAVE perform competi-
tively to and often better than the baselines.
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Appendix A. An Eigenvalue Algorithm

Currently there is no numerically efficient method to solve
OMVSL (18), especially for high-dimensional datasets. Our orthog-
onal successive approximation via eigenvectors (OSAVE), Algo-
rithm1 in Section 5, relies upon a Krylov subspace method that
is suitable for computing the top eigenpair for the generalized
eigenvalue problem. To simplify notation, we will describe the
method generically for

Ax =/Bx with x e %(B), (A1)
where A,Be R*? are symmetric, the column subspace

#(A) C#(B),B=0 and possibly B is singular. Suppose that
matrix-vector products, Ax and Bx for any given x, are the only
operations that can be done numerically.

The Krylov subspace method will serve as the workhorse of
OSAVE that approximately solves OMvSL (18). It is worth noting
that B may be singular and will be singular in our applications. A
common past practice in data science is simply to perturb B to
B+ e€el; for some tiny € >0 as a regularization and solve
Ax = A(B + €l4)x instead. While this successfully gets rid of the sin-
gularity issue, it may create a more serious one in that the eventu-
ally computed top eigenvector likely falls into the null spaces of A
and B and is thus useless for the underlying application.

The method is the so-called Locally Optimal Block Precondi-
tioned Extended Conjugate Gradient method (LOBPECG) [Algo-
rithm 2.3] [85] which combines LOBPCG of Knyazev [86] and the
inverse free Krylov subspace method of Golub and Ye [87]. For our
current application, we will simply use the version without pre-
conditioning and blocking. Algorithm?2 outlines an adaption of
[Algorithm 2.3] [85] for (A.1).
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Algorithm2: Locally Optimal Extended Conjugate Gradient
method (LOECG) [85-87]

Input: eigenvalue problem (A.1), ny, tolerance tol;
Output: top eigenpair (4, X).
: pick a random x; € RY;
DX = Bxy, X1 = X1 /||X1]|5, p = X]AXq /X[ By ;
L1 =A% — pBxy, res = [P,/ (Al + |plIIBll,);
X =0;
: while res > tol do
compute an orthonormal basis matrix Z of the Krylov
subspace

QDU W N =

2(Z) = 2([%1, (A= pB)Xy, ..., (A— pB)"™xy]); (A2)

7o p=%-2(Z"%). W = Z.p/|Ipl);

8: compute the top eigenpair (p,z) of WTAW — iWTBW,
where ||z||, = 1;

9: Xy =Xq;

10: % = Wz, r = Axy — pBxy, res = |r(|,/(l|All, + |pllBll2);
11: end while

12: return (p, X7).

A few comments regarding this algorithm and its efficient
implementation are in order:

1. There is no need to use ||A||, and ||B||, exactly. Some very rough
estimates are just good enough so long as the estimates have
the same magnitudes, respectively.

. At line 2, it is to make sure x; € %Z(B).

. There are two parameters to choose: the order ny, of the Krylov
space (A.2) and the stopping tolerance tol. There is no easy way
to determine what the optimal nyy is. In general, the larger nyy,
is, the faster the convergence, but then more work in generating
the orthonormal basis matrix Z. Usually nyy = 10 is good. For
applications that required accuracy is not too stringent,
tol = 107° is often more than adequate.

. The orthonormal basis matrix Z can be efficiently computed by
the symmetric Lanczos process [88]. For better numerical sta-
bility in making sure Z'Z = I within the working precision, re-
orthogonalization may be necessary.

. At line 7, some guard step must be taken. For example, in the
first iteration %) = 0 and so p = 0. We should just let W =Z.
In the subsequent iterations, we will have to test whether x,
is in or nearly in #(Z). For that purpose, we need another toler-
ance, e.g., if ||p||, < 102, then we will regard already x, € %(Z)
and set W =Z; otherwise, re-orthogonalize p against

Z:p=p- Z(ZTp> to make sure W'W = I within the working

precision.

. At line 8, AW and BW, except their last columns, are likely
already computed at the time of generating Z at line 6. They
should be reused here to save work.

. The eigenvalue problem for WTAW — JW"BW is of very small
size (y + 1) x (Miwy + 1) at most and also W'BW = 0 as guar-
anteed by Lemma 1 below. It can be solved by first computing
the Cholesky decomposition W'BW = R'R and then the full

eigen-decomposition of R’T(WTAW)R’]. Finally, z=R'w,

where w is the top eigenvector of R’T(WTAW) R
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Lemma 1. In Algorithm2, (W) C #(B) and thus W'BW » 0.

Proof. Initially, after line 2, x; € #(B). Therefore at (A.2),
#(Z) C #(B) because #(A)C #(B). In the first iteration of the
while-loop, X, =0 and W =Z and so 2(W) C #(B),Xo, X1 € %#(B).
Inductively, each time at the beginning of executing the while-
loop, we have xo, X; € #(B). So we will have at line 7, p € #(B)
and #(Z) C #(B), implying 2(W) C %(B). Consequently, at the con-
clusion of executing the while-loop, we still have xo, x; € 2(B).
Since B = 0 and (W) C #(B), W'BW must be positive definite.

Appendix B. Proof of Theorem 1

We will show that the feasible sets for (34) and (35) are the
same and f({q,}) = f,({q,}) for any vector {q;} in the feasible set.

Let {q,} satisfy the constraints of (34). Since qTP\” = 0, we have
1"q, = q;. Since q, € 2(¥;;) = 9?(‘{’322) where W!/? is the unique
positive semi-definite square root of W, we have g, = ¥{/*w; for
some wq. Therefore

g, = T1q, = %! 2w, € (09! = 2(MOw,,0),
T
q10,.q, = [1q,| @, [1q,| = gio)q,.
Hence {q,} satisfiles the constraints of (35) and

fHa,}) =f,({q}). On the other hand, let {q,} satisfy the constraints
of (35). Since g, € %(‘I’ﬁ?) = @(Hﬁ”‘l’;f), we have g, = T\ ¥}/ w;
for some w; and therefore

N

T

g, = ¥!/2w, — P! {Pgﬂ P! 2w, e L@(\P;f) = (W)

That qTP\" = 0 implies I1"q, = q; for all s, and therefore
4D q, = q-srn_(f)q)s-,fn(taqt = qg@iﬂ)qt-

Hence also {q.} and

fHab) =f.({q.}).

satisfies the constraints of (34)
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