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a b s t r a c t

Orthogonality has been demonstrated to admit many desirable properties such as noise-tolerant, good for

data visualization, and preserving distances. However, it is often incompatible with existing models and

the resulting optimization problem is challenging even if compatible. To address these issues, we propose

a trace ratio formulation for multi-view subspace learning to learn individual orthogonal projections for

all views. The proposed formulation integrates the correlations within multiple views, supervised dis-

criminant capacity, and distance preservation in a concise and compact way. It not only includes several

existing models as special cases, but also inspires new models. Moreover, an efficient numerical method

based on successive approximations via eigenvectors is presented to solve the associated optimization

problem. The method is built upon an iterative Krylov subspace method which can easily scale up for

high-dimensional datasets. Extensive experiments are conducted on various real-world datasets for

multi-view discriminant analysis and multi-view multi-label classification. The experimental results

demonstrate that the proposed models are consistently competitive to and often better than the com-

pared methods.

� 2022 Elsevier B.V. All rights reserved.

1. Introduction

Multi-view data are increasingly collected for a variety of

applications in the real world. They usually contain complemen-

tary, redundant, and corroborative contents and so are more infor-

mative than single-view data when it comes to characterize objects

of the real-world. It is rather natural for human beings to perceive

the world through comprehensive information collected by multi-

ple sensory organs, but it is an open question on how to endow

machines with analogous cognitive capabilities to do the same.

To take full advantage of multi-view data, multi-view learning

has attracted increasing attention due to its wide applications such

as dimensionality reduction [1], cross-view recognition [2,3], clus-

tering [4,5], classification [6], and multi-label learning [7,8]. Many

learning criteria have been explored to capture the relations

among multiple views including subspace learning methods

[9,10], tensor approaches [11,12] and the deep learning [13–15].

Although great progress has been made by existing multi-view

learning methods, there are still challenges. One of the

fundamental challenges is how to represent and summarize

multi-view data in such a way that comprehensive information

concealed in multi-view data can be properly exploited by learning

models. The heterogeneity gap [16] amongmultiple views makes it

difficulty to construct such representations since features

extracted from different views with similar semantics may be

located in completely different subspaces, e.g., text is often sym-

bolic while audio and image are signals. Another challenge is to

deal with multi-view data of small to medium sizes. Notice that

deep learning models have recently achieved impressive perfor-

mance for various multi-view learning tasks [13–15], but they typ-

ically require much larger data sets and their learning complexity

is significantly higher than shallow models [17].

A significant research effort has been about addressing the chal-

lenges by seeking a common semantic subspace into which the

heterogeneous features from different views are projected. Multi-

view subspace learning, as the most popularly studied methodol-

ogy for multi-view learning [18,19], aims to narrow the hetero-

geneity gap under the assumption that all views are generated

from a common latent space via some unknown transformations

in the first place. The most representative subspace learning model

is the canonical correlation analysis (CCA) [20], which was

https://doi.org/10.1016/j.neucom.2022.09.018

0925-2312/� 2022 Elsevier B.V. All rights reserved.

⇑ Corresponding author.

Neurocomputing 512 (2022) 100–116

Contents lists available at ScienceDirect

Neurocomputing

journal homepage: www.elsevier .com/locate /neucom



originally proposed to learn two linear projections by maximizing

the cross-correlation between two views in a common space. It has

since been extended to more than two views [21], nonlinear pro-

jections via kernel trick [22] and deep representation [23], super-

vised learning [24–27], sparse learning [28,9], and multi-output

learning such as multi-label classification [29] and multi-target

regression [30]. Recently, orthogonality has also been successfully

explored in multi-view subspace learning, including orthogonal

CCA (OCCA) [30–33], orthogonal multiset CCA (OMCCA) [33,34],

and multi-view partial least squares (PLS) [35]. However, most

multi-view subspace learning methods stay clear from orthogonal-

ity constraints [24,25] due to issues including model incompatibil-

ity (adding orthogonality constraints may cause incompatibility to

inherent constraints already there in existing models) and opti-

mization difficulty (even if there is no incompatibility issue, the

resulting optimization problem is generally hard to solve under

orthogonality constraints), let alone integrate with other learning

criteria such as supervised information.

To address the above issues, we propose a trace ratio formula-

tion for multi-view analysis with orthogonality constraints and

an efficient method to solve the resulting optimization problem.

To resolve the model incompatibility issue, we take the trace ratio

formulation to model the pairwise correlations of multiple views

by strictly following their original definitions. With the trace ratio

formulation, orthogonality constraints are added without causing

any incompatibility issue. Moreover, supervised information can

be incorporated into the numerators or denominators of the trace

ratios in order to capture the class separability or coherence.

Although the trace ratio formulation is flexible, the resulting opti-

mization problem is a challenging one. To solve the challenging

problem, we propose an efficient optimization method called

orthogonal successive approximation via eigenvectors (OSAVE).

Contributions. The main contributions of this paper are sum-

marized as follows:

� We propose a trace ratio formulation for multi-view subspace

learning, which can naturally integrate the dependency among

multiple views, supervised information, and simultaneously

learn orthogonal projections in a concise and compact form.

We show that orthogonal linear discriminant analysis (OLDA),

OCCA and OMCCA are special cases of the proposed formulation.

� Our formulation can be flexibly adapted for various learning

scenarios. To justify the flexibility, we instantiate several new

models from the proposed formulation. Three models are pro-

posed for multi-view feature extraction, and two models for

multi-view multi-label classification. Different from existing

ones, our models are directly built on the essential trace ratio

formulation with orthogonality constraints.

� To solve the challenging optimization problem of the proposed

formulation, we present a successive approximation algorithm,

which is built upon well-developed numerical linear algebra

techniques. We describe an iterative Krylov subspace method

for calculating the top eigenvector of generalized eigenvalue

problem Ax ¼ kBx with possibly a singular B. The Krylov sub-

space method can serve as the workhorse for scalability.

� Extensive experiments are conducted for evaluating the pro-

posed models against existing learning methods in terms of

two learning tasks: multi-view feature extraction and multi-

view multi-label classification. Experimental results on various

real-world datasets demonstrate that our proposed models per-

form competitively to and often better than baselines.

Paper organization. We first present the scope of this paper in

Section 2 and briefly review the relevant existing models in Sec-

tion 3. In Section 4, we propose the novel trace ratio formulation

for orthogonal multi-view analysis, and their instantiated models

for multi-view discriminant analysis and multi-view multi-label

classification. The proposed successive approximation algorithm

is presented in Section 5 with its key component in A. Extensive

experiments are conducted in Section 6. Finally, we draw our con-

clusions in Section 7.

2. Problem Setup and Necessary Statistics

Feature extraction is an important tool for multivariate data

analysis. As multiple inputs may come from different sources

(views), they are most likely heterogeneous and have large dis-

crepancy among views. The aim of multi-view feature extraction

is to exploit consensual, complementary, and overlapping informa-

tion among views. In what follows, we first present the scope of

this paper and then formulate some important statistics used

through this paper.

2.1. Problem Description

Let x
1ð Þ

i ; . . . ; x
vð Þ

i ; yi

� �n on

i¼1
be a dataset of v views, where the ith

data points x
sð Þ

i 2 R
ds of all views (1 6 s 6 v) are assumed to share

the same class labels in yi of c labels. The class labels can have dif-

ferent interpretations, dependent of the underlying learning task.

For multi-output regression, yi 2 R
c , and it reduces to a scalar for

the classical regression for which c ¼ 1. For multi-label classifica-

tion, yi 2 0;1f gc with an understanding that the ith data points of

all views have the class label r if yið Þr ¼ 1 and otherwise 0, where

yið Þr is the rth entry of yi. If 1
T
cyi ¼ 1, then multi-label classification

becomes a problem of c-class classification since one and only one

class label is assigned to each instance of data points of all views. In

particular, if c ¼ 2 and 1
T
cyi ¼ 1, then it is just the binary

classification.

In this paper, objective fulfilling linear transformations are

sought to extract the latent representation for each view. Com-

pared to deep neural networks, the studied shallow model can

effectively work with multi-view data of small to medium sizes

and orthogonality constraints. Therefore, this paper mainly con-

centrates on small- to medium-sized multi-view data. Let

Ps 2 R
ds�k be the projection matrix for view s to transform x

sð Þ

i from

R
ds to z

sð Þ

i ¼ PT
s x

sð Þ

i in the common space Rk. Represent the n data

points of view s by Xs ¼ x
sð Þ
1 ; . . . ; x

sð Þ
n

h i
2 Rds�n and its latent repre-

sentation by Zs ¼ z
sð Þ
1 ; . . . ; z

sð Þ
n

h i
¼ PT

sXs 2 R
k�n. The goal of this paper

is to learn projections Psf g from multi-view data with class labels.

In addition, we focus on two learning tasks, i.e., multi-view feature

extraction and multi-view multi-label classification, and using the

latent representations learned from multi-view data to improve

single-view classification performance. We first use a multi-view

subspace learning method as a supervised dimensionality reduc-

tion step so that the embeddings obtained by the method hopefully

encode important correlations among multiple views and their

output labels, and then a base classification model is evaluated in

the common space, e.g., one nearest neighbor classifier for multi-

class classification [33] and multi-label k-nearest neighbor (ML-

kNN) in the common space as the backend multi-label classifier

[36]. It is expected to have better performance for the multi-view

approach than any single-view method applied to each view only

or to the naive concatenation approach in terms of both multiclass

classification and multi-label classification.

2.2. Necessary Statistics

We denote the centered matrix of view s and the label matrix by
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bX s ¼ XsHs; ð1Þ

Y ¼ y1; . . . ; yn½ �; ð2Þ

respectively, where Hn ¼ In �
1
n
1n1

T
n. The sample cross-covariance

between view s and view t is

Cs;t ¼ bX s
bXT

t ¼ XsHnX
T
t : ð3Þ

In particular, Cs;s is the covariance of view s.

For the c-class classification, i.e., Y 2 0;1f gc�n and 1
T
cyi ¼ 1, we

have the following properties:

YT
1c ¼ 1n;R ¼ YYT ¼ diag n1; . . . ;ncð Þ; ð4Þ

a diagonal matrix with the rth diagonal entry nr ¼
Pn

i¼1 yið Þr being

the number of data points in class r. Let Q ¼ YT
R
�1Y . The

between-class scatter matrix is

S
sð Þ

b ¼ Xs Q �
1

n
1n1

T
n

� �
XT

s ; ð5Þ

and the within-class scatter matrix takes the form

S sð Þ
w ¼ Cs;s � S

sð Þ

b ¼ Xs I � Qð ÞXT
s : ð6Þ

3. Related Work

In this section, we briefly review the representative multi-view

subspace methods with linear projections from unsupervised and

supervised multiclass classification, as well as multi-label

classification.

3.1. Unsupervised Methods

PLS and CCA can be directly applied to two-view data (v ¼ 2)

simply by replacing Y and the projection matrix of Y with X2 and

P2 of view 2, respectively. For v > 2, the multi-set CCA (MCCA) [21]

max
Ps2R

ds�kf g

Xv

s¼1

Xv

t¼1

tr PT
sCs;tPt

� �
ð7aÞ

s:t:
Xv

s¼1

PT
sCs;sPs ¼ Ik; ð7bÞ

is the most popularly used, chiefly due to its analytic solution via

the generalized eigen-decomposition that has been well studied

[37,38]. Orthogonal multiset CCA (OMCCA)

max
Ps2R

ds�kf g

Xv

s¼1

Xv

t¼1

tr PT
sCs;tPt

� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tr PT

sCs;sPs

� �
PT
t

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tr PT

t Ct;tPt

� �r ð8aÞ

s:t:PT
sPs ¼ Ik;8s ð8bÞ

is proposed in [33]. Its special case v ¼ 2 is the orthogonal CCA

(OCCA) [30–32]. In [34], a variant of (8) was studied. The key in

(7) and (8) is the use of pairwise cross-covariance matrices Cs;t

� �

to capture the consensus among the v views. Recently, PLS is

extended for v > 2 in [35], too, where the orthogonality constraints

PT
s Ps ¼ Ik for all s are imposed. Different from CCA, the cross-

regression for multi-view feature extraction (CRMvFE) [10] is built

on a regression model to learn two sets of projection matrices

Ps 2 R
ds�k

� �
and Fs 2 R

k�ds
� �

by solving the following optimization

problem

min
Psf g; Fsf g

X

s;t

kXs � FT
sP

T
t Xt jk

2
F þ c

Xv

s¼1

kFsk
2
F ð9aÞ

s:t:
Xv

s¼1

PT
sPs ¼ Ik; ð9bÞ

and the robust CRMvFE (RCRMvFE) is also presented by replacing

square loss with the ‘2;1 norm. Instead of learning linear transfor-

mation functions, the low-dimensional representations can be

directly optimized such as the similarity-consensus regularized

multi-viewmanifold learning [1] and the multi-view Laplacian least

squares [39]. The graph regularized MCCA[40] seeks both orthogo-

nal common low-dimensional representations and single-view pro-

jection matrices by accounting for graph-induced knowledge of

common sources. In addition to OMCCA and PLS, the above-

mentioned methods do not attempt to obtain orthonormal projec-

tion matrices.

3.2. Supervised Methods

For supervised learning with multiclass labels, the output label

Y can be naturally considered as a view of input [29]. However, the

special structure of label information is neglected. To compensate

that negligence and to take full advantage of multiclass label data,

sophisticated multi-view feature extraction methods have been

proposed. In [24], generalized multi-view analysis (GMA) is formu-

lated, by integrating LDA (or some variants of it) and CCA, as

max
Psf g

Xv

s¼1

tr PT
s S

sð Þ

b Ps

� �
þ
Xv

s¼1

Xv

t¼1;t–s

as;ttr PT
sCs;tPt

� �
ð10aÞ

s:t:PT
s S

sð Þ
w Ps ¼ Ik;8s; ð10bÞ

where as;t is the weight for cross-covariance between view s and

view t. Unfortunately, this is a difficult optimization problemwhose

KKT condition leads to a multi-parameter eigenvalue problem like

(28) later for which there is no efficient numerical method for its

solution. For that reason, authors in [24] proposed to solve, instead,

a relaxed problem, the same objective but a constraint different

from (10b):

Xv

s¼1

gsP
T
s S

sð Þ
w Ps ¼ Ik; ð11Þ

resulting in a generalized eigenvalue problem [38], where gsf g are

parameters to balance v independent constraints. S
sð Þ

b and S sð Þ
w can

be the ones for the classical LDA. Multi-view uncorrelated linear

discriminant analysis (MULDA) [26] was proposed to replace

(10b) with the uncorrelated constraints and

Xv

s¼1

gsP
T
sCs;sPs ¼ Ik: ð12Þ

Multi-view modular discriminant analysis (MvMDA) [25] aims

to maximize the distances between different class centers across

different views and minimize the within-class scatter

max
Psf g

Xv

s¼1

Xv

t¼1

tr PT
sXsAX

T
t Pt

� �
: s:t:

Xv

s¼1

PT
s S

sð Þ
w Ps ¼ Ik; ð13Þ

where A ¼ YT
R
�1HcR

�1Y . In addition, other learning criteria have

been explored for the integrated model of supervised information

and CCA. The sparse additive discriminative CCA (SaDCCA) [9] inte-

grates supervised information into CCA with local diffusion process
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to reflect the high-order characteristics of intra-class and the sepa-

rability of inter-class as well as the sparsity of the projection matri-

ces. SaDCCA is formulated as

max
Psf g

Xv

s¼1

tr PT
s
eS sð Þ

b Ps

� �
þ
X

s–t

tr PT
sCs;tPt

� �
ð14aÞ

s:t:
Xv

s¼1

PT
sCs;sPs ¼ Ik; kPsk1 6 es;8s; ð14bÞ

where eS sð Þ

b is the local inter-class scatter matrix based on diffusion

on the tensor product graph, and es is a small constant to control

the ‘1 norms of projection matrices to induce sparsity in the matri-

ces. In [2], the cross-view semantic consistency in the sample space,

instead of the feature space, is proposed. In [41], a fractional-order

embedding is learned to suppress the increase of eigenvalues calcu-

lated from noisy data with a small number of samples of high

dimensions. A regression-based approach has also been explored

to incorporate supervised information for multi-view learning. In

[42], the robust adaptive weighting multi-view classification algo-

rithm (RAMC) using robust loss with view importance learning

and nonnegative �-dragging to the label matrix is used to reduce

the impact of outliers and noise in multi-view data. RAMC is formu-

lated as the following problem

min
Ps ;MP0;a

k
Xv

s¼1

avP
T
sXs � Y þ Y �Mð Þk2;1 þ k

Xv

s¼1

kPsk
2
F ð15aÞ

s:t: a P 0;1Ta ¼ 1; ð15bÞ

where � is the Hadamard product operator, M is the �-dragging
matrix, and a is the vector of view importance. RAMC shows supe-

rior classification performance to the adaptive-weighting discrimi-

native regression model [6].

It is worth noting that imposing orthogonality constraints has

attracted much attention in multi-view feature extraction in unsu-

pervised learning, but it is seldom explored in supervised learning.

3.3. Multi-label Learning

Multi-label classification [43] is a kind of classification where

one instance may have multiple labels from a set of predefined cat-

egories, i.e., a subset of labels. Because of multiple views of every

instance, the multi-view multi-label classification data consist of

multiple views. The situation is different from multi-view feature

extraction, where each instance only has a single label. As there

are a plenty of single-view multi-label methods in the literature

[44,45], we will not review them all but apply ML-kNN [36] as

the backbone of our multi-label classifier for multi-view multi-

label classification since its good performance has been well veri-

fied on various single-view multi-label data sets.

Recently, a few multi-view multi-label classification methods

have been proposed based on different learning criteria, including

matrix factorization methods [46–48], CCA-based methods [49–

51], a tensor-based method [52], a probabilistic model [7] and

the deep learning method [8]. Note that matrix factorization meth-

ods often perform classification in the transductive semi-

supervised manner, so it is not easy to be applied to unseen data.

Among the other methods, CCA-based methods are most relevant

to our proposed models. The methods [49,50] only work for

cross-modal retrieval from one view to the other with provided

labeled data as the supervised information, so they cannot be used

for more than two views. The supervised multi-view multi-label

canonical correlation projection (sM2CP) [51] extends the work

in [49] for multi-view multi-label classification with more than

two views. Specifically, sM2CP solves the following problem to

obtain linear transformation matrices Psf g:

max
Psf g

X

s–t

tr PT
sAs;tPs

� �
: s:t:PT

sCs;sPs ¼ Ik; ð16Þ

where As;t ¼ XT
sA

multiXt is the covariance matrix encoded with the

multi-label class information through the cosine similarity Amulti

whose i; jð Þth entry is
yT
i
yj

kyikkyjk
. Although some other settings have been

explored for multi-view multi-label data such as missing or incom-

plete data [53,54] and feature selection [55], they are different from

the focus of this paper.

4. Orthogonal Multi-view Analysis

We propose a novel trace ratio formulation for multi-view dis-

criminant analysis in order to learn orthogonal projections onto a

latent common space.

4.1. Orthogonality and its Challenges

Researches have previously demonstrated that orthogonality

built into single-view subspace learning models possesses desir-

able advantages such as more noise-tolerant, better suited for data

visualization and distance preservation [56–61]. Among these

advantages, distance preservation is one of the most important

learning criteria, which has been successfully demonstrated in

learning methods such as kernel learning [62] and density estima-

tion [63,64].An orthogonal projection is able to preserve the pair-

wise distance if the vectors to be projected live in the range of

the projection. Specifically, if x
sð Þ

i 2 R Psð Þ, the column subspace

spanned by the columns of Ps, for all i and PT
sPs ¼ Ik, then we have

x
sð Þ

i ¼ Psez sð Þ

i for ez sð Þ

i ¼ PT
sx

sð Þ

i :

Psz
sð Þ

i ¼ Ps PT
sx

sð Þ

i

� �
¼ Ps P

T
s Ps|ffl{zffl}

ez sð Þ

i ¼ Psez sð Þ

i ¼ x
sð Þ

i :

Now, the pairwise Euclidean distance between x
sð Þ

i and x
sð Þ

j

kx
sð Þ

i � x
sð Þ

j k
2 ¼ kPs z

sð Þ

i � z
sð Þ

j

� �
k2 ¼ kz

sð Þ

i � z
sð Þ

j k
2 ð17Þ

is preserved in the projected space.

In addition, we observed that existing supervised multi-view

feature extraction methods such as GMA, MLDA and MvMDA

encounter issues, including (i) the embeddings on the training data

are often contaminated by noise or outliers; (ii) the generalization

to unseen data often leads to different clustering patterns from the

training data. These issues will be illustrated later in Fig. 4 on

multi-view data mfeat. By introducing orthogonality constraints,

all these issues can be addressed as our proposed models will

demonstrate. Empirical results via data visualization can be found

in Section 6.1.6 in detail.

For multi-view learning, orthogonal projection has already been

explored in CCAwith two views [30–32] and MCCAwith more than

two views [33,34] for unsupervised multi-view feature extraction.

However, imposing orthogonality constraints has not yet been well

studied for supervised multi-view subspace learning. Most existing

multi-view subspace learning methods encounter the following

two issues when attempting to add orthogonality constraints:

(1) model incompatibility. Adding orthogonality constraints

may cause incompatibility to inherent constraints already

there in existing models. The incompatibility issue can be

verified by the following facts. Most of methods [24–26]

have their original constraints like (10b), (11), or (12). These
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constraints may conflict with orthgonality constraints

PT
s Ps ¼ Ik;8s. To see that, we note that PT

s S
sð Þ
w Ps � kminP

T
sPs

where kmin is the smallest eigenvalue of S sð Þ
w , and so if

kmin > 1, then there is no way to satisfy both constraints at

the same time. The same conclusion can be achieved for con-

straints (11) and (12) after concatenating all projection

matrices as P ¼ P1; . . . ; Ps½ �.

(2) optimization difficulty. Even if there is no incompatibility

issue, the resulting optimization problem is generally hard

to solve under orthogonality constraints. Generic optimiza-

tion methods are often too slow even for datasets of modest

scale and practically infeasible for high dimensional data. As

a result, most existing learning methods [24,25,65] resort to

solving certain related relaxed problems of their original for-

mulations as generalized eigenvalue problems, for which

well-developed numerical linear algebra techniques can be

readily deployed to handle high-dimensional datasets but

at a price of degrading learning performance.

4.2. A Trace Ratio Formulation

To address the model incompatibility challenge, we seek to the

trace ratio formulation, which has been previously studied in the

case of the trace ratio formulation vs. the ratio trace formulation

for single-view dimensionality reduction in the context of LDA.

Authors in [58] argued that the trace ratio formulation with the

orthogonality constraint is essential and can lead to superiority

over the ratio trace formulation which is a relaxation of the trace

ratio formulation as a generalized eigenvalue problem. The cross-

correlation between two views in CCA is inherently defined as a

trace ratio formulation [20]. Moreover, the objective function of

the trace ratio formulation is invariant under any orthogonal trans-

formation, which is more beneficial to classification and clustering

in the reduced space than the ratio trace formulation that is invari-

ant under any non-singular transformation. This motivates the

study of orthogonal LDA (OLDA) [58,59] and orthogonal CCA

(OCCA) [32]. However, no orthogonal extension to supervised

multi-view subspace learning has yet been explored.

Motivated by the above observations, we propose a novel trace

ratio formulation for unified orthogonal multi-view subspace

learning (OMvSL) given by

max
Psf g

Xv

s¼1

Xv

t¼1

tr PT
sUs;tPt

� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tr PT

sWs;sPs

� �
PT
t

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tr PT

tWt;tPt

� �r ð18aÞ

s:t: PT
s Ps ¼ Ik;8s; ð18bÞ

where Ws;s for s ¼ 1; . . . ; v are positive semi-definite matrices. As

stated in [58], the trace ratio formation is an essential formulation

for general dimensionality reduction and may lead to solutions that

are superior to the ones from the ratio trace formulation.

The proposed OMvSL (18) encompasses OLDA and OMCCA as

special cases:

1. For v ¼ 1, (18) with W1;1 ¼ S
1ð Þ

b and W1;1 ¼ S 1ð Þ
w reduces to OLDA.

2. For v P 2, (18) with Us;t ¼ Cs;t and Ws;s ¼ Cs;s becomes OMCCA

(8).

OMvSL (18) can be used to inspire various models in the form of

trace ratio formulations. We shall present various novel models

instantiated from OMvSL (18) for multi-view discriminant analysis

Fig. 4. Data visualization by the 6 methods in the 2-D space via t-SNE on one random split of mfeat (10% training and 90% testing) where the best a of GMA and MvMDA

tuned within 0:01;0:1;1;10;100f g in terms of accuracy by one-nearest neighbor classifier on the testing sets are used..
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in SubSection 4.3 and multi-view multi-label classification in

SubSection 4.4.

OMvSL is a versatile framework, but it presents a difficult opti-

mization problem to solve. Generic optimization techniques [66–

68] can always be applied, but they ignore the special form in

the objective, are usually not so efficient as customized algorithms,

and, worst of all, are not practically feasible even for datasets of

modest scale. In Section 5, we will present a successive approxima-

tion algorithm that approximately solves OMvSL efficiently to

address the optimization difficulty issue.

4.3. Novel Multi-view Discriminant Analysis Models

Three orthogonal multi-view discriminant analysis models are

proposed, inspired by existing models similar to (18) for multi-

class classification where yi 2 0;1f gc and yT
i 1c ¼ 1 [24–26]. Each

new model is intrinsically different from its corresponding existing

model due to the trace ratio formulation (18a) and orthogonality

constraints (18b).

Orthogonal GMA. The proposed orthogonal variant of GMA

(10), called Orthogonal GMA (OGMA), is (18) with

Us;t ¼
S

sð Þ

b ; s ¼ t;

as;tCs;t ; s– t;

(
ð19aÞ

Ws;s ¼ S sð Þ
w : ð19bÞ

Orthogonal MLDA. The proposed orthogonal variant of MLDA

(10a) with (12), called Orthogonal MLDA (OMLDA), is (18) with

(19a) and

Ws;s ¼ Cs;s: ð20Þ

Orthogonal MvMDA. The proposed orthogonal variant of

MvMDA (13), called Orthogonal MvMDA (OMvMDA), is (18) with

Us;t ¼ A;Ws;s ¼ S sð Þ
w : ð21Þ

4.4. Novel Multi-view Multi-label Classification Models

In multi-view multi-label classification, the output yi 2 0;1f gc

with c labels and x
1ð Þ

i ; . . . ; x
vð Þ

i ; yi

n on

i¼1
is the paired data. Under

the proposed formulation (18), we can come up the following

two strategies to incorporate output data for multi-view multi-

label classification:

Orthogonal Multi-view Multi-label CCA (OM2CCA). This

approach is proposed to take the output labels in

Y ¼ y1; . . . ; yn½ � 2 0;1f gc�n as the v þ 1ð Þst view Xvþ1 :¼ Y in

OMCCA [29]. Together with v input views, there are v þ 1 views.

OMCCA is employed to learn projection matrices Psf g and

Pvþ1 :¼ PY in a latent common space, where PY is the projection

matrix of Y. This idea has been explored for v ¼ 1 in [29,30,33].

OMCCA is instantiated from (18) with

Us;t ¼
0; s ¼ t;

Cs;t ; s– t;



ð22aÞ

Ws;s ¼ Cs;s; ð22bÞ

for s; t ¼ 1; . . . ;v þ 1, where Cs;vþ1 ¼ XsHY ¼ CT
vþ1;s.

Orthogonal Hilbert–Schmidt Independence Criterion

(OHSIC). This approach is proposed to take the HSIC criterion

[69] for learning embedding of each input view. The estimator of

HSIC is defined as

HSIC Zs;Yð Þ ¼
1

n� 1ð Þ2
tr ZT

sZsHnY
TYHn

� �
; ð23Þ

where Zs ¼ PT
sXs and ZT

s Zs is the linear kernel of the projected data of

view s. To achieve the best alignment between Zs and Y, the maxi-

mization of HSIC with respect to Ps is expected. The proposed HSIC

method is instantiated from (18) with

Us;t ¼
XsHnY

TYHnX
T
s ; s ¼ t;

as;tCs;t; s – t;

(
ð24aÞWs;s ¼ Cs;s; ð24bÞ

for s; t ¼ 1; . . . ;v . Different from (22), this approach does not learn

PY .

5. The Proposed Optimization Algorithm for OMvSL

For ease of presentation, we rewrite OMvSL (18) as

max
Psf g

g Psf gð Þ : s:t:PT
sPs ¼ Ik; R Psð Þ#R Ws;sð Þ 8s; ð25Þ

where R Ws;sð Þ is the column subspace of Ws;s and

g Psf gð Þ :¼
Xv

s¼1

Xv

t¼1

tr PT
sUs;tPt

� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tr PT

sWs;sPs

� �
PT
t

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tr PT

tWt;tPt

� �r :

For k ¼ 1, all Ps are column vectors. By convention that we use

lowercase letters for vectors, we will replace them by ps instead.

Since g psf gð Þ is homogeneous in each ps, i.e., g ps=asf gð Þ � g psf gð Þ

for any scalar as > 0, the constraint pT
sps ¼ 1 is inconsequential.

In fact, (25) is equivalent to

max
ps2R

dsf g
f psf gð Þ : s:t: pT

sWs;sps ¼ 1; ps 2 R Ws;sð Þ 8s; ð26Þ

where f psf gð Þ is given by

f psf gð Þ :¼
Xv

s¼1

Xv

t¼1

pT
sUs;tpt : ð27Þ

The KKT condition of (26) gives rise to a multi-parameter eigen-

value problem:

Ap ¼ BKp; p 2 R Bð Þ; ð28aÞ

where

A ¼

U11 U12 	 	 	 U1v

U21 U22 	 	 	 U2v

..

. ..
. . .

. ..
.

Uv1 Uv2 	 	 	 Uvv

2
66664

3
77775
; B ¼

W11

W22

. .
.

Wvv

2
66664

3
77775
;

ð28bÞ

K ¼

k1Id1
k2Id2

. .
.

kv Idv

2
66664

3
77775
; p ¼

p1

..

.

p
v

2
664

3
775: ð28cÞ

This is also a long standing problem in statistics, and there is no

existing numerical technique that is readily available to solve it

with guarantee. Existing methods include variations of the power

method for matrix eigenvalues [70], which are simple to use but

often slowly convergent, and adaptations of common optimization

techniques onto Riemannian manifolds to solve (26) [71,72], which

often converge faster but use the gradient or even Hessian of f and,

as a result, are not particularly well suited for large scale problems.

None of those methods guarantee to deliver the global optimum of

(26).
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In many real-world applications, an approximate solution is just

as good as a very accurate solution. A relaxed problem to (26) is

max
qsf g

f qsf gð Þ : s:t:
Xv

s¼1

qT
sWs;sqs ¼ 1; qs 2 R Ws;sð Þ 8s: ð29Þ

The KKT condition for (29) is

Aq ¼ kBq; q 2 R Bð Þ ð30Þ

which is a generalized eigenvalue problem that has been well stud-

ied, where A and B are as given by (28b). Often

R Að Þ#R Bð Þ

which we will assume in this paper and the top eigenvector q is the

maximizer of (29). Even thoughB is positive semi-definite, it is pos-

sible that B is singular. That can cause serious numerical problems

and degrade solution effectiveness to the underlying data science

application which we will elaborate on in A, where a Krylov sub-

space projection method, Algorithm2, will be proposed to solve

(30) for its top eigenpair in such a way that singular B does not

matter.

We propose to construct an approximation solution for (26),

and thereby for (25) with k ¼ 1, from the solution to (29) for

k ¼ 1 as follows. Let k1;q
opt ¼ q

opt
s

� �
 �
with q

opt
s 2 R

ds be the top

eigenpair of the eigenvalue problem (30). An approximate solution

is then constructed by

cs ¼ kq
opt
s k2; p

opt
s ¼ qopt

s =cs; 8s: ð31Þ

This solves (25) with k ¼ 1 approximately, or finds an approxi-

mation to the first columns of optimal Ps of (25). Suppose that

approximations to the first ‘ columns, say p
jð Þ

s 2 R
ds for 1 6 j 6 ‘,

of nearly optimal Ps of (25) are obtained and ‘ < k. Let

P ‘ð Þ
s ¼ p 1ð Þ

s ;p 2ð Þ
s ; . . . ;p ‘ð Þ

s

� �
2 Rds�‘; 8s: ð32Þ

It is reasonable to assume

P ‘ð Þ
s

h iT
P ‘ð Þ
s ¼ I‘; R P ‘ð Þ

s

� �
#R Ws;sð Þ; 8s: ð33Þ

We propose to find the next columns of nearly optimal Ps for all

s of (25) by solving

max
qs2R

dsf g
f qsf gð Þ : s:t:

Xv

s¼1

qT
sWs;sqs ¼ 1; qs 2 R Ws;sð Þ 8s; ð34aÞ

qT
s P

‘ð Þ
s ¼ 0 8s; ð34bÞ

and then normalize each qs of the optimizer of (34) as in (31) to

construct the next p
‘þ1ð Þ
s .

Theorem 1. Given P ‘ð Þ
s as in (32) satisfying (33), problem (34) is

equivalent to

max
qs2R

dsf g
f ‘ qsf gð Þ : s:t:

Xv

s¼1

qT
sW

‘ð Þ
s;sqs ¼ 1; qs 2 R W

‘ð Þ
s;s

� �
8s; ð35Þ

where

P
‘ð Þ
s ¼ Ids � P ‘ð Þ

s P ‘ð Þ
s

h iT
; ð36aÞ

U
‘ð Þ
s;t ¼ P

‘ð Þ
s Us;tP

‘ð Þ
t ; W ‘ð Þ

s;s ¼ P
‘ð Þ
s Ws;sP

‘ð Þ
s ; ð36bÞ

f ‘ qsf gð Þ ¼
X

s;t

qT
sU

‘ð Þ
s;tqt: ð36cÞ

We defer the proof of this theorem to B. In view of our previous

discussion, problem (35) is equivalent to finding the top eigenpair

of

A
‘ð Þq ¼ kB ‘ð Þq withq 2 R B

‘ð Þ

 �

; ð37Þ

where A
‘ð Þ and B

‘ð Þ take the same form as A and B in (28b), except

with all Us;t and Ws;s replaced by U
‘ð Þ
s;t and W

‘ð Þ
s;s , respectively. Note

now that B ‘ð Þ is guaranteed singular for ‘ > 1 because for each s,

rank W
‘ð Þ
s;s

� �
¼ rank P

‘ð Þ
s W

1=2
s;s

� �

6 min rank P
‘ð Þ
s

� �
; rank W

1=2
s;s

� �n o

6 rank P
‘ð Þ
s

� �
¼ ds � ‘:

Hence the range constraint q 2 R B
‘ð Þ


 �
is indispensable. Any

straightforward application of existing eigen-computation routine

to A
‘ð Þ � kB ‘ð Þ will likely encounter some numerical issue. But we

will again resort to Algorithm2 in A to solve it. Note that

q 2 R B
‘ð Þ


 �
is equivalent to qs 2 R W

‘ð Þ
s;s

� �
8s in (35).

Algorithm1: OSAVE: Orthogonal Successive Approximation

via Eigenvectors

Input: Us;t 2 R
ds�dt ; 1 6 s; t 6 v

n o
, Ws;s 2 R

ds�ds ; 1 6 s 6 v

n o
,

integer 1 6 k 6min d1; . . . ; dvf g;

Output: Ps 2 O
ds�k

n o
, the set of most correlated matrices.

1: compute the top eigenvector qT
1;q

T
2 . . . ; q

T
v

� �T
of A� kB by

Algorithm2 in A, where qs 2 R
ds ;

2: p
1ð Þ
s ¼ qs=kqsk2 for s ¼ 1;2; . . . ;v;

3: for ‘ ¼ 1;2 . . . ; k� 1 do

4: compute the top eigenvector qT
1;q

T
2 . . . ;q

T
v

� �T
of

A
‘ð Þ � kB ‘ð Þ by Algorithm2 in A, where qs 2 R

ds ;

5: p
‘þ1ð Þ
s ¼ qs=kqsk2 for s ¼ 1;2; . . . ;v;

6: end for

7: Ps ¼ p
1ð Þ
s ; . . . ;p

kð Þ
s

h i
for s ¼ 1;2; . . . ;v;

8: return Ps 2 O
ds�k

n o
.

Algorithm1 summarizes our range constrained successive

approximation method for solving OMvSL.

5.1. Implementation Details

According to Algorithm2 in A, the efficiency of Algorithm1 crit-

ically depends on the execution of matrix–vector products by A
‘ð Þ

and B
‘ð Þ. Noting that how A

‘ð Þ and B
‘ð Þ are defined, together with

(36a) and (36b), we find that

A
‘ð Þ ¼ P

‘ð Þ
AP

‘ð Þ; B ‘ð Þ ¼ P
‘ð Þ
BP

‘ð Þ;

where P
‘ð Þ ¼ diag P

‘
1; . . . ;P

‘
s


 �
. Thus y :¼ X

‘ð Þx where X is either A

or B can be done in three steps:

x P
‘ð Þ
x; ð38aÞ

y Xx; ð38bÞ

y P
‘ð Þ
y: ð38cÞ

The operations in (38a) and (38c) are the same one, and should

be implemented as follows. In the case of (38a), write

x ¼ xT
1; . . . ; x

T
v

� �T
where xs 2 R

ds and do

xs  xs � P ‘ð Þ
s P ‘ð Þ

s

h iT
xs

� �
8s;

where the bracket must be respected for maximum computational

efficiency. The operation in (38b) can be broken into many mini-

ones Us;txt ;Ws;sxs for all s; t whose calculations depend on the struc-
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tures in Us;t andWs;s from the underlying task. While it is impossible

for us to offer recommendations on a very general setting, a fre-

quent scenario where OMvSL is needed has Us;t and Ws;s taking

the form

Us;t ¼ AsA
T
t ; Ws;s ¼ BsB

T
s ð39aÞ

where

As ¼ Araw
s In �

1

n
1n1

T
n

� �
2 R

ds�n; ð39bÞ

Bs ¼ Braw
s In �

1

n
1n1

T
n

� �
2 R

ds�n: ð39cÞ

Here Araw
s and Braw

s represent raw input data matrices from an

application, which may also be sparse. In such a scenario, As and

Bs should not be formed explicitly in a large scale application,

i.e., at least one of ds and n is large, say in the tens of thousands

or more, and neither should Us;t and Ws;s. As an example,

ys :¼ Us;txt can be executed in the order as follows:

z Araw
t


 �T
xt; z z �

1
T
nz

n
; ys  Araw

s z:

5.2. Complexity Analysis

To get a sense of the computational complexity of OSAVE (Algo-

rithm1), in what follows we present a rough estimate, assuming

Us;t andWs;s are given and dense. For the ‘th loop: lines 3–6 of Algo-

rithm1 which calls Algorithm2 in A, we have, for the leading cost

terms for one loop of Algorithm2 (lines 6–10),

(a) matrix–vector products by A
‘ð Þ and

B
‘ð Þ : 2nnkry d

2
þ
P

sd
2
s þ 8d‘

� �
,

(b) orthgonalization in generating W : 6dnnkry if by the Lanczos

process or 2dn
2
nkry

if also with full reorthgonalization

(recommended),

(c) forming WTAW and WTBW (assuming AW and BW built

along the way are reused): 4dn
2
nkry

,

(d) solving WTAW � kWTBW : 14n3
nkry

[p.500] [38].

Here d ¼
P

sds and these estimates work for ‘ ¼ 0, i.e., line 1 of

Algorithm1, too. For simplicity, let us assume that on average Algo-

rithm2 takes m iterations to finish, and full reorthgonalization is

used for robustness. Then the overall complexity estimate is

m knnkry 2d
2
þ
X

s

d
2
s þ 6dnnkry

" #
þ 8nnkrydk

2

( )

 2mknnkryd

2
; ð40Þ

where we have dropped the cost in solving WTAW � kWTBW due to

that nnkry is usually of O 1ð Þ, and we have assumed k� d in practice.

Further improvement in complexity is possible if As and Bs in (39)

are very sparse, and then d
2
in (40) can be replaced by the total

number of nonzero entries in As and Bs for all s. For the ease of com-

parison, we summarize the computational complexity of several

related methods in Table 1, where O d
2
n

� �
in most of the complexity

estimates is for forming all Us;t and Ws;s. Note that nkry is small, e.g.,

10 as used in our implementation and the numberm of iterations in

OSAVE is usually small, e.g., around 10. We include a parameter m

(the number of iterations) in the complexity for SaDCCA as it has to

be solved iteratively and it is often rather large for a reasonable pre-

cision requirement. It is clear that OSAVE has complexity depending

only on d
2
instead of d

3
of others except RAMC. Hence OSAVE is

more efficient for high-dimensional data and more views.

6. Experiments

In this section, we will evaluate the effectiveness of our pro-

posed models instantiated from the unified framework (18) by

comparing with existing methods on two learning tasks: multi-

view feature extraction in SubSection 6.1 and multi-view multi-

label classification in SubSection 6.2.

6.1. Multi-view Feature Extraction

6.1.1. Datasets

Five datasets in Table 2 are used to evaluate the performance of

the proposed models: OGMA, OMLDA, and OMvMDA in terms of

multi-view feature extraction. We apply various feature descrip-

tors, including CENTRIST [73], GIST [74], LBP [75], histogram of ori-

ented gradient (HOG), color histogram (CH), and SIFT-SPM [76], to

extract features of views for image datasets: Caltech1011[77] and

Scene152 [76]. Note that we drop CH for Scene15 due to the gray-

level images. Multiple Features (mfeat)3 and Internet Advertise-

ments (Ads)4 are publicly available from UCI machine learning

repository. The dataset mfeat contains handwritten numeral data

with six views including profile correlations (fac), Fourier coeffi-

cients of the character shapes (fou), Karhunen-Love coefficients

(kar), morphological features (mor), pixel averages in 2� 3 windows

(pix), and Zernike moments (zer). Ads is used to predict whether or

not a given hyperlink (associated with an image) is an advertisement

and has three views: features based on the terms in the images URL,

caption, and alt text (url + alt + caption), features based on the terms

in the URL of the current site (origurl), and features based on the

terms in the anchor URL (ancurl).

6.1.2. Compared Methods

As shown in SubSection 4.3, our proposed models, although

instantiated from the proposed framework (18), are inspired by

some of the existing ones. Hence, the three proposed models have

close counterparts via solving generalized eigenvalue problems.

Specifically, the compared methods are.

� GMA [24]: (10a) with constraint (11);

� MLDA and MLDA-m with modifications [26]: (10a) with con-

straint (12) and its variant;

� MvMDA [25]: (13);

� MULDA and MULDA-m with modifications [26]: MLDA and

Table 1

Computational complexity where d ¼
P

v

s¼1ds;m is the number of iterations for those

that are solved iteratively, k is the reduced dimension, c is the number of class labels,

and nkry is the order of the Krylov space in OSAVE.

method complexity

GMA O d
3
þ d

2
n

� �

MvMDA O d
3
þ d

2
n

� �

MLDA O d
3
þ d

2
n

� �

MULDA O md
3
þ d

2
n

� �

SaDCCA O md
2
n

� �

CRMvFE O d
3
þ d

2
n

� �

RAMC O m nc þmin d
3
þ nd

2
;n3 þ n2d

n oh i� �

OSAVE O mknkryd
2
þ d

2
n

� �

1 http://www.vision.caltech.edu/Image_Datasets/Caltech101/
2 https://figshare.com/articles/15-Scene_Image_Dataset/7007177
3 https://archive.ics.uci.edu/ml/datasets/Multiple + Features
4 https://archive.ics.uci.edu/ml/datasets/internet + advertisements
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MLDA-mwith additional uncorrelated constraints, respectively;

� CRMvFE and RCRMvFE [10]: (9) and its variant by replacing

square loss with the ‘2;1 norm;

� SaDCCA [9]: (14);

� RAMC [42]: (15);

� OGMA: proposed model instantiated from (18) with (19);

� OMLDA: proposed model instantiated from (18) with (19a) and

(20);

� OMvMDA: proposed model instantiated from (18) with (21).

Except for MvMDA and OMvMDA, all methods share the same

trade-off parameter to balance the pairwise correlation and super-

vised information. In our experiments, we set as;t ¼ a;8s: ¼ t so as

to reduce the complexity of model selection and tune

a 2 0:01;0:1;1;10;100f g for proper balance in supervised setting.

To prevent the singularity of matrices Ws;s

� �
, we add a diagonal

matrix with a small value, e.g., 10�8, to Ws;s 8s for all compared

methods.

6.1.3. Classification

To evaluate the learning performance of comparedmethods, the

1-nearest neighbor classifier as the base classifier is employed. We

run each method to learn projection matrices by varying the

dimension of the common subspace k 2 2;30½ � for all datasets

except for mfeat with k 2 2;6½ � due to the smallest view of 6 fea-

tures. We split the data into training and testing with ratio

10/90. The learned projection matrices are used to transform both

training and testing data into the latent common space, and then

classifier is trained and tested in this space. Following [34,33,30],

the serial feature fusion strategy is employed by concatenating

projected features from all views. Classification accuracy is used

to measure the learning performance. Experimental results are

reported in terms of the average and standard deviation over 10

randomly drawn splits.

Table 3 shows the best results of 13 compared methods on 5

multi-view datasets with 10% training and 90% testing over all

tested ks and as (the analysis on parameter sensitivity and training

sample size will be discussed in SubSections 6.1.4 and 6.1.5,

respectively). From Table 3, we have the following observations:

(i) our proposed models instantiated from (18) generally outper-

form their counterparts which resort to relax their respective orig-

inal problems to generalized eigenvalue problems for the

convenience of their numerical computations; (ii) our proposed

models instantiated from (18) outperform the four most recently

methods; (iii) three proposed models produce best results on dif-

ferent datasets, while OGMA and OMLDA perform consistently bet-

ter than OMvMDA on four of the five datasets. This empirically

shows that the model hypothesis in each model is data-

dependent, but our proposed trace ratio formulation with orthog-

onality constraints can help boost the performance of their coun-

terparts with large margins over three of the five datasets.

6.1.4. Parameter Sensitivity Analysis

The sensitivity analyses on parameters k and a are performed

by varying one of them while recording the best average accuracy

over the other within its testing range.

Fig. 1 shows the results of 13 methods on 5 datasets as k varies.

Most compared methods demonstrate the increasing trend in

accuracy when k increases. The proposed methods produce consis-

tently better accuracies than others. On Ads, Caltech101-7 and

Reuters, our methods show the saturation on accuracy, while

MvMDA shows a significant drop after the certain k on three of five

datasets.

We further investigate the impact of parameter a on GMA,

OGMA, MLDA and OMLDA except MvMDA and OMvMDA since

both methods do not contain parameter a. In Fig. 2, GMA and

OGMA demonstrates quite robust to a, and the best accuracy can

be obtained around a ¼ 10�2. However, MLDA and OMLDA are

quite sensitive to a and the accuracy decreases significantly espe-

cially for a > 0:1. These observations imply that more contribution

from pairwise correlation may hurt MLDA and OMLDA, but no

noticeable impact on GMA and OGMA. Over all tested as, our pro-
posed methods outperform their counterparts.

6.1.5. Impact on Training Sample Size

We further show the impact of training sample size on the

compared methods by varying the ratio of training data from

10% to 60%. The best average results over 10 randomly drawn

Table 2

Datasets for feature extraction (followed by classification), where the number of features for each view is shown inside the bracket.

Dataset n c view 1 view 2 view 3 view 4 view 5 view 6

mfeat 2000 10 fac (216) fou (76) kar (64) mor (6) pix (240) zer (47)

Caltech101-7 1474 7 CENTRIST (254) GIST (512) LBP (1180) HOG (1008) CH (64) SIFT-SPM (1000)

Caltech101-20 2386 20 CENTRIST (254) GIST (512) LBP (1180) HOG (1008) CH (64) SIFT-SPM (1000)

Scene15 4310 15 CENTRIST (254) GIST (512) LBP (531) HOG (360) SIFT-SPM (1000) -

Ads 3279 2 url + alt + caption (588) origurl (495) ancurl (472) - - -

Table 3

Means and standard deviations of accuracy by the 1-nearest neighbor classifier on embeddings by 13 methods on 5 multi-view datasets over 10 random draws (10% training and

90% testing). N/A in RCRMvPE for Ads is due to its numerical difficulty in producing a result.

method mfeat Ads Scene15 Caltech101-7 Caltech101-20

GMA 0.9399 � 0.0087 0.9261 � 0.0176 0.6166 � 0.0120 0.9325 � 0.0104 0.8130 � 0.0106

MLDA 0.9284 � 0.0052 0.9309 � 0.0079 0.5468 � 0.0137 0.9229 � 0.0079 0.7659 � 0.0117

MvMDA 0.9378 � 0.0091 0.7796 � 0.0360 0.6088 � 0.0146 0.9265 � 0.0078 0.8050 � 0.0132

MULDA 0.9523 � 0.0046 0.9249 � 0.0352 0.5789 � 0.0121 0.9265 � 0.0083 0.8220 � 0.0109

MLDA-m 0.9309 � 0.0079 0.9418 � 0.0061 0.5699 � 0.0120 0.8978 � 0.0098 0.7377 � 0.0114

MULDA-m 0.9512 � 0.0044 0.9282 � 0.0362 0.5795 � 0.0154 0.9259 � 0.0099 0.8217 � 0.0058

CRMvFE 0.9545 � 0.0032 0.9312 � 0.0058 0.6190 � 0.0061 0.9350 � 0.0089 0.8251 � 0.0095

RCRMvFE 0.9402 � 0.0089 N/A 0.6378 � 0.0090 0.9310 � 0.0081 0.8198 � 0.0069

SaDCCA 0.8963 � 0.0105 0.8930 � 0.0127 0.6307 � 0.0213 0.8935 � 0.0127 0.7726 � 0.0105

RAMC 0.9008 � 0.0093 0.9257 � 0.0122 0.6268 � 0.0598 0.9278 � 0.0085 0.8241 � 0.0103

OGMA (proposed) 0.9609 � 0.0060 0.9412 � 0.0114 0.7359 � 0.0156 0.9501 � 0.0052 0.8600 � 0.0103

OMLDA (proposed) 0.9571 � 0.0064 0.9410 � 0.0115 0.7547 � 0.0105 0.9498 � 0.0048 0.8685 � 0.0100

OMvMDA (proposed) 0.9599 � 0.0063 0.9423 � 0.0103 0.7198 � 0.0191 0.9471 � 0.0072 0.8428 � 0.0102
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splits are reported. Fig. 3 shows the accuracy improves when the

training ratio is increasing on Ads and Caltech101-7. It is

observed that (i) all methods show better performance when

training sample size increases, (ii) our proposed methods show

consistently better results than others, and (iii) all methods con-

verge to similar results when training sample size becomes very

large except MvMDA.

6.1.6. Exploratory Analysis via Data Visualization

We further investigate the embeddings learned by our proposed

methods and their counterparts, especially for the impact of

orthogonality constraints, including three existing methods:

GMA, MLDA and MvMDA, and three newly proposed methods:

OGMA, OMLDA and OMvMDA. We randomly draw 10% instances

from mfeat for training, and the rest 90% for testing. Each method

is used to learn projection matrices from training data, and then

Fig. 1. Classification accuracy of 13 methods on 5 datasets over 10 random splits (10% training and 90% testing), as k varies..
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transforms both training and testing data to the common space R
k.

The concatenation of projected points for each instance in all 6

views is used as the low-dimensional representation of the

instance. t-SNE [78] is used to obtain the 2-D embeddings of the

low-dimensional representations for training and testing sets,

respectively. Except MvMDA and OMvMDA, the other four meth-

ods have a hyperparameter a, which is tuned with the set

0:01;0:1;1;10;100f g for the best testing accuracy. The 2-D embed-

digns of six methods on both training and testing sets are shown in

Fig. 4. We have the following observations: (i) methods without

orthogonality constraints suffer from noisy or outliers in embed-

dings of training data, while methods with orthogonality con-

straints do not; (ii) the generalization performance in terms of

both accuracy and visual pattern of clustering structure by our

methods which have orthogonality constraints are superior to their

counterparts. These observations are consistent with our motiva-

tion we laid out in Section 4.1, that is that orthogonality con-

straints can admit robustness to data noise and are advantageous

for data visualization, and also possess better generalization

performance.

Fig. 2. Classification accuracy by 4 methods on mfeat and Ads over 10 random splits (10% training and 90% testing), as a varies in 10�5;102
h i

.

Fig. 3. Classification accuracy by all 13 methods on Ads and Scene15 as the ratio of training data varies from 10% to 60%..

Table 4

Multi-view multi-label datasets for classification

samples (n) labels views (v)

emotions 593 6 2

Corel5k 4999 260 7

espgame 20770 268 7

pascal07 9963 20 7

Table 5

Results in terms of 7 metrics on emotions over 10 random splits (10% for training and 90% for testing). Best results are in bold.

method Hamming Loss # One Error # Coverage # Average Precision " Accuracy " macroF1 " microF1 "

view-1 0.3060�0.0156 0.4672�0.0312 2.4903�0.1790 0.6647�0.0181 0.2900�0.0612 0.3164�0.0454 0.3971�0.0678

view-2 0.3403�0.0247 0.5949�0.0422 3.1069�0.0625 0.5678�0.0174 0.1832�0.0320 0.2010�0.0454 0.2696�0.0410

concat 0.3046�0.0155 0.4869�0.0359 2.8039�0.1208 0.6290�0.0232 0.2476�0.0462 0.2661�0.0466 0.3557�0.0410

sM2CP 0.3770�0.0298 0.6315�0.0383 3.0390�0.2060 0.5552�0.0275 0.2273�0.0225 0.2840�0.0576 0.3227�0.0407

MCCA 0.3661�0.0267 0.6399�0.0321 3.1830�0.1291 0.5468�0.1291 0.1760�0.0651 0.1953�0.0724 0.2546�0.0771

OM2CCA 0.3006�0.0124 0.4948�0.0488 2.5740�0.1779 0.6492�0.1777 0.2740�0.0512 0.3412�0.0580 0.3949�0.0578

HSIC-GEV 0.3646�0.0241 0.6223�0.0466 3.0798�0.1888 0.5553�0.1888 0.2561�0.0330 0.2470�0.0426 0.3363�0.0350

OHSIC 0.2953�0.0110 0.4655�0.0342 2.4850�0.1222 0.6662�0.1222 0.3116�0.0380 0.3554�0.0476 0.4325�0.0359
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6.2. Multi-view Multi-label Classification

6.2.1. Datasets

The statistics of four publicly available datasets are shown in

Table 4, and they are employed to evaluate the proposed methods

for multi-view multi-label classification. Dataset emotions5 has

two feature views: 8 rhythmic attributes and 64 timbre attributes.

Corel5k [79] is a benchmark dataset for keyword based image retrie-

val and image annotation. Dataset espgame [80] is obtained from an

online game where two players gain points by agreeing on words

describing the image. Dataset pascal07 [81] is collected from the

Flickr website. The last three datasets have been preprocessed with

various feature descriptors and are publicly available6 [82,83]. In our

experiments, we choose 7 descriptors: DenseHue (100), Dense-

HueV3H1 (300), DenseSift (1000), Gist (512), HarrisHue (100), Har-

risHueV3H1 (300), and HarrisSift (1000).

6.2.2. Compared Methods

We compare the following multi-view subspace learning

approaches for multi-label classification:

� view-s: the embeddings are obtained by PCA on the sth view.

� concat: the concatenation of embeddings of all views by PCA.

� MCCA [21]: the output labels considered as an additional view.

Hence, there are v þ 1 views. The projection matrix for the out-

put labels is learned but not used.

� sM2PC [51]: (16) with supervised information encoded in the

CCA-based model.

� HSIC-GEV: proposed model solved as a generalized eigenvalue

problem, which is similar to MLDA, but Us;s is defined in (24a)

catering for multi-label outputs.

Table 6

Results in terms of 7 metrics on Corel5k over 10 random splits (10% for training and 90% for testing). Best results are in bold.

method Hamming Loss # One Error # Coverage # Average Precision " Accuracy " macroF1 " microF1 "

view-1 0.0131�0.0001 0.7153�0.0147 95.3444�1.4930 0.2637�0.0055 0.0177�0.0094 0.0074�0.0042 0.0351�0.0185

view-2 0.0131�0.0001 0.7031�0.0110 94.9287�1.6843 0.2689�0.0047 0.0190�0.0063 0.0088�0.0042 0.0374�0.0131

view-3 0.0131�0.0001 0.6606�0.0072 95.3894�1.7478 0.2862�0.0035 0.0322�0.0066 0.0082�0.0017 0.0604�0.0123

view-4 0.0131�0.0000 0.7187�0.0154 97.7932�1.6951 0.2592�0.0045 0.0137�0.0071 0.0048�0.0020 0.0259�0.0133

view-5 0.0131�0.0000 0.7366�0.0107 96.2485�1.4062 0.2502�0.0039 0.0099�0.0035 0.0037�0.0018 0.0195�0.0064

view-6 0.0131�0.0000 0.7365�0.0137 96.2007�1.3439 0.2520�0.0060 0.0103�0.0052 0.0050�0.0023 0.0209�0.0110

view-7 0.0131�0.0000 0.6906�0.0065 96.3108�1.3974 0.2716�0.0035 0.0137�0.0052 0.0059�0.0018 0.0265�0.0099

concat 0.0131�0.0001 0.6591�0.0135 92.5057�2.1126 0.2999�0.0063 0.0291�0.0083 0.0135�0.0039 0.0556�0.0156

sM2CP 0.0131�0.0000 0.7799�0.0109 105.1170�1.4039 0.2120�0.0024 0.0000�0.0000 0.0000�0.0000 0.0000�0.0000

MCCA 0.0131�0.0000 0.7799�0.0115 104.9648�1.4837 0.2121�1.4837 0.0000�0.0000 0.0000�0.0000 0.0000�0.0000

OM2CCA 0.0130�0.0000 0.6982�0.0106 94.7535�1.4380 0.2729�1.4651 0.0244�0.0080 0.0126�0.0045 0.0487�0.0158

HSIC-GEV 0.0131�0.0000 0.7885�0.0161 104.6444�1.5763 0.2011�1.6329 0.0169�0.0247 0.0010�0.0017 0.0270�0.0393

OHSIC 0.0130�0.0001 0.6374�0.0126 91.8414�1.5051 0.3022�1.3774 0.0879�0.0092 0.0230�0.0032 0.1538�0.0136

Table 7

Results in terms of 7 metrics on espgame over 10 random splits (10% for training and 90% for testing). Best results are in bold.

method Hamming Loss # One Error # Coverage # Average Precision " Accuracy " macroF1 " microF1 "

view-1 0.0174�0.0000 0.6762�0.0052 134.8974�0.5372 0.2235�0.0014 0.0216�0.0032 0.0042�0.0005 0.0340�0.0051

view-2 0.0174�0.0000 0.6766�0.0058 134.6899�0.6207 0.2238�0.0013 0.0214�0.0041 0.0044�0.0006 0.0347�0.0061

view-3 0.0175�0.0000 0.7213�0.0049 129.8373�0.4775 0.2185�0.0015 0.0082�0.0033 0.0048�0.0010 0.0176�0.0067

view-4 0.0175�0.0000 0.7169�0.0032 129.1738�0.7794 0.2201�0.0013 0.0084�0.0017 0.0080�0.0014 0.0183�0.0038

view-5 0.0174�0.0000 0.6668�0.0051 135.3101�0.4779 0.2262�0.0016 0.0229�0.0016 0.0043�0.0004 0.0351�0.0028

view-6 0.0174�0.0000 0.6687�0.0033 135.4435�0.4592 0.2252�0.0010 0.0225�0.0035 0.0043�0.0006 0.0348�0.0057

view-7 0.0175�0.0000 0.7279�0.0049 130.7208�0.5104 0.2160�0.0016 0.0079�0.0022 0.0046�0.0006 0.0171�0.0044

concat 0.0175�0.0000 0.6989�0.0063 128.8904�0.6606 0.2283�0.0010 0.0117�0.0021 0.0087�0.0017 0.0254�0.0047

SM2CP 0.0177�0.0002 0.6981�0.0263 136.3555�1.1158 0.2075�0.0079 0.0670�0.0142 0.0221�0.0090 0.1256�0.0233

MCCA 0.0174�0.0001 0.6784�0.0518 134.1460�1.9614 0.2249�1.9531 0.0190�0.0112 0.0045�0.0027 0.0306�0.0191

OM2CCA 0.0174�0.0000 0.6283�0.0040 132.0874�0.5329 0.2454�0.5074 0.0306�0.0035 0.0068�0.0006 0.0490�0.0055

HSIC-GEV 0.0174�0.0000 0.6236�0.0053 131.9247�0.6241 0.2481�0.6241 0.0900�0.0026 0.0244�0.0013 0.1606�0.0039

OHSIC 0.0174�0.0000 0.6207�0.0053 131.5208�0.5965 0.2495�0.5965 0.0362�0.0036 0.0077�0.0007 0.0604�0.0061

Table 8

Results in terms of 7 metrics on pascal07 over 10 random splits (10% for training and 90% for testing). Best results are in bold.

method Hamming Loss # One Error # Coverage # Average Precision " Accuracy " macroF1 " microF1 "

view-1 0.0730�0.0005 0.5946�0.0029 6.9247�0.1447 0.4425�0.0029 0.0686�0.0256 0.0240�0.0074 0.1299�0.0424

view-2 0.0729�0.0002 0.5950�0.0031 6.7332�0.1332 0.4466�0.0033 0.0744�0.0231 0.0246�0.0036 0.1397�0.0364

view-3 0.0715�0.0005 0.5819�0.0044 5.9969�0.1021 0.4800�0.0043 0.0824�0.0238 0.0368�0.0101 0.1500�0.0401

view-4 0.0702�0.0003 0.5656�0.0042 5.8909�0.0956 0.4928�0.0034 0.1320�0.0252 0.0574�0.0071 0.2247�0.0337

view-5 0.0716�0.0004 0.5941�0.0026 6.7623�0.0936 0.4482�0.0032 0.0950�0.0247 0.0284�0.0056 0.1720�0.0387

view-6 0.0719�0.0006 0.5945�0.0022 6.7054�0.0993 0.4498�0.0023 0.0977�0.0270 0.0299�0.0058 0.1764�0.0403

view-7 0.0699�0.0005 0.5617�0.0049 5.6492�0.0718 0.5006�0.0040 0.1206�0.0196 0.0505�0.0064 0.2110�0.0277

concat 0.0700�0.0003 0.5634�0.0061 5.7465�0.1130 0.4996�0.0047 0.1405�0.0165 0.0656�0.0096 0.2385�0.0230

sM2CP 0.1198�0.0165 0.7706�0.0301 9.8902�0.5857 0.3023�0.0419 0.1255�0.0251 0.0704�0.0119 0.1974�0.0328

MCCA 0.0691�0.0002 0.5700�0.0054 5.5241�0.0599 0.4991�0.05993 0.0935�0.0571 0.0203�0.0098 0.1553�0.0837

OM2CCA 0.0694�0.0003 0.5723�0.0060 5.5003�0.0788 0.4960�0.0714 0.1268�0.0220 0.0473�0.0078 0.2231�0.0288

HSIC-GEV 0.0678�0.0004 0.5569�0.0046 5.4652�0.1018 0.5088�0.1018 0.1446�0.0134 0.0479�0.0071 0.2357�0.0126

OHSIC 0.0678�0.0004 0.5604�0.0046 5.3753�0.0679 0.5073�0.0525 0.1816�0.0116 0.0681�0.0115 0.2908�0.0131

5 http://mulan.sourceforge.net
6 http://lear.inrialpes.fr/people/guillaumin/data.php
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� OM2CCA: the proposed model instantiated from (18) with v þ 1

views using (22). Different from [33], all multiple views as input

are used.

� OHSIC: proposed model instantiated from (18) with (4).

After the projection matrices are learned, we apply ML-kNN7 in

the common space as the backend multi-label classifier [36], which

has demonstrated good performance over various datasets.

6.2.3. Performance Evaluation

Seven widely-used metrics are used to measure performance,

including Hamming Loss, One Error, Coverage, Average Precision,

Accuracy, macroF1 and microF1. Each evaluates the performance

of a multi-label predictor from different aspects. Their concrete

definitions can be found in [44,84]. In particular, the larger the last

four metrics are, the better the performance, while for the other

three metrics, the smaller the value the better the performance.

Following [36], for each method we report the best results and

their standard deviations over 10 random training/testing splits

in each of the five metrics.

Results by compared methods are shown in Tables 5–8, in

which the best results are reported by tuning

a 2 0:01;0:1;1;10;100f g and k 2 2;5 : 5 : 50f g except for emotions

and pascal07 (MCCA and OM2CCA cannot have k larger than the

number of labels), over 10 random splits of 10% training and

90% testing. It can be observed that (i) the joint subspace learning

methods generally work better than PCA and the concatenation of

individually projected views by PCA; (ii) the proposed OHSIC con-

sistently outperform others except in some cases that sM2CP

works best on pascal07 in terms of macroF1 and concat works best

on espgame in terms of Coverage.

We further investigate the impact of parameter k on each of the

four metrics. Fig. 5 shows the trends of four metrics on Corel5k and

pascal07 as k varies. It is observed that a large k generally leads to

better performance for all methods, as it should be. Although Ham-

ming Loss on Corel5k shows some fluctuation, the absolute differ-

ence is negligibly in the order of 10�5. In summary, OHSIC can work

consistently well over all tested ks.

7. Conclusions

In this paper, we start by proposing a trace ratio formulation for

multi-view subspace learning, which aims to learn a set of orthog-

onal projections for desirable advantages such as more noise-

tolerant, better suited for data visualization and distance preserva-

tion. The proposed formulation can be easily extended for single-

view and multi-view learning in the settings of both unsupervised

Fig. 5. Results with respect to seven metrics by compared methods on Corel5k (first and second rows) and pascal07 (third and fourth rows) over 10 random splits (10%

training and 90% testing), as k varies..

7 http://lamda.nju.edu.cn/files/MLkNN.rar
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and supervised learning. An efficient successive approximations

via eigenvectors method (OSAVE) is designed to approximately

solve the optimization problem resulted from the proposed formu-

lation. It is built upon well developed numerical linear algebra

technique and can handle large scale datasets. To verify the capa-

bility of the proposed formulation and the approximate optimiza-

tion method, we showcase six new models for two learning tasks.

Experimental results on various real-world datasets demonstrate

that our proposed models solved by our OSAVE perform competi-

tively to and often better than the baselines.
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Appendix A. An Eigenvalue Algorithm

Currently there is no numerically efficient method to solve

OMvSL (18), especially for high-dimensional datasets. Our orthog-

onal successive approximation via eigenvectors (OSAVE), Algo-

rithm1 in Section 5, relies upon a Krylov subspace method that

is suitable for computing the top eigenpair for the generalized

eigenvalue problem. To simplify notation, we will describe the

method generically for

Ax ¼ kBx with x 2 R Bð Þ; ðA:1Þ

where A; B 2 R
d�d are symmetric, the column subspace

R Að Þ#R Bð Þ;B � 0 and possibly B is singular. Suppose that

matrix–vector products, Ax and Bx for any given x, are the only

operations that can be done numerically.

The Krylov subspace method will serve as the workhorse of

OSAVE that approximately solves OMvSL (18). It is worth noting

that B may be singular and will be singular in our applications. A

common past practice in data science is simply to perturb B to

Bþ �Id for some tiny � > 0 as a regularization and solve

Ax ¼ k Bþ �Idð Þx instead. While this successfully gets rid of the sin-

gularity issue, it may create a more serious one in that the eventu-

ally computed top eigenvector likely falls into the null spaces of A

and B and is thus useless for the underlying application.

The method is the so-called Locally Optimal Block Precondi-

tioned Extended Conjugate Gradient method (LOBPECG) [Algo-

rithm 2.3] [85] which combines LOBPCG of Knyazev [86] and the

inverse free Krylov subspace method of Golub and Ye [87]. For our

current application, we will simply use the version without pre-

conditioning and blocking. Algorithm2 outlines an adaption of

[Algorithm 2.3] [85] for (A.1).

Algorithm2: Locally Optimal Extended Conjugate Gradient

method (LOECG) [85–87]

Input: eigenvalue problem (A.1), nkry, tolerance tol;

Output: top eigenpair k; xð Þ.

1: pick a random x1 2 R
d;

2: x1 ¼ Bx1, x1 ¼ x1=kx1k2, q ¼ xT1Ax1=x
T
1Bx1;

3: r ¼ Ax1 � qBx1, res ¼ krk2= kAk2 þ jqjkBk2ð Þ;

4: x0 ¼ 0;

5: while res P tol do

6: compute an orthonormal basis matrix Z of the Krylov

subspace

R Zð Þ ¼ R x1; A� qBð Þx1; . . . ; A� qBð Þnkryx1

� �
 �
; ðA:2Þ

7: p ¼ x0 � Z ZTx0

� �
, W ¼ Z;p=kpk2½ �;

8: compute the top eigenpair q; zð Þ of WTAW � kWTBW ,

where kzk2 ¼ 1;

9: x0 ¼ x1;

10: x1 ¼Wz, r ¼ Ax1 � qBx1, res ¼ krk2= kAk2 þ jqjkBk2ð Þ;

11: end while

12: return q; x1ð Þ.

A few comments regarding this algorithm and its efficient

implementation are in order:

1. There is no need to use kAk2 and kBk2 exactly. Some very rough

estimates are just good enough so long as the estimates have

the same magnitudes, respectively.

2. At line 2, it is to make sure x1 2 R Bð Þ.

3. There are two parameters to choose: the order nkry of the Krylov

space (A.2) and the stopping tolerance tol. There is no easy way

to determine what the optimal nkry is. In general, the larger nkry

is, the faster the convergence, but then more work in generating

the orthonormal basis matrix Z. Usually nkry ¼ 10 is good. For

applications that required accuracy is not too stringent,

tol ¼ 10�6 is often more than adequate.

4. The orthonormal basis matrix Z can be efficiently computed by

the symmetric Lanczos process [88]. For better numerical sta-

bility in making sure ZTZ ¼ I within the working precision, re-

orthogonalization may be necessary.

5. At line 7, some guard step must be taken. For example, in the

first iteration x0 ¼ 0 and so p ¼ 0. We should just let W ¼ Z.

In the subsequent iterations, we will have to test whether x0

is in or nearly in R Zð Þ. For that purpose, we need another toler-

ance, e.g., if kpk2 6 10�12, then we will regard already x0 2 R Zð Þ

and set W ¼ Z; otherwise, re-orthogonalize p against

Z : p ¼ p� Z ZT
p

� �
to make sure WTW ¼ I within the working

precision.

6. At line 8, AW and BW, except their last columns, are likely

already computed at the time of generating Z at line 6. They

should be reused here to save work.

7. The eigenvalue problem for WTAW � kWTBW is of very small

size nkry þ 1

 �

� nkry þ 1

 �

at most and also WTBW 
 0 as guar-

anteed by Lemma 1 below. It can be solved by first computing

the Cholesky decomposition WTBW ¼ RTR and then the full

eigen-decomposition of R�T WTAW
� �

R�1. Finally, z ¼ R�1w,

where w is the top eigenvector of R�T WTAW
� �

R�1.
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Lemma 1. In Algorithm2, R Wð Þ#R Bð Þ and thus WTBW 
 0.

Proof. Initially, after line 2, x1 2 R Bð Þ. Therefore at (A.2),

R Zð Þ#R Bð Þ because R Að Þ#R Bð Þ. In the first iteration of the

while-loop, x0 ¼ 0 and W ¼ Z and so R Wð Þ#R Bð Þ; x0; x1 2 R Bð Þ.

Inductively, each time at the beginning of executing the while-

loop, we have x0; x1 2 R Bð Þ. So we will have at line 7, p 2 R Bð Þ

and R Zð Þ#R Bð Þ, implying R Wð Þ#R Bð Þ. Consequently, at the con-

clusion of executing the while-loop, we still have x0; x1 2 R Bð Þ.

Since B � 0 and R Wð Þ#R Bð Þ;WTBW must be positive definite.

Appendix B. Proof of Theorem 1

We will show that the feasible sets for (34) and (35) are the

same and f qsf gð Þ ¼ f ‘ qsf gð Þ for any vector qsf g in the feasible set.

Let qsf g satisfy the constraints of (34). Since qT
s P

‘ð Þ
s ¼ 0, we have

P
‘ð Þ
s qs ¼ qs. Since qs 2 R Ws;sð Þ ¼ R W

1=2
s;s

� �
where W

1=2
s;s is the unique

positive semi-definite square root of Ws;s, we have qs ¼ W
1=2
s;s ws for

some ws. Therefore

qs ¼ P
‘ð Þ
s qs ¼ P

‘ð Þ
s W

1=2
s;s ws 2 R P

‘ð Þ
s W

1=2
s;s

� �
¼ R P

‘ð Þ
s Ws;sP

‘ð Þ
s

� �
;

qT
sUs;tqt ¼ P

‘ð Þ
s qs

h iT
Us;t P

‘ð Þ
s qt

h i
¼ qT

sU
‘ð Þ
s;tqt:

Hence qsf g satisfies the constraints of (35) and

f qsf gð Þ ¼ f ‘ qsf gð Þ. On the other hand, let qsf g satisfy the constraints

of (35). Since qs 2 R W
‘ð Þ
s;s

� �
¼ R P

‘ð Þ
s W

1=2
s;s

� �
, we have qs ¼ P

‘ð Þ
s W

1=2
s;s ws

for some ws and therefore

qT
s P

‘ð Þ
s ¼ wT

sW
1=2
s;s P

‘ð Þ
s P ‘ð Þ

s ¼ 0;

qs ¼ W
1=2
s;s ws � P ‘ð Þ

s P ‘ð Þ
s

h iT
W

1=2
s;s ws 2 R W

1=2
s;s

� �
¼ R Ws;sð Þ:

That qT
sP

‘ð Þ
s ¼ 0 implies P ‘ð Þ

s qs ¼ qs for all s, and therefore

qT
sUs;tqt ¼ qT

sP
‘ð Þ
s Us;tP

‘ð Þ
t qt ¼ qT

sU
‘ð Þ
s;tqt :

Hence also qsf g satisfies the constraints of (34) and

f qsf gð Þ ¼ f ‘ qsf gð Þ.
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