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Abstract Principal component analysis (PCA) has been widely used in analyzing high-dimensional data. It

converts a set of observed data points of possibly correlated variables into a set of linearly uncorrelated variables

via an orthogonal transformation. To handle streaming data and reduce the complexities of PCA, (subspace)

online PCA iterations were proposed to iteratively update the orthogonal transformation by taking one observed

data point at a time. Existing works on the convergence of (subspace) online PCA iterations mostly focus on

the case where the samples are almost surely uniformly bounded. In this paper, we analyze the convergence

of a subspace online PCA iteration under more practical assumption and obtain a nearly optimal finite-sample

error bound. Our convergence rate almost matches the minimax information lower bound. We prove that

the convergence is nearly global in the sense that the subspace online PCA iteration is convergent with high

probability for random initial guesses. This work also leads to a simpler proof of the recent work on analyzing

online PCA for the first principal component only.
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1 Introduction

Principal component analysis (PCA) introduced in [15, 26] is one of the most well-known and popular

methods for dimensionality reduction in high-dimensional data analysis. With the volume of data

continuously increases, the classical PCA suffers from two major bottlenecks: (1) the high-computational

complexity, including the computing empirical covariance matrix and solving the eigen-decomposition
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problem, and (2) the high storage requirement for the large covariance matrix. These issues prevent PCA

from being used for solving problems with large-scale and high-dimensional data.

To reduce both the time and space complexities, Oja [24] in 1982 proposed an online PCA iteration

to approximate the first principal component—the top eigenvector of the empirical covariance matrix.

Computing the first principal component only is rarely adequate in real-world applications. Later in 1985,

Oja and Karhunen [25] proposed a subspace online PCA iteration to approximate a principal subspace

of any prescribed dimension. These methods update approximations incrementally by processing data

one vector at a time as soon as it comes in such that calculating/storing the empirical covariance matrix

explicitly is completely avoided and therefore result in no memory burden. In the rest of this paper, by

the online PCA iteration we mean the one just for computing the first principal component whereas a

subspace online PCA iteration refers to the one for computing a principal subspace.

Although the online PCA iteration [24] was proposed over 30 years ago, its convergence analysis is

rather scarce until recently. Some recent works [7, 16, 27] studied the convergence of the online PCA for

the first principal component from different points of view and obtained some results for the case where

the samples are almost surely uniformly bounded. For such a case, De Sa et al. [10] studied a different but

closely related problem, in which the angular part is equivalent to the online PCA, and obtained some

convergence results. In contrast, for the distributions with sub-Gaussian tails (note that the samples of

this kind of distributions may be unbounded), Li et al. [19] proved a nearly optimal convergence rate for

the online PCA iteration when the initial guess is randomly chosen according to a uniform distribution

and the stepsize chosen in accordance with the sample size. This result is more general than previous

ones in [7, 16, 27], because it is for distributions that can possibly be unbounded, and the convergence

rate is nearly optimal and nearly global.

For the subspace online PCA [25], some recent works studied the convergence for the case where the

samples are almost surely uniformly bounded. In a series of papers [4, 5, 21, 22], Arora et al. studied

PCA as a stochastic optimization problem and its variations via direct optimization approaches, namely

using convex relaxation and adding regularizations. The subspace iteration falls into one variant of their

methods. Hardt and Price [13] and Balcan et al. [6] treated the subspace iteration as a noisy power

method and analyzed its convergence. Li et al. [18] investigated the convergence for the case where

the initial guess follows the normal distribution. Garber et al. [12] used the shift-and-invert technique

to speed up the convergence, but their analysis was only done for the top eigenvector. Allen-Zhu and

Li [3] proposed a faster variant of the subspace online PCA iteration, along with their gap-dependent

and gap-free convergence results. However, those works are performed under the assumption that the

samples are almost surely uniformly bounded. For distributions, e.g., sub-Gaussians, that are possibly

unbounded, a thorough convergence analysis of the subspace online PCA remains elusive.

In this paper, we aim to fill up the gap by establishing a nearly optimal and nearly global convergence

rate for the subspace online PCA for samples of possibly unbounded distributions of sub-Gaussians. In

going through the proving process in [19] for the online PCA iteration, we find that there are three

major hurdles, as we will explain in detail in Subsection 4.2, that prevent their proving technique for one-

dimensional case, i.e., the most significant principal component, from being straightforwardly generalized

to analyze the multi-dimensional case, i.e., significant principal subspaces. To overcome these challenging

difficulties, we adopt a new proving technique and apply it to a variant of subspace online PCA to fulfill

the goal. The variant is mathematically equivalent to the original one in [25] except without explicit

references to QR decompositions for orthogonalization, and is essentially the same as the orthogonal Oja

algorithm of Abed-Meraim et al. [1]. In addition to the advantages inherited from online PCA, it leads to

a computationally economical formula for the subspace online iteration. Some of the proving techniques

are built by ourselves with the help of the theory of special functions of a matrix argument, which is rarely

used in the statistical community. We mention in passing that our proving technique may be specialized

to the online PCA for a simpler proof than that in [19] for the most significant principal component.

The rest of this paper is organized as follows. We first briefly introduce the related work in Section 2.

In Section 3, we propose a variant of the subspace online PCA iteration (2.6), which will be the version to

be analyzed. Our main results are stated in Section 4 together with three main theorems and discussions
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of the newly invented proving technique, where we compare our results for the one-dimensional case with

the recent results in [19] and outline the technical differences in proofs between ours and those from [19].

Our proofs are given in Sections 5 and 6. Finally, in Section 7 we draw our conclusions. Some of the

complicated calculations are deferred to Appendix A for clarity.

Notation. Rn×m is the set of all the n ×m real matrices, Rn = Rn×1 and R = R1. In (or simply I

if its dimension is clear from the context) is the n× n identity matrix and ej is its j-th column (usually

with dimension determined by the context). For a matrix X, σ(X), ∥X∥∞, ∥X∥2 and ∥X∥F are the

multiset of the singular values, the ℓ∞-operator norm, the spectral norm and the Frobenius norm of X,

respectively. R(X) is the subspace spanned by the columns of X, X(i,j) is the (i, j)-th entry of X, and

X(k:ℓ,:) and X(:,i:j) are two submatrices of X consisting of its row k to the row ℓ and the column i to the

column j, respectively. X ◦ Y is the Hadamard, i.e., entrywise, product of matrices (vector) X and Y of

the same size.

For any vector or matrices X and Y , X 6 Y (X < Y ) means X(i,j) 6 Y(i,j) (X(i,j) < Y(i,j)) for any i

and j. X > Y (X > Y ) if −X 6 −Y (−X < −Y ); X 6 α (X < α) for a scalar α means X(i,j) 6 α

(X(i,j) < α) for any i and j; similarly X > α and X > α. For a subset or an event A, Ac is the

complement set of A. By σ{A1, . . . ,Ap}, we denote the σ-algebra generated by the events A1, . . . ,Ap;
N = {1, 2, 3, . . .}. E{X;A} := E{X1A} denotes the expectation of a random variable X over event A.
Note that

E{X;A} = E{X | A}P{A}. (1.1)

For a random vector or matrix X, E{X} := [E{X(i,j)}]. Note that ∥E{X}∥ui 6 E{∥X∥ui} for ui = 2, F.

Write cov◦(X,Y ) := E{[X − E{X}] ◦ [Y − E{Y }]} and var◦(X) := cov◦(X,X).

Denote by Gp(Rd) the Grassmann manifold of all the p-dimensional subspaces of Rd. For two subspaces

X , Y ∈ Gp(Rd), let X, Y ∈ Cd×p be the basis matrices of X and Y, respectively, i.e., X = R(X) and

Y = R(Y ), and denote by σj for 1 6 j 6 p in the nondecreasing order, i.e., σ1 6 · · · 6 σp, the

singular values of (XTX)−1/2XTY (Y TY )−1/2. The p canonical angles θj(X ,Y) between X and Y are

defined by 0 6 θj(X ,Y) := arccosσj 6 π
2 for 1 6 j 6 p. They are in the non-increasing order, i.e.,

θ1(X ,Y) > · · · > θp(X ,Y). Set Θ(X ,Y) = diag(θ1(X ,Y), . . . , θp(X ,Y)). It can be seen that angles so

defined are independent of the basis matrices X and Y , which are not unique. With the definition of

canonical angles, ∥sinΘ(X ,Y)∥ui for ui = 2, F are metrics on Gp(Rd) [28, Subsection II.4].

In what follows, we sometimes place a vector or matrix in one or both arguments of θj(·, ·) and Θ(·, ·)
with the understanding that it is about the subspace spanned by the vector or the columns of the matrix

argument. For any X ∈ Rd×p, if X(1:p,:) is nonsingular, then we can define

T (X) := X(p+1:d,:)X
−1
(1:p,:). (1.2)

2 Related work

Let X ∈ Rd be a d-dimensional random vector with the mean E{X} and the covariance

Σ = E{(X − E{X})(X − E{X})T}.

To reduce the dimension of X from d to p (usually p ≪ d), PCA looks for a p-dimensional linear

subspace that is closest to the centered random vector X − E{X} in the mean squared sense, through

the independent and identically distributed samples X(1), . . . , X(n).

Without loss of generality, we assume E{X} = 0. Then PCA corresponds to a stochastic optimization

problem

min
U∈Gp(Rd)

E{∥(Id −ΠU )X∥22}, (2.1)

where ΠU is the orthogonal projector onto the subspace U . Let Σ = UΛUT be the spectral decomposition

of Σ, where

Λ = diag(λ1, . . . , λd) with λ1 > · · · > λp > λp+1 > · · · > λd > 0, (2.2)
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and orthogonal U = [u1, . . . , ud]. If λp > λp+1, then the unique solution to the optimization problem (2.1),

namely the p-dimensional principal subspace of Σ, is U∗ = R([u1, . . . , up]), the subspace spanned by

u1, . . . , up. In practice, Σ is unknown, and the sample data {X(1), . . . , X(n)} is generally used to

estimate U∗. The classical PCA does it by the spectral decomposition of the empirical covariance matrix

Σ̂ = 1
n

∑n
i=1X

(i)(X(i))T. Specifically, the classical PCA uses Û∗ = R([û1, . . . , ûp]) to estimate U∗, where
ûi is the corresponding eigenvectors of Σ̂. In the classical PCA, obtaining the empirical covariance matrix

has time complexity O(nd2) and space complexity O(d2). So storing and calculating a large empirical

covariance matrix can be very expensive when the data are of high dimension, not to mention the cost

O(d3) by dense solvers or O(pnd) (more of O(p2nd) with full reorthogonalization for robustness) by some

iterative methods for computing its eigenvalues and eigenvectors [11].

To analyze the accuracy of the above estimation using a finite number of samples, an important quantity

is the distance between U∗ and Û∗ by their canonical angles. Vu and Lei [32, Theorem 3.1] proved that

if p(d− p)σ
2
∗
n is bounded for some constant σ∗, then

inf
Û∗∈Gp(Rd)

sup
X∈P0(σ2

∗,d)

E{∥sinΘ(Û∗,U∗)∥2F} > cp(d− p)σ
2
∗
n , (2.3)

where c > 0 is an absolute constant, and P0(σ
2
∗, d) is the set of all the d-dimensional sub-Gaussian

distributions for which the eigenvalues of the covariance matrix satisfy

λ1λp+1

(λp − λp+1)2
6 σ2

∗. (2.4)

Note that its left-hand side is the effective noise variance.

To reduce both the time and space complexities, Oja [24] proposed an online PCA iteration

ũ(n) = u(n−1) + β(n−1)X(n)(X(n))Tu(n−1), u(n) = ũ(n)∥ũ(n)∥−1
2 (2.5)

to approximate the first principal component, where β(n) > 0 is a stepsize. Later, Oja and Karhunen [25]

proposed a subspace online PCA iteration

Ũ (n) = U (n−1) +X(n)(X(n))TU (n−1) diag(β
(n−1)
1 , . . . , β(n−1)

p ), U (n) = Ũ (n)R(n) (2.6)

to approximate the principal subspace U∗, where β(n)
i > 0 for 1 6 i 6 p are stepsizes, and R(n) is a

normalization matrix to make U (n) have orthonormal columns. The QR decomposition is often used by

almost all the existing works in the literature (see, e.g., [3, 22, 25] and the references therein). It can

be seen that these methods update the approximations incrementally by processing data one vector at

a time as soon as it comes in, completely avoiding the explicit calculation of the empirical covariance

matrix. In the subspace online PCA, obtaining an approximate principal subspace has time complexity

O(p2d) and space complexity O(pd) per iterative step.

Recently, Li et al. [19] proved a nearly optimal convergence rate for the iteration (2.5) for the

distributions with sub-Gaussian tails (note the samples of this kind of distributions may be unbounded).

One of their main results reads as follows. For the initial guess u(0) that is randomly chosen according

to a uniform distribution and the stepsize β that is chosen in accordance with the sample size n, there

exists a high-probability event A∗ with P{A∗} > 1− δ such that

E{|tanΘ(u(n), u∗)|2 | A∗} 6 C(d, n, δ)
lnn

n

1

λ1 − λ2

d∑
i=2

λ1λi
λ1 − λi

(2.7a)

6 C(d, n, δ)
λ1λ2

(λ1 − λ2)2
(d− 1) lnn

n
, (2.7b)

where δ ∈ [0, 1), u∗ = u1 is the first principal component, and C(d, n, δ) can be approximately treated as

a constant because for sufficiently large d, C(d, n, δ) goes to a constant as n → ∞. It can be seen that

this bound matches the minimax lower bound (2.3) up to a logarithmic factor of n, and hence, nearly
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optimal. It is significant because a uniformly distributed initial value is nearly orthogonal to the principal

component with high probability when d is large [8, Subsection 2.4], and thus such a random initial vector

is not a very good initial guess to start an iteration with. This result is more general than previous ones

in [7, 16, 27], because it is for distributions that can possibly be unbounded, and the convergence rate is

nearly optimal and nearly global.

Unfortunately, the above significant work [19] on the online PCA iteration cannot be trivially

generalized to the subspace online PCA iteration due to three major difficulties to be discussed in

Subsection 4.2.

3 Efficient subspace online PCA

Let X(n) ∈ Rd for n = 1, 2, . . . be independent and identically distributed samples of X. As

{X(1), . . . , X(n)} comes in a sequential order, the subspace online PCA iteration (2.6) of Oja and

Karhunen [25] is used to compute the principal subspace of dimension p. Differing from (2.6), our

proposed subspace online PCA has the following changes:

(1) a fixed stepsize β
(n)
i = β > 0, ∀n, i = 1, . . . , p, is used;

(2) the normalization matrix to make U (n) have orthonormal columns is explicitly given by

R(n) = [(Ũ (n))TŨ (n)]−1/2. (3.1)

With the changes, our subspace online PCA iteration becomes

Ũ (n) = U (n−1) + βX(n)(X(n))TU (n−1), U (n) = Ũ (n)[(Ũ (n))TŨ (n)]−1/2. (3.2)

It can be verified that U (n) have orthonormal columns. This variant is equivalent to (2.6) in the sense

that both U (n) here and the one there have the same column space. It turns out that the matrix square

root and the inverse in (3.1) can be done analytically as in Lemma 3.1 below, leading to a simple and

computationally economical formula for U (n) of (3.2).

An equivalence of Lemma 3.1 was implied in [1], although not explicitly and rigorously stated, to the

analytically transform iteration formula (3.2). For that reason, we credit the lemma to [1], but provide

a proof for completeness because of some missing details in the derivation in [1].

Lemma 3.1 (See [1]). Let V ∈ Rd×p with V TV = Ip, 0 ̸= x ∈ Rd and 0 < β ∈ R, and let

W := V + βxxTV = (Id + βxxT)V, V+ :=W (WTW )−1/2.

If V Tx ̸= 0, then

V+ = V + βα̃xzT − 1− α̃
γ2

V zzT,

where z = V Tx, γ = ∥z∥2, z̃ = z/γ, α = β(2+β∥x∥22)γ2 and α̃ = (1+α)−1/2. In particular, V T
+ V+ = Ip.

Proof. We have

WTW = V T[Id + βxxT]2V = Ip + αz̃z̃T.

Let Z⊥ ∈ Rp×(p−1) such that [z̃, Z⊥]
T[z̃, Z⊥] = Ip. The eigen-decomposition of WTW is

WTW = [z̃, Z⊥]

[
1 + α

Ip−1

]
[z̃, Z⊥]

T,

which yields

(WTW )−1/2 = [z̃, Z⊥]

[
(1 + α)−1/2

Ip−1

]
[z̃, Z⊥]

T = Ip − [1− (1 + α)−1/2]z̃z̃T.
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Therefore,

V+ = (V + βxxTV ){Ip − [1− (1 + α)−1/2]z̃z̃T}

= V + βxxTV − [1− (1 + α)−1/2](V + βxxTV )z̃z̃T (use xTV = zT = γz̃T)

= V + βγxz̃T − [1− (1 + α)−1/2]V z̃z̃T − [1− (1 + α)−1/2]βγxz̃T

= V + (1 + α)−1/2βxzT − 1− (1 + α)−1/2

γ2
V zzT,

as expected, knowing α̃ = (1 + α)−1/2.

To apply this lemma to transform (3.2), we perform substitutions, i.e.,

Ũ (n) ←W, U (n−1) ← V, U (n) ← V+, X(n) ← x, Z(n) ← z

to obtain

U (n) = U (n−1) + β(1 + α(n))−1/2X(n)(Z(n))T − [1− (1 + α(n))−1/2]
U (n−1)Z(n)(Z(n))T

∥Z(n)∥22
,

where α(n) = β(2+β(X(n))TX(n))∥Z(n)∥22 and Z(n) = (U (n−1))TX(n). Finally, we outline in Algorithm 1

the subspace online PCA algorithm derived from (3.2). This is essentially the same as the orthogonal Oja

algorithm (see [1]) and will be the one we are going to analyze. Computationally, it has the advantages of

not involving any explicit orthogonalization by the Gram-Schmidt process or the matrix square root, but

only in terms of matrix-vector multiplications. This formulation is numerically stable and computationally

fast. At convergence, it is expected that

U (n) → U∗ := U

[
Ip

0

]
= [u1, u2, . . . , up]

in the sense that ∥sinΘ(U (n), U∗)∥ui → 0 as n → ∞. The rest of this paper is devoted to analyzing its

convergence, with the help of the next lemma.

Algorithm 1 Subspace online PCA

1: Choose U(0) ∈ Rd×p with (U(0))TU(0) = I, and choose the stepsize β > 0.

2: for n = 1, 2, . . . until convergence do

3: Take an X’s sample X(n);

4: Z(n) = (U(n−1))TX(n), α(n) = β(2 + β(X(n))TX(n))(Z(n))TZ(n), α̃(n) = (1 + α(n))−1/2;

5: U(n) = U(n−1) + βα̃(n)X(n)(Z(n))T − 1−α̃(n)

(Z(n))TZ(n) U
(n−1)Z(n)(Z(n))T.

6: end for

Lemma 3.2. For V ∈ Rd×p with nonsingular V(1:p,:), we see that for ui = 2, F,∥∥∥∥∥tanΘ
(
V,

[
Ip

0

])∥∥∥∥∥
ui

= ∥T (V )∥ui, (3.3)

where T (V ) is defined as in (1.2).

Proof. Let Y =
[
Ip
0

]
∈ Rd×p. It can be seen that the singular values σj = cos θj(V, Y ) of

[I + T (V )TT (V )]−1/2

[
I

T (V )

]T [
I

0

]
= [I + T (V )TT (V )]−1/2

and the singular values τj of T (V ) are related by

τj =

√
1− σ2

j

σj
= tan θj(V, Y ),

where j = 1, . . . , p. Hence, the identity (3.3) holds.
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Notations introduced in this section, except those in Lemma 3.1, will be adopted throughout the rest

of this paper.

4 Main results

For convenience, we first review our setting. Let X = [X1,X2, . . . ,Xd]
T be a random vector in Rd.

Assume E{X} = 0. Its covariance matrix Σ := E{XXT} has the spectral decomposition

Σ = UΛUT with U = [u1, u2, . . . , ud], Λ = diag(λ1, . . . , λd), (4.1)

where U ∈ Rd×d is orthogonal, and λi for 1 6 i 6 d are the eigenvalues of Σ, arranged for convenience in

the non-increasing order. Assume

λ1 > · · · > λp > λp+1 > · · · > λd > 0. (4.2)

Given {X(1), . . . , X(n)} in a sequential order, the proposed subspace online PCA iteration (3.2) is used

to compute the principal subspace U (n) of dimension p to estimate

U∗ = R(U(:,1:p)) = R([u1, u2, . . . , up]). (4.3)

Our major result on the convergence rate of the subspace online PCA iteration in Algorithm 1 states

as follows: if the initial guess U (0) is randomly chosen to satisfy that R(U (0)) is uniformly sampled from

Gp(Rd), and the stepsize β
(n)
i is chosen the same for 1 6 i 6 p and in accordance with the sample size n,

then there exists a high-probability event H∗ with P{H∗} > 1− 2δp
2

such that

E{∥tanΘ(U (n), U∗)∥2F | H∗} 6 C(d, n, δ)
lnn

n

1

λp − λp+1

p∑
j=1

d∑
i=p+1

λjλi
λj − λi

(4.4a)

6 C(d, n, δ)
λpλp+1

(λp − λp+1)2
p(d− p) lnn

n
, (4.4b)

where the constant C(d, n, δ)→ 24ψ4/(1− δp2) as d→∞ and n→∞, and ψ is X’s Orlicz-ψ2 norm (see

Definition 4.1 below). This also matches the minimax lower bound (2.3) up to a logarithmic factor of n,

and hence is nearly optimal and nearly global for the subspace online PCA, in the same way as (2.7) of

Li et al. [19] for the vector online PCA. Both are valid for any sub-Gaussian distribution.

Comparing (4.4) and (2.7), we find that (2.7) becomes the special case of our results (4.4) in the case

of p = 1. Unfortunately, the proving technique in [19] used for the one-dimensional case (p = 1) is not

generalizable to the multi-dimensional case (p > 1). More details will be forthcoming in Subsection 4.2.

We also note that the factor in our result is

λpλp+1

(λp − λp+1)2
vs.

λ1λp+1

(λp − λp+1)2
.

The second quantity appeared in (2.4). The first quantity is always smaller but both are of the similar

order if λ1 and λp are of the similar order. However, their magnitude can differ greatly when λp ≪ λ1.

4.1 Three main theorems

In this subsection, we state our three main theorems of the paper for the multi-dimensional case and

(4.4) is a consequence of them. Before that, we will introduce necessary definitions and assumptions. We

point out that any statement we will make is meant to hold almost surely.

We are concerned with random variables/vectors that have a sub-Gaussian distribution. To that end,

we need to introduce the Orlicz ψα-norm of a random variable/vector. More details can be found in [30].
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Definition 4.1. The Orlicz ψα-norm of a random variable X ∈ R is defined as

∥X∥ψα := inf

{
ξ > 0 : E

{
exp

(∣∣∣∣Xξ
∣∣∣∣α)} 6 2

}
,

and the Orlicz ψα-norm of a random vector X ∈ Rd is defined as

∥X∥ψα
:= sup

∥v∥2=1

∥vTX∥ψα
.

We say that the random variable/vector X follows a sub-Gaussian distribution if ∥X∥ψ2 <∞.

By definition, any bounded random variable/vector follows a sub-Gaussian distribution. To prepare

our convergence analysis, we make a few assumptions.

Assumption 4.2. X = [X1,X2, . . . ,Xd]
T ∈ Rd is a random vector.

(A-1) E{X} = 0, and Σ := E{XXT} has the spectral decomposition (4.1) satisfying (4.2);

(A-2) ψ := ∥Σ−1/2X∥ψ2
<∞.

The principal subspace U∗ in (4.3) is uniquely determined under Assumption 4.2(A-1). On the other

hand, Assumption 4.2(A-2) ensures that all the 1-dimensional marginals of X have sub-Gaussian tails,

or equivalently, X follows a sub-Gaussian distribution. This is also an assumption that is used in [19].

In what follows, we will state our main results under the assumption and leave their proofs to Sections 5

and 6 because of their high complexity. To that end, first we introduce some quantities as follows:

• the eigenvalue gap γ := λp − λp+1,

• the sum of the top i eigenvalues ηi := λ1 + · · ·+ λi, i = 1, . . . , d,

• the dominance of the top i eigenvalues µi :=
ηi
ηd
∈ [ id , 1],

• for s > 0 and the stepsize β < 1 such that βγ < 1, the integer function

Ns(β) := min{n ∈ N : (1− βγ)n 6 βs} =
⌈

s lnβ

ln(1− βγ)

⌉
, (4.5)

where ⌈·⌉ is the ceiling function taking the smallest integer that is no smaller than its argument, and

finally,

• for 0 < ε < 1/7, the integer function

M(ε) := min{m ∈ N : β7ε/2−1/2 6 β(1−21−m)(3ε−1/2)} = 2 +

⌈
ln 1/2−3ε

ε

ln 2

⌉
> 2.

In practice, it is always desirable to use a good initial guess in an iterative method whenever there is

one available because it positively affects computational efficiency in reducing the number of iterations

required to achieve an approximation within a prescribed tolerance. On the other hand, when there is

not one known, a randomly chosen initial guess is often taken. Our first main result in Theorem 4.3

covers the case where a somewhat good initial subspace U (0) is available whereas our second main result

in Theorem 4.5 is about using a randomly chosen initial subspace.

Theorem 4.3. Given ε ∈ (0, 1/7), ω ∈ (0, 1) and ϕ > 0, κ and β satisfy

κ > 6[M(ε)−1]/2 max{
√
2, 2(
√
2− 1)1/2ϕλ

−1/2
1 ω1/2},

0 < β < min

{
1,

(
1

8κηp

) 2
1−4ε

,

(
γ

130κ2η2p

) 1
ε
}
.

(4.6)

Let U (n) for n = 1, 2, . . . be the approximations of U∗ generated by Algorithm 1. Under Assumption 4.2,

if

∥tanΘ(U (0), U∗)∥22 6 ϕ2d− 1 (4.7)

and

(
√
2 + 1)λ1dβ

1−7ε 6 ω, K > N3/2−37ε/4(β), (4.8)
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then there exist absolute constants1) Cψ, Cν and C◦ and a high-probability event H with

P{H} > 1−K[(2 + e)d+ p+ 1] exp(−Cνψβ−ε) (4.9)

such that for any n ∈ [N3/2−37ε/4(β),K],

E{∥tanΘ(U (n), U∗)∥2F;H} 6 (1− βγ)2(n−1)pϕ2d+
32ψ4β

2− λ1β
φ(p, d; Λ)

+ C◦κ
4µ−2
p η2pγ

−1p
√
d− pβ3/2−7ε, (4.10)

where e = exp(1) is Euler’s number, Cνψ = max{Cνµp, Cψmin{ψ−1, ψ−2}} and

φ(p, d; Λ) :=

p∑
j=1

d∑
i=p+1

λjλi
λj − λi

∈
[
p(d− p)λ1λd
λ1 − λd

,
p(d− p)λpλp+1

λp − λp+1

]
. (4.11)

Remark 4.4. (1) Although an interval is presented in (4.11) to bound φ(p, d; Λ), there are more

informative ones under additional assumptions on the random vector X. For example, in some of the

past works [3–5,7,16,21,22,27], it is assumed
∑d
i=1 λi = E{∥X∥22} 6 c for some constant c, independent

of the dimension d. Then

φ(p, d; Λ) =

p∑
j=1

d∑
i=p+1

λjλi
λj − λi

6 1

λp − λp+1

p∑
j=1

d∑
i=p+1

λjλi 6
1

γ

( p∑
j=1

λj

)(
c−

p∑
i=1

λi

)
6 c2

4γ
. (4.12)

As a result, the second term on the right-hand side of (4.10) is of O(β). Under the same assumption,

after a careful check (of Appendix A.2), the third term can be ensured of O(β), too, by making 7ε 6 1/2.

Both terms do not go to 0 as n → ∞, as we would like to ideally have. Nonetheless, we argue that it

does not diminish the usefulness of the error bound. Here is the reason. Like in any iterative method,

the ultimate goal is to drive the approximation error down to a prescribed level. Since the terms are

of O(β), given a prescribed error tolerance, we can always take the stepsize β in the same order of the

tolerance to yield an eventual approximation to the subspace within the desired error level.

(2) Theorem 4.3 involves a set of pre-chosen constant parameters: ϵ, ω, ϕ, κ and β subject to the

inequalities in (4.6) so that K[(2 + e)d + p + 1] exp(−Cνψβ−ε) is sufficiently tiny to make H a high-

probability event. For that reason n is limited to no bigger than K. Ideally, the event H should exist

with high probability for all sufficiently large n. According to our proof, the theorem remains valid with

simply setting K to n:

n > N3/2−37ε/4(β), P(H) > 1− n[(2 + e)d+ p+ 1] exp(−Cνψβ−ε), (4.9′)

everything else being equal. This means that with any given constant parameters, there is no guarantee

that H is still a high-probability event if n is too large. While this is not ideal, we argue that if

the number n of samples or some rough range of it is known, we can always optimize these constant

parameters, by making β small enough, so that n[(2 + e)d + p + 1] exp(−Cνψβ−ε) is still tiny to render

a high-probability event H. For example, in Theorem 4.5, we specify what is needed on the constant

parameters. We point out in passing that the results in [19] for the vector online PCA also require that

the number n of samples be bounded from above.

One subtlety in bounding P(H) from below as in (4.9′) is that now the event H depends on n. Theo-

rem 4.2 as stated with the preset K ensures one high-probability event H for all n ∈ [N3/2−37ε/4(β),K].

From the practical point of view, the number of samples is always finite, i.e., such a K does exist, and

one might have some idea about what it is. When we do, the constant parameters can be judiciously

chosen to ensure K[(2 + e)d+ p+ 1] exp(−Cνψβ−ε) tiny.

(3) This remark applies to Theorem 4.5 later as well.

1) We attach each with a subscript for the convenience of indicating their associations. They do not change as the values

of the subscript variables vary, by which we mean absolute constants. Later in (5.6), we explicitly bound these absolute

constants.
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Theorem 4.3 assumes a somewhat accurate initial subspace U (0), i.e., satisfying (4.7) which is not very

restrictive because ϕ2d− 1 can be very big for huge d. As we mentioned earlier, often we do not have a

good initial subspace, in which case, we may simply resort to a randomly selected U (0).

Consider the uniform distribution on Gp(Rd), the one with the Haar invariant probability measure (see

[9, Subsection 1.4] and [17, Subsection 4.6]). We are interested in a randomly selected U (0) such that

R(U (0)) is uniformly sampled from Gp(Rd). (4.13)

The reader is referred to [9, Subsection 2.2] on how to generate such a uniform distribution on Gp(Rd).

Theorem 4.5. Under Assumption 4.2, for sufficiently large d and any β satisfying (4.6) with

κ = 6[M(ε)−1]/2 max{2Cp,
√
2},

and

p < (d+ 1)/2, ε ∈ (0, 1/7), δ ∈ (0, 2−1/p2), K > N3/2−37ε/4(β),

where Cp is a constant only dependent on p, if (4.13) holds, and

dβ1−3ε 6 δ2, K[(2 + e)d+ p+ 1] exp(−Cνψβ−ε) 6 δp
2

,

then there exists a high-probability event H∗ with P{H∗} > 1− 2δp
2

such that

E{∥tanΘ(U (n), U∗)∥2F;H∗} 6 (1− βγ)2(n−1)pC2
pδ

−2d+
32ψ4β

2− λ1β
φ(p, d; Λ)

+ C◦κ
4µ−2
p η2pγ

−1p
√
d− pβ3/2−7ε (4.14)

for any n ∈ [N3/2−37ε/4(β),K], where φ(p, d; Λ) is as in (4.11).

Our third main result is about picking a nearly optimal stepsize β for the nearly optimal convergence

rate, and assume that the sample size is reasonably large and fixed at N∗. The idea is to pick a good β

to balance the terms on the right-hand side of (4.14) subject to N∗ > N3/2(β) (and thus we also need a

large enough number of samples). The nearly optimal stepsize β is

β = β∗ :=
3 lnN∗

2γN∗
, (4.15)

which is consistent with the choice in [19] for p = 1.

Theorem 4.6. Under Assumption 4.2, for sufficiently large d > 2p and a sufficiently large number N∗
of samples, ε ∈ (0, 1/7), δ ∈ (0, 2−1/p2) satisfying

dβ1−3ε
∗ 6 δ2, N∗[(2 + e)d+ p+ 1] exp(−Cνψβ−ε

∗ ) 6 δp
2

, (4.16)

where β∗ is given by (4.15), if (4.13) holds, then there exists a high-probability event H∗ with P{H∗}
> 1− 2δp

2

such that

E{∥tanΘ(U (N∗), U∗)∥2F;H∗} 6 C∗(d,N∗, δ)
φ(p, d; Λ)

λp − λp+1

lnN∗

N∗
, (4.17)

where the constant C∗(d,N∗, δ)→ 24ψ4 as d→∞, N∗ →∞, and φ(p, d; Λ) is as in (4.11).

In Theorems 4.3, 4.5 and 4.6, the conclusions are stated in term of the expectation of ∥tanΘ(U (n), U∗)∥2F
over some high-probability event. These expectations can be turned into conditional expectations, thanks

to the relation (1.1). In fact, (4.4) is a consequence of (4.17) and (1.1).
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4.2 Discussions of new proving techniques

Our three theorems in the previous subsection, namely Theorems 4.3, 4.5 and 4.6, are the analogs for

p > 1 of Li et al.’s three theorems [19, Theorems 1–3] which are for p = 1 only. Naturally, we know how

our results are when applied to the case p = 1 and our proofs would stand against those in [19]. We choose

to compare our results with those in [19] because Li et al. [19] dealt with sub-Gaussian samples whereas

other existing works in the literature studied the vector/subspace online PCA for bounded samples only.

In what follows, we will do a fairly detailed comparison. Before we do that, let us state their theorems

(in our notation).

Theorem 4.7 (See [19, Theorem 1]). Under Assumption 4.2 and p = 1, suppose that there exists a

constant ϕ > 1 such that tanΘ(U (0), U∗) 6 ϕ2d. Let

N̂o(β, ϕ) := min{n ∈ N : (1− βγ)n 6 [4ϕ2d]−1} =
⌈
− ln[4ϕ2d]

ln(1− βγ)

⌉
,

N̂s(β) := min{n ∈ N : (1− βγ)n 6 [λ21γ
−1β]s} =

⌈
s ln[λ21γ

−1β]

ln(1− βγ)

⌉
.

Then for any ε ∈ (0, 1/8), the stepsize β > 0 satisfying d[λ21γ
−1β]1−2ε 6 b1ϕ

−2, and for any t > 1, there

exists an event H with

P{H} > 1− 2(d+ 2)N̂o(β, ϕ) exp(−C0[λ
2
1γ

−1β]−2ε)− 4dN̂t(β) exp(−C1[λ
2
1γ

−1β]−2ε),

such that for any n ∈ [N̂1(β) + N̂o(β, ϕ), N̂t(β)],

E{tan2 Θ(U (n), U∗);H} 6 (1− βγ)2[n−N̂
o(β,ϕ)] + C2βφ(1, d; Λ) + C2

d∑
i=2

λ1 − λ2
λ1 − λi

[λ21γ
−1β]3/2−4ε, (4.18)

where b1 ∈ (0, ln2, 2/16), and C0, C1 and C2 are absolute constants.

We can see that Theorem 4.3 for p = 1 is essentially the same as Theorem 4.7. In fact, since

(1 − βγ)1−N̂
o(β,ϕ) 6 4ϕ2d 6 (1 − βγ)−N̂

o(β,ϕ), the upper bounds by (4.10) for p = 1 and by (4.18)

are comparable in the sense that they are in the same order in d, β and δ. Naturally one may try to

generalize the proving technique in [19] which is for the one-dimensional case (p = 1) to handle the

multi-dimensional case (p > 1). Indeed, we tried but did not succeed, due to the reason that we believe

there are insurmountable obstacles. In fact, one of the key steps in proof works for p = 1 but does not

seem to work for p > 1. Next, we explain these obstacles in details.

The basic structure of the proof in [19] is to split the Grassmann manifoldGp(Rd), from where the initial

guess comes, into two regions: the cold region and the warm region. Roughly speaking, an approximation

U (n) in the warm region means that ∥tanΘ(U (n), U∗)∥F is small while in the cold region it means that

∥tanΘ(U (n), U∗)∥F is not that small. U∗ sits at the “center” of the warm region which is wrapped around

by the cold region. The proof is divided into two cases: the first case is when the initial guess is in the

warm region and the other one is when it is in the cold region. For the first case, they proved that

the algorithm will produce a sequence convergent to the principal subspace (which is actually the most

significant principal component because it is for p = 1) with high probability. For the second case, they

first proved that the algorithm will produce a sequence of approximations that, after a finite number of

iterations, will fall into the warm region with high probability, and then use the conclusion proved for

the first case to conclude the proof due to the Markov property.

For our situation p > 1, we still structure our proof in the same way, i.e., dividing the whole proof into

two cases: U (0) coming from the cold region or the warm region. The proof in [19] for the warm region

case can be carried over with a little extra effort, as we will see later, but it was not possible for us to

use a similar argument in [19] to obtain the job done for the cold region case. Three major difficulties

are as follows.

(1) In [19], essentially ∥cotΘ(U (n), U∗)∥F was used to track the behavior of a martingale along with

the power iteration. Note that cotΘ(U (n), U∗) is p × p. Thus it is a scalar when p = 1, perfectly well-

conditioned if treated as a matrix, but for p > 1, it is a genuine matrix and, in fact, an inverse of a
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random matrix in the proof. The first difficulty is how to estimate the inverse because it may not even

exist.

(2) We tried to separate the flow of U (n) into two subflows: the ill-conditioned flow and the well-

conditioned flow, and estimate the related quantities separately. Here, the ill-conditioned flow at each

step represents the subspace generated by the singular vectors of cotΘ(U (n), U∗) whose corresponding

singular values are tiny, while the well-conditioned flow at each step represents the subspace generated

by the other singular vectors, of which the inverse (restricted to this subspace) is well conditioned.

Unfortunately, tracking the two flows can be an impossible task because, due to the randomness, some

elements in the ill-conditioned flow could jump to the well-conditioned flow during the iteration and vice

versa.

(3) The third one is to build a martingale to go along with a proper power iteration, or equivalently,

to find the Doob decomposition of the process, because the recursion formula of the main part of the

inverse—the drift in the Doob decomposition, even if limited to the well-conditioned flow—is not a linear

operator, which makes it impossible to build a proper power iteration.

In the end, to deal with the cold region, we give up the idea of estimating ∥cotΘ(U (n), U∗)∥F. Instead,
we invent another method: cutting the cold region into many layers, each wrapped around by another

with the innermost one around the warm region. We prove the initial guess in any layer will produce a

sequence of approximations that will fall into its inner neighbor layer (or the warm region if the layer is

innermost) in a finite number of iterations with high probability. Therefore eventually, any initial guess

in the cold region will lead to an approximation in the warm region within a finite number of iterations

with high probability, returning to the case of initial guesses coming from the warm region because of the

Markov property. This enables us to completely avoid the difficulties mentioned above. This technique

works for p = 1, too, and it can result in a simpler proof for the online PCA than that in [19].

The other two main theorems of Li et al. [19, Theorems 2 and 3] are stated as follows.

Theorem 4.8 (See [19, Theorem 2]). Under Assumption 4.2 and p = 1, suppose that U (0) is uniformly

sampled from the unit sphere. Then for any ε ∈ (0, 1/8), the stepsize β > 0 and δ > 0 satisfying

d[λ21γ
−1β]1−2ε 6 b2δ

2, 4dN̂2(β) exp(−C3[λ
2
1γ

−1β]−2ε) 6 δ,

there exists an event H∗ with P{H∗} > 1− 2δ such that for any n ∈ [N̂2(β), N̂3(β)],

E{tan2 Θ(U (n), U∗);H∗} 6 C4(1− βγ)2nδ−4d2 + C4βφ(1, d; Λ) + C4

d∑
i=2

λ1 − λ2
λ1 − λi

[λ21γ
−1β]3/2−4ε, (4.19)

where b2, C3 and C4 are absolute constants.

Theorem 4.9 (See [19, Theorem 3]). Under Assumption 4.2 and p = 1, suppose that U (0) is uniformly

sampled from the unit sphere and let β∗ = 2 lnN∗
γN . Then for any ε ∈ (0, 1/8), N∗ > 1 and δ > 0 satisfying

d[λ21γ
−1β∗]

1−2ε 6 b3δ
2, 4dN̂2(β∗) exp(−C6[λ

2
1γ

−1β∗]
−2ε) 6 δ,

there exists an event H∗ with P{H∗} > 1− 2δ such that

E{tan2 Θ(U (N∗), U∗);H∗} 6 C∗(d,N∗, δ)
φ(1, d; Λ)

λ1 − λ2
lnN∗

N∗
, (4.20)

where the constant C∗(d,N∗, δ)→ C5 as d→∞, N∗ →∞, and b3, C5 and C6 are absolute constants.

Our Theorems 4.5 and 4.6 when applied to the case p = 1 do not exactly yield Theorems 4.8 and 4.9,

respectively. But the resulting conditions and upper bounds have the same orders in constant parameters

d, β and δ, and the coefficients of β and lnN∗
N in the upper bounds are comparable. Note that the first

term on the right-hand side of (4.14) is proportional to d, not d2 as in (4.19), and hence ours is tighter

for high-dimensional data.

Our proofs for Theorems 4.5 and 4.6 are nearly the same as those in [19] for Theorems 4.8 and 4.9

owing to the fact that the difficult estimates have already been taken care of by either Theorem 4.3
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or Theorem 4.7. But still there are some extras for p > 1, namely, the need to estimate the marginal

probability for the uniform distribution on the Grassmann manifold of dimension higher than 1. We are

not aware of anything like that in the literature, and thus have to build it ourselves with the help of the

theory of special functions of a matrix argument, rarely used in the statistical community.

It may also be worth pointing out that all the absolute constants, except Cp which has an explicit

expression in (6.3) and Cψ, in our theorems will be explicitly bounded as in (5.6), whereas those in

Theorems 4.7–4.9 are not.

5 Proof of Theorem 4.3

We start by building a substantial amount of preparation material in Subsections 5.1–5.3 before we

prove the theorem in Subsection 5.4. In Subsection 5.1, we set the stage and introduce the matrix T (n)

to serve the role of tanΘ(U (n), U∗) associated with the n-th approximation. In particular, we have

∥T (n)∥ui = ∥tanΘ(U (n), U∗)∥ui. In Subsection 5.2, we present incremental estimates for one iterative step

of the subspace online PCA in Lemmas 5.2 and 5.3. These estimates allow us to associate one iterative

step with a quasi-power iterative step by an operator L defined at the beginning of Subsection 5.3, and

then further we relate T (n) to LnT (0) by showing T (n) − LnT (0) is bounded with high probability in

Lemma 5.4. This lemma is very critical to our proofs. It leads to Lemma 5.5 which says that ∥T (n)∥2
stagedly decreases and Lemma 5.6 in which the expectation of T (n) is estimated. Finally, we are ready

to prove Theorem 4.3 in Subsection 5.4. Figure 1 shows a pictorial description of our proving process.

5.1 Simplification

Without loss of generality, we may assume that the covariance matrix Σ is diagonal. Otherwise, we can

perform a (constant) orthogonal transformation as follows. Recall the spectral decomposition Σ = UΛUT

in (4.1). Instead of the random vector X, we equivalently consider Y ≡ [Y1,Y2, . . . ,Yn]
T =: UTX.

Accordingly, perform the same orthogonal transformation on all the involved quantities:

Y (n) = UTX(n), V (n) = UTU (n), V∗ = UTU∗ =

[
Ip

0

]
. (5.1)

As a consequence, we have equivalent versions of Algorithm 1 and Theorems 4.3, 4.5 and 4.6. Firstly,

because

(V (n−1))TY (n) = (U (n−1))TX(n) = Z(n), (Y (n))TY (n) = (X(n))TX(n),

the equivalent version of Algorithm 1 is obtained by symbolically replacing all the letters X and U by Y

and V , respectively, while keeping their respective superscripts. If the algorithm converges, it is expected

that R(V (n))→ R(V∗). Secondly, noting

∥Σ−1/2X∥ψ2 = ∥UΛ−1/2UTX∥ψ2 = ∥Λ−1/2Y ∥ψ2 ,

we can restate Assumption 4.2 equivalently as

Lemma 5.1

Lemma 5.2 Lemma 5.3 Lemma 5.4

Lemma 5.5

Lemma 5.6

Subsection 5.2 (one iterative step)

Subsection 5.3 (quasi-power iteration)

Proof of Theorem 4.3

Figure 1 Proving process for Theorem 4.3
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(A-1′) E{Y } = 0 and E{Y Y T} = Λ = diag(λ1, . . . , λd) with (4.2);

(A-2′) ψ := ∥Λ−1/2Y ∥ψ2
<∞.

Thirdly, all the canonical angles between two subspaces are invariant under the orthogonal transformation.

Therefore, the equivalent versions of Theorems 4.3, 4.5 and 4.6 for Y can be simply obtained by replacing

all letters X and U by Y and V , respectively, while keeping their respective superscripts.

In what follows, we assume that Σ is diagonal. In the rest of this section, we prove the mentioned

equivalent version of Theorem 4.3. Likewise in the next section, we prove the equivalent versions of

Theorems 4.5 and 4.6.

To facilitate our proof, we introduce new notations for two particular submatrices of any V ∈ Rd×p:

V̄ = V(1:p,:), ¯
V = V(p+1:d,:). (5.2)

In particular, T (V ) =
¯
V V̄ −1 for the operator T defined in (1.2), provided that V̄ is nonsingular. Set

Λ̄ = diag(λ1, . . . , λp),
¯
Λ = diag(λp+1, . . . , λd). (5.3)

Although the assignments to Λ̄ and
¯
Λ are not consistent with the extractions defined by (5.2), they do

not seem to cause confusions in our later presentations.

For κ > 1, define S(κ) := {V ∈ Rd×p : σ(V̄ ) ⊂ [ 1κ , 1]}, where σ(V̄ ) is the set of the singular values

of V̄ . It can be verified that

V ∈ S(κ)⇔ ∥T (V )∥2 6
√
κ2 − 1. (5.4)

For the sequence V (n), define

Nout{S(κ)} := min{n : V (n) /∈ S(κ)}, Nin{S(κ)} := min{n : V (n) ∈ S(κ)}.

Nout{S(κ)} is the first step of the iterative process at which V (n) jumps from S(κ) to its outside, and

Nin{S(κ)} is the first step of the iterative process at which V (n) jumps from the outside to S(κ). Write

λ̃i := λiβ
−2ε, η̃i := λ̃1 + · · ·+ λ̃i = ηiβ

−2ε,

and define

Nqb{Λ} := max{n > 1 : ∥Z(n)∥2 6 η̃
1/2
p , |Y (n)

i | 6 λ̃
1/2
i , i = 1, . . . n}+ 1, (5.5)

where Z(n) = (U (n−1))TX(n) is as defined in Algorithm 1. Nqb{Λ} is the first step of the iterative process

at which either |Y (n)
i | > λ̃

1/2
i for some i or the norm of Z(n) exceeds η̃

1/2
p . For n < Nqb{Λ}, we have

∥Y (n)∥2 6 η̃
1/2
d = ν1/2η̃1/2p , ∥Z(n)∥2 6 η̃1/2p with ν = 1/µp.

For convenience, we introduce T (n) = T (V (n)), and let Fn = σ{Y (1), . . . , Y (n)} be the σ-algebra

filtration, i.e., the information known by step n. Also, since in this section, ε and β are fixed, we suppress

the dependency information of M(ε) on ε and Ns(β) on β to simply write M for M(ε) and Ns for Ns(β).

Lastly, we discuss some of the important implications of the conditions:

0 < β < min

{
1,

(
1

8κηp

) 2
1−4ε

,

(
γ

130κ2η2p

) 1
ε
}
, (4.6)

(
√
2 + 1)λ1dβ

1−7ε 6 ω, K > N3/2−37ε/4(β) (4.8)

of Theorem 4.3. They guarantee that

(β-1) β < 1;

(β-2) βγ 6 βη̃p 6 νβη̃p = βη̃d 6 dβλ̃1 = dλ1β
1−2ε 6 (

√
2− 1)ω 6

√
2− 1.

Set

CV =
5

2
+

7

2
(νη̃pβ) +

15

8
(νη̃pβ)

2 +
3

8
(νη̃pβ)

3 6 16 + 13
√
2

8
≈ 4.298, (5.6a)
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C∆ = 2 +
1

2
(νη̃pβ) + CV η̃pβ 6 22 + 7

√
2

8
≈ 3.987, (5.6b)

CT = CV + 2C∆ + 2C∆CV η̃pβ 6 251 + 122
√
2

16
≈ 26.471, (5.6c)

Cκ =
(3−

√
2)C2

∆

64(CT + 2C∆)2
6 565 + 171

√
2

21504
≈ 0.038, (5.6d)

Cν = 4
√
2CTCκ 6 223702 + 183539

√
2

86016
≈ 5.618, (5.6e)

C◦ =
29 + 8

√
2

16(3−
√
2)

+
4CT

(3−
√
2)C∆

β3ε + [CT +
29 + 8

√
2

32
]β1/2−3ε

+
3C2

T

2(3−
√
2)C2

∆

β1/2+3ε +
2CT
C∆

β1−3ε +
C2
T

2C2
∆

β3/2−3ε

6 2582968 + 1645155
√
2

14336
≈ 342.464. (5.6f)

The condition (4.6) also guarantees that

(β-3) 2C∆η̃pβ
1/2κ = 2C∆ηpβ

1/2−2εκ 6 2C∆

8 < 1, and thus 2C∆η̃pβκ < 1;

(β-4) 4
√
2CTκ

2η̃2pγ
−1β5ε 6 1, and thus 4

√
2CTκ

2η̃2pγ
−1β1/2+χ 6 1 for χ ∈ [−1/2 + 5ε, 0].

5.2 Increments by one iterative step

Lemma 5.1. For any fixed integer K > 1,

P{Nqb{Λ} > K} > 1−K(ed+ p+ 1) exp(−Cψmin{ψ−1, ψ−2}β−2ε),

where Cψ is an absolute constant.

Proof. Since {Nqb{Λ} 6 K} ⊂
∪
n6K({∥Z(n)∥2 > η̃

1/2
p } ∪

∪d
i=1{|eTi Y (n)| > λ̃

1/2
i }), we know

P{Nqb{Λ} 6 K} 6
∑
n6K

(
P{∥Z(n)∥2 > η̃1/2p }+

∑
16i6d

P{|eTi Y (n)| > λ̃
1/2
i }

)
. (5.7)

First,

P{|eTi Y (n)| > λ̃
1/2
i } = P

{∣∣∣∣ (Λ1/2ei)
T

∥Λ1/2ei∥2
Λ−1/2Y (n)

∣∣∣∣ > λ̃
1/2
i

∥Λ1/2ei∥2

}

6 exp

(
1−

Cψ,i
λ̃i

eTi Λei

∥ (Λ
1/2ei)T

∥Λ1/2ei∥2
Λ−1/2Y (n)∥ψ2

)
(by [31, (5.10)])

6 exp

(
1− Cψ,iλ̃i
∥Λ−1/2Y (n)∥ψ2λi

)
= exp(1− Cψ,iψ−1β−2ε), (5.8)

where Cψ,i, i = 1, . . . , d are absolute constants [31, (5.10)]. Next, we claim

P{∥Z(n)∥2 > η̃1/2p } 6 (p+ 1) exp(−Cψ,d+1ψ
−2β−2ε) (5.9)

to be proven in the next paragraph. Together, (5.7)–(5.9) yield

P{Nqb{Λ} 6 K} =
∑
n6K

∑
16i6d

exp(1− Cψ,iψ−1β−2ε) +
∑
n6K

(p+ 1) exp(−Cψ,d+1ψ
−2β−2ε)

6 K(ed+ p+ 1) exp(−Cψmin{ψ−1, ψ−2}β−2ε),

where Cψ = min16i6d+1 Cψ,i. Finally, use P{Nqb{Λ} > K} = 1 − P{Nqb{Λ} 6 K} to complete the

proof.
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It remains to prove (5.9). To avoid the cluttered superscripts, we drop the superscript “·(n−1)” on V ,

and drop the superscript “·(n)” on Y and Z. Consider

W :=

[
0 Z

ZT 0

]
=

[
V TY

Y TV

]
=

d∑
k=1

Yk


vk1
...

vkp

vk1 · · · vkp 0

 =:

d∑
k=1

YkWk,

where vij is the (i, j)-th entry of V and Yk is the k-th entry of Y . By the matrix version of master tail

bound [29, Theorem 3.6], for any α > 0, we have

P{∥Z∥2 > α} = P{λmax(W ) > α} 6 inf
θ>0

e−θα trace exp

( d∑
k=1

ln E{exp(θYkWk)}
)
.

Y is sub-Gaussian and E{Y } = 0, so is Yk. Moreover,

∥Yk∥ψ2 = ∥eTkΛ1/2∥2
∥∥∥∥ eTkΛ

1/2

∥eTkΛ1/2∥2
Λ−1/2Y

∥∥∥∥
ψ2

6 λ
1/2
k ∥Λ

−1/2Y ∥ψ2 = λ
1/2
k ψ.

Also, by [31, (5.12)],

E{exp(θWkYk)} 6 exp(Cψ,d+kθ
2Wk ◦Wk∥Yk∥2ψ2

) 6 exp(cψ,kθ
2λkψ

2Wk ◦Wk),

where cψ,k, k = 1, . . . , d are absolute constants. Therefore, writing [4Cψ,d+1]
−1 = max16k6d cψ,k and

Wψ :=
∑d
k=1 λkWk ◦Wk with the spectral decomposition Wψ = VψΛψV

T
ψ , we have

trace exp

( d∑
k=1

ln E{exp(θYkWk)}
)

6 trace exp

( d∑
k=1

cψ,kθ
2λkψ

2Wk ◦Wk

)
6 trace exp([4Cψ,d+1]

−1θ2ψ2Wψ)

= trace exp([4Cψ,d+1]
−1θ2ψ2VψΛψV

T
ψ )

= trace(Vψ exp([4Cψ,d+1]
−1θ2ψ2Λψ)V

T
ψ )

= trace exp([4Cψ,d+1]
−1θ2ψ2Λψ)

6 (p+ 1) exp([4Cψ,d+1]
−1θ2ψ2λmax(Λψ))

= (p+ 1) exp([4Cψ,d+1]
−1θ2ψ2λmax(Wψ)).

Note that

Wψ =



0 · · · 0
d∑
k=1

λkv
2
k1

...
...

...

0 · · · 0
d∑
k=1

λkv
2
kp

d∑
k=1

λkv
2
k1 · · ·

d∑
k=1

λkv
2
kp 0


=


0 · · · 0 eT1 V

TΛV e1
...

...
...

0 · · · 0 eTp V
TΛV ep

eT1 V
TΛV e1 · · · eTp V TΛV ep 0

 ,

and thus

λmax(Wψ) =

∥∥∥∥∥∥∥∥

eT1 V

TΛV e1
...

eTp V
TΛV ep


∥∥∥∥∥∥∥∥
2

6
p∑
k=1

eTk V
TΛV ek = trace(V TΛV ) 6

p∑
k=1

λk = ηp.
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In summary, we have

P{∥Z∥2 > α} 6 (p+ 1) inf
θ>0

exp([4Cψ,d+1]
−1θ2ψ2ηp − θα) = (p+ 1) exp

(
− Cψ,d+1α

2

ψ2ηp

)
.

Substituting α = η̃
1/2
p , we have the claim (5.9).

Lemma 5.2. Suppose that the conditions of Theorem 4.3 hold. If n < Nqb{Λ}, then

V (n+1) = V (n) + βY (n+1)(Z(n+1))T

− β
[
1 +

β

2
(Y (n+1))TY (n+1)

]
V (n)Z(n+1)(Z(n+1))T +R(n)(Z(n+1))T, (5.10)

where R(n) ∈ Rd is a random vector with ∥R(n)∥2 6 CV ν
1/2η̃

3/2
p β2 and CV is as in (5.6a).

Proof. To avoid the cluttered superscripts, in this proof, we drop “·(n)” and use “·+” to replace “·(n+1)”

on V , and drop “·(n+1)” on Y and Z.

On the set {Nqb{Λ} > n}, by (4.8) and (β-2), we have

α = β(2 + βY TY )ZTZ 6 β(2 + νη̃pβ)η̃p 6 (2 +
√
2− 1)(

√
2− 1)/ν < 1.

By Taylor’s expansion, there exists α > ξ > 0 such that

(1 + α)−1/2 = 1− 1

2
α+

3

8

1

(1 + ξ)5/2
α2 = 1− βZTZ − β2

2
Y TY ZTZ + β2(ZTZ)2ζ,

where ζ = 3
8

1
(1+ξ)5/2

(2 + βY TY )2 6 3
8 (2 + νβη̃p)

2. Thus,

V + = (V + βY ZT)

(
I −

[
βZTZ +

β2

2
Y TY ZTZ − β2(ZTZ)2ζ

]
ZZT

ZTZ

)
= V + βY ZT − βV ZZT − β2

2
(Y TY )V ZZT +RZT,

where R = −β
2

2 (ZTZ)(2 + βY TY )Y + ζβ2(ZTZ)V Z + ζβ3(ZTZ)2Y for which

∥R∥2 6 β2

2
η̃p(2 + βνη̃p)(νη̃p)

1/2 + ζβ2η̃3/2p + ζβ3η̃2p(νη̃p)
1/2

=

[
1

2
(2 + βνη̃p) +

3

8
(2 + βνη̃p)

2 +
3

8
(2 + βνη̃p)

2(βη̃p)

]
ν1/2η̃3/2p β2

= CV ν
1/2η̃3/2p β2,

as expected.

Lemma 5.3. Suppose that the conditions of Theorem 4.3 hold. Let τ = ∥T (n)∥2, and CT be as in (5.6c).

If n < min{Nqb{Λ}, Nout{S(κ)}}, then we have the following:

(1) T (n) and T (n+1) are well defined.

(2) Define E
(n)
T (V (n)) := E{T (n+1) − T (n) | Fn} − β(

¯
ΛT (n) − T (n)Λ̄). Then

(a) supV ∈S(κ)∥E
(n)
T (V )∥2 6 CT ν

1/2(η̃pβ)
2(1 + τ2)3/2;

(b) ∥T (n+1) − T (n)∥2 6 ν1/2(η̃pβ)(1 + τ2) + CT ν
1/2(η̃pβ)

2(1 + τ2)3/2.

(3) Define R◦ := var◦(T
(n+1) − T (n) | Fn)− β2H◦. Then

(a) H◦ = var◦(
¯
Y Ȳ T) 6 16ψ4H, where H = [ηij ](d−p)×p with ηij = λp+iλj for i = 1, . . . , d − p,

j = 1, . . . , p;

(b) ∥R◦∥2 6 (νη̃pβ)
2τ(1 + 11

2 τ + τ2 + 1
4τ

3) + 4CT ν(η̃pβ)
3(1 + τ2)5/2 + 2C2

T ν(η̃pβ)
4(1 + τ2)3.

Proof. For readability, we drop “·(n)”, and use “·+” to replace “·(n+1)” for V and R, drop “·(n+1)” on

Y and Z, and drop the conditional sign “ | Fn” in the computation of E{·}, var(·) and cov(·) with the
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understanding that they are conditional with respect to Fn. Finally, for any expression or variable F , we

define ∆F := F+ − F .
Consider (1). Since n < Nout{S(κ)}, we have V ∈ S(κ) and τ = ∥T∥2 6 (κ2−1)1/2. Thus, ∥V̄ −1∥2 6 κ

and T =
¯
V V̄ −1 is well defined. Recall (5.10) and the partitioning

Y =

[ 1

p Ȳ

d−p
¯
Y

]
, R =

[ 1

p R̄

d−p
¯
R

]
.

We have ∆V̄ = β(Ȳ ZT − (1 + β
2Y

TY )V̄ ZZT) + R̄ZT and

R̄ = −β
2

2
(ZTZ)(2 + βY TY )Ȳ + ζβ2(ZTZ)V̄ Z + ζβ3(ZTZ)2Ȳ .

Noticing ∥Ȳ ∥2 6 η̃
1/2
p , we find

∥∆V̄ ∥2 6 βη̃p + β

(
1 +

β

2
νη̃p

)
η̃p + CV η̃

2
pβ

2 6
[
2 +

β

2
νη̃p + CV η̃pβ

]
η̃pβ = C∆η̃pβ,

where C∆ is as in (5.6b). Thus, ∥∆V̄ V̄ −1∥2 6 ∥∆V̄ ∥2∥V̄ −1∥2 6 C∆η̃pβκ 6 1/2 by (β-3). As a result,

V̄ + is nonsingular, and

∥(V̄ +)−1∥2 6 ∥V̄ −1∥2
1− ∥V̄ −1∆V̄ ∥2

6 2∥V̄ −1∥2.

In particular, T+ =
¯
V +(V̄ +)−1 is well defined. This proves (1).

For (2), using the Sherman-Morrison-Woodbury formula [11, p. 95], we obtain

∆T = (
¯
V +∆

¯
V )(V̄ +∆V̄ )−1 −

¯
V V̄ −1

= (
¯
V +∆

¯
V )(V̄ −1 − V̄ −1∆V̄ (V̄ +∆V̄ )−1)−

¯
V V̄ −1

= ∆
¯
V V̄ −1 −

¯
V V̄ −1∆V̄ (V̄ +∆V̄ )−1 −∆

¯
V V̄ −1∆V̄ (V̄ +∆V̄ )−1

= ∆
¯
V V̄ −1 −

¯
V V̄ −1∆V̄ (V̄ −1 − V̄ −1∆V̄ (V̄ +∆V̄ )−1)−∆

¯
V V̄ −1∆V̄ (V̄ +∆V̄ )−1

= ∆
¯
V V̄ −1 − T∆V̄ V̄ −1 + T∆V̄ V̄ −1∆V̄ (V̄ +)−1 −∆

¯
V V̄ −1∆V̄ (V̄ +)−1

= [∆
¯
V − T∆V̄ ][I − (V̄ +)−1∆V̄ ]V̄ −1.

Write TL = [−T I] and TR = [ IT ]. Then TLV = 0 and V = TRV̄ . Thus,

∆T = TL∆V [I − (V̄ +)−1∆V̄ ]V TTR.

Since ∆V is rank-1, ∆T is also rank-1. By Lemma 5.2,

∆T = TL

[
βY ZT − β

(
1 +

β

2
Y TY

)
V ZZT +RZT

]
[I − (V̄ +)−1∆V̄ ]V TTR

= TL[βY Y
TV +RZT][I − (V̄ +)−1∆V̄ ]V TTR

= TL(βY Y
TV V T +RT )TR

= TL(βY Y
T +RT )TR,

where RT = RZTV T − (βY +R)ZT(V̄ +)−1∆V̄ V T. Note that

TLY Y
TTR =

¯
Y Ȳ T − T Ȳ

¯
Y TT − T Ȳ Ȳ T +

¯
Y
¯
Y TT (5.11)

and

E{
¯
Y Ȳ T} = 0, E{T Ȳ Ȳ T} = TE{Ȳ Ȳ T} = T Λ̄, (5.12a)

E{T Ȳ
¯
Y TT} = TE{Ȳ

¯
Y T}T = 0, E{

¯
Y
¯
Y TT} = E{

¯
Y
¯
Y T}T =

¯
ΛT. (5.12b)
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Thus, E{∆T} = β(
¯
ΛT − T Λ̄) + ET (V ), where ET (V ) = E{TLRTTR}.

Since V ∈ S(κ), ∥T∥2 6 (κ2 − 1)1/2 by (5.4). Thus,

∥RT ∥2 6 ∥R∥2η̃1/2p + [(νη̃p)
1/2β + ∥R∥2]η̃1/2p 2(1 + ∥T∥22)1/2C∆η̃pβ

6 CV ν
1/2η̃2pβ

2 + (1 + ∥T∥22)1/2[1 + CV η̃pβ]2C∆ν
1/2η̃2pβ

2

6 CT ν
1/2(η̃pβ)

2(1 + ∥T∥22)1/2,

where CT = CV + 2C∆(1 + CV η̃pβ). Therefore, ∥ET (V )∥2 6 E{∥TLRTTR∥2} 6 (1 + ∥T∥22) E{∥RT ∥2}.
(2)(a) holds. For (2)(b), we have

∥∆T∥2 6 (1 + ∥T∥22)(β∥Y Y TV V T∥2 + ∥RT ∥2)

6 β(νη̃p)
1/2η̃1/2p (1 + ∥T∥22) + CT ν

1/2(η̃pβ)
2(1 + ∥T∥22)3/2

6 ν1/2η̃pβ(1 + ∥T∥22) + CT ν
1/2(η̃pβ)

2(1 + ∥T∥22)3/2.

The proof of (3) is similar to that of (2) but involves more complicated calculations, and it is deferred

to Appendix A.1.

5.3 Quasi-power iterative process

Let D(n+1) = T (n+1) − E{T (n+1) | Fn}. We have T (n) − E{T (n) | Fn} = 0, E{D(n+1) | Fn} = 0 and

E{D(n+1) ◦D(n+1) | Fn} = var◦(T
(n+1) − T (n) | Fn). By Lemma 5.3(2), we have

T (n+1) = D(n+1) + T (n) + E{T (n+1) − T (n) | Fn}

= D(n+1) + T (n) + β(
¯
ΛT (n) − T (n)Λ̄) + E

(n)
T (V (n))

= LT (n) +D(n+1) + E
(n)
T (V (n)),

where L : T 7→ T + β
¯
ΛT − βT Λ̄ is a bounded linear operator. It can be verified that LT = L ◦ T , the

Hadamard product of L and T , where L = [λij ](d−p)×p with λij = 1+ βλp+i − βλj . Moreover, it can be

shown that2) ∥L∥ui = ρ(L) = 1 − βγ, where ∥L∥ui = sup∥T∥ui=1∥LT∥ui is an operator norm induced by

the matrix norm ∥·∥ui. Recursively,

T (n) = LnT (0) +

n∑
s=1

Ln−sD(s) +

n∑
s=1

Ln−sE(s−1)
T (V (s−1)) =: J1 + J2 + J3. (5.13)

Define events Mn(χ), Tn(χ) and Qn as

Mn(χ) =

{
∥T (n) − LnT (0)∥2 6 1

2
(κ2β2χ−1 − 1)1/2βχ−3ε

}
, (5.14)

Tn(χ) = {∥T (n)∥2 6 (κ2β2χ−1 − 1)1/2βχ−3ε}, Qn = {n < Nqb{Λ}}. (5.15)

Lemma 5.4. Suppose that the conditions of Theorem 4.3 hold and that χ ∈ (5ε− 1/2, 0] and κ >
√
2.

If V (0) ∈ S(κβχ) and n < min{Nqb{Λ}, Nout{S(κβχ)}}, then

P{Mn(χ+ 1/2)} > 1− 2d exp(−Cκγκ−2ν−1η−2
p β−2ε), (5.16)

where Cκ is as in (5.6d).

2) Since λ(L) = {λij : i = 1, . . . , d − p, j = 1, . . . , p}, we have the spectral radius ρ(L) = 1 − β(λp − λp+1). Thus for

any T ,

∥LT∥ui = ∥T (I − βΛ̄) + β
¯
ΛT∥ui 6 ∥I − βΛ̄∥2∥T∥ui + ∥β

¯
Λ∥2∥T∥ui = (1− βλp + βλp+1)∥T∥ui = ρ(L)∥T∥ui,

which means ∥L∥ui 6 ρ(L). This ensures ∥L∥ui = ρ(L).
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Proof. Since κ >
√
2, we have κ2β2χ > 2 and κβχ < [2(κ2β2χ − 1)]1/2. Thus, by (β-4),

4CTκ
3η̃2pγ

−1β1+3χ(κ2β2χ − 1)−1/2β−1/2−χ 6 4
√
2CTκ

2η̃2pγ
−1β1/2+χ 6 1.

For any n < min{Nqb{Λ}, Nout{S(κβχ)}}, V (n) ∈ S(κβχ) and thus ∥T (n)∥2 6
√
κ2β2χ − 1 by (5.4).

Therefore, by Lemma 5.3(2)(b), we have

∥D(n+1)∥2 = ∥T (n+1) − T (n) − E{T (n+1) − T (n) | Fn}∥2
6 ∥T (n+1) − T (n)∥2 + E{∥T (n+1) − T (n)∥2 | Fn}

6 2ν1/2η̃pβ(1 + ∥T (n)∥22)[1 + CT η̃pβ(1 + ∥T (n)∥22)1/2]

6 2κ2ν1/2η̃pβ
1+2χ[1 + CTκη̃pβ

1+χ]. (5.17)

For any n < min{Nqb{Λ}, Nout{S(κβχ)}},

∥J3∥2 6
n∑
s=1

∥L∥n−s2 ∥E(s−1)
T (V (s−1))∥2

6 CT ν
1/2κ3η̃2pβ

2+3χ
n∑
s=1

(1− βγ)n−s

6
CT ν

1/2κ3η̃2pβ
2+3χ

βγ
= CT ν

1/2κ3η̃2pγ
−1β1+3χ 6 1

4
ν1/2(κ2β2χ − 1)1/2β1/2+χ.

Similarly,

∥J2∥2 6
n∑
s=1

∥L∥n−s2 ∥D(s)∥2

6 2κ2ν1/2η̃pβ
2χ(1 + CTκη̃pβ

1+χ)

γ

6 2κ2ν1/2η̃pβ
2χ

γ
+

1

2
ν1/2(κ2β2χ − 1)1/2β1/2+χ.

Also, ∥J1∥2 6 ∥L∥n2∥T (0)∥2 6 ∥T (0)∥2 6 ν1/2(κ2β2χ − 1)1/2. For fixed n > 0 and β > 0,{
M

(n)
0 := LnT (0),M

(n)
t := LnT (0) +

min{t,Nout{S(κ)}−1}∑
s=1

Ln−sD(s) : 1 6 t 6 n

}

forms a martingale with respect to Ft, because E{∥M (n)
t ∥2} 6 ∥J1∥2 + ∥J2∥2 < +∞, and

E{M (n)
t+1 −M

(n)
t | Ft} = E{Ln−t−1D(t+1) | Ft} = Ln−t−1E{D(t+1) | Ft} = 0.

Use the matrix version of Azuma’s inequality [29, Subsection 7.2] to obtain, for any α > 0,

P{∥M (n)
n −M (n)

0 ∥2 > α} 6 2d exp

(
− α2

2σ2

)
,

where

σ2 =

min{n,Nout{S(κ)}−1}∑
s=1

∥Ln−sD(s)∥22

6 [2κ2ν1/2η̃pβ
1+2χ(1 + CTκη̃pβ

1+χ)]2
min{n,Nout{S(κ)}−1}∑

s=1

(1− βγ)2(n−s)

6
4κ4νη̃2pβ

2+4χ(1 + CTκη̃pβ
1+χ)2

βγ[2− βγ]
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6
4κ4νη̃2pγ

−1β1+4χ(1 + CT

2C∆
)2

3−
√
2

(
by (β-3) and η̃pβ

1/2 6 1

2κC∆

)
= Cσκ

4νγ−1η̃2pβ
1+4χ

and Cσ = (CT+2C∆)2

(3−
√
2)C2

∆

. Thus, noticing J2 =M
(n)
n −M (n)

0 for n 6 Nout{S(κ)} − 1, we have

P{∥J2∥2 > α} 6 2d exp

(
− α2

2Cσκ4νγ−1η̃2pβ
1+4χ

)
.

Choosing α = 1
4 (κ

2β2χ − 1)1/2βχ+1/2−3ε and noticing T (n) − LnT (0) = J2 + J3 and ∥J3∥2 6 1
4 (κ

2β2χ

− 1)1/2βχ+1/2−3ε, we have

P{Mn(χ+ 1/2)c} = P

{
∥T (n) − LnT (0)∥2 > 1

2
(κ2β2χ − 1)1/2βχ+1/2−3ε

}
6 P

{
∥J2∥2 > 1

4
(κ2β2χ − 1)1/2βχ+1/2−3ε

}
6 2d exp

(
− κ2β2χ − 1

32Cσκ4νγ−1η̃2pβ
2χ
β−6ε

)
6 2d exp

(
− κ2β2χ

64Cσκ4νγ−1η̃2pβ
2χ
β−6ε

)
= 2d exp(−Cκγκ−2ν−1η−2

p β−2ε),

where Cκ = 1
64Cσ

which is the same as in (5.6d).

Lemma 5.5. Suppose that the conditions of Theorem 4.3 hold. If

N2−m(1−6ε) < min{Nqb{Λ}, Nout{S(κβχ)}}

and V (0) ∈ S(β(1−21−m)(3ε−1/2)κm/2) with m > 2, then for κm >
√
2,

P{Hm} > 1− 2dN2−m(1−6ε) exp(−Cκγκ−2
m ν−1η−2

p β−2ε),

where Hm = {Nin{S(
√
3/2β(1−22−m)(3ε−1/2)κm)} 6 N2−m(1−6ε)}.

Proof. By the definition of the event Tn,

Tn(2−m[1− 6ε] + 3ε) = {∥T (n)∥2 6 (κ2m − β(1−21−m)(1−6ε))1/2β(1−22−m)(3ε−1/2)}.

For n > N2−m(1−6ε) and V
(0) ∈ S(β(1−21−m)(3ε−1/2)κm/2), we know

Mn(2
−m(1− 6ε) + 3ε) ⊂ Tn(2−m(1− 6ε) + 3ε),

because

∥T (n)∥2 6 ∥T (n) − LnT (0)∥2 + ∥L∥n2∥T (0)∥2

6 1

2
(κ2m − β(1−21−m)(1−6ε))1/2β(1−22−m)(3ε−1/2)

+ β2−m(1−6ε)

(
κ2m
4
− β(1−21−m)(1−6ε)

)1/2

β(1−21−m)(3ε−1/2)

6 (κ2m − β(1−21−m)(1−6ε))1/2β(1−21−m)(3ε−1/2).

Therefore, noticing

(κ2m − β(1−21−m)(1−6ε))1/2β(1−22−m)(3ε−1/2) = (β(1−22−m)(6ε−1)κ2m − β21−m(1−6ε))1/2
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6
(
3

2
β(1−22−m)(6ε−1)κ2m − 1

)1/2

,

we obtain

MN2−m(1−6ε)
(2−m(1− 6ε) + 3ε) ⊂ {N̂ 6 N2−m(1−6ε)} = Hm,

where N̂ = Nin{S(
√
3/2β(1−22−m)(3ε−1/2)κm)}. Since∩

n6min{N2−m(1−6ε),N̂−1}

Mn(2
−m(1− 6ε) + 3ε) ∩Hc

m

⊂
∩

n6N2−m(1−6ε)

Mn(2
−m(1− 6ε) + 3ε) ⊂MN2−m(1−6ε)

(2−m(1− 6ε) + 3ε),

we have ∩
n6min{N2−m(1−6ε),N̂−1}

Mn(2
−m(1− 6ε) + 3ε) ⊂ Hm.

By Lemma 5.4 with χ = 2−m(1− 6ε) + 3ε− 1
2 = 2−m(1− 2m−1)(1− 6ε), we obtain

P{Hc
m} 6 P

{ ∪
n6min{N2−m(1−6ε),N̂−1}

Mn(2
−m(1− 6ε) + 3ε)c

}
6 min{N2−m(1−6ε), N̂ − 1} × 2d exp(−Cκγκ−2

m ν−1η−2
p β−2ε)

6 2dN2−m(1−6ε) exp(−Cκγκ−2
m ν−1η−2

p β−2ε),

as expected.

Lemma 5.6. Suppose that the conditions of Theorem 4.3 hold. If V (0) ∈ S(κ/2) with κ > 2
√
2 and

K > N1−6ε, then there exists a high-probability event H1 ∩QK =
∩
n∈[N1/2−3ε,K] Tn(1/2)∩QK satisfying

P{H1 ∩QK} > 1− 2dK exp(−Cκγκ−2ν−1η−2
p β−2ε)−K(ed+ p+ 1) exp(−Cψmin{ψ−1, ψ−2}β−2ε),

such that for any n ∈ [N1−6ε,K],

E{T (n) ◦ T (n);H1 ∩QK} 6 L2nT (0) ◦ T (0) + 2β2[I − L2]−1[I − L2n]H◦ +RE ,

where ∥RE∥2 6 C◦κ
4γ−1ν2η̃2pβ

3/2−3ε, H◦ = var◦(
¯
Y Ȳ T) 6 16ψ4H is as in Lemma 5.3(3)(a), and C◦ is

as in (5.6f).

Proof. First we estimate the probability of the event H1. We know Tn(1/2) ⊂ {∥T (n)∥2 6 (κ2−1)1/2}.
If K > Nout{S(κ)}, then there exists some n 6 K, such that V (n) /∈ S(κ), i.e., ∥T (n)∥2 > (κ2 − 1)1/2

by (5.4). Thus,

{K > Nout{S(κ)}} ⊂
∪
n6K
{∥T (n)∥2 > (κ2 − 1)1/2} ⊂

∪
n6K

Tn(1/2)c.

On the other hand, for n > N1/2−3ε and V (0) ∈ S(κ/2), Mn(1/2) ⊂ Tn(1/2) because

∥T (n)∥2 6 ∥T (n) − LnT (0)∥2 + ∥L∥n2∥T (0)∥2

6 1

2
(κ2 − 1)1/2β1/2−3ε + β1/2−3ε

(
κ2

4
− 1

)1/2

6 (κ2 − 1)1/2β1/2−3ε. (5.18)

Therefore, ∩
n∈[N1/2−3ε,K]

Mn(1/2) ⊂
∩

n∈[N1/2−3ε,K]

Tn(1/2) ⊂ {K 6 Nout{S(κ)} − 1},
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so ∩
n6min{K,Nout{S(κ)}−1}

Mn(1/2) ⊂
∩

n∈[N1/2−3ε,min{K,Nout{S(κ)}−1}]

Mn(1/2)

=
∩

n∈[N1/2−3ε,K]

Mn(1/2)

⊂
∩

n∈[N1/2−3ε,K]

Tn(1/2) =: H1.

By Lemma 5.4 with χ = 0, we have

P

{ ∪
n6min{K,Nout{S(κ)}−1}

Mn(1/2)
c ∩QK

}
6 min{K,Nout{S(κ)} − 1} · 2d exp(−Cκγκ−2ν−1η−2

p β−2ε)

= 2dK exp(−Cκγκ−2ν−1η−2
p β−2ε).

Thus, by Lemma 5.1,

P{(H1 ∩QK)c} = P{Hc
1 ∪Qc

K} = P{Hc
1 ∩QK}+ P{Qc

K}

6 P

{ ∪
n6min{K,Nout{S(κ)}−1}

Mn(1/2)
c ∩QK

}
+ P{Qc

K}

6 2dK exp(−Cκγκ−2ν−1η−2
p β−2ε) +K(ed+ p+ 1) exp(−Cψmin{ψ−1, ψ−2}β−2ε).

Next, we estimate the expectation. Since

H1 =
∩

n∈[N1/2−3ε,K]

Tn(1/2) ⊂
∩

n∈[N1/2−3ε,K]

{1Tn−1D
(n) = D(n)},

we have that for n ∈ [N1/2−3ε,K],

T (n)1H1∩QK
= 1QK

(
LnT (0) +

N1/2−3ε−1∑
s=1

Ln−sD(s) +
n∑

s=N1/2−3ε

Ln−sD(s)1Ts−1

n∑
s=1

Ln−sE(s−1)
T (V (s−1))

)
=: J̃1 + J̃21 + J̃22 + J̃3.

In what follows, we simply write E
(n)
T = E

(n)
T (V (n)) for convenience. Then

E{T (n) ◦ T (n);H1 ∩QK} = E{T (n) ◦ T (n)1H1∩QK}

= E{J̃1 ◦ J̃1}+ 2E{J̃1 ◦ J̃21}+ 2E{J̃1 ◦ J̃22}+ 2E{J̃1 ◦ J̃3}

+ E{[J̃21 + J̃22] ◦ [J̃21 + J̃22]}+ 2E{[J̃21 + J̃22] ◦ J̃3}+ E{J̃3 ◦ J̃3}

6 E{J̃1 ◦ J̃1}+ 2E{J̃1 ◦ J̃21}+ 2E{J̃1 ◦ J̃22}+ 2E{J̃1 ◦ J̃3}

+ 2E{J̃21 ◦ J̃21}+ 4E{J̃21 ◦ J̃22}+ 2E{J̃22 ◦ J̃22}+ 2E{J̃3 ◦ J̃3}.

Each summand above for n ∈ [N1−6ε,K] can be estimated with careful calculation (see Appendix A.2),

which reads

(1) E{J̃1 ◦ J̃1} = L2nT (0) ◦ T (0);

(2) E{J̃1 ◦ J̃21} = 0;

(3) E{J̃1 ◦ J̃22} = 0.

(4) ∥E{J̃1 ◦ J̃3}∥2 6 1
2CT ν

1/2η̃2pγ
−1κ4β2−6ε;

(5) E{J̃21 ◦ J̃22} = 0;
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(6) E{J̃21 ◦ J̃21} = β2
∑N1/2−3ε−1
s=1 L2(n−s)H◦ + E21, where

∥E21∥2 6
(
29 + 8

√
2

64
+ 2CTκ(η̃pβ) + C2

Tκ
2(η̃pβ)

2

)
γ−1κ4ν2η̃2pβ

2−6ε;

(7) E{J̃22 ◦ J̃22} = β2
∑n
s=N1/2−3ε

L2(n−s)H◦ + E22, where

∥E22∥2 6 1

3−
√
2

(
29 + 8

√
2

32
+ 4CTκη̃pβ

1/2+3ε + 2C2
Tκ

2η̃2pβ
3/2+3ε

)
γ−1κ4ν2η̃2pβ

3/2−3ε;

(8) ∥E{J̃3 ◦ J̃3}∥2 6 1
3−

√
2
C2
T νη̃

4
pγ

−1κ6β3.

Collecting all the estimates together, we obtain

E{T (n) ◦ T (n);H1 ∩QK} 6 L2nT (0) ◦ T (0) + 2β2
n∑
s=1

L2(n−s)H◦ +RE

6 L2nT (0) ◦ T (0) + 2β2[I − L2]−1[I − L2n]H◦ +RE ,

where by (β-3), 2C∆κη̃pβ
1/2 6 1, and

∥RE∥2 6 2

[
CT
2
β1/2−3ε +

(
29 + 8

√
2

64
+ 2CTκη̃pβ + C2

Tκ
2(η̃pβ)

2

)
β1/2−3ε +

C2
T

3−
√
2
η̃2pκ

2β3/2+3ε

+
2

3−
√
2

(
29 + 8

√
2

64
+ 2CTκη̃pβ

1/2+3ε + C2
Tκ

2η̃2pβ
3/2+3ε

)]
κ4γ−1ν2η̃2pβ

3/2−3ε

6 2

[
CT
2
β1/2−3ε +

(
29 + 8

√
2

64
+
CT
C∆

β1/2 +
C2
T

4C2
∆

β

)
β1/2−3ε +

C2
T

4(3−
√
2)C2

∆

β1/2+3ε

+
2

3−
√
2

(
29 + 8

√
2

64
+
CT
C∆

β3ε +
C2
T

4C2
∆

β1/2+3ε

)]
κ4γ−1ν2η̃2pβ

3/2−3ε

= C◦κ
4γ−1ν2η̃2pβ

3/2−3ε,

where C◦ is as given in (5.6f).

5.4 Proof of Theorem 4.3

Write Ñs = s lnβ
ln(1−βγ) . Then (1 − βγ)Ñs = βs and Ns = ⌈Ñs⌉, where Ns is defined in (4.5). It can be

verified that Ñs1 + Ñs2 = Ñs1+s2 for any s1 and s2.

Write κm = 6(1−m)/2κ for m = 1, . . . ,M ≡M(ϵ). Since dβ1−7ε 6 (
√
2− 1)λ−1

1 ω, we know

ϕd1/2 6 ϕω1/2β7ε/2−1/2 6 β(1−21−M )(3ε−1/2)κM/2.

The key to our proof is to divide the whole process into M segments of iterations. Thanks to the strong

Markov property of the process, we can use the final value of the current segment as the initial guess of

the very next one. By Lemma 5.5, after the first segment of

n1 := min{Nin{S(
√

3/2β(1−22−M )(3ε−1/2)κ1)}, N2−M (1−6ε)}

iterations, V (n1) lies in S(
√
3/2β(1−22−M )(3ε−1/2)κ1) = S(β(1−22−M )(3ε−1/2)κ2/2) with high probability,

which will be a good initial guess for the second segment. In general, the i-th segment of iterations starts

with V (ni−1) and ends with V (ni), where

ni = min

{
Nin{S(β(1−2i+1−M )(3ε−1/2)κi+1/2)},

⌈ M∑
m=M+1−i

Ñ2−m(1−6ε)

⌉}
.
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At the end of the (M − 1)-st segment of iterations, V (nM−1) is produced and it is going to be used as an

initial guess for the last step, at which we can apply Lemma 5.6. Now nM−1 = min{Nin{S(κM/2)}, K̂},
where K̂ = ⌈

∑M
m=2 Ñ2−m(1−6ε)⌉ = ⌈Ñ(1−21−M )(1/2−3ε)⌉. By 22−M > ε/2

1/2−3ε > 21−M , we have

N1/2−7ε/2 = ⌈Ñ1/2−7ε/2⌉ 6 K̂ 6 ⌈Ñ1/2−13ε/4⌉ 6 N1/2−13ε/4.

Let N̂ = Nin{S(
√
3/2β(1−22−m)(3ε−1/2)κM+1−m)}, and

H̃m = {N̂ 6 Ñ2−m(1−6ε) + nM−m} for 2 6 m 6M,

H̃1 =
∩

n∈[N1/2−3ε,K−Nin{S(κM/2)}]

Tn+Nin{S(κM/2)}(1/2),

H =

M∩
m=1

H̃m ∩QK ,

where n0 = 0. We have

P{Hc} = P

{ M∪
m=1

H̃c
m ∪Qc

K

}
6

M∑
m=1

P{H̃c
m ∪Qc

K}

6
M∑
m=2

2dN2−m(1−6ε) exp(−Cκγκ−2
M+1−mν

−1η−2
p β−2ε)

+ 2d

(
K −

M∑
m=2

N2−m(1−6ε)

)
exp(−Cκγκ−2

M ν−1η−2
p β−2ε)

+K(ed+ p+ 1) exp(−Cψmin{ψ−1, ψ−2}β−2ε)

6 2dK exp(−Cκγκ−2ν−1η−2
p β−2ε) +K(ed+ p+ 1) exp(−Cψmin{ψ−1, ψ−2}β−2ε)

6 2dK exp(−Cκ4
√
2CT ν

−1βεβ−2ε) +K(ed+ p+ 1) exp(−Cψmin{ψ−1, ψ−2}β−2ε) (by (β-4))

6 2dK exp(−4
√
2CTCκν

−1β−ε) +K(ed+ p+ 1) exp(−Cψmin{ψ−1, ψ−2}β−ε)

6 K[(2 + e)d+ p+ 1] exp(−max{Cνν−1, Cψmin{ψ−1, ψ−2}}β−ε),

where Cν = 4
√
2CTCκ is as given in (5.6e).

Set H′
n′ := {Nin{S(κ/2)} = n′}. If n′ > K̂, then H∩H′

n′ = ∅. Otherwise if n′ 6 K̂, then by Lemma 5.5,

V (n′) ∈ S(κM/2) and then ∥T (n′)∥2F 6 p((κM

2 )2 − 1). Thus,

ϕ2d(1− βγ)2(n
′−1) > ϕ2d(1− βγ)2(K̂−1) >

(
κM
2

)2

> 1

p
∥T (n′)∥2F.

Hence, for any n ∈ [N1−6ε +Nin{S(κ/2)},K] ⊂ [N1−6ε + n′,K + n′], by Lemma 5.6, we have

E{T (n) ◦ T (n)1H | H′
n′ ∩ Fn′} 6 L2(n−n′)T (n′) ◦ T (n′) + 2β2[I − L2]−1[I − L2(n−n′)]H◦ +RE .

Recall that Fn′ is the σ-algebra filtration, i.e., the information known by step n′. Introduce sum(A) for

the sum of all the entries of a matrix A. In particular, sum(A ◦A) = ∥A∥2F. We have

E{∥T (n)∥2F1H | H′
n′}

= E{E{∥T (n)∥2F1H | H′
n′ ∩ Fn′}}

6 E{(1− βγ)2(n−n
′)∥T (n′)∥2F + 2β2 sum([I − L2]−1H◦) + sum(RE)}

6 (1− βγ)2(n−1)pϕ2d+ 2β2 sum([I − L2]−1H◦) +
√
p(d− p)∥RE∥F

6 (1− βγ)2(n−1)pϕ2d+ 2β2 1

β(2− λ1β)
sum(G ◦H◦) +

√
p(d− p)C◦

√
pκ4(νη̃p)

2γ−1β3/2−3ε,
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where G = [γij ](d−p)×p with γij =
1

λj−λp+i
. Putting all the above together, we obtain

E{∥T (n)∥2F;H} = E{E{∥T (n)∥2F1H | H′
n′}}

6 (1− βγ)2(n−1)pϕ2d+
2β

2− λ1β
sum(G ◦H◦) + C◦κ

4ν2η̃2pp
√
d− pγ−1β3/2−3ε.

Note that on H, Nin{S(κ/2)} 6 K̂. So the expectation is valid for any n ∈ [N1−2ε + K̂,K]. Finally, we

estimate sum(G ◦H◦). By Lemma 5.3, H◦ 6 16ψ4H, and hence,

sum(G ◦H◦) 6
p∑
j=1

d−p∑
i=1

16ψ4λp+iλj
λj − λp+i

= 16ψ4φ(p, d; Λ).

This completes the proof.

6 Proofs of Theorems 4.5 and 4.6

To prove Theorem 4.5, we first prove that it is a high-probability event that V (0) satisfies the initial

condition there, which is the result of Lemma 6.2 below. Then together with Theorem 4.3, we have

the conclusion. During estimating the probability, we need a property on the Gaussian hypergeometric

function of a matrix argument, as in Lemma 6.1.

The gamma function and the multivariate gamma function are

Γ(x) :=

∫ ∞

0

tx−1 exp(−t)dt, Γm(x) := πm(m−1)/4
m∏
i=1

Γ

(
x− i− 1

2

)
,

respectively. Denote by 2F1 the Gaussian hypergeometric function of matrix argument (see [23,

Definition 7.3.1]), and also by 1F0 and 1F1 the generalized hypergeometric functions that will be used

later.

Lemma 6.1. For any scalar a, b, c and a symmetric matrix T ∈ Rm×m,

2F1(a, b; c;T )

=
Γm(c− a− b)Γm(c)

Γm(c− a)Γm(c− b) 2
F1

(
a, b; a+ b− c+ m+ 1

2
; I − T

)
+

Γm(a+ b− c)Γm(c)

Γm(a)Γm(b)
det(I − T )c−a−b2F1

(
c− a, c− b; c− a− b+ m+ 1

2
; I − T

)
. (6.1)

Our proof of Lemma 6.1 is similar to that for the case p = 1 by Kummer’s solutions of the

hypergeometric differential equation (see, e.g., [20, Subsection 3.8]), and we leave it to Appendix A.3.

Lemma 6.2. Suppose p < (d+1)/2. If V (0) satisfies the condition that R(V (0)) is uniformly sampled

from Gp(Rd), then for sufficiently large d and δ ∈ [0, 1], there exists a constant Cp, independent of δ

and d, such that

P{V (0) ∈ S(Cpδ−1d1/2)} > 1− δp
2

. (6.2)

Proof. Let 1 > σ1 > · · · > σp > 0 be the singular values of V̄ (0), and then σi = cos θi, where θi’s are

the canonical angles between R(V (0)) and R(V∗) (recall (5.1)). By [2, Theorem 1], since p < (d + 1)/2,

the probability distribution function of σp is

P{V (0) ∈ S(1/x)} = P{σp > x} = P{θp 6 arccosx}

=
Γ(p+1

2 )Γ(d−p+1
2 )

Γ(12 )Γ(
d+1
2 )

(1− x2)p(d−p)/22F1

(
d− p
2

,
1

2
;
d+ 1

2
; (1− x2)Ip

)
.

Set

fd :=
Γp(

d+1
2 )Γp(

p
2 )

Γp(
p+1
2 )Γp(

d
2 )
, gd :=

Γp(
d+1
2 )Γp(−p2 )

Γp(
d−p
2 )Γp(

1
2 )

.
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After some calculations that are deferred to Appendix A.4, we know

• in defining gd, although Γp(−p2 ) and Γp(
1
2 ) may be ∞, by analytic continuation, Γp(−p2 )/Γp(

1
2 ) is

well defined;

• f−1
d gd =

Γ( p+1
2 )Γp(

d
2 )Γp(− p

2 )

Γ( 1
2 )Γp(

d−p
2 )Γp(

1
2 )

;

• Γp(
d
2 )

Γp(
d−p
2 )

= (d2 )
p2/2[1 + o(1)] as d→∞.

By (6.1), we have

2F1

(
d− p
2

,
1

2
;
d+ 1

2
; (1− x2)Ip

)
= fd 2F1

(
d− p
2

,
1

2
;
1

2
;x2Ip

)
+ gd det(x

2Ip)
p/2

2F1

(
p+ 1

2
,
d

2
;
2p+ 1

2
;x2Ip

)
.

Also, [23, Definition 7.3.1 and Corollary 7.3.5] give

2F1

(
d− p
2

,
1

2
;
1

2
;x2Ip

)
= 1F0

(
d− p
2

;x2Ip

)
= det(Ip − x2Ip)−(d−p)/2 = (1− x2)−p(d−p)/2.

Therefore,

P{V (0) ∈ S(1/x)} = 1 + f−1
d gd (1− x2)p(d−p)/2xp

2

2F1

(
p+ 1

2
,
d

2
;
2p+ 1

2
;x2Ip

)
.

Substituting x = (δ−1d1/2)−1 and by [23, (8) of Subsection 7.4], we obtain that as d→∞,

P{V (0) /∈ S(δ−1d1/2)}

= −f−1
d gd(1− δ2d−1)p(d−p)/2(δ2d−1)p

2/2
2F1

(
p+ 1

2
,
d

2
;
2p+ 1

2
;
δ2

d
Ip

)
=

Γ(p+1
2 )Γp(−p2 )

−Γ(12 )Γp(
1
2 )

Γp(
d
2 )

Γp(
d−p
2 )

(
1− δ2

d

)pd/2(
d

δ2
− 1

)−p2/2[
1F1

(
p+ 1

2
;
2p+ 1

2
;
δ2

2
Ip

)
+ o(1)

]

=
Γ(p+1

2 )Γp(−p2 )
−Γ(12 )Γp(

1
2 )

(
d

2

)p2/2
[1 + o(1)]

[
exp

(
− pδ2

2

)
+ o(1)

][
δp

2

dp2/2
+ o(1)

]
×
[
1F1

(
p+ 1

2
;
2p+ 1

2
;
δ2

2
Ip

)
+ o(1)

]
=

Γ(p+1
2 )Γp(−p2 )

−Γ(12 )Γp(
1
2 )

exp

(
− pδ2

2

)
1F1

(
p+ 1

2
;
2p+ 1

2
;
δ2

2
Ip

)
δp

2

[1 + o(1)]

6
Γ(p+1

2 )Γp(−p2 )
−Γ(12 )Γp(

1
2 )

1F1

(
p+ 1

2
;
2p+ 1

2
;
1

2
Ip

)
δp

2

2 =: Cp
2

p δ
p2 , (6.3)

where the inequality is guaranteed by 1F1(
p+1
2 ; 2p+1

2 ; δ
2

2 Ip) 6 1F1(
p+1
2 ; 2p+1

2 ; 1
2Ip), according to [23,

Theorem 7.5.6]. Substituting δ/Cp for δ, we infer from (6.3) that P{V (0) /∈ S(Cpδ−1d1/2)} 6 δp
2

.

The claim (6.2) is now a simple consequence.

Now we are ready to prove Theorem 4.5.

Proof of Theorem 4.5. Define the event H′
∗ = {V (0) ∈ S(Cpδ−1d1/2)}. Since R(V (0)) is uniformly

sampled from Gp(Rd), Lemma 6.2 says P{H′
∗} > 1 − δp2 . In the following, we will apply Theorem 4.3

with ϕ = Cpδ
−1 and ω = (

√
2 + 1)λ1δ

2. Since Theorem 4.3 is valid on H′
∗, and

K[(2 + e)d+ p+ 1] exp(−Cνψβ−ε) 6 δp
2

,

there exists an event H with

P{H | H′
∗} > 1−K[(2 + e)d+ p+ 1] exp(−Cνψβ−ε) > 1− δp2 ,



28 Liang X et al. Sci China Math

such that for any n ∈ [N3/2−37ε/4(β),K],

E{∥T (n)∥2F;H ∩H′
∗} = P{H′

∗}E{∥T (n)∥2F1H | H′
∗}

6 E{∥T (n)∥2F1H | H′
∗}

6 (1− βγ)2(n−1)pC2
pδ

−2d+
32ψ4β

2− λ1β
φ(p, d; Λ) + C◦κ

4ν2η2pγ
−1p
√
d− pβ3/2−5ε.

Let H∗ = H ∩H′
∗ for which P{H∗} = P{H | H′

∗}P{H′
∗} > (1− δp2)2 > 1− 2δp

2

, as expected.

Finally, we prove Theorem 4.6.

Proof of Theorem 4.6. First we examine the conditions of Theorem 4.5 to make sue that they are

satisfied. It can be seen that β∗ → 0 as N∗ → ∞. Thus, β∗ satisfies (4.6) for sufficiently large N∗. We

have

(1− β∗γ)N∗ =

(
1− 3 lnN∗

2N∗

)N∗

= exp

(
− 3

2
lnN∗

)
[1 + o(1)] = N

−3/2
∗ [1 + o(1)]

=

(
3 lnN∗

2γβ∗

)−3/2

[1 + o(1)] =
β
3/2
∗ γ3/2

(3/2)3/2(lnN∗)3/2
[1 + o(1)] 6 β

3/2
∗ ,

which implies N∗ > N3/2(β) > N3/2−9ε(β).

The conclusion of the theorem will be a straightforward consequence if

C̃(d,N∗, δ) :=
(1− β∗γ)2(N∗−1)pC2

pδ
−2d+ 32ψ4β∗

2−λ1β∗
φ(p, d; Λ) + C◦κ

4ν2η2pγ
−1p
√
d− pβ3/2−7ε

∗
φ(p,d;Λ)
λp−λp+1

lnN∗
N∗

is bounded, say by C∗(d,N∗, δ) to be defined. In fact,

C̃(d,N∗, δ) = γ
N∗

lnN∗

[
(1− β∗γ)2(N∗−1)C2

pδ
−2 pd

φ(p, d; Λ)
+

32ψ4β∗
2− λ1β∗

+
C◦κ

4ν2η2pγ
−1p
√
d− p

φ(p, d; Λ)
β
3/2−7ε
∗

]
6 γ

N∗

lnN∗

[
β3
∗

(1− β∗γ)2
C2
pδ

−2 pd

φ(p, d; Λ)
+

32ψ4β∗
2− λ1β∗

+
C◦κ

4ν2η2pγ
−1p
√
d− p

φ(p, d; Λ)
β
3/2−7ε
∗

]
(by N∗ > N3/2, or equivalently, (1− β∗γ)N∗ 6 β

3/2
∗ )

6 γ
N∗

lnN∗
β∗

[
β2
∗

(1− β∗γ)2
C2
pδ

−2 d

p

1
λ1λd

λ1−λd

+
32ψ4

2− λ1β∗
+
C◦κ

4ν2η2pγ
−1

√
p λ1λd

λ1−λd

β
1/2−7ε
∗

]
(
by φ(p, d; Λ) > p(d− p)λ1λd

λ1 − λd
and d > 2p

)
6 3

2

[
β1+3ε
∗

(1− β∗γ)2
C2
p

p

λ1 − λd
λ1λd

+
32ψ4

2− λ1β∗
+ C◦κ

4ν2η2pγ
−1p−1/2λ1 − λd

λ1λd
β
1/2−7ε
∗

]
(by dβ1−3ε

∗ 6 δ2)

=: C∗(d,N∗, δ).

Since β∗ 6 1 and β∗γ 6 λ1β∗ 6
√
2− 1, we have

C∗(d,N∗, δ) 6
3

2

[
C2
p

2(3− 2
√
2)p

λ1 − λd
λ1λd

+
32ψ4

3−
√
2
+
C◦κ

4ν2η2p(λ1 − λd)
p1/2γλ1λd

]
,

and also C∗(d,N∗, δ)→ 24ψ4 as d→∞, N∗ →∞, as was to be shown.

7 Conclusion

We have presented a detailed convergence analysis for the multi-dimensional subspace online PCA

iteration on sub-Gaussian samples, following the recent work [19] by Li et al. who considered only
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the one-dimensional case, i.e., the most significant principal component. Our results bear similar forms

to theirs and when applied to the one-dimensional case yield estimates of essentially the same quality,

as expected. As we embarked on the analysis presented in this paper, we found that a straightforward

extension of the analysis in [19] was not possible because of the involvement of a cot-matrix of dimension

higher than 1 in the multi-dimensional case but just a scalar in the one-dimensional case. Our results yield

an explicit convergence rate, and it is nearly optimal because it nearly attains the minimax information

lower bound for sub-Gaussian PCA under a constraint, as well as nearly global because the finite sample

error bound holds with high probability if the initial value is uniformly sampled from the Grassmann

manifold.
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Appendix A Supplementary proofs

Appendix A.1 Proof of Lemma 5.3(3)

We have

var◦(∆T ) = var◦(TL(βY Y
T +RT )TR) = β2 var◦(TLY Y

TTR) + 2βR◦,1 +R◦,2, (A.1)

where R◦,1 = cov◦(TLY Y
TTR, TLRTTR) and R◦,2 = var◦(TLRTTR). By (5.11),

var◦(TLY Y
TTR) = var◦(

¯
Y Ȳ T) +R◦,0, (A.2)

where

R◦,0 = var◦(T Ȳ
¯
Y TT ) + var◦(T Ȳ Ȳ

T) + var◦(
¯
Y
¯
Y TT )

− 2 cov◦(
¯
Y Ȳ T, T Ȳ

¯
Y TT )− 2 cov◦(

¯
Y Ȳ T, T Ȳ Ȳ T) + 2 cov◦(

¯
Y Ȳ T,

¯
Y
¯
Y TT )

+ 2 cov◦(T Ȳ
¯
Y TT, T Ȳ Ȳ T)− 2 cov◦(T Ȳ

¯
Y TT,

¯
Y
¯
Y TT )

− 2 cov◦(T Ȳ Ȳ
T,

¯
Y
¯
Y TT ).

Examine (A.1) and (A.2) together to obtain H◦ = var◦(
¯
Y Ȳ T) and R◦ = β2R◦,0 + 2βR◦,1 + R◦,2. We

note

Yj = eTj Y = eTj Λ
1/2Λ−1/2Y = λ

1/2
j eTj Λ

−1/2Y,

eTi var◦(
¯
Y Ȳ T)ej = var(eTi ¯

Y Ȳ Tej) = var(Yp+iYj) = E{Y 2
p+iY

2
j }.

By [31, (5.11)],

E{Y 4
j } = λ2jE{(eTj Λ−1/2Y )4} 6 16λ2j∥eTj Λ−1/2Y ∥4ψ2

6 16λ2j∥Λ−1/2Y ∥4ψ2
= 16λ2jψ

4.

Therefore, eTi var◦(
¯
Y Ȳ T)ej 6 [E{Y 4

p+i}E{Y 4
j }]1/2 6 16λp+iλjψ

4, i.e., H◦ = var◦(
¯
Y Ȳ T) 6 16ψ4H. This

proves (3)(a). To show (3)(b), first we bound the entrywise variance and covariance. For any matrices

A1 and A2 of the same size, it holds that (see [14, p. 233])

∥A1 ◦A2∥2 6 ∥A1∥2∥A2∥2, (A.3)

and thus

∥cov◦(A1, A2)∥2 = ∥E{A1 ◦A2} − E{A1} ◦ E{A2}∥2
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6 E{∥A1∥2∥A2∥2}+ ∥E{A1}∥2∥E{A2}∥2, (A.4a)

∥var◦(A1)∥2 6 E{∥A1∥22}+ ∥E{A1}∥22. (A.4b)

Apply (A.4) to R◦,1 and R◦,2 to obtain

∥R◦,1∥2 6 2CT νη̃
3
pβ

2(1 + ∥T∥22)5/2, ∥R◦,2∥2 6 2C2
T ν(η̃pβ)

4(1 + ∥T∥22)3, (A.5)

upon using

∥TLY Y TTR∥2 = ∥TLY Y TV V TTR∥2 6 ν1/2η̃p(1 + ∥T∥22), ∥TLRTTR∥2 6 CT ν
1/2(η̃pβ)

2(1 + ∥T∥22)3/2.

For R◦,0, by (5.12), we have

∥cov◦(
¯
Y Ȳ T, T Ȳ

¯
Y TT )∥2 6 E{∥

¯
Y Ȳ T∥22}∥T∥22,

∥cov◦(
¯
Y Ȳ T, T Ȳ Ȳ T)∥2 6 E{∥

¯
Y Ȳ T∥2∥Ȳ Ȳ T∥2}∥T∥2,

∥cov◦(
¯
Y Ȳ T,

¯
Y
¯
Y TT )∥2 6 E{∥

¯
Y Ȳ T∥2∥

¯
Y
¯
Y T∥2}∥T∥2,

∥cov◦(T Ȳ
¯
Y TT, T Ȳ Ȳ T)∥2 6 E{∥

¯
Y Ȳ T∥2∥Ȳ Ȳ T∥2}∥T∥32,

∥cov◦(T Ȳ
¯
Y TT,

¯
Y
¯
Y TT )∥2 6 E{∥

¯
Y Ȳ T∥2∥

¯
Y
¯
Y T∥2}∥T∥32,

∥var◦(T Ȳ
¯
Y TT )∥2 6 E{∥

¯
Y Ȳ T∥22}∥T∥42,

∥var◦(T Ȳ Ȳ T)∥2 6 E{∥Ȳ Ȳ T∥22}∥T∥22 + ∥T Λ̄∥22,
∥var◦(

¯
Y
¯
Y TT )∥2 6 E{∥

¯
Y
¯
Y T∥22}∥T∥22 + ∥¯ΛT∥

2
2,

∥cov◦(T Ȳ Ȳ T,
¯
Y
¯
Y TT )∥2 6 E{∥Ȳ Ȳ T∥2∥

¯
Y
¯
Y T∥2}∥T∥22 + ∥T Λ̄∥2∥¯ΛT∥2.

Since

∥Ȳ Ȳ T∥2 + ∥
¯
Y
¯
Y T∥2 = Ȳ TȲ +

¯
Y T

¯
Y = Y TY 6 νη̃p,

∥
¯
Y Ȳ T∥2 = (Ȳ TȲ )1/2(

¯
Y T

¯
Y )1/2 6 Ȳ TȲ +

¯
Y T

¯
Y

2
6 νη̃p

2
,

we have

∥R◦,0∥2 6 E{2∥
¯
Y Ȳ T∥22 + (∥Ȳ Ȳ T∥2 + ∥

¯
Y
¯
Y T∥2)2}∥T∥22 + (∥T Λ̄∥2 + ∥

¯
ΛT∥2)2

+ 2E{∥
¯
Y Ȳ T∥2(∥Ȳ Ȳ T∥2 + ∥

¯
Y
¯
Y T∥2)}(∥T∥2 + ∥T∥32) + E{∥

¯
Y Ȳ T∥22}∥T∥42

6 (νη̃p)
2∥T∥2 +

[
3

2
(νη̃p)

2 + (λ1 + λp+1)
2

]
∥T∥22 + (νη̃p)

2∥T∥32 +
1

4
(νη̃p)

2∥T∥42

6 (νη̃p)
2∥T∥2

(
1 +

11

2
∥T∥2 + ∥T∥22 +

1

4
∥T∥32

)
. (A.6)

Finally, collecting (A.5) and (A.6) yields the desired bound on R◦ = β2R◦,0 + 2βR◦,1 +R◦,2.

Appendix A.2 Estimation in the proof of Lemma 5.6

(1) E{J̃1 ◦ J̃1} = L2nT (0) ◦ T (0).

(2) E{J̃1 ◦ J̃21} =
∑N1/2−3ε−1
s=1 L2n−sT (0) ◦ E

{
D(s)1QK

}
= 0, because

E{D(s)1QK} = E{E{D(s)1QK | Fs−1}} = 0.

(3) E{J̃1 ◦ J̃22} =
∑n
s=N1/2−3ε

L2n−sT (0) ◦ E{D(s)1Ts−11QK
} = 0, because Ts−1 ⊂ Fs−1, so

E{D(s)1Ts−11QK
} = P{Ts−1}E{D(s)1QK

| Ts−1} = P{Ts−1}E{E{D(s)1QK
| Fs−1} | Ts−1} = 0.

(4) E{J̃1 ◦ J̃3} =
∑n
s=1 L2n−sT (0) ◦ E{E(s−1)

T 1QK
}. Recall (A.3). By Lemma 5.3(2)(a), we have

∥E{J̃1 ◦ J̃3∥}2 6
n∑
s=1

∥L∥2n−s2 ∥T (0)∥2∥E{E(s−1)
T 1QK

}∥2
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6
n∑
s=1

(1− βγ)2n−s
(
κ2

4
− 1

)1/2

CT ν
1/2(η̃pβ)

2κ3

6 (1− βγ)n
(κ2 − 1)1/2CT ν

1/2η̃2pβ
2κ3

2βγ

6 1

2
β1−6εCT ν

1/2η̃2pγ
−1βκ4 (by n > N1−6ε).

(5) E{J̃21 ◦ J̃22} =
∑N1/2−3ε−1
s=1

∑n
s′=N1/2−3ε

L2n−s−s′E{D(s)1QK
◦D(s′)1Ts′−1

1QK
} = 0, because s < s′

and

E{D(s)1QK
◦D(s′)1Ts′−1

1QK
} = E{D(s) ◦D(s′)1Ts′−1

1QK
}

= P{Ts′−1}E{D(s) ◦D(s′)1QK
| Ts′−1}

= P{Ts′−1}E{E{D(s) ◦D(s′)1QK
| Fs′−1} | Ts′−1}

= P{Ts′−1}E{E{D(s′)1QK
| Fs′−1} ◦D(s) | Ts′−1}

= 0.

(6) We have

E{J̃21 ◦ J̃21} =
N1/2−3ε−1∑

s=1

N1/2−3ε−1∑
s′=1

L2n−s−s′E{D(s)1QK
◦D(s′)1QK

}

=

N1/2−3ε−1∑
s=1

L2(n−s)E{D(s) ◦D(s)1QK
},

because for s ̸= s′,

E{D(s)1QK
◦D(s′)1QK

} = E{D(s) ◦D(s′)1QK
}

= E{E{D(max{s,s′})1QK
| Fmax{s,s′}−1} ◦D(min{s,s′})}

= 0.

Use (3)(a) and (3)(b) of Lemma 5.3 to obtain

E{D(s) ◦D(s)1QK} = E{E{D(s) ◦D(s)1QK | Fs−1}}

= E{var◦([T (n+1) − T (n)]1QK
| Fs−1)}

= E{β2H◦ +R◦} = β2H◦ + E{R◦}.

Therefore, E{J̃21 ◦ J̃21} = β2
∑N1/2−3ε−1
s=1 L2(n−s)H◦ +

∑N1/2−3ε−1
s=1 L2(n−s) E{R◦}. We have that for

κ > 2
√
2,

∥R◦∥2 6 (νη̃pβ)
2τs−1

(
1 +

11

2
τs−1 + τ2s−1 +

1

4
τ3s−1

)
+ 4CTκ

5ν(η̃pβ)
3 + 2C2

Tκ
6ν(η̃pβ)

4

6 (νη̃pβ)
2τs−1

(
κ2 +

21

4
κ+

1

4
κ3
)
+ 4CTκ

5ν(η̃pβ)
3 + 2C2

Tκ
6ν(η̃pβ)

4

6 29 + 8
√
2

32
κ3ν2(η̃pβ)

2τs−1 + 4CTκ
5ν(η̃pβ)

3 + 2C2
Tκ

6ν(η̃pβ)
4,

where τs−1 = ∥T (s−1)∥2 6 (κ2 − 1)1/2. Write E21 :=
∑N1/2−3ε−1
s=1 L2(n−s) E{R◦}. Since 2N1/2−3ε − 1

6 N1−6ε 6 2N1/2−3ε by definition, we obtain

∥E21∥2 6
N1/2−3ε−1∑

s=1

∥L∥2(n−s)2 E{∥R◦∥2}
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6 (1− βγ)2(n+1−N1/2−3ε)

βγ[2− βγ]
E{∥R◦∥2}

6 1− βγ
2− βγ

(1− βγ)n

βγ
E{∥R◦∥2}

6 1

2
β1−6εγ−1βκ4νη̃2p

(
29 + 8

√
2

32
ν + 4CTκ(η̃pβ) + 2C2

Tκ
2(η̃pβ)

2

)
6
(
29 + 8

√
2

64
+ 2CTκ(η̃pβ) + C2

Tκ
2(η̃pβ)

2

)
γ−1κ4ν2η̃2pβ

2−6ε.

(7) We have

E{J̃22 ◦ J̃22} =
n∑

s=N1/2−3ε

L2(n−s)E{D(s)1QK
1Ts−1 ◦D(s)1QK

1Ts−1}

= β2
n∑

s=N1/2−3ε

L2(n−s)H◦ +
n∑

s=N1/2−3ε

L2(n−s)E{R◦1Ts−1},

because for s ̸= s′,

E{D(s)1QK
1Ts−1 ◦D(s′)1QK

1Ts′−1
}

= E{D(s) ◦D(s′)1QK
1Ts−11Ts′−1

}

= E{D(s) ◦D(s′)1QK
| Ts−1 ∩ Ts′−1}P{Ts−1 ∩ Ts′−1}

= E{E{D(max{s,s′})1QK | Fmax{s,s′}−1} ◦D(min{s,s′}) | Ts−1 ∩ Ts′−1}P{Ts−1 ∩ Ts′−1}
= 0

and

E{D(s)1QK
1Ts−1 ◦D(s)1QK

1Ts−1} = E{D(s) ◦D(s′)1QK
1Ts−1}

= P{Ts−1}E{E{D(s) ◦D(s)1QK
| Fs−1} | Ts−1}

6 β2H◦ + E{R◦1Ts−1}.

We have

∥R◦1Ts−1∥2 6 29 + 8
√
2

32
κ3ν2(η̃pβ)

2τs−1 + 4CTκ
5ν(η̃pβ)

3 + 2C2
Tκ

6ν(η̃pβ)
4

6 29 + 8
√
2

32
κ3ν2(η̃pβ)

2(κ2 − 1)1/2β1/2−3ε + 4CTκ
5ν(η̃pβ)

3 + 2C2
Tκ

6ν(η̃pβ)
4

6 29 + 8
√
2

32
κ4ν2(η̃pβ)

2β1/2−3ε + 4CTκ
5ν(η̃pβ)

3 + 2C2
Tκ

6ν(η̃pβ)
4.

Write E22 :=
∑n
s=N1/2−3ε

L2(n−s)E{R◦1Ts−1} for which we have

∥E22∥2 6
n∑

s=N1/2−3ε

∥L∥2(n−s)2 E{∥R◦1Ts−1∥2}

6 1

βγ[2− βγ]
E{∥R◦1Ts−1∥2}

6 1

3−
√
2
γ−1κ4νη̃2pβ

(
29 + 8

√
2

32
νβ1/2−3ε + 4CTκ(η̃pβ) + 2C2

Tκ
2(η̃pβ)

2

)
6 1

3−
√
2

(
29 + 8

√
2

32
+ 4CTκη̃pβ

1/2+3ε + 2C2
Tκ

2η̃2pβ
3/2+3ε

)
γ−1κ4ν2η̃2pβ

3/2−3ε.
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(8) E{J̃3 ◦ J̃3} =
∑n
s=1 L2(n−s)E{E(s−1)

T 1QK
◦ E(s−1)

T 1QK
}. Also, by (A.3),

∥E{J̃3 ◦ J̃3}∥2 6
n∑
s=1

∥L∥2(n−s)2 E{∥E(s−1)
T 1QK

∥22}

6
n∑
s=1

(1− βγ)2(n−s)[CT ν1/2(η̃pβ)2κ3]2

6 C2
T ν(η̃pβ)

4κ6

βγ[2− βγ]
6 1

3−
√
2
C2
T νη̃

4
pγ

−1κ6β3.

Appendix A.3 Proof of Lemma 6.1

The proof is the same as that for the case p = 1 by Kummer’s solutions of the hypergeometric differential

equation (see, e.g., [20, Subsection 3.8]). Let the eigenvalues of T be µ1, . . . , µm. Since 2F1(a, b; c;T ) is

defined on the spectrum of T , it is a function of µ1, . . . , µm. When treated as such, by [23, Theorem 7.5.5],

2F1(a, b; c;T ) is the unique solution of partial differential equations,

µi(1− µi)
∂2F

∂µ2
i

+

(
c− m− 1

2
−
(
a+ b+ 1− m− 1

2

)
µi +

1

2

j ̸=i∑
16j6m

µi(1− µi)
µi − µj

)
∂F

∂µi

− 1

2

j ̸=i∑
16j6m

µj(1− µj)
µi − µj

∂F

∂µj
− abF = 0 (A.7)

subject to the conditions that F is a symmetric function of µ1, . . . , µm, analytic at (µ1, . . . , µm)

= (0, . . . , 0), and F (0, . . . , 0) = 1.

We claim that F̃ (µ1, . . . , µm) := 2F1(a, b; a + b − c + m+1
2 ; I − T ) satisfies (A.7). In fact, letting

µ̃i = 1− µi for 1 6 i 6 m which are the eigenvalues of I − T , we have

µi(1− µi)
∂2F̃

∂µ2
i

+

(
c− m− 1

2
−
(
a+ b+ 1− m− 1

2

)
µi +

1

2

j ̸=i∑
16j6m

µi(1− µi)
µi − µj

)
∂F̃

∂µi

− 1

2

j ̸=i∑
16j6m

µj(1− µj)
µi − µj

∂F̃

∂µj
− abF̃

= (1− µ̃i)µ̃i
∂2F̃

∂µ̃2
i

+
1

2

j ̸=i∑
16j6m

(1− µ̃j)µ̃j
(1− µ̃i)− (1− µ̃j)

∂F̃

∂µ̃j
− abF̃

−
(
c− m− 1

2
−
(
a+ b+ 1− m− 1

2

)
(1− µ̃i) +

1

2

j ̸=i∑
16j6m

(1− µ̃i)µ̃i
(1− µ̃i)− (1− µ̃j)

)
∂F̃

∂µ̃i

= (1− µ̃i)µ̃i
∂2F̃

∂µ̃2
i

− 1

2

j ̸=i∑
16j6m

(1− µ̃j)µ̃j
µ̃i − µ̃j

∂F̃

∂µ̃j
− abF̃

+

(
− c+ m+ 1

2
+ a+ b− m− 1

2
−
(
a+ b+ 1− m− 1

2

)
µ̃i +

1

2

j ̸=i∑
16j6m

(1− µ̃i)µ̃i
µ̃i − µ̃j

)
∂F̃

∂µ̃i

= 0,

where the last equality holds because F̃ (µ1, . . . , µm) = 2F1(a, b; a+ b− c+ m+1
2 ; I −T ) satisfies a version

of (A.7) after substitutions: µi → µ̃i for all i and c→ a+ b− c+ m+1
2 .

F̂ (µ1, . . . , µm) := det(T )
m+1

2 −c
2F1(a − c + m+1

2 , b − c + m+1
2 ;m + 1 − c;T ) satisfies (A.7), too. Set

t = m+1
2 − c and write G(µ1, . . . , µm) = 2F1(a+ t, b+ t; c+ 2t;T ). We have

∂F̂

∂µi
=

t

µi
det(T )tG+ det(T )t

∂G

∂µi
,
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∂2F̂

∂µ2
i

=
t(t− 1)

µ2
i

det(T )tG+ 2
t

µi
det(T )t

∂G

∂µi
+ det(T )t

∂2G

∂µ2
i

,

and thus

µi(1− µi)
∂2F̂

∂µ2
i

+

(
c− m− 1

2
−
(
a+ b+ 1− m− 1

2

)
µi +

1

2

j ̸=i∑
16j6m

µi(1− µi)
µi − µj

)
∂F̂

∂µi

− 1

2

j ̸=i∑
16j6m

µj(1− µj)
µi − µj

∂F̂

∂µj
− abF̂

= µi(1− µi)
(
t(t− 1)

µ2
i

det(T )tG+ 2
t

µi
det(T )t

∂G

∂µi
+ det(T )t

∂2G

∂µ2
i

)
+

(
c− m− 1

2
−
(
a+ b+ 1− m− 1

2

)
µi +

1

2

j ̸=i∑
16j6m

µi(1− µi)
µi − µj

)(
t

µi
det(T )tG+ det(T )t

∂G

∂µi

)

− 1

2

j ̸=i∑
16j6m

µj(1− µj)
µi − µj

(
t

µi
det(T )tG+ det(T )t

∂G

∂µi

)
− abdet(T )tG

= det(T )t
{
µi(1− µi)

∂2G

∂µ2
i

− 1

2

j ̸=i∑
16j6m

µj(1− µj)
µi − µj

∂G

∂µj

+

(
2µi(1− µi)

t

µi
+ c− m− 1

2
−
(
a+ b+ 1− m− 1

2

)
µi +

1

2

j ̸=i∑
16j6m

µi(1− µi)
µi − µj

)
∂G

∂µi

+

[
µi(1− µi)

t(t− 1)

µ2
i

+

(
c− m− 1

2
−
(
a+ b+ 1− m− 1

2

)
µi +

1

2

j ̸=i∑
16j6m

µi(1− µi)
µi − µj

)
t

µi

− 1

2

j ̸=i∑
16j6m

µj(1− µj)
µi − µj

t

µj
− ab

]
G

}

= det(T )t
{
µi(1− µi)

∂2G

∂µ2
i

− 1

2

j ̸=i∑
16j6m

µj(1− µj)
µi − µj

∂G

∂µj

+

(
2(1− µi)t+ c− m− 1

2
−
(
a+ b+ 1− m− 1

2

)
µi +

1

2

j ̸=i∑
16j6m

µi(1− µi)
µi − µj

)
∂G

∂µi

+

[
t(t− 1)

µi
− t(t− 1) +

(
c− m− 1

2

)
t

µi
−
(
a+ b+ 1− m− 1

2

)
t+

1

2

j ̸=i∑
16j6m

(−1)t− ab
]
G

}

= det(T )t
{
µi(1− µi)

∂2G

∂µ2
i

− 1

2

j ̸=i∑
16j6m

µj(1− µj)
µi − µj

∂G

∂µj

+

(
2t+ c− m− 1

2
−
(
2t+ a+ b+ 1− m− 1

2

)
µi +

1

2

j ̸=i∑
16j6m

µi(1− µi)
µi − µj

)
∂G

∂µi

− [t2 + (a+ b)t+ ab]G

}
= 0,

where the last equality holds because G(µ1, . . . , µm) = 2F1(a+t, b+t; c+2t;T ) satisfies a version of (A.7)

after substitutions: a→ a+ t, b→ b+ t and c→ c+ 2t.

Similarly
̂̃
F (µ1, . . . , µm) := det(I−T )c−a−b2F1(c−b, c−a; c−a−b+ m+1

2 ; I−T ) satisfies (A.7). Thus,

any linear combination of F̃ and
̂̃
F , such as the right-hand side of (6.1), also satisfies (A.7). It can be
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verified that the combination is symmetric with respect to µ1, . . . , µm, and analytic at T = 0. Therefore,

by the uniqueness and F (0) = 1, similarly to the discussion in [20, Subsection 3.9], we have (6.1).

Appendix A.4 Complementary calculation in the proof of Lemma 6.2

Here in defining gd, although Γp(−p2 ) and Γp(
1
2 ) may be ∞, by analytic continuation, Γp(−p2 )/Γp(

1
2 ) is

well defined because

Γp(−p2 + ϵ)

Γp(
1
2 + ϵ)

=

p∏
i=1

Γ(−p2 −
i−1
2 + ϵ)

Γ( 12 −
i−1
2 + ϵ)

=



p∏
i=1

(p−1)/2∏
j=1

1
−i
2 − j + 1 + ϵ

for odd p,

Γ(1−2p
2 + ϵ)

Γ( 12 + ϵ)

p−1∏
i=1

p/2∏
j=1

1
−i−1

2 − j + 1 + ϵ
for even p

ϵ→0−−−→



p∏
i=1

(p−1)/2∏
j=1

−2
i+ 2j − 2

,

p∏
k=1

1
−1
2 − k + 1

p−1∏
i=1

p/2∏
j=1

−2
i+ 2j − 1


=

2⌊p/2⌋+1∏
i=1

⌊p/2⌋∏
j=1

−2
i+ 2j − 2

.

Also,

Γp(
p
2 )

Γp(
p+1
2 )

=

p∏
i=1

Γ(p2 −
i−1
2 )

Γ(p+1
2 −

i−1
2 )

=
Γ( 12 )

Γ(p+1
2 )

,
Γp(

d
2 )

Γp(
d+1
2 )

=

p∏
i=1

Γ(d2 −
i−1
2 )

Γ(d+1
2 −

i−1
2 )

=
Γ(d−p+1

2 )

Γ(d+1
2 )

,

which implies fd =
Γ( 1

2 )Γ(
d+1
2 )

Γ( p+1
2 )Γ( d−p+1

2 )
. We have

f−1
d gd =

Γp(
p+1
2 )Γp(

d
2 )Γp(−

p
2 )

Γp(
p
2 )Γp(

d−p
2 )Γp(

1
2 )

=
Γ(p+1

2 )Γp(
d
2 )Γp(−

p
2 )

Γ( 12 )Γp(
d−p
2 )Γp(

1
2 )

.

Note that

Γp(
d
2 )

Γp(
d−p
2 )

=

p∏
i=1

Γ(d2 −
i−1
2 )

Γ(d−p2 −
i−1
2 )

=



Γ(d2 )

Γ(d−p2 )

p∏
i=1

(p−1)/2∏
j=1

(
d− i
2
− j
)

for odd p,

p∏
i=1

p/2∏
j=1

(
d− i
2
− j
)

for even p,

and by limn→∞
Γ(n+α)
Γ(n)nα = 1 for any α (see, e.g., [20, (16) of Subsection 2.1]),

Γ(d2 )

Γ(d−p2 )
=


Γ(d−1

2 )(d−1
2 )1/2[1 + o(1)]

Γ(d−1
2 )(d−1

2 )(1−p)/2[1 + o(1)]
for odd d,

Γ(d2 )

Γ(d2 )(
d
2 )

−p/2[1 + o(1)]
for even d

=


(
d− 1

2

)p/2
[1 + o(1)],(

d

2

)p/2
[1 + o(1)],

which implies

Γp(
d
2 )

Γp(
d−p
2 )

=

(
d

2

)p2/2
[1 + o(1)] as d→∞.
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