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Abstract Principal component analysis (PCA) has been widely used in analyzing high-dimensional data. It
converts a set of observed data points of possibly correlated variables into a set of linearly uncorrelated variables
via an orthogonal transformation. To handle streaming data and reduce the complexities of PCA, (subspace)
online PCA iterations were proposed to iteratively update the orthogonal transformation by taking one observed
data point at a time. Existing works on the convergence of (subspace) online PCA iterations mostly focus on
the case where the samples are almost surely uniformly bounded. In this paper, we analyze the convergence
of a subspace online PCA iteration under more practical assumption and obtain a nearly optimal finite-sample
error bound. Our convergence rate almost matches the minimax information lower bound. We prove that
the convergence is nearly global in the sense that the subspace online PCA iteration is convergent with high
probability for random initial guesses. This work also leads to a simpler proof of the recent work on analyzing

online PCA for the first principal component only.
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1 Introduction

Principal component analysis (PCA) introduced in [15,26] is one of the most well-known and popular
methods for dimensionality reduction in high-dimensional data analysis. With the volume of data
continuously increases, the classical PCA suffers from two major bottlenecks: (1) the high-computational
complexity, including the computing empirical covariance matrix and solving the eigen-decomposition
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problem, and (2) the high storage requirement for the large covariance matrix. These issues prevent PCA
from being used for solving problems with large-scale and high-dimensional data.

To reduce both the time and space complexities, Oja [24] in 1982 proposed an online PCA iteration
to approximate the first principal component—the top eigenvector of the empirical covariance matrix.
Computing the first principal component only is rarely adequate in real-world applications. Later in 1985,
Oja and Karhunen [25] proposed a subspace online PCA iteration to approximate a principal subspace
of any prescribed dimension. These methods update approximations incrementally by processing data
one vector at a time as soon as it comes in such that calculating/storing the empirical covariance matrix
explicitly is completely avoided and therefore result in no memory burden. In the rest of this paper, by
the online PCA iteration we mean the one just for computing the first principal component whereas a
subspace online PCA iteration refers to the one for computing a principal subspace.

Although the online PCA iteration [24] was proposed over 30 years ago, its convergence analysis is
rather scarce until recently. Some recent works [7,16,27] studied the convergence of the online PCA for
the first principal component from different points of view and obtained some results for the case where
the samples are almost surely uniformly bounded. For such a case, De Sa et al. [10] studied a different but
closely related problem, in which the angular part is equivalent to the online PCA, and obtained some
convergence results. In contrast, for the distributions with sub-Gaussian tails (note that the samples of
this kind of distributions may be unbounded), Li et al. [19] proved a nearly optimal convergence rate for
the online PCA iteration when the initial guess is randomly chosen according to a uniform distribution
and the stepsize chosen in accordance with the sample size. This result is more general than previous
ones in [7,16,27], because it is for distributions that can possibly be unbounded, and the convergence
rate is nearly optimal and nearly global.

For the subspace online PCA [25], some recent works studied the convergence for the case where the
samples are almost surely uniformly bounded. In a series of papers [4,5,21,22], Arora et al. studied
PCA as a stochastic optimization problem and its variations via direct optimization approaches, namely
using convex relaxation and adding regularizations. The subspace iteration falls into one variant of their
methods. Hardt and Price [13] and Balcan et al. [6] treated the subspace iteration as a noisy power
method and analyzed its convergence. Li et al. [18] investigated the convergence for the case where
the initial guess follows the normal distribution. Garber et al. [12] used the shift-and-invert technique
to speed up the convergence, but their analysis was only done for the top eigenvector. Allen-Zhu and
Li [3] proposed a faster variant of the subspace online PCA iteration, along with their gap-dependent
and gap-free convergence results. However, those works are performed under the assumption that the
samples are almost surely uniformly bounded. For distributions, e.g., sub-Gaussians, that are possibly
unbounded, a thorough convergence analysis of the subspace online PCA remains elusive.

In this paper, we aim to fill up the gap by establishing a nearly optimal and nearly global convergence
rate for the subspace online PCA for samples of possibly unbounded distributions of sub-Gaussians. In
going through the proving process in [19] for the online PCA iteration, we find that there are three
major hurdles, as we will explain in detail in Subsection 4.2, that prevent their proving technique for one-
dimensional case, i.e., the most significant principal component, from being straightforwardly generalized
to analyze the multi-dimensional case, i.e., significant principal subspaces. To overcome these challenging
difficulties, we adopt a new proving technique and apply it to a variant of subspace online PCA to fulfill
the goal. The variant is mathematically equivalent to the original one in [25] except without explicit
references to QR decompositions for orthogonalization, and is essentially the same as the orthogonal Oja
algorithm of Abed-Meraim et al. [1]. In addition to the advantages inherited from online PCA, it leads to
a computationally economical formula for the subspace online iteration. Some of the proving techniques
are built by ourselves with the help of the theory of special functions of a matrix argument, which is rarely
used in the statistical community. We mention in passing that our proving technique may be specialized
to the online PCA for a simpler proof than that in [19] for the most significant principal component.

The rest of this paper is organized as follows. We first briefly introduce the related work in Section 2.
In Section 3, we propose a variant of the subspace online PCA iteration (2.6), which will be the version to
be analyzed. Our main results are stated in Section 4 together with three main theorems and discussions
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of the newly invented proving technique, where we compare our results for the one-dimensional case with
the recent results in [19] and outline the technical differences in proofs between ours and those from [19].
Our proofs are given in Sections 5 and 6. Finally, in Section 7 we draw our conclusions. Some of the
complicated calculations are deferred to Appendix A for clarity.

Notation. R"™ ™ is the set of all the n x m real matrices, R* = R"*! and R = R!. I,, (or simply I
if its dimension is clear from the context) is the n x n identity matrix and e; is its j-th column (usually
with dimension determined by the context). For a matrix X, o(X), || X|lco, [|X]l2 and [|X||r are the
multiset of the singular values, the /. .-operator norm, the spectral norm and the Frobenius norm of X,
respectively. R(X) is the subspace spanned by the columns of X, X(; ;) is the (4, j)-th entry of X, and
X(k:0,:y and X, ;.5) are two submatrices of X consisting of its row £ to the row £ and the column i to the
column j, respectively. X oY is the Hadamard, i.e., entrywise, product of matrices (vector) X and Y of
the same size.

For any vector or matrices X and Y, X <Y (X <Y) means X(; j) < Y(; ;) (X(,5) < Y(,;)) for any i
and j. X 2 Y (X >Y)if - X < -Y (-X < -Y); X <a (X < a) for ascalar @ means X; ;) < «
(X@,5) < a) for any i and j; similarly X > o« and X > «. For a subset or an event A, A° is the
complement set of A. By o{A1,...,A,}, we denote the o-algebra generated by the events Aq,..., Ay;
N ={1,2,3,...}. E{X;A} := E{X1,} denotes the expectation of a random variable X over event A.
Note that

E{X;A} =E{X | A} P{A}. (1.1)

For a random vector or matrix X, E{X} := [E{X(; ;)}]. Note that |[E{X}||u < E{[| X/} for ui = 2,F.
Write cove(X,Y) := E{[X —E{X}] o [Y — E{Y }]} and var,(X) := covo (X, X).

Denote by G,,(Rd) the Grassmann manifold of all the p-dimensional subspaces of R%. For two subspaces
X,V € G,(RY), let X, Y € CP*P be the basis matrices of X and ), respectively, i.e., X = R(X) and
Y = R(Y), and denote by oj for 1 < j < p in the nondecreasing order, i.e., o1 < --- < oy, the
singular values of (XTX)~Y2XTY (YTY)~Y/2. The p canonical angles 0;(X,Y) between X and Y are
defined by 0 < 6;(X,)) := arccoso; < § for 1 < j < p. They are in the non-increasing order, i.e.,
01(X,Y) = -+ = 0,(X,Y). Set O(X,Y) = diag(0:1(X,)),...,0,(X,Y)). It can be seen that angles so
defined are independent of the basis matrices X and Y, which are not unique. With the definition of
canonical angles, ||sin ©(X,Y)||u for ui = 2, F are metrics on G,(R?) [28, Subsection I1.4].

In what follows, we sometimes place a vector or matrix in one or both arguments of 6;(-,-) and O(-,-)
with the understanding that it is about the subspace spanned by the vector or the columns of the matrix
argument. For any X € R¥*P_ if X(1:p,:) 1s nonsingular, then we can define

T(X):= X(p+1:d,:)X(;}p7: (1.2)

X

2 Related work

Let X € R? be a d-dimensional random vector with the mean E{X} and the covariance
Y =E{(X - E{X})(X - E{X})T}.

To reduce the dimension of X from d to p (usually p < d), PCA looks for a p-dimensional linear
subspace that is closest to the centered random vector X — E{X} in the mean squared sense, through
the independent and identically distributed samples X, ..., X (),
Without loss of generality, we assume E{X } = 0. Then PCA corresponds to a stochastic optimization
problem
in  E{|(Is — ) X|3 2.1
WL {I(a = ) X |3}, (2.1)
where II;; is the orthogonal projector onto the subspace Y. Let ¥ = UAU™ be the spectral decomposition
of X, where
A =diag(A1,...,Aq) with Ay =2 X 2 122220, (2.2)
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and orthogonal U = [u1, ..., uq]. If \, > A,41, then the unique solution to the optimization problem (2.1),
namely the p-dimensional principal subspace of ¥, is U, = R([u1,...,up|), the subspace spanned by
Ui, ...,up. In practice, ¥ is unknown, and the sample data {X() ... X1 is generally used to

estimate U,. The classical PCA does it by the spectral decomposition of the empirical covariance matrix
S=13" XOXO)T, Specifically, the classical PCA uses U, = R([t1,. .., Tp)) to estimate U,, where
u; is the corresponding eigenvectors of ¥. In the classical PCA, obtaining the empirical covariance matrix
has time complexity O(nd?) and space complexity O(d?). So storing and calculating a large empirical
covariance matrix can be very expensive when the data are of high dimension, not to mention the cost
O(d?) by dense solvers or O(pnd) (more of O(p*nd) with full reorthogonalization for robustness) by some
iterative methods for computing its eigenvalues and eigenvectors [11].

To analyze the accuracy of the above estimation using a finite number of samples, an important quantity

is the distance between U, and ﬁ* by their canonical angles. Vu and Lei [32, Theorem 3.1] proved that
2
if p(d — p)% is bounded for some constant o, then
o~ 2
inf sup  E{|sin©@U,,U.)|%} = cp(d — p)Z=

) % (2.3)
U.€Gp(RY) X EPy(02,d)

where ¢ > 0 is an absolute constant, and Py(02,d) is the set of all the d-dimensional sub-Gaussian
distributions for which the eigenvalues of the covariance matrix satisfy

A Ap+1 2
———— < o}. (2.4)
(/\p - )‘p+1)2
Note that its left-hand side is the effective noise variance.
To reduce both the time and space complexities, Oja [24] proposed an online PCA iteration
™ — (1) 4 B(n—l)X(n)(X(n))Tu(n—1)7 u™ = E(")HE(”)IIQI (2.5)

to approximate the first principal component, where 3™ > 0 is a stepsize. Later, Oja and Karhunen [25]
proposed a subspace online PCA iteration

gn = -1 4 x©) (X(n))TU(n—l) diag(ﬁ%"il), o 75;71—1))7 U™ = g g (2.6)

to approximate the principal subspace U,, where 5§n) > 0 for 1 < i < p are stepsizes, and R™ is a
normalization matrix to make U have orthonormal columns. The QR decomposition is often used by
almost all the existing works in the literature (see, e.g., [3,22,25] and the references therein). It can
be seen that these methods update the approximations incrementally by processing data one vector at
a time as soon as it comes in, completely avoiding the explicit calculation of the empirical covariance
matrix. In the subspace online PCA, obtaining an approximate principal subspace has time complexity
O(p?d) and space complexity O(pd) per iterative step.

Recently, Li et al. [19] proved a nearly optimal convergence rate for the iteration (2.5) for the
distributions with sub-Gaussian tails (note the samples of this kind of distributions may be unbounded).
One of their main results reads as follows. For the initial guess u(®) that is randomly chosen according
to a uniform distribution and the stepsize § that is chosen in accordance with the sample size n, there
exists a high-probability event A, with P{A,} > 1 — ¢ such that

d
Inn 1 A1
B (n) 2 TAN S nn i 2.
{ltan O™, w)* | A} < C(d,n,8) = Al—Azi;Al—Ai (2.7a)

)\1)\2 (d — ].) Inn
()\1 — )\2)2 n

< C(d,n,d) , (2.7b)
where ¢ € [0,1), us = uy is the first principal component, and C(d,n,d) can be approximately treated as
a constant because for sufficiently large d, C(d,n,d) goes to a constant as n — oco. It can be seen that
this bound matches the minimax lower bound (2.3) up to a logarithmic factor of n, and hence, nearly
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optimal. Tt is significant because a uniformly distributed initial value is nearly orthogonal to the principal
component with high probability when d is large [8, Subsection 2.4], and thus such a random initial vector
is not a very good initial guess to start an iteration with. This result is more general than previous ones
in [7,16,27], because it is for distributions that can possibly be unbounded, and the convergence rate is
nearly optimal and nearly global.

Unfortunately, the above significant work [19] on the online PCA iteration cannot be trivially
generalized to the subspace online PCA iteration due to three major difficulties to be discussed in
Subsection 4.2.

3 Efficient subspace online PCA

Let X ¢ R? for n = 1,2,... be independent and identically distributed samples of X. As
{XM . XM} comes in a sequential order, the subspace online PCA iteration (2.6) of Oja and
Karhunen [25] is used to compute the principal subspace of dimension p. Differing from (2.6), our
proposed subspace online PCA has the following changes:

(1) a fixed stepsize Bgn) =p>0,Vn,i=1,...,p, is used;

(2) the normalization matrix to make U™ have orthonormal columns is explicitly given by

RM™ = [(UM)Tgm)-1/2, (3.1)
With the changes, our subspace online PCA iteration becomes
U = -1 4 Bx ™ (X(n))TU(n—l)’ v = g [(ﬁ(n))Tﬁ(n)]—l/? (3.2)

It can be verified that U(™) have orthonormal columns. This variant is equivalent to (2.6) in the sense
that both U here and the one there have the same column space. It turns out that the matrix square
root and the inverse in (3.1) can be done analytically as in Lemma 3.1 below, leading to a simple and
computationally economical formula for U™ of (3.2).

An equivalence of Lemma 3.1 was implied in [1], although not explicitly and rigorously stated, to the
analytically transform iteration formula (3.2). For that reason, we credit the lemma to [1], but provide
a proof for completeness because of some missing details in the derivation in [1].

Lemma 3.1 (See [1]). Let V € R™>P with VTV =1, 0# 2 € R? and 0 < 8 € R, and let
W=V + a2tV = (I; + Bzz®)V, Vi :=wWTw)-1/2
If VTx £0, then

1-a
2

Vi=V+ Baxz" — Va2t

where z = V¥x, v = |z|l2, 2 = 2/7, a = B2+ B||z]|3)7? and & = (1 + )~ Y2, In particular, VIV, = I,.
Proof.  We have
WIW = V[, + Bxa™ PV = I, + azz".

Let Z, € RP*®=1 guch that [z, Z,]7[2, Z1] = I,. The eigen-decomposition of WTW is

1+«

WIWw = [z, 72,] (z,2,]%,

Ip_1
which yields

WIW)V2 — (5, 7,] (14 )~ 1/2
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Therefore,
Vi = (V+ Baa™V){I, — [1 — (1 + )" V?)257}
=V +Bzz"V —[1 — (14 a) V2V + BzzT V)22 (use 2TV = 2T = 437)
=V 4Byl —[1 -1 +a) vzt — 1 — (1 + ) V2] Byaz"
1—(1+a)"1/2
=V+(1+a) 282" - %szﬂ,
Y

as expected, knowing & = (1 + o)~ 1/2, O

To apply this lemma to transform (3.2), we perform substitutions, i.e.,
U™ —w, U Dy, UM vy, XMz 200,
to obtain
12 U(n—l)Z(n)(Z(n))T
1213 ’
where a(™ = B2+ B(X™)TXM)|| 2|2 and 2™ = (UC=D)TX (™), Finally, we outline in Algorithm 1

the subspace online PCA algorithm derived from (3.2). This is essentially the same as the orthogonal Oja
algorithm (see [1]) and will be the one we are going to analyze. Computationally, it has the advantages of

g = gh-1) L B(1+ a(n))—1/2X(n)(Z(n))T —[1-@1+ a(n))

not involving any explicit orthogonalization by the Gram-Schmidt process or the matrix square root, but
only in terms of matrix-vector multiplications. This formulation is numerically stable and computationally
fast. At convergence, it is expected that

I

U™ 5 U, :=U = [u1, U2, ..., Up)

in the sense that ||sin©®(U™,U,)|lw — 0 as n — oo. The rest of this paper is devoted to analyzing its
convergence, with the help of the next lemma.

Algorithm 1  Subspace online PCA

1: Choose U € R¥*P with (UO)TU(© = I and choose the stepsize 8 > 0.

2: for n = 1,2,... until convergence do

3 Take an X'’s sample X ("),

4: Zn) — (U(nfl))Tx(TL)’ an) = B(2+ 5()((71))T)((TL>)(Z(TL>)Tz(n)7 an) = 1+ a(n))*1/2;
5

6

— ~(n n n —am n— n n
U = yn=1) 4 ggn) x( )(z( ))T,WU( 1) 7( )(Z(m)T,
: end for

Lemma 3.2.  For V € R¥P with nonsingular Vi1:p,:), we see that for ui = 2,F,

p

1
0
where T (V') is defined as in (1.2).
Proof. LetY = [15’] € R¥*P_ Tt can be seen that the singular values o; =cos0;(V,Y) of

= |7 (V)lluis (3.3)

ul

tan © (V,

T

I I
[+ 7(WV)T 7 (V)2 =+ 7WV)T T (V)2
T(V) 0
and the singular values 7; of 7 (V) are related by
1- 0]2.
Ti= T = tan9j(V7Y),

gj

where j =1,...,p. Hence, the identity (3.3) holds. O
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Notations introduced in this section, except those in Lemma 3.1, will be adopted throughout the rest
of this paper.

4 Main results

For convenience, we first review our setting. Let X = [X;, Xa,..., X4|T be a random vector in R%.
Assume E{X} = 0. Its covariance matrix ¥ := E{X X T} has the spectral decomposition

Y =UAUT with U = [ug,u0,...,ug), A=diag(Ay,...,\a), (4.1)

where U € R4*d jg orthogonal, and \; for 1 < i < d are the eigenvalues of 3, arranged for convenience in
the non-increasing order. Assume

A S = A > A =0 > Mg > 0. (4.2)

Given {X(l), e 7X(")} in a sequential order, the proposed subspace online PCA iteration (3.2) is used
to compute the principal subspace U™ of dimension p to estimate

Ue = R(U¢1:p)) = R([u, ug, . .. up)). (4.3)

Our major result on the convergence rate of the subspace online PCA iteration in Algorithm 1 states
as follows: if the initial guess U(®) is randomly chosen to satisfy that R(U(?) is uniformly sampled from
G,,(Rd), and the stepsize ﬁi(n) is chosen the same for 1 < 7 < p and in accordance with the sample size n,
then there exists a high-probability event H, with P{H,} > 1 — 267 such that

Inn
(n) 2
B Jtan O™, U} | .} < O(d,n,8) =7 - _MZ Z A (4.4a)
j=1i=p+1
ApApt1 p(d—p)Inn

<Od7 76
(d:m )()\p—/\p+1)2 n

(4.4b)

where the constant C(d,n,d) — 24¢*/(1 — 51”2) as d — oo and n — oo, and v is X’s Orlicz-1p; norm (see
Definition 4.1 below). This also matches the minimax lower bound (2.3) up to a logarithmic factor of n,
and hence is nearly optimal and nearly global for the subspace online PCA, in the same way as (2.7) of
Li et al. [19] for the vector online PCA. Both are valid for any sub-Gaussian distribution.

Comparing (4.4) and (2.7), we find that (2.7) becomes the special case of our results (4.4) in the case
of p = 1. Unfortunately, the proving technique in [19] used for the one-dimensional case (p = 1) is not
generalizable to the multi-dimensional case (p > 1). More details will be forthcoming in Subsection 4.2.

We also note that the factor in our result is

Mot A Api1
(/\p - /\p+1)2 (/\p - )‘p+1)2

The second quantity appeared in (2.4). The first quantity is always smaller but both are of the similar
order if A\; and A, are of the similar order. However, their magnitude can differ greatly when A, < A;.

4.1 Three main theorems

In this subsection, we state our three main theorems of the paper for the multi-dimensional case and
(4.4) is a consequence of them. Before that, we will introduce necessary definitions and assumptions. We
point out that any statement we will make is meant to hold almost surely.

We are concerned with random variables/vectors that have a sub-Gaussian distribution. To that end,
we need to introduce the Orlicz 1),-norm of a random variable/vector. More details can be found in [30].
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Definition 4.1. The Orlicz 1),-norm of a random variable X € R is defined as

e

and the Orlicz ¥4-norm of a random vector X € R? is defined as

‘ X
¢

| X ||, :=inf {f >0: E{ exp (

Xl = sup [[v" X[y,

llvll2=1

We say that the random variable/vector X follows a sub-Gaussian distribution if || X ||y, < co.

By definition, any bounded random variable/vector follows a sub-Gaussian distribution. To prepare
our convergence analysis, we make a few assumptions.

Assumption 4.2. X = [X1, Xs,..., X4|T € R? is a random vector.

(A-1) E{X} =0, and ¥ := E{X X T} has the spectral decomposition (4.1) satisfying (4.2);

(A-2) ¢ = |Z72X |y, < oo

The principal subspace U, in (4.3) is uniquely determined under Assumption 4.2(A-1). On the other
hand, Assumption 4.2(A-2) ensures that all the 1-dimensional marginals of X have sub-Gaussian tails,
or equivalently, X follows a sub-Gaussian distribution. This is also an assumption that is used in [19].

In what follows, we will state our main results under the assumption and leave their proofs to Sections 5
and 6 because of their high complexity. To that end, first we introduce some quantities as follows:

e the eigenvalue gap v := A, — Ap41,

e the sum of the top i eigenvalues n; := A1 +---+ X, i =1,...,d,

e the dominance of the top i eigenvalues pu; := 27 € [L,1],

e for s > 0 and the stepsize 8 < 1 such that 8y < 1, the integer function

sInp -‘
In(1 - pv) |’

where [-] is the ceiling function taking the smallest integer that is no smaller than its argument, and

Ns(B) :=min{n e N: (1 - gy)" < B} = { (4.5)

finally,
o for 0 < e < 1/7, the integer function

1/2—3¢
M(e) == min{m € N : g7/271/2 ¢ 6(1_217"1)(36_1/2)} =2+ Fnh/lg-‘ z 2.

In practice, it is always desirable to use a good initial guess in an iterative method whenever there is
one available because it positively affects computational efficiency in reducing the number of iterations
required to achieve an approximation within a prescribed tolerance. On the other hand, when there is
not one known, a randomly chosen initial guess is often taken. Our first main result in Theorem 4.3
covers the case where a somewhat good initial subspace U(?) is available whereas our second main result
in Theorem 4.5 is about using a randomly chosen initial subspace.

Theorem 4.3. Givene € (0,1/7), w € (0,1) and ¢ > 0, k and B satisfy

k> giM(e)—1]/2 max{\/i 2(\/§ _ 1)1/2(;5)\1—1/2&)1/2}’

0 e 1 = v : (4.6)
<femin b5 ) o\ Bag)

Let U™ forn =1,2,... be the approzimations of U, generated by Algorithm 1. Under Assumption 4.2,

if
tan ©(U @, U, )3 < ¢*d — 1 (4.7)

and
(V2+D)MdB ™ <w, K > Nyjo_s7./4(B), (4.8)
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then there exist absolute constants®) Cy, C, and Cs and a high-probability event H with
P{H} > 1 - K[2+e)d+p+ 1]exp(—Cpy57°) (4.9)

such that for any n € [N3/2737e/4(/5),K];

2 4
B{tan O™, V) [R5} < (1 - 3120 Dpdd + o0 Lo )
- Al
+ Cortpuy iy~ 'p/d — pB*2 e, (4.10)

where e = exp(1) is Euler’s number, Cyy, = max{C,u,, Cy min{yp=1,9~2}} and

d
i p(d—p)Aida p(d—p)ApApia
d: \) = . ; i
o(p,d; A) E : Z by 6[ M= A= App1 ey

Remark 4.4. (1) Although an interval is presented in (4.11) to bound ¢(p,d;A), there are more
informative ones under additional assumptions on the random vector X. For example, in some of the
past works [3-5,7,16,21,22,27], it is assumed Z?Zl i = E{|| X |3} < c for some constant ¢, independent
of the dimension d. Then

o(p,d; A) = Z Z A A _AHZ Z AjAi (]il&)(c—i&) <Zi. (4.12)

j=1i=p+1 j=1i=p+1

As a result, the second term on the right-hand side of (4.10) is of O(8). Under the same assumption,
after a careful check (of Appendix A.2), the third term can be ensured of O(f), too, by making 7e < 1/2.
Both terms do not go to 0 as n — oo, as we would like to ideally have. Nonetheless, we argue that it
does not diminish the usefulness of the error bound. Here is the reason. Like in any iterative method,
the ultimate goal is to drive the approximation error down to a prescribed level. Since the terms are
of O(p), given a prescribed error tolerance, we can always take the stepsize § in the same order of the
tolerance to yield an eventual approximation to the subspace within the desired error level.

(2) Theorem 4.3 involves a set of pre-chosen constant parameters: €, w, ¢, £ and 8 subject to the
inequalities in (4.6) so that K[(2 + e)d + p + 1] exp(—C,yB87°) is sufficiently tiny to make H a high-
probability event. For that reason n is limited to no bigger than K. Ideally, the event H should exist
with high probability for all sufficiently large n. According to our proof, the theorem remains valid with
simply setting K to n:

n > Nzso 37¢/4(8), P(H) > 1-n[(2+e)d+p+ 1]exp(=Cpyf°), (4.9)

everything else being equal. This means that with any given constant parameters, there is no guarantee
that H is still a high-probability event if n is too large. While this is not ideal, we argue that if
the number n of samples or some rough range of it is known, we can always optimize these constant
parameters, by making 8 small enough, so that n[(2 + ¢)d + p + 1] exp(—C, B~ °) is still tiny to render
a high-probability event H. For example, in Theorem 4.5, we specify what is needed on the constant
parameters. We point out in passing that the results in [19] for the vector online PCA also require that
the number n of samples be bounded from above.

One subtlety in bounding P(H) from below as in (4.9’) is that now the event H depends on n. Theo-
rem 4.2 as stated with the preset K ensures one high-probability event H for all n € [N3/5_37./4(8), K].
From the practical point of view, the number of samples is always finite, i.e., such a K does exist, and
one might have some idea about what it is. When we do, the constant parameters can be judiciously
chosen to ensure K[(2+ e)d + p + 1] exp(—C,[7°) tiny.

(3) This remark applies to Theorem 4.5 later as well.

1) We attach each with a subscript for the convenience of indicating their associations. They do not change as the values
of the subscript variables vary, by which we mean absolute constants. Later in (5.6), we explicitly bound these absolute
constants.
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Theorem 4.3 assumes a somewhat accurate initial subspace U i.e., satisfying (4.7) which is not very
restrictive because ¢>d — 1 can be very big for huge d. As we mentioned earlier, often we do not have a
good initial subspace, in which case, we may simply resort to a randomly selected U(©).

Consider the uniform distribution on G,(R?), the one with the Haar invariant probability measure (see
[9, Subsection 1.4] and [17, Subsection 4.6]). We are interested in a randomly selected U(®) such that

R(U(O)) is uniformly sampled from Gp(Rd). (4.13)

The reader is referred to [9, Subsection 2.2] on how to generate such a uniform distribution on G, (R?).

Theorem 4.5.  Under Assumption 4.2, for sufficiently large d and any B satisfying (4.6) with
k= 6MEO-U/2max(90,,v2},

and

p< (d+ 1)/2a €€ (Oa 1/7)7 d€ (0,271/:02)7 K > N3/2—37E/4(/B)7
where Cp, is a constant only dependent on p, if (4.13) holds, and
B! < 8%, K[(2+e)d+p+ 1 exp(—Cpyf%) <07,

then there exists a high-probability event H, with P{H,} > 1 — 267" such that

32y
B{tan (U, U)[R5H.} < (1= 57 Vp 22+ ooty di)
— A1
+ Coli4,u;2n12,'y_1p\/ d—pp3/?Te (4.14)

for any n € [N3/o_s7:/4(B), K], where ¢(p,d; A) is as in (4.11).

Our third main result is about picking a nearly optimal stepsize 8 for the nearly optimal convergence
rate, and assume that the sample size is reasonably large and fixed at IV,. The idea is to pick a good 3
to balance the terms on the right-hand side of (4.14) subject to N. = N3/5(3) (and thus we also need a
large enough number of samples). The nearly optimal stepsize g is

31n N,
B=bei= "G

(4.15)

which is consistent with the choice in [19] for p = 1.

Theorem 4.6.  Under Assumption 4.2, for sufficiently large d > 2p and a sufficiently large number N,
of samples, € € (0,1/7), § € (0,271/1’2) satisfying

A8l < 6% N2+ e)d+p+ 1] exp(—Cry %) < 87, (4.16)

where By is given by (4.15), if (4.13) holds, then there exists a high-probability event H, with P{H,}
>1- 267" such that

o(p,d; A) In N,

E{[[tan ©(U™), U.) [ .} < Ca(d, No, )] 1 N
P P *

(4.17)

where the constant C.(d, N, 8) — 24¢* as d — 0o, N, — 00, and ¢(p,d; A) is as in (4.11).

In Theorems 4.3, 4.5 and 4.6, the conclusions are stated in term of the expectation of |[tan (U™, U,)||2
over some high-probability event. These expectations can be turned into conditional expectations, thanks
to the relation (1.1). In fact, (4.4) is a consequence of (4.17) and (1.1).
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4.2 Discussions of new proving techniques

Our three theorems in the previous subsection, namely Theorems 4.3, 4.5 and 4.6, are the analogs for
p > 1 of Li et al.’s three theorems [19, Theorems 1-3] which are for p = 1 only. Naturally, we know how
our results are when applied to the case p = 1 and our proofs would stand against those in [19]. We choose
to compare our results with those in [19] because Li et al. [19] dealt with sub-Gaussian samples whereas
other existing works in the literature studied the vector/subspace online PCA for bounded samples only.
In what follows, we will do a fairly detailed comparison. Before we do that, let us state their theorems
(in our notation).

Theorem 4.7 (See [19, Theorem 1]).  Under Assumption 4.2 and p = 1, suppose that there exists a
constant ¢ > 1 such that tan ©(U ), U,) < ¢?d. Let

. i
N°(B,¢) :=min{n € N: (1 — B7)" < [46°d] '} = (MW’
N sln[A2y~1

Ni(8) :=min{n € N: (1= )" <Ny 8]} = {MW

Then for any € € (0,1/8), the stepsize 3 > 0 satisfying d[\3y~ 181725 < b1¢~2, and for any t > 1, there
exists an event H with

P{H} >1-2(d+ Q)No(ﬁ, @) exp(—=Co[M3y~18]7%) — 4d]\7t(ﬂ) exp(—C1[M3y~1p]72%9),
such that for any n € [ﬁl(ﬁ) + NO(@ ?), Nt(ﬁ)L

I W VS
A — N\

E{tan? (U™, U,);H} < (1 — B)2n=N"GO) 4 0yB80(1,d; A) + Cy A2y ~18]3/274  (4.18)
i=2
where by € (071112,2/16), and Cy, C1 and Cy are absolute constants.

We can see that Theorem 4.3 for p = 1 is essentially the same as Theorem 4.7. In fact, since
(1 — By)t =N B8 < 4p?d < (1 — By)~N"(B9) | the upper bounds by (4.10) for p = 1 and by (4.18)
are comparable in the sense that they are in the same order in d, § and §. Naturally one may try to
generalize the proving technique in [19] which is for the one-dimensional case (p = 1) to handle the
multi-dimensional case (p > 1). Indeed, we tried but did not succeed, due to the reason that we believe
there are insurmountable obstacles. In fact, one of the key steps in proof works for p = 1 but does not
seem to work for p > 1. Next, we explain these obstacles in details.

The basic structure of the proof in [19] is to split the Grassmann manifold G, (R?), from where the initial
guess comes, into two regions: the cold region and the warm region. Roughly speaking, an approximation
U™ in the warm region means that |[tan ©(U™ U,)||r is small while in the cold region it means that
[tan ©(U™, U,)||r is not that small. U, sits at the “center” of the warm region which is wrapped around
by the cold region. The proof is divided into two cases: the first case is when the initial guess is in the
warm region and the other one is when it is in the cold region. For the first case, they proved that
the algorithm will produce a sequence convergent to the principal subspace (which is actually the most
significant principal component because it is for p = 1) with high probability. For the second case, they
first proved that the algorithm will produce a sequence of approximations that, after a finite number of
iterations, will fall into the warm region with high probability, and then use the conclusion proved for
the first case to conclude the proof due to the Markov property.

For our situation p > 1, we still structure our proof in the same way, i.e., dividing the whole proof into
two cases: U coming from the cold region or the warm region. The proof in [19] for the warm region
case can be carried over with a little extra effort, as we will see later, but it was not possible for us to
use a similar argument in [19] to obtain the job done for the cold region case. Three major difficulties
are as follows.

(1) In [19], essentially ||cot ©(U™) U,)||r was used to track the behavior of a martingale along with
the power iteration. Note that cot ©(U™) U,) is p x p. Thus it is a scalar when p = 1, perfectly well-
conditioned if treated as a matrix, but for p > 1, it is a genuine matrix and, in fact, an inverse of a
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random matrix in the proof. The first difficulty is how to estimate the inverse because it may not even
exist.

(2) We tried to separate the flow of U™ into two subflows: the ill-conditioned flow and the well-
conditioned flow, and estimate the related quantities separately. Here, the ill-conditioned flow at each
step represents the subspace generated by the singular vectors of cot ©(U (n), U,) whose corresponding
singular values are tiny, while the well-conditioned flow at each step represents the subspace generated
by the other singular vectors, of which the inverse (restricted to this subspace) is well conditioned.
Unfortunately, tracking the two flows can be an impossible task because, due to the randomness, some
elements in the ill-conditioned flow could jump to the well-conditioned flow during the iteration and vice
versa.

(3) The third one is to build a martingale to go along with a proper power iteration, or equivalently,
to find the Doob decomposition of the process, because the recursion formula of the main part of the
inverse—the drift in the Doob decomposition, even if limited to the well-conditioned flow—is not a linear
operator, which makes it impossible to build a proper power iteration.

In the end, to deal with the cold region, we give up the idea of estimating ||cot ©(U™), U,)||r. Instead,
we invent another method: cutting the cold region into many layers, each wrapped around by another
with the innermost one around the warm region. We prove the initial guess in any layer will produce a
sequence of approximations that will fall into its inner neighbor layer (or the warm region if the layer is
innermost) in a finite number of iterations with high probability. Therefore eventually, any initial guess
in the cold region will lead to an approximation in the warm region within a finite number of iterations
with high probability, returning to the case of initial guesses coming from the warm region because of the
Markov property. This enables us to completely avoid the difficulties mentioned above. This technique
works for p = 1, too, and it can result in a simpler proof for the online PCA than that in [19].

The other two main theorems of Li et al. [19, Theorems 2 and 3] are stated as follows.

Theorem 4.8 (See [19, Theorem 2]).  Under Assumption 4.2 and p = 1, suppose that U©) is uniformly
sampled from the unit sphere. Then for any ¢ € (0,1/8), the stepsize § > 0 and 6 > 0 satisfying

ANy LB < bed?, 4dNa(B) exp(—Ca[A3y~18]7%) <6,

~

there exists an event H, with P{H,} > 1 — 26 such that for any n € [Na(8), Ns(8)],

N = o
e~ A\ — A\
=2

E{tan® ©(U™ U, ); H,} < C4(1 — B7)2"64d® + Cufp(1,d; A) + Cy A2y~1g)3/2=4 (4.19)

where by, C3 and Cy are absolute constants.

Theorem 4.9 (See [19, Theorem 3]).  Under Assumption 4.2 and p = 1, suppose that U©) is uniformly

sampled from the unit sphere and let B, = 21;17]\[1\/* Then for any e € (0,1/8), N. > 1 and 6 > 0 satisfying

ANy BT < bsd®, 4dN3(B.) exp(—Co[Ay 1B 7) <6,
there exists an event H, with P{H,} > 1 — 2 such that

o(1,d; A) In N,
M—X N,

E{tan?©U"™-) U,);H,} < C,(d, N.,d) (4.20)

where the constant Cy(d, Ni,d) — Cs as d = oo, N, — 00, and bz, C5 and Cg are absolute constants.

Our Theorems 4.5 and 4.6 when applied to the case p = 1 do not exactly yield Theorems 4.8 and 4.9,
respectively. But the resulting conditions and upper bounds have the same orders in constant parameters
d, B8 and §, and the coefficients of 5 and % in the upper bounds are comparable. Note that the first
term on the right-hand side of (4.14) is proportional to d, not d? as in (4.19), and hence ours is tighter
for high-dimensional data.

Our proofs for Theorems 4.5 and 4.6 are nearly the same as those in [19] for Theorems 4.8 and 4.9
owing to the fact that the difficult estimates have already been taken care of by either Theorem 4.3
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or Theorem 4.7. But still there are some extras for p > 1, namely, the need to estimate the marginal
probability for the uniform distribution on the Grassmann manifold of dimension higher than 1. We are
not aware of anything like that in the literature, and thus have to build it ourselves with the help of the
theory of special functions of a matrix argument, rarely used in the statistical community.

It may also be worth pointing out that all the absolute constants, except C), which has an explicit
expression in (6.3) and Cy, in our theorems will be explicitly bounded as in (5.6), whereas those in
Theorems 4.7-4.9 are not.

5 Proof of Theorem 4.3

We start by building a substantial amount of preparation material in Subsections 5.1-5.3 before we
prove the theorem in Subsection 5.4. In Subsection 5.1, we set the stage and introduce the matrix 7™
to serve the role of tan ©(U ("),U*) associated with the n-th approximation. In particular, we have
1T ||y = [[tan ©(U™, U,)||ui. In Subsection 5.2, we present incremental estimates for one iterative step
of the subspace online PCA in Lemmas 5.2 and 5.3. These estimates allow us to associate one iterative
step with a quasi-power iterative step by an operator £ defined at the beginning of Subsection 5.3, and
then further we relate T to £*T® by showing T — £*T(©) is bounded with high probability in
Lemma 5.4. This lemma is very critical to our proofs. It leads to Lemma 5.5 which says that ||7("||,
stagedly decreases and Lemma 5.6 in which the expectation of T(™) is estimated. Finally, we are ready
to prove Theorem 4.3 in Subsection 5.4. Figure 1 shows a pictorial description of our proving process.

5.1 Simplification

Without loss of generality, we may assume that the covariance matrix ¥ is diagonal. Otherwise, we can
perform a (constant) orthogonal transformation as follows. Recall the spectral decomposition ¥ = UAU T
in (4.1). Instead of the random vector X, we equivalently consider Y = [Y7,Ys,...,Y,]T = UTX.
Accordingly, perform the same orthogonal transformation on all the involved quantities:

1
ymw —gyTxm yo) — Tyt v, =yTy, = P] ) (5.1)

0

As a consequence, we have equivalent versions of Algorithm 1 and Theorems 4.3, 4.5 and 4.6. Firstly,
because
(V(nfl))Ty(n) — (U(nfl))TX(N) — Z("), (y(n))Ty(n) - (X(TL))TX(H)7

the equivalent version of Algorithm 1 is obtained by symbolically replacing all the letters X and U by Y
and V, respectively, while keeping their respective superscripts. If the algorithm converges, it is expected
that R(V () — R(V,). Secondly, noting

”Eil/zXHl/fz = ||UA71/2UTXH¢2 = ”Ail/QY”wza

we can restate Assumption 4.2 equivalently as

; Lemma 5.1 : Subsection 5.3 (quasi-power iteration)
e
: Lemma 5.2 —— Lemma 5.3 H Lemma 5.4 Lemma 5.6

—_—— e

Figure 1 Proving process for Theorem 4.3
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(A-1) E{Y'} =0 and E{YY '} = A = diag(\y, ..., \q) with (4.2);

(A-2) 4 1= [A"V/2Y |, < ox.

Thirdly, all the canonical angles between two subspaces are invariant under the orthogonal transformation.
Therefore, the equivalent versions of Theorems 4.3, 4.5 and 4.6 for Y can be simply obtained by replacing
all letters X and U by Y and V, respectively, while keeping their respective superscripts.

In what follows, we assume that ¥ is diagonal. In the rest of this section, we prove the mentioned
equivalent version of Theorem 4.3. Likewise in the next section, we prove the equivalent versions of
Theorems 4.5 and 4.6.

To facilitate our proof, we introduce new notations for two particular submatrices of any V € R4*P:

V= ‘/(1:p,:)a Y = ‘/(p+1:d,:)~ (52)
In particular, .7 (V) = VV ! for the operator .7 defined in (1.2), provided that V is nonsingular. Set
A =diag(A1,...,Np), A =diag(Aps1,.--,Aa)- (5.3)

Although the assignments to A and A are not consistent with the extractions defined by (5.2), they do
not seem to cause confusions in our later presentations.
For > 1, define S(k) := {V € R¥P : ¢(V) C [1,1]}, where (V) is the set of the singular values
of V. It can be verified that
VeSk & ||Z7(V)|a<VkZ2-—1. (5.4)

For the sequence V(™) define
Nowt{S(k)} :=min{n : V) ¢ S(x)}, Nin{S(k)} := min{n: V™ € S(x)}.

Nowt{S(k)} is the first step of the iterative process at which V(™ jumps from S(k) to its outside, and
Nin{S(k)} is the first step of the iterative process at which V(™) jumps from the outside to S(x). Write

N = NBTE, = N4t N= miB,

and define
Ngp{A} :=max{n > 1:[|ZM]y <7/%, V| < M2 i=1,...n} +1, (5.5)

where Z(") = (U=1)T X (") is as defined in Algorithm 1. Ny, {A} is the first step of the iterative process
at which either |Yi(n)\ > /\;/2 for some i or the norm of Z(™ exceeds 7];1,/2. For n < Ngp{A}, we have

n ~1/2 ~ n ~ .
YOy <7)/% = 2582, 1202 < 7Y% with v = 1/p,.

For convenience, we introduce 70 = Z(V(™) and let F,, = o{Y ), ... Y™} be the o-algebra
filtration, i.e., the information known by step n. Also, since in this section, € and g are fixed, we suppress
the dependency information of M (e) on € and Ns(8) on S to simply write M for M(g) and N, for Ng(B).

Lastly, we discuss some of the important implications of the conditions:

0<B<mindl, (— o (AL (4.6)
min D — —_— .
"\ 81, "\ 130k212 ’

(V2 +1)A\dB ™ <w, K > N3jo_s7./4(8) (4.8)
of Theorem 4.3. They guarantee that
(B-1) B < 1; B
(B-2) By < Bip S VBT, = Bilg < dBAL = dA B2 < (V2 - 1w < V2 - 1.
Set

O =2+ L) + D wis? + 2ems) <

16 + 13v/2

S ~ 4.298, (5.6a)
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1 22 4+ 7v/2
Ch=2+= (unpﬂ) + CyvipB < — V2 ~ 3.987, (5.6b)
_ 251 + 122V/2
Cr = Cy +20a + 2CACy 7,8 < # ~ 26.471, (5.6¢)
— 2 171
C, = (3~ V2)C3 < 565 + 1712 ~ 0.038, (5.6d)
64(Cr 4 20 )2 21504
223702 + 183539v/2
v = 4v'2 K < ~ 5.61 5 .
C, = 4V20rC, 6016 5.618 (5.6¢)
- 29 + 8v/2 N 4Cp 5 4 [C +29+8\/§]51/2_36
16(3—v2)  (3—v2)Ca 32
3072“ 1/2+3a 2CT 1-3e | 3/2—3¢
+ [ S
2(3 — \/i)cgﬁ ﬁ 202 5
< 2582968 + 1645155v/2 349464 (5.66)

14336

The condition (4.6) also guarantees that
(8-3) 2CaT1,BY 2k = 20am, B2 % Kk < 282 < 1, and thus 2Ca7),0k < 1;
(B-4) 420 r*T2y71 8% < 1, and thus 4v/2Crk* 72y~ BY2HX < 1 for x € [~1/2 4 5¢,0].

5.2 Increments by one iterative step
Lemma 5.1.  For any fized integer K > 1
P{Ngp{A} > K} > 1~ K(ed +p+ 1) exp(=Cy min{y~", ¢ =2} 57%%),

where Cy, 1s an absolute constant.

Proof.  Since {Ngp{A} < K} C Un<K({||Z(" l2 > ~1/2} U Ul Alefy ™| > )\1/2}), we know

PINp{A} <K} < Y (P{||z<">||2 S+ Y PYTY ™) > XJ”}) (5.7)

n<K 1<i<d

First,

1/2 T
P{lefY™| > X}/?} =P {‘|A/el) A2y s

(A e)" RV

[AT72e,]], ~ A2

Cyigfie

<o (1= e ) (by 1, (0]
AR A2y () |y,

Cyiki _ —1.5—2¢
< exp (1 — |A_1/2Y(")||w2)\i) =exp(l — Cy ™ 7%), (5.8)

where Cy ;, ¢ = 1,...,d are absolute constants [31, (5.10)]. Next, we claim
P{IZMly > 7,/} < (p+ 1) exp(=Cy a1 >87%) (5.9)

to be proven in the next paragraph. Together, (5.7)—(5.9) yield

P{Ngp{A} < K} = Z Z exp(1 — Cy ™' B7%) + Z(P+1)€XP(—Cw,d+11/J_25_2€)

n<K 1<i<d n<K
< K(ed+ p+ 1) exp(—Cy min{y !, =2}87%),

where Cy = minig;ca+1 Cyp. Finally, use P{Ngp{A} > K} = 1 — P{Ngpr{A} < K} to complete the
proof.
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It remains to prove (5.9). To avoid the cluttered superscripts, we drop the superscript «(=1 on V,
and drop the superscript “("” on Y and Z. Consider

Vk1
0 2 vty d ; d
157 =],., e | =y,
zZ- 0 Y'v b1 Vkp k=1
Vel - Vkp 0

where v;; is the (4, j)-th entry of V' and Y}, is the k-th entry of Y. By the matrix version of master tail
bound [29, Theorem 3.6], for any « > 0, we have

d
P{[1Z]}2 > a} = PQwax(W) > o} < inf e~ trace exp <Zln E{exp(@Yka)}>.
>
k=1

Y is sub-Gaussian and E{Y'} = 0, so is Y. Moreover,

e;fAl/2

_ TAl/2
||YkH”¢'2 - ||ekA ||2 ||€’]£A1/2||2

1/2) % — 1/2
< >‘k/ HA 1/2Y||1/12 = /\k/ V.
b2

Al/QY‘

Also, by [31, (5.12)],
Efexp(0WiYi)} < exp(Cu,ark0° Wi o Wl|Yill3,) < exp(cy, 6 Asp* Wi 0 W),

where ¢y i, kK = 1,...,d are absolute constants. Therefore, writing [4C¢1d+1}*1 = maxi<r<d Cy,k and
Wy = ZZ:l A Wi o Wy, with the spectral decomposition Wy, = V¢A¢V$, we have

d

d
trace exp <Z In E{exp(@Yka)}> < trace exp <Z cw7k92)\k@/12Wk o Wk>
k=1 k=1

< trace exp([4Cy a+1] 1 0%* Wy)

= trace exp([40w,d+ﬂ_192¢2VwAszz:r)

= trace(Vy, exp([4C¢,d+1]_192¢2Aw)V$)
= trace exp([4Cy at1] 0% Ay)

< (p + 1) exp([40¢7d+1]7192w2>\maX(Aw))
= (p+ 1) exp([4Cy,a+1] T 0°P* Amax (W)

Note that
_ Zd: _
0 0 )\k’U
k=1 M 0 ... 0 TVTAV e,
Wy = d = ' : :
0 e 0 > ARUi, 0 e 0 e VIAVe,
k=
R TVTAVe, - TVTAVe, 0
Z )‘kvkl Z )\kvkp 0
Lk=1 k=1 ]
and thus
et VTAV e, » )
)\maX(Ww) = : g Z QEVTA‘/@;C = trace(VTAV) g Z )\k = 77}7'

B
I
—
b
Il
—

ey VIAVe, )
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In summary, we have

. C a?
PIZl2 > ) < (0 + 1) ot expl(1Cy, 0] 0767, — 00) = (p + Doxp ( — C42% ),

w277p

Substituting o = 7711,/2, we have the claim (5.9). O

Lemma 5.2.  Suppose that the conditions of Theorem 4.3 hold. If n < Ngn,{A}, then

V(n+1) _ V(n) + BY(7L+1)(Z(”+1))T

o ﬁ 1+ g(y(n-i-l))Ty(n-i-l) V(n)Z(n+1)(Z(n+1))T +R(n)(Z(n+l))T, (510)

where R™ € R? is a random vector with ||[R™ ||y < Cvul/zﬁg/zﬁﬂ and Cy is as in (5.6a).

« (n)» and use w4 to replace « (n41)»

Proof.  To avoid the cluttered superscripts, in this proof, we drop
on V, and drop “(+t1)” on Y and Z.

On the set {Nq,{A} > n}, by (4.8) and (5-2), we have
a=B802+BY™)ZTZ < B2+ vipB)i, < 2+V2—-1)(V2-1)/v < 1.
By Taylor’s expansion, there exists a > £ > 0 such that

1 3 1
1 -2 1 _ = °o_ -
1+a) 2a+8(1+§)5/204

52

P=1-p2N7 - LYY 22+ B2 2)

where ¢ = g(l +§)5 =2+ BYTY)? < (24 vf7,)?. Thus,

_ T T 52 T T 2/ T r7\2 zz"
Vt=(V+8YZ )(I—[ﬁz Z+7Y YZ 7 - p5(Z"2) C]ZTZ>
62

=V+pYyzt —pvzzt - 7(YTY)VZZT +RZ",

where R = —2-(Z72)(2+ BYTY)Y + (B2(Z2)V Z + (B*(Z7 Z)2Y for which

2

e . _ _
1Bll> < S5 7p(2 + Builp) (vilp) /2 + GBI/ + (B ()2

1 - 3 ~ 3 _ B »
= |52+ Bvilp) + S (24 Brilp)* + S (2 + Buipy)* (Bilp) | v/ 277, B2
_ vayl/Q,,’*]'g/QBQ7
as expected. ]

Lemma 5.3.  Suppose that the conditions of Theorem 4.3 hold. Let T = ||T™)|, and Cr be as in (5.6¢).
If n < min{Nqp{A}, Nout {S(k)}}, then we have the following:
(1) T™ and T+ are well defined.
(2) Define ESV (V™)) .= B{T™+) —T(™) | F,} — B(AT™ — T™A). Then
(8) suDy es) | B (V)12 < Cow/2(,0)° (1 + 72)°%
(b) T D — Ty < w2, ) (1 + 72) + O 2 (0, 8)* (1 + 72)/2.
(3) Define R, := var,(T™*+D — T | F,) — 82H,. Then
(a) Ho = var,(YYT) < 169*H, where H = Mij)(d—pyxp With mij = XpriXj fori =1,...,d — p,
i=1,...,p;
(b) 1 Rollz < (VipB)*7(1+ 57 + 72 + 37°) + 407w (1pB)* (1 + 72)°/2 + 2030 (7, 0)* (1 + 72)°.
Proof.  For readability, we drop “(™” and use “t” to replace “("t1” for V and R, drop “("+1)” on
Y and Z, and drop the conditional sign “ | F,,” in the computation of E{-}, var(-) and cov(-) with the
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understanding that they are conditional with respect to F,,. Finally, for any expression or variable F', we
define AF := FT — F.
Consider (1). Since n < Noui{S(k)}, we have V € S(k) and 7 = ||T||2 < (k? —1)*/2. Thus, |V

l2 <k
and T = VV ! is well defined. Recall (5.10) and the partitioning

We have AV = 3(YZT — (1+ 8YTY)WWZZ") + RZ" and

62
2

R=—"(ZT2)2+BYY)Y +(B* (2" 2)VZ + (B*(ZT 2)*Y .

Noticing ||V |2 < ﬁll,/27 we find
AV]2 < 87, 1ﬁ~~C%2<2ﬂ~ CyvmpB|pB = Can,
1AVl2 < B1p + B L+ Svilp |7 + Cvip 5~ < |2+ Svip + CyipB| 1,8 = Calph,
where Ca is as in (5.6b). Thus, [[AVV Y|y < [JAV 2]V |2 < CafpBr < 1/2 by (8-3). As a result,

V™ is nonsingular, and

IVH 2 < Lilh— <2V o
L= [[VT AVl

In particular, T+ = V*+ (V)= is well defined. This proves (1).
For (2), using the Sherman-Morrison-Woodbury formula [11, p.95], we obtain

AT = (V +AV)(V + AV) —yv!
= V+AV(V - VAV(V + AV) H-vv!
=AVV VYT 1AV(V + AV AVVTIAV(V 4 AV) L
=AVV I —VVTIIAVV T —VTIAV(V + AV) ) — AVV IAV(V + AV) L
=AVV I —TAVV 4+ TAVVIAV(VH) L - AVV AV (V)L
= [AV - TAV][I — (VHrAVV

Write Ty, = [T I] and Tg = [£]. Then 7,V = 0 and V = TrV. Thus,
AT =T AV — (V) TPAVIVITR.

Since AV is rank-1, AT is also rank-1. By Lemma 5.2,

AT =Ty, [BYZT —y (1 + §YTY) VZzZ" + RZT] [I—(VHAVIVTTR

=T BYY'V + RZY|[I — (VN 'AVIVITR
=TL(BYY™WVT + Rp)Tr
=T (BYYT + Rp)Tk,

where Ry = RZ™V"T — (BY + R)ZT(VT)"*AVV™T. Note that
YY" T =YY" —TYYT'T —TYYT +YYTT (5.11)
and

E{YY'} =0, E{TYY"}=TE{YY"'}=TA, (5.12a)
E{TYY"T} =TE{YY"}T =0, E{YY'T}=E{YYTIT = AT. (5.12b)
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Thus, E{AT} = B(AT — TA) + Er(V), where Ex(V) = E{TLRrTr}.
Since V € S(k), |2 < (k* — 1)%/2 by (5.4). Thus,

IRrll2 < | Rll27y? + (Vi) /28 + IR o)y *2(1 + | T1[3) > Calp8
< Oy PR 4+ (1+ || T)3) 2 (1 + CvijpB12Car*?i; 82
< Crv' 2 (p,8)° (1 + | T)13)"?,
where Ct = Cy + 2CA(1 + Cv’ﬁpﬂ) Therefore, ||ET(V)||2 < E{”TLRTTRHQ} < (1 + ||T||%) E{HRTHQ}
(2)(a) holds. For (2)(b), we have

ATz < @+ T3 BIYYTVVE 2+ [|Rr2)
< Bwip) 2,2 (L + |1 T)13) + Orv' 2 (11,8)° (1 + || T113)*
<VVPB(+|T(3) + Cov'/2(@,8)° (1 + |IT]3)°>.

The proof of (3) is similar to that of (2) but involves more complicated calculations, and it is deferred
to Appendix A.1. O

5.3 Quasi-power iterative process

Let DD = 7+l _ E{TC+D | F, 1. We have T™ — E{T™ | F,} = 0, E{D™*V) | F,,} = 0 and
E{D"*+Y o DO+ | F,} = var,(T™*+Y — T | F,). By Lemma 5.3(2), we have
T(n+1) _ D(n+1) + T(n) + E{T(n-i-l) o T(n) ‘ ]Fn}
= DD L () 4 BAT™ — TR 4 B (V)
— ET(”) + D(n-‘rl) + E‘éj”)(v'(ﬂ))7
where £: T — T + BAT — BTA is a bounded linear operator. It can be verified that LT = L o T, the
Hadamard product of L and T', where L = [Aij](a—p)xp With Aij = 1+ BA,1; — BA;. Moreover, it can be

shown that? | L[ly = p(£) = 1 — B, where ||£|ls = supp),,=1[|£T i is an operator norm induced by
the matrix norm |-||y;. Recursively,

n n
T(n) — EnT(O) + Zﬁnst(s) + ZﬁnfsEéf—l)(V(sfl)) —- Jl + J2 + J3_ (513)

s=1 s=1

Define events M, (x), T,(x) and Q,, as

—_

(0 = {177 = £ 7O < Gt = 1y, (5.14)
Ta() = (T2 < (2851~ 1)!285%), @, = {n < N {A}). (5.15)

Lemma 5.4.  Suppose that the conditions of Theorem 4.3 hold and that x € (5¢ —1/2,0] and k > /2.
If VO € S(kBX) and n < min{Ngp{A}, Nous {S(kB8X)}}, then

P{M,,(x +1/2)} > 1 — 2dexp(=Ceys v, 237%), (5.16)

where C,; is as in (5.6d).

2 Since A(£) = {N\ij :i=1,...,d —p,j = 1,...,p}, we have the spectral radius p(£) = 1 — B(Ap — Ap+1). Thus for
any T,

LT i = [|T(I = BA) + BAT ||ui < I = BAI2lIT||ui + IBA2)Tllwi = (1 = BAp + BApt- ) Tllui = (LT |lui,

which means [|£]|w < p(£). This ensures ||£||ui = p(L).
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Proof.  Since k > /2, we have k2%X > 2 and k8% < [2(k?$%X — 1)]}/2. Thus, by (8-4),

4CTK375§7_161+3X(K2,82X _ 1)—1/26—1/2—X < 4\/§CTK27A7;2),Y—1§1/2+X <1

For any n < min{Ng{A}, Nout {S(k8X)}}, V™ € S(kBX) and thus |T™ |y < /k232X — 1 by (5.4).
Therefore, by Lemma 5.3(2)(b), we have
||D(n+1)||2 - ||T(n+1) — ) _ E{T("“) _ 7 | Fr}lo
<7D =Ty + E(ITCHY = T3 | F,}
<22 PRAL+ITWIB)L + Crip 8L+ [T 35)/?)
< 26201275, B2 + O, 8. (5.17)

For any n < min{Nqn{A}, Nout{S(k5%)}},
[PAPES ZIIEH” EETDVED)|,

< Crv'PRPAPTIN N (1= By)
s=1
C’TVI/QWQ’?)%BQ”X

= By

70 V1/2 3;‘7'2 71,81+3X < = 1/2( 2/82X71)1/261/2+X~
4

Similarly,

n

120l < D IILNE~ 1Dz

- 262012, 82X (1 4 Crkij,BiHX)
h 7
- o V1/2 62)(

v 2
Also, ||J1]l2 < | LIBNTO |2 < [|[TOo < v /2(k26%X — 1)Y/2. For fixed n > 0 and 3 > 0,

1/2( 252x _ 1)1/251/2+X-

min{t;Nout{S(’%)}il}
{ M = £rT© A = 7O > L£rDW 1<t < n}
s=1
forms a martingale with respect to I, because E{HMt(n)HQ} < | J1ll2 + [|J2]]2 < 400, and
E{Mt(j:)l _ Mt(n) | F,} = E{En—t—lD(t+1) | F,} = £n—t—1E{D(t+1) | Fy} =0.

Use the matrix version of Azuma’s inequality [29, Subsection 7.2] to obtain, for any a > 0,

P{|| M — Mé )||2 > a} < 2dexp <_ 202>’

where

min{n, Nout {S(x)}—1}

D S V-C Bl
s=1
min{n,Nout{S(k)}—1}
< 2620127, 812X (1 4 Crrip 8] > (1= By)>=2)

s=1
< 4K4V’T]§62+4X(1 + Crrm,BLX)2
B2 — Byl
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I BN 4 G ) 1
< = b -3) and 77,82 < >

= QHOA
— CUK4V7717A7§ﬁ1+4X

and C, = % Thus, noticing Jy = T(Ln) — Mén) for n < Nouwt{S(x)} — 1, we have

o2
P{|l2]|2 > a} < 2dexp <_ 2CUK4V7—1n~2pﬂ1+4X>'

Choosing a = 1(k24%X — 1)1/2px+1/2732 and noticing T — LT = J, + J3 and || J3]2 < +(k28%
— 1)1/2px+1/2=32 e have

1
P{Mn(X + 1/2)c} _ P{|T(n) _ EnT(O)HQ > §(Ii2ﬁ2x _ 1)1/25x+1/2—35}

< P{|Jz||2 > i(nQBQX _ 1)1/25x+1/2—35}

I€2,62X -1 6
< 2deXp < - 3200—54V’Yilﬁgﬂ2>(ﬁ E)

5262X 6e
< QdGXp - 6400541/771:;7‘%/82)(5

=2d exp(—C’,{'y/sz*ln;2ﬁ*25),

where C,; = ﬁ which is the same as in (5.6d). O

Lemma 5.5.  Suppose that the conditions of Theorem 4.3 hold. If
No—m(1-6c) < min{ Ngp{A}, Nout {S(x5X)}}
and V(O € §(B1-2""B=1/2 g 19) with m > 2, then for fp > V2,
P{H,,} > 1 — 2dNy-m(1_¢c) exp(—Cryr, v 0, 7%),

where Hy, = {Nin{S(1/3/280-2"G=1/2 5, 1} < Ny-m1 6oy }-
Proof. By the definition of the event T,

T2 [1 — 6e] + 36) = (T, < (2, — BO-2'A-0I)1/250-2"")ae1/2))
For n > Ny-m(1_g) and V) € S(BA-2""Be=1/2) . /9) we know
M, (27™(1 — 6¢) + 3¢) C T, (27™(1 — 6¢) + 3¢),
because
T2 < |70 = LT g + [1£]5 T2

< (Kfn_6(1721*’")(1765))1/26(1722*"‘)(3571/2)

N | =

2-m(1-6e) [ Fi 21-m)(1-6 12 21-m)(3e—1/2
L prmas €)<Z _ p-2ma- e)) B-21")(3e-1/2)

< (“iz _ 5(1—21*"")(1—65))1/2ﬁ(1—21*"")(35—1/2).

Therefore, noticing

(“?n _ 5(1—21*"1)(1—65))1/2ﬂ(1—22*m)(3a—1/2) _ (5(1—22*’")(65—1),17211 _ 521””(1—65))1/2
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1/2
< (2ﬂ(122_7n)(661)l{3n _ 1> ,

we obtain

My (27™(1 —6¢) + 3¢) C {N < Nyp-m(1-6e)} = Him,

2= M (1—6¢)

where N = Nip {S(1/3/280-2"")Be=1/2)c 1. Since

ﬂ M, (27™(1 — 6¢e) + 3¢) N H,
ngmin{N2_m(1_65)7ﬁ_1}

c (| Ma(27™(1—6e)+3) C My,

”gszm(lfss)

27™(1 — 6e) + 3e),

2*7"(1—65)(

we have
ﬂ M, (27™(1 — 6¢) + 3¢) C H,y,.
n<min{N,—m g, N-1}

By Lemma 5.4 with x = 27™(1 — 6¢) + 3 — 2 = 27™(1 — 2™~ 1)(1 — 6¢), we obtain
P{H¢ } <P U M, (27"(1 — 6¢) + 35)"}
ngmin{szm(l,SE):ﬁfl}
< min{Ny-m (1), N -1} x 2d exp(—Cryky v, ?B77%)
S 2dN2—m(1_65) eXp(_CHVK;QV_ln;25_2E)?

as expected. ]

Lemma 5.6.  Suppose that the conditions of Theorem 4.3 hold. If V(©) € S(k/2) with k > 2v/2 and
K > Ni_g., then there exists a high-probability event Hy N Qg = ﬂne[N1/2_3€7K] T,.(1/2) NQx satisfying

P{H; NQk} > 1 —2dK exp(—Cyys 20,2 372¢) — K(ed 4+ p+ 1) exp(—Cy min{yp =1, =2} 72,
such that for any n € [N1_g., K],
E{T™ o T H, NQg} < LT o T 4 2821 — £2)71[I — L*"|H, + R,

where ||Rg|l2 < COH47_1V27712753/2_35, H, = var, (YY) < 16¢*H is as in Lemma 5.3(3)(a), and C, is
as in (5.6f).

Proof.  First we estimate the probability of the event H;. We know T, (1/2) C {[|T"|]> < (k*—1)'/2}.
If K > Nouw{S(k)}, then there exists some n < K, such that V(" ¢ S(x), ie., [Ty > (k* — 1)}/
by (5.4). Thus,

[K > NowdSG)} € T2 > (52 = )Y2} € [ Tu(1/2.
n<K n<K

On the other hand, for n > Ny j5_3. and V) € S(k/2), M,,(1/2) C T,,(1/2) because
1Tl < T = LTl + L3I T2
HQ 1/2
2 1 1/2 p1/2—-3¢ 1/2—3¢( ™ 1
(k ) B + B 1

K2 —1)1/251/2=3¢, (5.18)

<

N |

<

—~

Therefore,
| Ma(1/2)C (1 Ta(1/2) C {K < Now{S(x)} — 1},

n€[Ny 23, K] n€[Ny/2_3:,K]
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SO
N M, (1/2) C N M,,(1/2)
n<min{ K, Nou: {S(k)}—1} €[Ny 2_ge,min{ K, Nout {S(x)}—1}]
= ()  M1/2

n€[Ny/2_3:,K]

c () Ta(1/2) =H.

n€[Ny/2_3:,K]
By Lemma 5.4 with x = 0, we have

P{ M,.(1/2)° N @K}
n<min{ K, Nout {S(x)}—1}

< min{K, Nout{S(K,)} — 1} . 2d exp(_oﬁf}//{*QV*lnprIBst)
=2dK exp(—CH'y/-e_%_lnljzﬁ_Qs).

Thus, by Lemma 5.1,
P{(Hy NQx)°} = P{H; UQS } = P{H; N Qx} + P{Q5}

<» U M(1/2)° 1 Qi |+ P2}

n<min{ K, Nou: {S(x)}—1}
< 24K exp(—Cryr 20, 287%) + K (ed + p + 1) exp(—Cy min{y 1,4 =2} -2),

Next, we estimate the expectation. Since

Hi= (] T.2c () {ir,,D"=D"}
n€[Ny/z_3¢,K] n€[Ny/2_3¢,K]

we have that for n € [Ny /5_3., K],

Nija_3:.—1 n n
T 1y nor = Lox (E"T(O) + > L£repW 4 M LDy ZE”SE(TSI)(V(SU))
s=1 s=N1/2_3¢ s=1

:I=71+=721+=722+n73~
In what follows, we simply write Eéﬂn) = E;P)(V(”)) for convenience. Then

E{T™ o T™;H; NQx} = E{T™ o T™ 1, nq, }
= B{Ji0 i} + 2B{J; 0 Jor} + 2E{ ] 0 Joa} + 2E{]; 0 Ji}
+ E{[J21 + Jaz) © [Jo1 + Jaz]} + 2E{[Ja1 + Jaz] 0 Js} + E{Jz 0 J3}
SE{Ji0 1} +2E{J; 0 Jo1} + 2E{J; 0 Jao} + 2E{J; 0 J3}
+ 2B{Jox 0 Jor} + 4E{To1 0 Joa} + 2B{Jan 0 Joo} + 2E{J; 0 J}.

Each summand above for n € [Ny_g, K] can be estimated with careful calculation (see Appendix A.2),
which reads

(1) B{J; 0 1} = £2"T(©) 6 7(0);

() B{Jr0 Jar} = 0;

(3) E{JLO J2~2} —0.

(4) I[E{J1 0 J5}2 < 5Crv' iy~ w1505,

(5) E{Jor 0 Juz} = 0
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(6) B{Jay 0 Jo1} = 2 ZNW =l g9, Es1, where

29 +8v/2 - ~ 6
1 Eaallz < (64 +207K(pB) + C71* (p8)* >7 U

(7) E{j22 © j22} = p? Z::NI/Q,SE L2V H, + Ejy, where

1 29 +8v2 B - B
| Bzl < - \/§< = + 4C’Tm7p51/2+35 + 2C%ﬁ2ﬁ§53/2+38>'y 1H4V2772ﬁ3/2 3e.
(8) |E{J5 0 J5}|2 < 02 Zviny kOB,

Collecting all the estlmates together, we obtain

E{T" o T™:H; NQx} < £2"T 0T 42523 " L2 H, + Rg
s=1

<27 0 7O 4 2821 — £2)7M[1 — L' H, + Re,

where by (8-3), 2Car7,8'/? < 1, and

C L (29+8V2 _ _ s C2 5
||REH2 <2|:2Tﬂ1/2 3 + <+20T57]pﬂ+0’12"ﬁ2(77p5)2>51/2 3 _|_7T7’;]'127H2ﬂ3/2+3

64 32
2 (29482 I _ _
9 /2+3¢ 2 2~2 p3/2+43¢ 4. —1,2~233/2—3¢

+ - ﬁ< 6 +2Crkn,H + Crr™n, B Ky v, B
2[%51/2—35 i (29‘*‘8‘[ Cr 51/2 %25)61/2—38 i % _ gl/2+3e

2 64 4C 4(3 - V2)C3
n 2 294‘8\[ CT ﬁgs C? T g1/248¢ | | a1y, 2~2/33/2 3¢

3—-2 64 4C%

— COK4’Y_1V277~)2P§3/2_357
where C, is as given in (5.6f). O

5.4 Proof of Theorem 4.3
Write N, = mfllfgw Then (1 — B’Y)NS = B° and N, = [N,], where N, is defined in (4.5). It can be
verified that N’Sl + N’SQ = ~51+52 for any s; and ss.

Write i, = 617™)/2k for m = 1,..., M = M(e). Since d3' " < (V2 — 1)A\] 'w, we know

¢d1/2 < ¢)w1/2ﬁ7s/2—1/2 < ﬁ(1—21*”1)(35—1/2)KM/2.

The key to our proof is to divide the whole process into M segments of iterations. Thanks to the strong
Markov property of the process, we can use the final value of the current segment as the initial guess of
the very next one. By Lemma 5.5, after the first segment of

n1 := min{ Ny, {S(v/3/28072 G2k )L Ny ar(y e}

iterations, V(") lies in S(\/3/2ﬁ(1—227M)(35—1/2),<;1) = §(5(1—22’M)(38—1/2),iz/g) with high probability,
which will be a good initial guess for the second segment. In general, the i-th segment of iterations starts
with V{("-1) and ends with V(") where

M
n; = min {Nin{S(ﬁ(l21+1M)(361/2)’€i+1/2)}’ { Z NQ"L“GE)—‘ }

m=M+1—1
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At the end of the (M — 1)-st segment of iterations, V(nm-1) is produced and it is going to be used as an
initial guess for the last step, at which we can apply Lemma 5.6. Now njp;—1 = min{Nin{S(kr/2)}, K},

7> M N7 NT — —
where K = |—Zm22 NZ*’”(l—ﬁs)—‘ = |—N(1_21—NI)(1/2_3E)-|. By 22 M 2 % 2 21 M, we have

Nijo_ve2 = [ﬁl/z—k/ﬂ [Nl/Q 13¢/4] < Nij2—13¢/4-

Let Z/\\f = Nin{S<\/3/26(1—2277”)(35_1/2)/'iMJrl*m)}’ and

H, = {N < ]\72—m(1—65) +nap—m} for2<m< M,
Hy = M Tt Niw{S(rar/2)} (1/2),

n€[Ny 23, K—Nin{S(kn/2)}]

M ~
H = m Hmm@Kv
m=1

where ng = 0. We have
Mo M N
HH%=P{LJH;u@%}<§ijmu@%}
m=1 m=1

M
< Z 2dN3-m(1-6e) eXP(—Cn’Y”XfomV My ,287%)
m=2

M
+2d <K — Z NQ""(IGE)) eXp(—CKf)/K;fy*ln;2ﬂ72s)

m=2
+ K(ed +p+ 1) exp(—Cy min{yp~1, =2} 37%)
< 2dK exp(—C,gynfzz/*ln*?B*zg) + K(ed + p+ 1) exp(—Cy min{yp =1, ¢p=2}37%)
< 2dK exp(—CdV2C7r 13 87%) + K(ed + p+ 1) exp(—Cy min{y 1,12} 372%) (by (3-4))
< 24K exp(—4v207Cov ™ 75) + K(ed + p + 1) exp(—Cy min{y 1, ¢p=2}37¢)
< K[(2+e)d + p + 1] exp(— max{C,v~1, Cy min{yp=1,p=2}}37°),
where C,, = 41/2C7C,, is as given in (5.6e).

Set H!, := {Nin{S(k/2)} =n'}. Ifn' > K, then HNH/, = 0. Otherwise if n’ < K, then by Lemma 5.5,

V) € S(kar/2) and then |[T)]|2 < p((£3£)2 — 1). Thus,

2
’_ 7> K 1 r ’
&w—mﬂ"”>&m—mﬂK”>(f)>ﬂﬂ”%
Hence, for any n € [N1_¢c + Nin{S(k/2)}, K] C [N1-6c + n/, K + n'], by Lemma 5.6, we have
E{T" o TM1y | H,, NF,} < L2070 o 7)) 49821 — £2)71 T — £2=")]H, + Rp.

Recall that I, is the o-algebra filtration, i.e., the information known by step n’. Introduce sum(A) for
the sum of all the entries of a matrix A. In particular, sum(A4 o A) = ||A||2. We have

E{|IT™) |3 1x | H;,}

= E{E{|T™|#1x | H;, NFy})

<SE{(1 = 87> T |2 + 28 sum([] — £°] 7" Ho) + sum(Rg)}
< (1= 392 Vpg?d +26° sum([I — L% 7" Ho) + /p(d — p) | R v

_ 1 - 3
< (1= py)* 1)p¢2d+2527ﬁ(2—)\15) sum(G o Hy,) + \/p(d — p)Cor/prt(vig,) 2y 1 5%/273
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where G = [vi;](4—p)xp With 7i; = ﬁ Putting all the above together, we obtain
E{IT™|2; H} = E{E{IT™ (B 1x | H;,}}

< (1 - By)* " Vpg?d +

2
W sum(G o Hy) + Com4uzﬁﬁp\/d —py 1323,

-\
Note that on H, Nin{S(x/2)} < K. So the expectation is valid for any n € [N1_s. + K, K]. Finally, we
estimate sum(G o H,). By Lemma 5.3, H, < 16¢*H, and hence,

p
(G o H,) < ZZ 61_”_&;*’3 = 160 p(p.d: A).
j=1i=1 P

This completes the proof.

6 Proofs of Theorems 4.5 and 4.6

To prove Theorem 4.5, we first prove that it is a high-probability event that V(0 satisfies the initial
condition there, which is the result of Lemma 6.2 below. Then together with Theorem 4.3, we have
the conclusion. During estimating the probability, we need a property on the Gaussian hypergeometric
function of a matrix argument, as in Lemma 6.1.

The gamma function and the multivariate gamma function are

%) m i1
I(z) ;:/ t"Lexp(—t)dt, Ty (z):= w”*m—”/‘*HF(x— ! 5 )
0

i=1

respectively. Denote by oF; the Gaussian hypergeometric function of matrix argument (see [23,
Definition 7.3.1]), and also by 1 Fy and 1 Fy the generalized hypergeometric functions that will be used
later.

Lemma 6.1.  For any scalar a,b,c and a symmetric matrizc T € R™>*™

2Fi(a,b;¢;T)
Tp(c—a—b)Tn(c) m—+1
= F b; b— I =T
Tp(c—a)lm(c—b)2 \@eFPmet—5—
F(a+b—c)y(c) —a—b m+1

det(I —T) " | c— —b;c —b+—;1-T 1
e R U o1
Our proof of Lemma 6.1 is similar to that for the case p = 1 by Kummer’s solutions of the

hypergeometric differential equation (see, e.g., [20, Subsection 3.8]), and we leave it to Appendix A.3.
Lemma 6.2.  Suppose p < (d+1)/2. If V) satisfies the condition that R(V () is uniformly sampled
from G,(R?), then for sufficiently large d and § € [0,1], there exists a constant C,, independent of &
and d, such that
2

P{V® es(C,67td?)} > 107 (6.2)
Proof. Let1 >0y > -+ > 0, > 0 be the singular values of V(O), and then o; = cosf;, where 6;’s are
the canonical angles between R(V () and R(V,) (recall (5.1)). By [2, Theorem 1], since p < (d + 1)/2,
the probability distribution function of o), is

P{v® eS(1/z)} = P{o, > 2} = P{#, < arccosz}

— F(L—gl)r(d §+1) 2\p(d—p)/2 d—p 1 d+1 2
_W(l—x)(d )/ 2F1(2,2,2,(1—33)Ip)_
Set
g DG p(%)r (-5
Fp(pTH)Fp(%y (d 2)Lp(3)
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After some calculations that are deferred to Appendix A.4, we know
e in defining g4, although I',(—2) and I',(3) may be oo, by analytic continuation, I'y(—5)/I',(1) is
well defined;

1, _ DD D).
* Ja 9= (e, G)
d
% = (%)pz/Z[l +0o(1)] as d — oo.

Ty (
By (6.1), we have

d—p 1 d+1 9
Fl— 2,21 -2Y)1
21( 9 727 9 a( .T);,;)

d— 11 +1d 2p+1
=fd2F1<p,2§2 ! ) + gq det(z?] )p/22F1<p & 7332[;7)-

2 27 2

Also, [23, Definition 7.3.1 and Corollary 7.3.5] give

d—p 11 d—0p
o Fy (2,2;2;172]1;) = 1Fo<

Therefore,

;z2[p> = det (I, — xQIp)*(d*P)/2 =(1- x2)7p(d7p)/2.

: 1d 2 1
P{V(O) I S(l/x)} =1 + fd_lgd (1 _ xQ)p(d*p)/prz2F1 <p+ p+ 2], >

2’ 2’ 2
Substituting = (6='d'/?)~! and by [23, (8) of Subsection 7.4], we obtain that as d — oo,

PV ¢~ a"?)}

1 2 1 62
=—fq Yga(1 — 6%d~ )dp/2(52d )p/2F<p+ d 2p+1 6 p)

2 2 2 'd

D B (1) ()

P(E,(-5) (;1)”2/2[1 fo) [exp ( Pf) +0(1)] [df/z +o(1)}

I(ZE0,(—5) < p52> < pt12p+1 52 )
=—2" " 2 exp| —— |1} ; 57 [1+ o(1)]
T, 2 2 2 2
LT, (-2 12p+1.1,
< ( 21) p( 12)1F1(p+ : P+ )51) 2_019 5 (6.3)
TOn,0) > T2 ol
where the inequality is guaranteed by 1Fy(2f; 255 522 p) < 1F (B 2211, according to (23,

Theorem 7.5.6]. Substituting 6/C), for 6, we infer from (6.3) that P{V O) ¢ S(C,671d"2)} < &7,
The claim (6.2) is now a simple consequence. O

Now we are ready to prove Theorem 4.5.
Proof of Theorem 4.5.  Define the event H, = {V(©) ¢ S(C,071d"/?)}. Since R(V(?) is uniformly
sampled from G,(R?), Lemma 6.2 says P{H.,} > 1 — 6. In the following, we will apply Theorem 4.3
with ¢ = C,6~! and w = (v/2 + 1)A162. Since Theorem 4.3 is valid on H., and

K[(2+e)d +p+ 1] exp(~Cyf5) < 87",
there exists an event H with

P{H |H.} >1 - K[(2+e)d+p+ 1]exp(—Cpyf~5) > 1— 67,



28 Liang X et al. Sci China Math

such that for any n € [N3/2_37./4(83), K],
E{IT™|3; HNH,} = P{HIE(IT™||}1x | H.}
< E{|T"|F 1w | HL}

_ _ 324 _ _5e
< (1-By)* " VpC2s Y+ o id Bﬁw(p,d;AHCoHVni’y Ipy/d — pB3/2=5=.

-
Let H, = HNH, for which P{H,} = P{H | H,} P{H.} > (1 — 6?")2 > 1 — 267", as expected. O

Finally, we prove Theorem 4.6.
Proof of Theorem 4.6.  First we examine the conditions of Theorem 4.5 to make sue that they are
satisfied. It can be seen that 8, — 0 as N, — oco. Thus, [, satisfies (4.6) for sufficiently large N,. We
have

N.
(1— By = (1 - 3;?\[]\[*) — exp ( glnN )[1 +o(1)] = N1+ o(1)]
3N, \
which 1mphes N* = Ng/g(ﬂ) = N3/2_98(,8).

The conclusion of the theorem will be a straightforward consequence if

(1= By)*N-=DpC26~2d + 325°Be o(p, d; A) + Corv 2y~ py/d— pB/ ™

p(p,d;A) In N,
)‘P*)‘zﬂrl N

3/2_3/2
By [1+o(1)] < B2,

C(d,N.,,d) :=

is bounded, say by C,(d, Ny, ) to be defined. In fact,

_ - ., pd 32048,  Cor*vn2y~'pyd—p .
C(d. N8 =7 [(1—m> Nez P ; y BT 5 /2T
N { 252 pd n 3244 B, n Cor'v?ipy~py/d 3/2- 75]
n N, [(1- 5 7)? G e(p,d;A) 2= XMfB. o(p,d; A)
(b N, = N3/,, or equivalently, (1 — Bey)V < 53/2)

<7N*6[ i cp5-2d
T [y ) ER A I YR TS WA/ R XP VS
by @(p,d; A) > PA=PMA g > 2p
M — g
3[ pitse  Cox =N | 3247
(1=B87)2p M 2— B
(by dBL~% < 6%)
—: C,(d, N, ).

*

d 1 329t Cor'vPmpyT! 1/274

_1/9A1 — Ad ,1/2-7¢
Curty2n2a—lp=1/22L ~ Ad g1
+ Cor*Ply'p oy

Since B, < 1 and B,y < A8 < V2 — 1, we have

Ci(d, Ny, ) < 3{ % M—da o 320 Corlv (A — /\d)]
5 5 = 2(3 — 2\/§)p >‘1>\d 3 — \/i 1/2’7)\1>\d

2
and also C,(d, Ny, 8) — 24¢* as d — oo, N, — 00, as was to be shown. O

7 Conclusion

We have presented a detailed convergence analysis for the multi-dimensional subspace online PCA
iteration on sub-Gaussian samples, following the recent work [19] by Li et al. who considered only
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the one-dimensional case, i.e., the most significant principal component. Our results bear similar forms
to theirs and when applied to the one-dimensional case yield estimates of essentially the same quality,
as expected. As we embarked on the analysis presented in this paper, we found that a straightforward
extension of the analysis in [19] was not possible because of the involvement of a cot-matrix of dimension
higher than 1 in the multi-dimensional case but just a scalar in the one-dimensional case. Our results yield
an explicit convergence rate, and it is nearly optimal because it nearly attains the minimax information
lower bound for sub-Gaussian PCA under a constraint, as well as nearly global because the finite sample
error bound holds with high probability if the initial value is uniformly sampled from the Grassmann
manifold.
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Appendix A Supplementary proofs
Appendix A.1 Proof of Lemma 5.3(3)

We have
var, (AT) = varo (TL(BYY ™ + Rp)TR) = B2 varo(TLYY ' Tr) + 28Ro 1 + Ro 2, (A1)
where R, 1 = covo (T YY T TR, Ty RrTR) and Ro 9 = varo (T RrTgr). By (5.11),
varo (T YY T TR) = varo (YY) + Ro o, (A.2)
where

Roo = vare(TYY'T) + varo (TYY™") + var, (YY)

—2covo(YY T, TYYTT) — 2covo(YY T, TYY ") + 2covo (YY T, YYTT)

+2covo (TYYTT, TYY") — 2cov (TYYTT,YY™T)

—2covo(TYY T, YYTT).
Examine (A.1) and (A.2) together to obtain H, = varo(YY™T) and R, = 8%Ro 4+ 28Ro1 + Roo. We
note

Y; = ejTy = ejTAl/2A—1/2Y — )\;/2ejTA—1/2K
Tvar,(YY ™ )e; = var(e] YY Tej) = var(Y,4,Y;) = E{Yp2+inz}.

€;
By [31, (5.11)],
E{Y}'} = X2B{(e] A"2Y)*} < 16X% e A7V2Y ([, < 16A3[ATY2Y ||, = 16A3¢"

Therefore, e var,(YY ")e; < [E{Yp4+i}E{}/}4}]1/2 < 160, i\, de., Hy = var(YY") < 16¢*H. This

proves (3)(a). To show (3)(b), first we bound the entrywise variance and covariance. For any matrices
Ay and A, of the same size, it holds that (see [14, p. 233])

[ A1 0 Asgll2 < [[A1][2]| Azll2, (A.3)
and thus

lcovo (A1, Az)ll2 = [[E{Ar 0 A2} — E{A1} o E{As} |
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< E{Arfl2flA2llo} + [E{AsH2[E{A2} ]2, (A.4a)
lvaro (A1) ][> < E{[[A1[3} + [E{A1}[3- (A.4b)

Apply (A.4) to Ro1 and R, 2 to obtain
1Ro1ll2 < 207082 (1 + I TIE)2, (|1 Ro2ll2 < 2C70(7,8)" (1 + I TI13)°, (A-5)

upon using
|1TLYY Tl = |1 TLYY VI Trls < 020,14+ |T13),  1TeRe TRl < Cov'/?(,8)* (1 + | T15)*2.
For R, o, by (5.12), we have

IICOVO(YYT TYY'T)|2 <E{IYYIZ}ITI3,

[[cove (YY TYYT)IIz E{IYY T YY T2 HIT 2,
leove (VYT YYTT)|l2 < E{YY Tl [Y Y |2} T |2,
IICOVo(TYYTT TYY )2 <E{IYY T2V Y 23IT3,
leovo (TYYTT,YY ' T)[l2 < E{YY " |2 YY " [l2}IT13,
[vars(TYY ' T)||2 < E{|[YY T [3}IT 2,
lvaro(TYY ) [ < E{IYYTBH|T 3 + ITAJ3,

[vare (YY'T)||2 < E{[[YY ISHITS + [|AT3,
leovo(TYY T, YY ' T)[la SE{IYY " [l YY I} T(13 + ITA |2 AT
Since
VY o+ (YY) =YY +YTY =YY < vy,
YF = (7T ¢ EY Y v
we have

1R 0ll2 < BL2AYY T3+ (1YY |2 + VY |2)?HITNZ + (ITAll2 + [AT]|2)?
+2E{|YY (1YY Iz + 1YY )} AT N2 + 1T13) + E{YY T IZHIT 2

1
Vi) + (Mt + Apea) ]nTn% F@ITI + ) ?IT

OJ

(
< W) T2 + [

DO |

~ 1
< 01Tl (1+ 5 1Tl + 1718 + 1718 ). (A6)
Finally, collecting (A.5) and (A.6) yields the desired bound on Ry = %Ro o + 23Ro1 + Ro 2.

Appendix A.2 Estimation in the proof of Lemma 5.6

(1) E{Jy 0 J;} = £22T©) o T(0),
(2) B{Jy 0 Jr} = 0227 p20=s70) 6 B{ D)1, } = 0, because

E{D®1q, } = E{E{DW1g, | F,_1}} =0.
(3) E{jl o jgz} = ZZZNI/%SE £2n=s70) E{D(S)lqrs_llQK} =0, because T,_; C F,_q, so
E{D® 1y, 1.} = P{T, 1 }E{D1g, | T, 1} = P{T, 1 }E{E{D®1q, | F. 1} | T 1} =0

(4) B{Jy 0 Js} = X", £2n=T© o E{ESV1¢, }. Recall (A.3). By Lemma 5.3(2)(a), we have

B © Jall}e < Y ILI 1T LIELEE ™V 1g, H2

s=1
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n 2 1/2
<S-m (o) et e

s=1
o
28y
1
5,31 660 1/1/2“’2 1ﬁ/{ (bynZNl—&e)-

(5) B{a1 0 Joa} = SO0 Ty, L £ B{D@ g, 0 DG 1n, 1g,} = 0, because s < s
and
E{D®1g, o D11, 19} =E{D® oD 1r, 1.}
= P{Ty_1}E{D® 0 DN 1g, | Ty}
= P{Ty_1}E{E{D® 0 D6)1g, |Fy_1} | To_1}
= P{Ty_ 1 }E{E{D)1q, | Fy_1} o D) | Tyry}
=0.

(6) We have

Nij2-3:—1Nyjo_ 3.1

Z S L B{DW1g, 0 D1g, }

E{jzl o :721}

s'=1
N1/2—3s—1
= Z L£2=E{D®) o D14, },
s=1

because for s # s,
E{D®1g, o D®)1g,} = E{D® o D®)1g, }
_ E{E{D(max{s,s/})lQK | ]Fmax{s,s’}—l} o D(min{s,s’})}
=0.
Use (3)(a) and (3)(b) of Lemma 5.3 to obtain
E{D® 0 DW1g, } = B{E{D®) 0 DV1g, | Foi}}
= Efvar, (T — T0)]1g, | Foy)}
=E{B’H, + R,} = f*H, + E{R.}.

Therefore, E{Jo; o Jo1} = [32 ZN1/2 s L2, 4 ZN1/2 =71 £200=) B{R,}. We have that for
K> 2[,

11
IRalle < 07,71 (14 G 4 7200 372 )+ ACRE)° + 203, )

- 21 1 - .
< (Van)QTS,l (/432 + Zn + Ii3> + 4CTn5V(npﬁ)3 + QC%/QGV(%B)ZL

4
29+8\f 3,2

32 (77176) Ts—1 +4CT’<“ V(npﬁ) +2072“’€6V(77p6)47

where 7,1 = [T V|ly < (k2 — 1)Y/2. Write Fyy := Ziv:lf*ss_l £2m=)E{R.}. Since 2Ny/p 5. — 1
< Ni—6e < 2Ny/3_3. by definition, we obtain

Nija—3.—1

1Ballz< > 1L13" Y E{|Ro |2}

s=1
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(1= Byt Nyase)

67[ 57] E{||R0||2}
1B (=B
<G ElRole)

1o, e - 29 + 8v/2 _ _
< 0o st (B2 s0an(it) + 2030007

29 + 8v/2 _ _ 6o
< (64 +2CT’$(77P5)+CT2"€2(77175) )'7 "kt 77;;52 oe.

(7) We have

n
E{J22 o J22} = Z £2(nis)E{D(s)1QK 1T571 o D(s)lQK 111‘571}

s=N1/2_3¢
_ 52 Z £2(nfs)HO + Z £2(nis)E{RolTs_1}7
s=N1/3_3¢ s=Ni/3_3¢

because for s # s,

E{D®1g,1r, , o D) 1g, 17, .}
=E{D® o D 1g, 17, 17, .}
= E{D® o D" g, | T,y NTy_ 1} P{T,, NTy_y}
= E{E{D™>{5 D1 | Fraygewy_1} o DD | T N Ty 1} P{T,_1 N Ty}

=0
and
E{D®)1g, 17, , 0 D®1g, 17 _,} =E{D® 0o D*)1g, 1r,_,}
= P{T,_1}E{E{D) 0 D@1q, | Fio1} | Tass}
< BPHo + E{Ro1r,_,}.
We have
29 + 8v/2 _ _
||R01'J1'571H2 < Tﬁsyz(%ﬁ)QTsﬂ + 4CT/€5V(77pﬁ) + 2CT"* V(npﬁyl

29 4 8v/2 _ _ _ _
< nguz(npﬁ)Q(KQ — 1)1/261/2 3 4 4CTI<J5V(’I7PB)3 + QC%mﬁy(an)‘l

29 + 82 .
< gy HVAB) BT+ ACTR Y (0pB)* + 207K v (1, B)

Write E22 = Zn

=M1 /2o L£2=9)E{R,1t,_,} for which we have

n

2(n—s
1Bl < > IL13"VE{||Ro1r, ||}
s=N1/2_3¢

< 1
By[2 — B7]

IR 29 + 8v/2 _3e - _
< 3 _ \/5’}/ 1K4V77§,8(32V51/2 3 +4CTK/(77pﬁ) + 2072“’{2(77p5)2>

1 (29+8ﬂ
<
3—2 32

E{[[Rolr, . [l2}

+ 4CrrT, Y23 4 20%“2ﬁ§ﬁ3/2+35>’7 1/14u2“’2ﬁ3/2 3e.
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(8) E{jS o jJ} = Z?:l ‘C2(n_s)E{E7(“371)1QK °© Eéfil)]'@x}' Also, by (A?’)v

T T 2(n—s 5—1
IE{J5 0 J3}ll2 < Y _ILI3"E{ ES Vg, (13}
s=1

<D (1= )P IOr R (0, 8)° %)

s=1
CRu(if)'ns _
B2-6v] T 3-V2
Appendix A.3 Proof of Lemma 6.1

Chvijpy w08,

The proof is the same as that for the case p = 1 by Kummer’s solutions of the hypergeometric differential
equation (see, e.g., [20, Subsection 3.8]). Let the eigenvalues of T be p1,. .., fm. Since oFi(a,b;¢;T) is
defined on the spectrum of T', it is a function of u1, ..., t,,. When treated as such, by [23, Theorem 7.5.5],
oF(a,b;¢;T) is the unique solution of partial differential equations,

0’F m—1 A wi(1 oF
,Ui(l—/li)2+<0——<a+b+1—>,uz+ > )
O 2 1<G<m — ) Opi
J#i
) OF
Z “J 5= —abF =0 (A7)
1<]<m ’LLJ Hj
subject to the conditions that F is a symmetric function of puq,..., t,, analytic at (u1,..., tm)

=(0,...,0), and F(0,...,0) = 1.
We claim that F(u1,..., ) = 2Fi(a,b;a +b— ¢+ L T — T) satisfies (A.7). In fact, letting
i =1 — p; for 1 <4 < m which are the eigenvalues of I — T we have

O°F m—1 m—1 1 & pi(1— 1)\ OF
(1 — u )2 P L LA o2
pi( ,uz)aul2 + (c 5 (a+b+ 5 )MH— 5 Z _ )

1<Gem M Opi
1 & pwl—p) OF
- Z Lt AN o P el N
2,52, w0
2F 1 & 1-pm)p;  OF -
(1 ﬂz)ﬁzT‘i’* = J JN — —abF
s 21@2@(1—%)—(1—%)%]
» o N
m—1 m—1 ~ 1 3 (1 — ) OF
—e———— a+b+1—)1—ui)+ - — | =
(-5 2 )! 2 2 T=m- (7)) o

o _8F 1 ¥ a—u)p, oF -

=(1—ui)uiﬁ—§ Z %37_“1)1:
Wi 1< <m Mg — g M

i o _

m+1 m—1 m—1\_. 1 % 1— )\ OF

+(-c+——+a+b———(a+b+1— — |pu; + = Z % =

2 2 2 2.5 Him Ou;

:O’

where the last equality holds because ﬁ(/il, coosim) = o2F1(a,bya+b—c+ mT'H; I —T) satisfies a version
of (A.7) after substitutions: p; — f; for all i and ¢ — a +b— ¢+ 2L,
m—+

ﬁ(ul,...,um) = det(T) = 1*CgFl(a —c+ 2 p—c+ iy 4 1 — ¢ T) satisfies (A.7), too. Set
t= "’T'H —c and write G(pu1, ..., um) = 2F1(a+t,b+t;c+ 2t;T). We have

OF  t le]
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Opi Hi ) ( )3Mz‘
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— = 21 det det(T)! —
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where the last equality holds because G(u1, ..., fim) = 2F1(a+t,b+t; c+2t; T') satisfies a version of (A.7)

after substittitions: a—a+t,b—b+tand c— c+ 2t
Similarly F(p1,. .., pim) := det(I = T) 0y Fy (¢ —b,c—a;c—a—b+ mtl. [ —T) satisfies (A.7). Thus,

any linear combination of F and F, such as the right-hand side of (6.1), also satisfies (A.7). It can be
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verified that the combination is symmetric with respect to p1, ..., ttm, and analytic at T' = 0. Therefore,
by the uniqueness and F(0) = 1, similarly to the discussion in [20, Subsection 3.9], we have (6.1).

Appendix A.4 Complementary calculation in the proof of Lemma 6.2

Here in defining g4, although I',(—2) and I',(3) may be oo, by analytic continuation, I',(—2)/T,(3) is
well defined because
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and by lim,,—, IE((Z%’X() =1 for any « (see, e.g., [20, (16) of Subsection 2.1]),
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which implies

I ()“% fo(l)] asdos oo,



	Introduction
	Related work
	Efficient subspace online PCA
	Main results
	Three main theorems
	Discussions of new proving techniques

	Proof of Theorem 4.3
	Simplification
	Increments by one iterative step
	Quasi-power iterative process
	Proof of Theorem 4.3

	Proofs of Theorems 4.5 and 4.6
	Conclusion
	Supplementary proofs
	Proof of Lemma 5.3(3)
	Estimation in the proof of Lemma 5.6
	Proof of Lemma 6.1
	Complementary calculation in the proof of Lemma 6.2


