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Abstract: We propose a modified population-based susceptible-exposed-infectious-recovered (SEIR)
compartmental model for a retrospective study of the COVID-19 transmission dynamics in India
during the first wave. We extend the conventional SEIR methodology to account for the complexities
of COVID-19 infection, its multiple symptoms, and transmission pathways. In particular, we consider
a time-dependent transmission rate to account for governmental controls (e.g., national lockdown)
and individual behavioral factors (e.g., social distancing, mask-wearing, personal hygiene, and self-
quarantine). An essential feature of COVID-19 that is different from other infections is the significant
contribution of asymptomatic and pre-symptomatic cases to the transmission cycle. A Bayesian
method is used to calibrate the proposed SEIR model using publicly available data (daily new tested
positive, death, and recovery cases) from several Indian states. The uncertainty of the parameters is
naturally expressed as the posterior probability distribution. The calibrated model is used to estimate
undetected cases and study different initial intervention policies, screening rates, and public behavior
factors, that can potentially strike a balance between disease control and the humanitarian crisis
caused by a sudden strict lockdown.

Keywords: Bayesian inference; compartmental SEIR model; Markov Chain Monte Carlo; infectious
disease modeling
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1. Introduction

The outbreak of COVID-19 that first emerged in Wuhan, China, was declared a pan-
demic by the World Health Organization (WHO) on 11 March 2020 [1] since it quickly
spread across the world. However, at the early stage, there was no vaccine, no cure, or ap-
proved pharmaceutical intervention, which made the fight against the pandemic reliant on
non-pharmaceutical interventions (NPIs) [2]. These NPIs included macro-level approaches
such as lockdown to reduce interpersonal contacts [3], and micro-level personal preventive
measures such as physical distancing, mask-wearing, and personal hygiene [4-6], which
aim to reduce the risk of transmission during contact with potentially infected individuals.
Moreover, control measures employed in different countries and regions are different from
partial closure (e.g., the transition from in-person classes to online classes, work from home,
restrictions on social, sports, and cultural activities), travel ban, the shutdown of public
transportation, to strict and complete shutdown (shelter in place order) [7-10]. While
such an intense policy could reduce infection spread, it could give rise to severe social
stress [11]. In particular, in India, the government imposed a strict lockdown on 25 March
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2020, to slow down the initial outbreak at the early stage and to allow the public healthcare
system to have some time and capacity to respond; however, the sudden lockdown soon
turned into a humanitarian crisis. It left an enormous migrant population stranded in
big cities and turned them into refugees overnight. Millions of migrant laborers started
long journeys to return home by walking hundreds of miles. Before being hit by the virus,
many lost their lives in different parts of the country as they tried to return home [12,13].
A retrospective analysis to compare the effect of these intervention strategies with other
less extreme interventions on disease transmission dynamics is thus of great importance to
our society.

In order to conduct such a retrospective analysis, it is essential to have a mathematical
model that can accurately capture the disease transmission and progression dynamics
in the target population. SEIR compartmental models are one of the widely used math-
ematical models in this context. Different versions of the classical SEIR methodology
have been extensively studied and implemented for COVID-19 transmission dynamics in
India [14-17] and across the world [8,18-20]. These traditional SEIR models only consider a
single pathway for the disease progression, viz., susceptible stage to exposed or asymptotic
infectious stage to symptomatic infectious stage to recovered stage. However, it is well
known that for COVID-19 a section of the population never becomes symptomatic; instead,
they recover from the asymptomatic stage directly. Thus, in our compartmental model,
we include an additional disease progression pathway from susceptible to asymptomatic
infectious to the recovered stage. In addition, most of these traditional approaches employ
either a fixed transmission rate or a certain parametric time-dependent transmission rate
from the susceptible to the exposed stage. As there are multiple factors that may affect
this transmission rate, such fixed or simple time-dependent functions are not ideal for
explaining the spread dynamics of such a complex disease. For this retrospective analysis
in India, we propose a modified-SEIR model with a modified time-dependent transmission
rate which depends on time through two factors, the contact rate or the proximity of indi-
viduals in the population and the change in personal behavior and personal hygiene. As the
number of contacts among people decreases in proportion to the overall mobility during
shutdown, it is reasonable to use the observed Google COVID-19 Community Mobility
Report data [10] to approximate the effect of national lockdown in the disease transmission
rate. The time-dependent transmission rate is thus expressed as a product of the initial
normal transmission rate, the estimated mobility function, and a parametric sigmoid-type
personal response function. The test rate and undetected cases are important features of
COVID-19 different from other transmissible diseases, where a large number of secondary
infections arise due to contact with undetected, pre-symptomatic, and asymptomatic cases.
The existing SEIR literature, as mentioned above, does incorporate the available testing
data into the compartmental model. One important aspect of our SEIR model is the use of
publicly available testing data in estimating the transfer rate of each infectious compartment
(symptomatic and asymptomatic) using testing data. We also model the cure rate and
the mortality rate as time-dependent functions because it can be assumed that the health
system improves its capability and techniques to cure infected patients over time. We use
exponential models for both based on the empirical exploration of data.

Our retrospective analysis depends on the calibrated model parameters and the vali-
dation of the proposed model using the observed data. Traditional SEIR methodology uses
an optimization method to estimate the unknown parameters of the model; however, here
we focus on a Bayesian approach [21] which not only provides the estimates but also the
corresponding uncertainties. The Bayesian approach proposes the solution as the posterior
probability distribution of the parameters. It also regularizes the problem by incorporating
the available information from other similar studies through prior distributions.

The spread of the virus in India was heterogeneous across states, which could be
attributed to the different degrees of implementation of the central lockdown policy and
citizens’ response for each state. Therefore, we selected five representative Indian states,
namely, Maharashtra, Karnataka, Kerala, West Bengal, and Andhra Pradesh for the retro-
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spective analysis. The proposed models are calibrated to daily COVID-19 data on daily
infection, recovery, and death cases from mid-March to early December 2020 for these states.
We partition the dataset into the training set to calibrate the model, and the validation set
for prediction from the calibrated model. We also used mobility data for estimating the
transmission rate and the testing data to estimate the rate of transition from the asymp-
tomatic and symptomatic stages to the reported and quarantined stage. One of the goals
of this retrospective study is to compare the various parameters of the fitted model across
these states and analyze if the state-wise intervention policies have an effect on them. We
also estimate and analyze the unknown undetected-to-detected cases ratio, which had a
high impact on the COVID-19 pandemic duration and size. The percentage of symptomatic
and asymptomatic cases is also estimated and analyzed together with their uncertainties.
Assuming that isolation is successfully applied to the positive detected cases, undetected
and asymptomatic cases would represent the primary source of infections. The estimated
number of undetected and asymptomatic cases and their uncertainties could be critical for
the public health decision-makers and individuals [22]. The other goal of the retrospective
analysis is to study the effect of different intervention strategies on disease transmission
dynamics using the calibrated model. In particular, we compared the possible effect of a
few phase-wise less severe shutdown policies instead of a sudden complete shutdown,
increased public awareness and personal protective measures such as mask-wearing, per-
sonal hygiene, and self-quarantine, and better testing and tracking policies, which can
possibly balance the stress of migration workers and control the spread of the virus.

The article is organized as follows: in Section 2, we describe the modified SEIR
dynamic model for the spread of COVID-19. The Bayesian inference methodology and the
model calibration method are also discussed. We implement our methodology in Section 3
for the five representative states. Estimated parameters from different states are compared
and their significance is discussed. The calibrated state models are used for retrospective
analysis and to study the effect of different hypothetical control interventions. Section 4
concludes by summarizing our work and by discussing some future research directions.

2. Methodology

In this section, we first describe in detail the various aspects of the proposed modified
SEIR compartment model to study the dynamics of COVID-19 transmission in India. Then,
we describe the publicly available epidemiological data that are used for calibrating such
model. Finally, we describe the Bayesian model calibration method and the corresponding
Markov Chain Monte Carlo method used for the sampling-based inference.

2.1. The Modified SEIR Model

Our model considers the following two different disease progression pathways from
the susceptible (S and s) population: symptomatic (S — E — I — R), and asymptomatic
(s = e — 1), as illustrated in Figure 1. The infection stages are classified as exposed
(E and e), and infected but not reported as positive (I). Unlike other infectious diseases,
asymptomatic individuals infected with COVID-19 can transmit the virus, so we include
E and e among the infected stages. The non-infected stages are classified as symptomatic
recovered but not reported (R;), asymptomatic recovered but not reported (r), infected
and tested positive (T), death (D), and recovered (Rr) from positive cases. To strike a
balance between identifiable parameters and model completeness, we make a conservative
assumption that all reported deaths caused by COVID-19 come from the T compartment.
We also account for test screening and assume that all tested positive cases are quarantined
or isolated and thus excluded from the transmission.



Mathematics 2022, 10, 4037

40f 18

Hr Ri
[3(2)
S
ye(t) 7 I(I)/d(t)v
ye(t) )
Rr
[3(2) Me

Figure 1. COVID-19 transmission flow diagram.

Taking into account the effects of mobility changes over time and personal behavior
changes (frequent hand washing, wearing a mask, social distancing, etc.), we model the
transmission rate B(f) as a product of the baseline transmission rate Bo, time-varying
mobility factor m(f) (affected by the government lockdown policies), and time-varying
individual response represented by the behavioral factor p(t), as follows:

B = Bom(t)p(t), D

with initial values m(0) = 1 and p(0) = 1 (baseline state). For modeling of m(f), we
assume that the number of contacts among people decreases in proportion to overall
mobility during shutdown. m(t) is then modeled by fitting smoothing splines to the
average mobility change reported by the Google COVID-19 Community Mobility Report
from tracking activities of mobile phones in each state [9,10,23]. For p(t), we model it as a
time-dependent sigmoid function with parameters to be calibrated from the data. p(t) is
able to model the drop of cases even after the lifting of lockdown, which indicates people
are more aware of personal protective measures to prevent infections, i.e., strictly follow
rules of social distancing, wearing masks, personal hygiene, and self-quarantine. The
public behavior function is modeled by the following sigmoid function:

C(k, x)

p(h) =
1 + exlt=)

+ b, (2)

where k controls the decreasing slope and x represents the reflection point. b is the lower
bound of effects of individual behavior factors. We can determine the normalization
constant C(k, x) using the initial condition p(0) = 1 as

Clk, x) = (1 +e*)(1 - b). )

The people in the susceptible stage (S), in the pre-symptomatic stages (E and e), or
in the symptomatic stage (I) all have a possibility to be tested. However, we assume that

a person in the I stage has a much higher probability of being tested than a person in

. _ Pr(a_person in I is tested) ___Pr(a person in E is tested)
the S Stage' We define kl = Pr(a random person is tested) ’ kE Pr(a random person is tested)”

and

ke =  Pria person in e is tested) alet us denote the probability that a person from E, e and |
stage tests positive as Y, V., and yi, respectively. Then, we have

test(t)
yi(t) =

SO + 50+ KO + e+ 10" 4)
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where tesi(t) is the total number of tests conducted at time t, and ¢ € (0, 1] represents the
odds ratio for an individual from compartment E(e) getting tested against an individual
from compartment I. Note that E and e both represent the asymptomatic stages. Hence, it
is assumed that the probability that a person from the E stage will be tested positive is the
same as that for a person from the ¢ stage, i.e., . = Ve
The cure rate A(f) and the mortality rate d(t) are modeled as time-dependent functions
because it can be assumed that the health system improves its capability and techniques to
cure infected patients over time. Based on the empirical exploration of data, exponential
models for both are suggested. The death rate decreases over time and converges to a
constant value as time reaches infinity, while the recovery rate increases over time and
converges toward a constant value. More specifically, the death rate d(t) and recovery rate
A(t) are modeled as follows:
d(t) = do + dre-®". (6)

A = A1 — e, %)

Here, Ao represents the final asymptotic value of the recovery rate. It is related to the
treatment efficiencies for the infected patients of the health systems and also depends on
the health condition level of the population. The parameter A; captures the increase in the
recovery rate as the pandemic progresses. The parameter dp is the final asymptotic death
rate and d; represents the difference between the initial mortality rate and the asymptotic
mortality rate. The initial mortality rate do + d1 depends on the initial response of the
health system to the new virus. The parameter d> measures how the death rate decreases
with time. To this end, our model of COVID-19-spread dynamics corresponding to Figure 1
can be described as a system of nonlinear ordinary differential equations:

0
S _ gy SOE oD
odt ° N
dE S(1E + e + 1)
D5 =B T — aE — ye(E
dal E (HI I
— = aL — I —
Ha SR
dRp I
oo T H
o dT
0 = viOI+ ve(E + ye(De
8)
dRt (
DW = AT
0
D _ 4ot
O 4t
Ods _ gy S(OE + &e + 1)
0 dar ° N
d O1E + Ope +
Sd_i = Bs(1) g_l—Nge—D — pee — ye(te
T e
ar e

The unknown parameters in the ordinary differential equations (ODE) systems (8)
are summarised in Table 1. 6; and &2 represent the relative transmission of E and e stages
against stage I. For simplicity, we assume & = &> = 1. The initial conditions of the
ODE system are assumed as S(0) = gN, s(0) = (1 — ¢)N, R;(0) = 0, 0) = 0, and
T(0) D(0), R1(0) are directly measured from the available data. The initials of the rest
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state variables (E(0), e(0), I(0)) are treated as random. The state variables Rrt, r, R; and D

are cumulative, and for simplicity, we do not consider immigration and the natural births
and deaths that are not caused by COVID-19. So, we assume the following condition:

S(H) + E(H) + I(t) + Ri(H) + T(H) + Rr(H) + D(®) + s(t) + e(t) + r(t) = N, )
where N is the total population size.

Table 1. Interpretation of Model Parameters.

q Fraction of population through symptomatic pathway (E — R)

Bo Initial normal transmission rate

K Slope rate of sigmoid function p(t)

x First reflection point of sigmoid function p(#)

b Lower bound of p(#)

1/ e Average duration (in days) of asymptomatic (E — R)

1/ ur Average duration (in days) of infectious period (I — R)

1/a Average duration (in days) of latent period (E — I)

kr Pr(a particular person inI is tested)/Pr(a random person is tested)

c The odd ratio for an individual from compartment E(e) getting
tested against one from compartment I

Ao Asymptotic cure rate

M Slope in the cure rate function A(f)

do Asymptotic death rate

d Difference between initial death rate and the asymptotic death rate

d> Slope in the death rate function d(#)

2.2. Data Description

The data we used in this retrospective study represent daily positive cases, daily
recovered cases, daily death cases, and the daily number of tests, ranging from mid-March
to early December 2020, which was publicly available in [24]. We partitioned the dataset
into a training set for model calibration and a validation set for prediction. The validation
set consists of the last fourteen days for each state in the above timeline. The reason for
selecting a short duration of two weeks for prediction is due to the fact that accurate long-
term prediction is difficult for such a complex transmission dynamic. We used a centered
moving average with a seven-day window to smooth the data as a pre-processing step.
Google’s COVID-19 Community Mobility Reports, a database built on GPS data collected
from mobile devices with the “Location History” option turned on, provides a proxy for
the reduction in the mobility of people. Since the testing data were not available before 15
April 2020, we extrapolated one month of testing data using an exponential function fitted
to the available testing data. We also used spline interpolation to impute some in-between
missing testing data.

2.3. Bayesian Model Calibration

We use a Bayesian method to calibrate the proposed model using daily numbers of
positive cases i, recoveries i, and deaths y*. Please note that the cumulative data are not
used for calibration because of auto-correlation issues [8]. Instead of a single “best” esti-
mated value of the parameter, the Bayesian method provides a joint posterior probability
distribution of the unknown parameters, which provides the public health decision-makers
additional uncertainty information for the model parameters and the corresponding predic-
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tions. We denote the unknown parameters 61 = (Bo, K, x, b, ki, ¢, g, e, @, 8), 02 = (Ao, A1)

and 03 = (do, di, d2), then using Bayes’” formula, we can obtain the posterior probability
distribution of the parameters given the data as follows:

p(61, 62, 63lyc, y7, y9) oc p(y[61)p(y’61, 82)p(yi6:, 65)
X p(B1)p(82)p(63) (10)

where p(y©161), p(y"|61, 62) and p(yd|61, 6;) are the likelihood functions. Please note that
the parameters are divided into three subgroups in such a way that daily numbers of
positive cases are conditionally independent of 8; and 83 given 0:. Similarly, the number
of daily recoveries are independent of 83 given 6; and 8. The number of daily deaths is
independent of 8; given 6; and 6s. Here, p(61), p(02), and p(8s) are the prior distributions
over the parameters that can be specified from some known knowledge about the parame-
ters. For example, the plausible ranges of a parameter from the existing scientific studies of
COVID-19 can be used as the bounds for a uniform prior distribution over the parameter.
For likelihood, we assume that the number of daily new cases, recoveries, and deaths
follow Negative Binomial distributions. Let us denote the daily tested positive cases from
the model as Q(t). Here, Q(t) = AE(t) + Ae(t) + AI(t) — AD(t) — ARr(t), where A is the
difference operator, i.e., AE(f) = E(t + 1) — E(#). The likelihood for the reported positive
cases is given as

y()101, @1 ~ Negative Binomial(Q(t), 1), t = 1,2,..,n, 11)
¢ " T + yo(1)) (0] 1 oW ve
ply 161, ) = [1——c— , (12)

LGOMe) e+ Q0 e+ QO

where ¢ is the over-dispersion parameter that accounts for the substantial day-to-day data
variation and Q is its expected value. The likelihoods of daily recoveries and deaths are
as follows:

Y5161, 02, @2 ~ NegativeBinomial(AR1(t), ¢2), (13)
14161, 65, 3 ~ NegativeBinomial(AD(t), @3), t = 1,2, ..n (14)

Note that values of the state variables in the likelihood were obtained by solving the
ODE systems (8) using the fourth-order Runge-Kutta method. The Bayesian approach
allows us to incorporate prior knowledge about the parameters into the model setup. The
existing research of SEIR-based models applied to the COVID-19 pandemic was used
to provide reasonable ranges for unknown parameters. The prior supports for these
parameters are listed in Table 1. The priors are taken to be uniform distributions over
these ranges.

Because of the nonlinear forward ODE system involved in the likelihood function
ps Yy, yd |6), the resulting posterior probability distribution p(8y¢, y", yd) is not analyti-
cally tractable. We used the adaptive Metropolis algorithm [25] to sample from the posterior
distribution, where the jump size was adaptively chosen based on the sample covariances.
We ran three chains, each with 200,000 iterations, and the chains were thinned by keeping
every 50th sample after the 50,000 burn-in period for the final posterior samples. We
assessed the convergence of the posterior sampling by computing the Gelman-Rubin statis-
tic [26] for all the parameters. The statistics are very close to one, which is the desired value
in support of convergence and mixing of the chains.

Using the posterior samples for 8, the posterior predictive distribution can be approxi-
mated by 1 N

Py Yy Py p yd Py Py (15)
Cpreal )= (pal®) B) 6~ X Cpreal€) (8] )
i=1
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The resulting posterior predictive distribution accounts for uncertainties in both
the data-generating process and unknown model parameters. This posterior predictive
distribution is used to validate the fitted model with the validation dataset.

R software, version 4.2.1 [27], was used for the Bayesian model calibration method.
The R package “deSolve” [28] was used for the fourth-order Runge-Kutta method in
solving the system of ODE’s (8). The adaptive Metropolis algorithm was coded in-house
using base R.

3. Numerical Results

In this section, we discuss the model calibration results for five representative Indian
states, namely, Maharashtra, Karnataka, Kerala, West Bengal, and Andhra Pradesh. Using
the state of Karnataka as a demonstration, we studied the effect of various hypothetical
scenarios of two less-restrictive initial lockdown policies compared to the original sud-
den strict lockdown policy, mixed with different levels of public behavior factors and
testing strategies.

3.1. Calibration Results and Retrospective Analysis

The posterior means and 95% credible intervals of the unknown parameters from
the calibrated models are summarized in Table 2. The posterior means and 95% credible
intervals of daily new tested positive cases, recoveries, and deaths of the calibrated SEIR
models are shown in Figure 2 for the state of Karnataka. The corresponding posterior
predictive mean for different infection stages and other time-dependent parameters are
shown in Figures 3 and 4 respectively. The posterior means and 95% credible intervals
of daily new tested positive cases, recoveries, and deaths of the calibrated SEIR models
for other states are shown in Figure 5. The 95% credible intervals contain the observed
training and validation data for all the cases. This shows that the fitted model can explain
the disease dynamics very well and it is also able to predict short-term disease progression.

Table 2. The posterior mean, the associated 95% credible intervals, and the corresponding prior
support for the unknown parameters.

State/Parameters q Bo K x1 b
Maharashtra 0.7314 0.3740 0.0215 9%5 0.1
[0.6116,0.8517]  [0.3125, 0.4355] [0.0171, 0.0239] [79.3739,110.6261]  [0.1172, 0.163]
Karnataka 0.6865 0.3026 0.0235 77 0.2242
[0.5756,0.7995]  [0.2528, 0.3524] [0.0196, 0.0274] [64.3346, 89.6654]  [0.1873, 0.2611]
Andhra Pradesh 0.6988 0.2711 0.0112 70 0.2235
[0.5853,0.8138]  [0.2265, 0.3157] [0.0094, 0.013] [58.486, 81.514] [0.1867, 0.2603]
Kerala 0.6924 0.1839 0.0104 69 0.2223
[0.5802, 0.8064]  [0.1537, 0.2141] [0.0087, 0.0121] [57.6505, 80.3495]  [0.1857, 0.2589]
West Bengal 0.6883 0.4723 0.0647 41 0.1575
[0.577,0.8016] [0.3946, 0.55] [0.0541, 0.0753] [34.2561,47.7439]  [0.1316, 0.1834]
Prior support [0.5,1] [0.1, 2] [0.001, 1] [1, 150] [0.1,05]
State/Parameters 1/pe 1/a ki c
Maharashtra 21 7 39 0.4243
[17.5458, 24.4542]  [5.8486, 8.1514]  [32.5851, 45.4149] [0.3545, 0.4941]
Karnataka 23 6 70 0.17442
[19.2166, 26.7778]  [5.0131, 6.9869] [58.486, 81.514] [0.1457, 0.2031]
Andhra Pradesh 21 6.5 69 0.4974
[17.5458, 24.4542]  [5.4308,7.5692]  [57.6505, 80.3495] [0.4156, 0.5792]
Kerala 17 5 10 0.3903
[14.207,19.7964]  [4.5953, 6.4047] [10.0627, 11.96] [0.3261, 0.4545]
West Bengal 19 55 71 0.4505
[15.875,22.1252]  [4.1776,5.8224]  [59.3215, 82.6785] [0.3764, 0.5246]
Prior support [11, 31] [2,14] [10, 200] [0.001, 1]
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Figure 2. The posterior mean and 95% credible bands for reported tested positive cases, death, and
recovery cases of state Karnataka. The blue circles represent the observed data, the red lines represent
the posterior mean and the red bands represent the 95% credible interval. The vertical dashed black
lines divide the training and validation dataset.

The posterior means of the undetected infected proportion in Maharashtra, Karnataka,
Andhra Pradesh, Kerala, and West Bengal are 46%, 49%, 48%, 43%, 52%, respectively.
This indicates that the number of daily reported cases did not reflect the actual infected
population, which might mislead decision-makers of the public health authorities and the
public awareness and related preventive measures. The initial transmission rate By is the
biological transmission rate times the frequency of contact. By for West Bengal is almost
twice that of other states. Since the biological transmission rate should be the same, the
average contact rate in West Bengal can be assumed to be twice that of other states. One
possible reason for this could be the highest population density of West Bengal among
these five states. The 95% credible interval for incubation periods 1/ a is 5-7 days for all
states, which is similar to what has been reported in [29].

The posterior mean for the proportions of the asymptomatic and symptomatic cases
for all five states are all around 30%. The posterior mean of the odd ratio ki’s is around 70
for most of the states, which indicates that the symptomatic population has a much higher
chance to be tested than the general public. However, we observed that the odd ratio k;
for Kerala is around seven times lower than the average, which reflects the fact that the
general public without any symptoms in Kerala has a much higher chance of being tested
than in other states. This implies that the reported infected cases in Kerala reflect the actual
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infected cases more reliably. The 95% CI for the testing odd ratios of pre-symptomatic
E(e) against a random individual are (24.5, 38.5), which are still quite high. The result is
consistent with other reports stating that all the states have some contact tracing policies,
and Kerala is one of the states which implemented a good testing policy at the very early
stage of the pandemic.

o7 s , X1 E x10° :
456 1.2
%) . 6 T .
$4.52 - 4 - 0.8 -
® — i
O4.48 - - 0.4 -
444 = T T T T 0~ T T T T 0.0 - T T T T
Mar May Jul Sep Nov Mar May Jul Sep Nov Mar May Jul Sep Nov
5 R_I 5 Q D
x10 x10 120
57 87 100
a4 6 80
B 3- 4 60
8 2- 40
2 -
1 20
0 T T T T 0~ T T T T 0 T T T T
Mar May Jul Sep Nov Mar May Jul Sep Nov Mar May Jul Sep Nov
x10* RQ x10° s x107 e
1.0 8
0.8 1.52 —
n 6 -
D 0.6 1.51 —
S 04 - 47 150 -
0.2 1 27 149 -
0.0 T T T T 0~ T T T T 1.48 T T T T
Mar May Jul Sep Nov Mar May Jul Sep Nov Mar May Jul Sep Nov
Date

x10* r

Cases
O N D OO O©
| | | |

I I I I I
Mar May Jul Sep Nov

Date
Figure 3. The posterior predictive mean of different infection stages from the SEIR model for Karnataka.
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Figure 5. The posterior mean and 95% credible bands for reported cases, death, and recovery cases of
other states. The blue circles represent the observed data, the red lines represent the posterior mean
and the red bands represent the 95% credible interval. The vertical dashed black lines divide the
training and validation dataset.

3.2. Effect of Various Intervention Policies

We use the calibrated model for Karnataka as an example to study the effect of various
possible government intervention policies, especially in terms of lockdown, testing, and
tracing. The calibrated state variables and time-dependent parameters of the SEIR model
for Karnataka are displayed in Figures 3 and 4. We consider the combinations of two
possible initial lockdown strategies, one possible public awareness and personal behavior
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scenario, and one possible testing strategy, and their effects on the pandemic using the
calibrated SEIR model.

The two proposed lockdown strategies are both less strict than the complete shutdown
policy implemented by the government. The idea of the first one is to make the initial
lockdown process a gradual one, very similar to the reverse of how the lockdown was lifted
gradually during May and June 2020. We fit a linear regression for the mobility data from
20 April to 15 June 2020, and the negative of the fitted slope is used to construct the possible
mobility function from 10 March to 20 April 2021. The second initial lockdown scenario is
about implementing a sudden lockdown but with fewer restrictions, which would translate
to a higher minimum mobility level than the value from the observed mobility data. The
blue dash curves in Figure 6a,b show the mobility function for lock-down scenarios one
and two respectively. For the individual behavior factor function p(t), we considered a
scenario where the initial response is 90% of the base scenario, which represents the public
awareness based on the concurrent situations in other countries. The blue dash curve in
Figure 6¢ shows the possible individual behavior function. An exponential acceleration of
the reported positive cases started from the time around 1 July 2021, which might be due to
the increase in testing during the same period. From Figure 7, our model indicates that the
actual outbreak may have already started around 1 May 2021, and the actual infected cases
are much higher than the reported data before 1 July 2021. Our hypothetical testing scenario
shifts the testing trend that is observed from 1 July to the beginning of the pandemic and
then maintains a constant test level from August. Figure 6d plot the hypothetical daily
tests, which represent a better intervention strategy in terms of testing and tracking.

Results of different combinations of the proposed intervention strategies are shown in
Figure 8, and Table 3. The posterior predictive mean of the outbreak size and outbreak peak
both in terms of death and infected cases are shown in this table. We used the following
notations to represent different combinations of these intervention factors. Mi, i = 0, 1,2
represents lockdown scenario i, PBi, i = 0, 1 represents the public behavior scenario i, and
Ti, i = 0, 1 represents the testing scenario i. Here i = 0 represents the base case, i.e., the
true observed data for each of these factors. MiPBjTk represents the scenario which is the
combination of Mi, PBj, and Tk. As expected, both of the proposed lockdown strategies
result in higher expected cumulative infected cases and peak infected cases when the
individual behavior and the testing strategies remain the same at the base level. However,
the improved testing strategy reduces the cumulative deaths, peak deaths, cumulative
cases, and peak cases significantly even with both proposed lockdown strategies. The effect
of the second initial lockdown strategy is significantly better for both cumulative and peak
cases and deaths than the first one when the public behavior and the testing scenarios
are held constant. It is also observed that implementing the new testing strategy with the
baseline p(t) has a higher impact on the mitigation than considering the new p(t) with
baseline testing. Our study suggests that if better public awareness, individual response,
and testing strategies are implemented, then the number of deaths could be dramatically
reduced from 11,219 to below one thousand, even with the proposed relaxed lockdown
policies. Similarly, the cumulative infected cases can be reduced from 883,632 to 27,777
and the peak daily positive cases can be reduced from 10,037 to a few hundred. This
would help in reducing the burden on the healthcare system significantly. A less restrictive
lockdown with better public awareness and an improved testing strategy would not only
help in mitigating the disease substantially but could also avoid the tremendous personal
agony, job loss, deaths, etc., that migrant workers suffered due to the original sudden and
strict lockdown.
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In conclusion, to relieve stress for migration workers, a less strict initial lockdown
could have been implemented. At the same time, in order to control the disease outbreak
size, it is critical to educate the public on the importance of individual prevention measures
such as social distancing, wearing masks and personal hygiene, and symptomatic self-
quarantine. If the vast majority of people can cooperate with government policies, maintain
a certain social distance, and wear face masks, the transmission rate B8(t) will be reduced.
Our study also indicates that establishing convenient and adequate testing as early as
possible is the most crucial intervention strategy in mitigating the disease.
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Table 3. Summaries of outcomes for different intervention strategies.

Scenarios Cumulative Infected Cumulative Death Peak Infected Peak Death

MOPBOTO 883,632 11,219 10,037 138
M1PBOTO 7,033,837 127,646 90,784 1505
M1PB0T1 1,307,246 42,159 19,911 644
M1PB1TO 1,077,677 15,627 11,445 162
M1PB1T1 110,325 3901 1702 59
M2PB0TO 5,163,521 73,859 67,834 989
M2PB0T1 338,997 7731 4035 101
M2PB1TO 558,504 7277 6163 87
M2PB1T1 27,777 728 335 9

4. Discussion and Conclusions

We propose a population-based modified SEIR compartmental model to conduct a
retrospective analysis of the effects of government policies regarding lockdown, testing,
individual protective actions, and screening strategies on the transmission of COVID-19 in
India during the period of mid-March to early December 2020. It is to be noted that much
simpler parametric models such as exponential and Gompertz growth models are also
good alternatives to SEIR models for infectious disease modeling and are generally used
for short-term prediction [30,31]. However, these methods do not explicitly consider the
lockdown, personal behavior, testing, and quarantining effect in the model. So, it is difficult
to conduct a retrospective analysis of these interventions using such models. Our modified
SEIR model takes into account two different pathways, viz. S = E—- 1 — Rands —e—r
for disease progression. We also consider a variable time-dependent disease-transmission
rate based on the mobility data and a personal behavioral function. The testing data are
used in determining the transition rate from asymptomatic and symptomatic states to the
tested positive state. To ensure the efficiency of the healthcare system over time, the death
and recovery rates are also considered to be time-varying functions. This novel approach of
including all these factors together in the SEIR model facilitates the retrospective analysis of
different types of intervention policies, viz., less extreme shutdown policies, new testing and
contact tracing policies, and personal behavioral effects. We also use a Bayesian inferential
method to calibrate the model to the reported data on daily infected cases, daily death
cases, and daily recovered cases. A non-Bayesian approach provides only the best possible
estimates of the parameters and an optimal prediction for disease progression. On the other
hand, the Bayesian method also provides uncertainties in the estimates and predictions. The
uncertainties in the model were expressed as a posterior probability distribution of model
parameters, which provides additional valuable insights for healthcare decision-makers.

A retrospective analysis was carried out using the calibrated SEIR model for five rep-
resentative Indian states. The calibrated model is used to estimate the undetected infected
cases in each of these states, and shows that the actual outbreak started much earlier than
implied by the publicly reported data on infection. Using the calibrated model, we study a
few alternative lockdown strategies other than the original sudden strict lockdown which
can reduce the humanitarian crisis for millions of migrant workers. The study suggests that
the strict practice of individual protective actions such as social distancing, mask-wearing,
self-quarantine, and adequate early testing is critical to incorporate a much moderate initial
lockdown policy and simultaneously mitigate the disease progression. Therefore, it is
recommended that during the onset of such infectious diseases, the government should
focus on increasing testing rates, contact tracing, and public awareness along with less
severe and gradual shutdown policies. These alternative intervention strategies could
potentially avoid the tremendous economic, physical, and social stress for all the citizens
and the humanitarian crisis faced by migrant workers and laborers.
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It is to be noted that medical intervention strategies such as vaccinations and drug
therapies are not considered in our model as they were not available at the time period
considered. Our SEIR model can be extended to incorporate these medical intervention
effects, especially for the later period (e.g., the second and the third wave) of the disease
progression. This is one of our future research goals.
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