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Abstract: We propose a modified population-based susceptible-exposed-infectious-recovered (SEIR) 

compartmental model for a retrospective study of the COVID-19 transmission dynamics in India 

during the first wave. We extend the conventional SEIR methodology to account for the complexities 

of COVID-19 infection, its multiple symptoms, and transmission pathways. In particular, we consider 

a time-dependent transmission rate to account for governmental controls (e.g., national lockdown) 

and individual behavioral factors (e.g., social distancing, mask-wearing, personal hygiene, and self- 

quarantine). An essential feature of COVID-19 that is different from other infections is the significant 

contribution of asymptomatic and pre-symptomatic cases to the transmission cycle. A Bayesian 

method is used to calibrate the proposed SEIR model using publicly available data (daily new tested 

positive, death, and recovery cases) from several Indian states. The uncertainty of the parameters is 

naturally expressed as the posterior probability distribution. The calibrated model is used to estimate 

undetected cases and study different initial intervention policies, screening rates, and public behavior 

factors, that can potentially strike a balance between disease control and the humanitarian crisis 

caused by a sudden strict lockdown. 

 
Keywords: Bayesian inference; compartmental SEIR model; Markov Chain Monte Carlo; infectious 
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1. Introduction 

The outbreak of COVID-19 that first emerged in Wuhan, China, was declared a pan- 
demic by the World Health Organization (WHO) on 11 March 2020 [1] since it quickly 

spread across the world. However, at the early stage, there was no vaccine, no cure, or ap- 
proved pharmaceutical intervention, which made the fight against the pandemic reliant on 

non-pharmaceutical interventions (NPIs) [2]. These NPIs included macro-level approaches 
such as lockdown to reduce interpersonal contacts [3], and micro-level personal preventive 
measures such as physical distancing, mask-wearing, and personal hygiene [4–6], which 

aim to reduce the risk of transmission during contact with potentially infected individuals. 
Moreover, control measures employed in different countries and regions are different from 

partial closure (e.g., the transition from in-person classes to online classes, work from home, 
restrictions on social, sports, and cultural activities), travel ban, the shutdown of public 

transportation, to strict and complete shutdown (shelter in place order) [7–10]. While 
such an intense policy could reduce infection spread, it could give rise to severe social 
stress [11]. In particular, in India, the government imposed a strict lockdown on 25 March 
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2020, to slow down the initial outbreak at the early stage and to allow the public healthcare 

system to have some time and capacity to respond; however, the sudden lockdown soon 
turned into a humanitarian crisis. It left an enormous migrant population stranded in 

big cities and turned them into refugees overnight. Millions of migrant laborers started 
long journeys to return home by walking hundreds of miles. Before being hit by the virus, 
many lost their lives in different parts of the country as they tried to return home [12,13]. 

A retrospective analysis to compare the effect of these intervention strategies with other 
less extreme interventions on disease transmission dynamics is thus of great importance to 

our society. 
In order to conduct such a retrospective analysis, it is essential to have a mathematical 

model that can accurately capture the disease transmission and progression dynamics 
in the target population. SEIR compartmental models are one of the widely used math- 

ematical models in this context. Different versions of the classical SEIR methodology 
have been extensively studied and implemented for COVID-19 transmission dynamics in 

India [14–17] and across the world [8,18–20]. These traditional SEIR models only consider a 
single pathway for the disease progression, viz., susceptible stage to exposed or asymptotic 
infectious stage to symptomatic infectious stage to recovered stage. However, it is well 

known that for COVID-19 a section of the population never becomes symptomatic; instead, 
they recover from the asymptomatic stage directly. Thus, in our compartmental model, 

we include an additional disease progression pathway from susceptible to asymptomatic 
infectious to the recovered stage. In addition, most of these traditional approaches employ 
either a fixed transmission rate or a certain parametric time-dependent transmission rate 

from the susceptible to the exposed stage. As there are multiple factors that may affect 
this transmission rate, such fixed or simple time-dependent functions are not ideal for 

explaining the spread dynamics of such a complex disease. For this retrospective analysis 
in India, we propose a modified-SEIR model with a modified time-dependent transmission 

rate which depends on time through two factors, the contact rate or the proximity of indi- 
viduals in the population and the change in personal behavior and personal hygiene. As the 
number of contacts among people decreases in proportion to the overall mobility during 

shutdown, it is reasonable to use the observed Google COVID-19 Community Mobility 
Report data [10] to approximate the effect of national lockdown in the disease transmission 

rate. The time-dependent transmission rate is thus expressed as a product of the initial 
normal transmission rate, the estimated mobility function, and a parametric sigmoid-type 

personal response function. The test rate and undetected cases are important features of 
COVID-19 different from other transmissible diseases, where a large number of secondary 
infections arise due to contact with undetected, pre-symptomatic, and asymptomatic cases. 

The existing SEIR literature, as mentioned above, does incorporate the available testing 
data into the compartmental model. One important aspect of our SEIR model is the use of 

publicly available testing data in estimating the transfer rate of each infectious compartment 
(symptomatic and asymptomatic) using testing data. We also model the cure rate and 
the mortality rate as time-dependent functions because it can be assumed that the health 

system improves its capability and techniques to cure infected patients over time. We use 
exponential models for both based on the empirical exploration of data. 

Our retrospective analysis depends on the calibrated model parameters and the vali- 

dation of the proposed model using the observed data. Traditional SEIR methodology uses 
an optimization method to estimate the unknown parameters of the model; however, here 
we focus on a Bayesian approach [21] which not only provides the estimates but also the 

corresponding uncertainties. The Bayesian approach proposes the solution as the posterior 
probability distribution of the parameters. It also regularizes the problem by incorporating 

the available information from other similar studies through prior distributions. 
The spread of the virus in India was heterogeneous across states, which could be 

attributed to the different degrees of implementation of the central lockdown policy and 

citizens’ response for each state. Therefore, we selected five representative Indian states, 
namely, Maharashtra, Karnataka, Kerala, West Bengal, and Andhra Pradesh for the retro- 
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spective analysis. The proposed models are calibrated to daily COVID-19 data on daily 

infection, recovery, and death cases from mid-March to early December 2020 for these states. 
We partition the dataset into the training set to calibrate the model, and the validation set 

for prediction from the calibrated model. We also used mobility data for estimating the 
transmission rate and the testing data to estimate the rate of transition from the asymp- 
tomatic and symptomatic stages to the reported and quarantined stage. One of the goals 

of this retrospective study is to compare the various parameters of the fitted model across 
these states and analyze if the state-wise intervention policies have an effect on them. We 

also estimate and analyze the unknown undetected-to-detected cases ratio, which had a 
high impact on the COVID-19 pandemic duration and size. The percentage of symptomatic 
and asymptomatic cases is also estimated and analyzed together with their uncertainties. 

Assuming that isolation is successfully applied to the positive detected cases, undetected 
and asymptomatic cases would represent the primary source of infections. The estimated 

number of undetected and asymptomatic cases and their uncertainties could be critical for 
the public health decision-makers and individuals [22]. The other goal of the retrospective 

analysis is to study the effect of different intervention strategies on disease transmission 
dynamics using the calibrated model. In particular, we compared the possible effect of a 
few phase-wise less severe shutdown policies instead of a sudden complete shutdown, 

increased public awareness and personal protective measures such as mask-wearing, per- 
sonal hygiene, and self-quarantine, and better testing and tracking policies, which can 

possibly balance the stress of migration workers and control the spread of the virus. 
The article is organized as follows: in Section 2, we describe the modified SEIR 

dynamic model for the spread of COVID-19. The Bayesian inference methodology and the 
model calibration method are also discussed. We implement our methodology in Section 3 

for the five representative states. Estimated parameters from different states are compared 
and their significance is discussed. The calibrated state models are used for retrospective 

analysis and to study the effect of different hypothetical control interventions. Section 4 
concludes by summarizing our work and by discussing some future research directions. 

2. Methodology 

In this section, we first describe in detail the various aspects of the proposed modified 

SEIR compartment model to study the dynamics of COVID-19 transmission in India. Then, 
we describe the publicly available epidemiological data that are used for calibrating such 
model. Finally, we describe the Bayesian model calibration method and the corresponding 

Markov Chain Monte Carlo method used for the sampling-based inference. 

2.1. The Modified SEIR Model 

Our model considers the following two different disease progression pathways from 

the susceptible (S and s) population: symptomatic (S → E → I → R), and asymptomatic 

(s → e → r), as illustrated in Figure 1. The infection stages are classified as exposed 

(E and e), and infected but not reported as positive (I). Unlike other infectious diseases, 

asymptomatic individuals infected with COVID-19 can transmit the virus, so we include 

E and e among the infected stages. The non-infected stages are classified as symptomatic 

recovered but not reported (RI ), asymptomatic recovered but not reported (r), infected 

and tested positive (T), death (D), and recovered (RT) from positive cases. To strike a 

balance between identifiable parameters and model completeness, we make a conservative 

assumption that all reported deaths caused by COVID-19 come from the T compartment. 

We also account for test screening and assume that all tested positive cases are quarantined 

or isolated and thus excluded from the transmission. 
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Figure 1. COVID-19 transmission flow diagram. 

Taking into account the effects of mobility changes over time and personal behavior 

changes (frequent hand washing, wearing a mask, social distancing, etc.), we model the 

transmission rate β(t) as a product of the baseline transmission rate β0, time-varying 

mobility factor m(t) (affected by the government lockdown policies), and time-varying 

individual response represented by the behavioral factor p(t), as follows: 

β(t) = β0m(t)p(t), (1) 

with initial values m(0) = 1 and p(0) = 1 (baseline state). For modeling of m(t), we 

assume that the number of contacts among people decreases in proportion to overall 

mobility during shutdown. m(t) is then modeled by fitting smoothing splines to the 

average mobility change reported by the Google COVID-19 Community Mobility Report 

from tracking activities of mobile phones in each state [9,10,23]. For p(t), we model it as a 

time-dependent sigmoid function with parameters to be calibrated from the data. p(t) is 

able to model the drop of cases even after the lifting of lockdown, which indicates people 

are more aware of personal protective measures to prevent infections, i.e., strictly follow 

rules of social distancing, wearing masks, personal hygiene, and self-quarantine. The 

public behavior function is modeled by the following sigmoid function: 

p(t) = 
  C(κ, x)  

+ b, (2) 
1 + eκ(t−x) 

where κ controls the decreasing slope and x represents the reflection point. b is the lower 
bound of effects of individual behavior factors. We can determine the normalization 

constant C(κ, x) using the initial condition p(0) = 1 as 

C(κ, x) = (1 + e−κx)(1 − b). (3) 

The people in the susceptible stage (S), in the pre-symptomatic stages (E and e), or 
in the symptomatic stage (I) all have a possibility to be tested. However, we assume that 

a person in the I stage has a much higher probability of being tested than a person in 

the S stage. We define kI =   Pr(a person in I is tested)  , kE =  Pr(a person in E is tested)  , and 
Pr(a random person is tested) Pr(a random person is tested) 

ke =  Pr(a person in e is tested)  . Let us denote the probability that a person from E, e and I 

stage tests positive as γE, γe, and γI, respectively. Then, we have 

test(t) 

γI (t) = 
S(t) + s(t) + E(t) + e(t) + I(t) 

kI ; (4)
 

µI 
RI 

S 
[3S(t) 

yE(t) yI(t) d(t) 

ye(t) ..(t) 

[3s(t) µe 

RT 
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dt 

 = βS(t) − αE − γE(t)E 

 
 dRI  

= µI I 

 

 
= −βs(t) 

 = β (t) − µ e − γ (t)e 

 
test(t) test(t) 

γE (t) = γe (t) = 
S(t) + s(t) + E(t) + e(t) + I(t) 

kE = 
S(t) + s(t) + E(t) + e(t) + I(t) 

ckI ; (5)
 

where test(t) is the total number of tests conducted at time t, and c ∈ (0, 1] represents the 

odds ratio for an individual from compartment E(e) getting tested against an individual 

from compartment I. Note that E and e both represent the asymptomatic stages. Hence, it 
is assumed that the probability that a person from the E stage will be tested positive is the 
same as that for a person from the e stage, i.e., γe = γE. 

The cure rate λ(t) and the mortality rate d(t) are modeled as time-dependent functions 
because it can be assumed that the health system improves its capability and techniques to 
cure infected patients over time. Based on the empirical exploration of data, exponential 
models for both are suggested. The death rate decreases over time and converges to a 
constant value as time reaches infinity, while the recovery rate increases over time and 

converges toward a constant value. More specifically, the death rate d(t) and recovery rate 
λ(t) are modeled as follows: 

d(t) = d0 + d1e−d2 t. (6) 

λ(t) = λ0(1 − e−λ1 t ). (7) 

Here, λ0 represents the final asymptotic value of the recovery rate. It is related to the 
treatment efficiencies for the infected patients of the health systems and also depends on 
the health condition level of the population. The parameter λ1 captures the increase in the 
recovery rate as the pandemic progresses. The parameter d0 is the final asymptotic death 
rate and d1 represents the difference between the initial mortality rate and the asymptotic 

mortality rate. The initial mortality rate d0 + d1 depends on the initial response of the 

health system to the new virus. The parameter d2 measures how the death rate decreases 
with time. To this end, our model of COVID-19-spread dynamics corresponding to Figure 1 
can be described as a system of nonlinear ordinary differential equations: 

 dS 
= −βS 

 
(t) 

S(δ1E + δ2e + I) 

N 
 

dt N  
dI 

= αE − γ (t)I − µ I 
dt 

 

dt  
dT 

dt 
= γI (t)I + γE(t)E + γe(t)e 

dRT 
= λ(t)T 

 
(8) 

 

= d(t)T 
 dt 

 
dt N 

 

dt 
s 

N 
e e 

 
dr 

= µee 

The unknown parameters in the ordinary differential equations (ODE) systems (8) 

are summarised in Table 1. δ1 and δ2 represent the relative transmission of E and e stages 

against stage I. For simplicity, we assume δ1 = δ2 = 1. The initial conditions of the 

ODE system are assumed as S(0) = qN, s(0) = (1 − q)N, RI (0) = 0, r(0) = 0, and 

T(0) D(0), RT(0) are directly measured from the available data. The initials of the rest 

ds s(δ1E + δ2e + I) 

dt 
dD 

dE S(δ1E + δ2e + I) 

de s(δ1E + δ2e + I) 
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state variables (E(0), e(0), I(0)) are treated as random. The state variables RT, r, RI and D 

are cumulative, and for simplicity, we do not consider immigration and the natural births 
and deaths that are not caused by COVID-19. So, we assume the following condition: 

S(t) + E(t) + I(t) + RI (t) + T(t) + RT(t) + D(t) + s(t) + e(t) + r(t) = N, (9) 

where N is the total population size. 

 
Table 1. Interpretation of Model Parameters. 

 

q Fraction of population through symptomatic pathway (E → R) 
 

β0 Initial normal transmission rate 

κ Slope rate of sigmoid function p(t) 
 

x First reflection point of sigmoid function p(t) 

b Lower bound of p(t) 
 

1/µE Average duration (in days) of asymptomatic (E → R) 

1/µI Average duration (in days) of infectious period (I → R) 

1/α Average duration (in days) of latent period (E → I) 

kI Pr(a particular person in I is tested)/Pr(a random person is tested) 

c The odd ratio for an individual from compartment E(e) getting 
tested against one from compartment I 

 

λ0 Asymptotic cure rate 
 

λ1 Slope in the cure rate function λ(t) 

d0 Asymptotic death rate 
 

d1 Difference between initial death rate and the asymptotic death rate 

d2 Slope in the death rate function d(t) 
 

 

2.2. Data Description 

The data we used in this retrospective study represent daily positive cases, daily 

recovered cases, daily death cases, and the daily number of tests, ranging from mid-March 
to early December 2020, which was publicly available in [24]. We partitioned the dataset 

into a training set for model calibration and a validation set for prediction. The validation 
set consists of the last fourteen days for each state in the above timeline. The reason for 
selecting a short duration of two weeks for prediction is due to the fact that accurate long- 

term prediction is difficult for such a complex transmission dynamic. We used a centered 
moving average with a seven-day window to smooth the data as a pre-processing step. 

Google’s COVID-19 Community Mobility Reports, a database built on GPS data collected 
from mobile devices with the “Location History” option turned on, provides a proxy for 

the reduction in the mobility of people. Since the testing data were not available before 15 
April 2020, we extrapolated one month of testing data using an exponential function fitted 
to the available testing data. We also used spline interpolation to impute some in-between 

missing testing data. 

2.3. Bayesian Model Calibration 

We use a Bayesian method to calibrate the proposed model using daily numbers of 

positive cases yc, recoveries yr , and deaths yd. Please note that the cumulative data are not 
used for calibration because of auto-correlation issues [8]. Instead of a single “best” esti- 
mated value of the parameter, the Bayesian method provides a joint posterior probability 
distribution of the unknown parameters, which provides the public health decision-makers 
additional uncertainty information for the model parameters and the corresponding predic- 
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t 

t 

N 

 
 

tions. We denote the unknown parameters θ1 = (β0, κ, x, b, kI, c, q, µE, α, δ), θ2 = (λ0, λ1) 

and θ3 = (d0, d1, d2), then using Bayes’ formula, we can obtain the posterior probability 
distribution of the parameters given the data as follows: 

p(θ1, θ2, θ3|yc, yr, yd) ∝ p(yc|θ1)p(yr|θ1, θ2)p(yd|θ1, θ3) 

× p(θ1)p(θ2)p(θ3) (10) 

where p(yc |θ1), p(yr |θ1, θ2) and p(yd |θ1, θ3) are the likelihood functions. Please note that 

the parameters are divided into three subgroups in such a way that daily numbers of 

positive cases are conditionally independent of θ2 and θ3 given θ1. Similarly, the number 

of daily recoveries are independent of θ3 given θ1 and θ2. The number of daily deaths is 

independent of θ2 given θ1 and θ3. Here, p(θ1), p(θ2), and p(θ3) are the prior distributions 

over the parameters that can be specified from some known knowledge about the parame- 

ters. For example, the plausible ranges of a parameter from the existing scientific studies of 

COVID-19 can be used as the bounds for a uniform prior distribution over the parameter. 

For likelihood, we assume that the number of daily new cases, recoveries, and deaths 

follow Negative Binomial distributions. Let us denote the daily tested positive cases from 

the model as Q(t). Here, Q(t) = ∆E(t) + ∆e(t) + ∆I(t) − ∆D(t) − ∆RT(t), where ∆ is the 

difference operator, i.e., ∆E(t) = E(t + 1) − E(t). The likelihood for the reported positive 
cases is given as 

yc(t)|θ1, φ1 ∼ Negative Binomial(Q(t), φ1), t = 1, 2, .., n, (11) 

c n Γ(φ1 + yc (t))  φ1 
 φ1

 
  Q(t)  yc (t) 

p(y |θ1, φ1) = ∏ 
(yc (t))!Γ(φ1)  φ1 + Q(t) φ1 + Q(t) 

, (12) 

where φ1 is the over-dispersion parameter that accounts for the substantial day-to-day data 

variation and Q is its expected value. The likelihoods of daily recoveries and deaths are 
as follows: 

yr|θ1, θ2, φ2 ∼ NegativeBinomial(∆RT(t), φ2), (13) 

yd|θ1, θ3, φ3 ∼ NegativeBinomial(∆D(t), φ3), t = 1, 2, ...n (14) 

Note that values of the state variables in the likelihood were obtained by solving the 

ODE systems (8) using the fourth-order Runge–Kutta method. The Bayesian approach 
allows us to incorporate prior knowledge about the parameters into the model setup. The 
existing research of SEIR-based models applied to the COVID-19 pandemic was used 

to provide reasonable ranges for unknown parameters. The prior supports for these 
parameters are listed in Table 1. The priors are taken to be uniform distributions over 

these ranges. 
Because of the nonlinear forward ODE system involved in the likelihood function 

p(yc, yr , yd |θ), the resulting posterior probability distribution p(θ|yc, yr , yd ) is not analyti- 

cally tractable. We used the adaptive Metropolis algorithm [25] to sample from the posterior 
distribution, where the jump size was adaptively chosen based on the sample covariances. 
We ran three chains, each with 200,000 iterations, and the chains were thinned by keeping 
every 50th sample after the 50,000 burn-in period for the final posterior samples. We 
assessed the convergence of the posterior sampling by computing the Gelman–Rubin statis- 
tic [26] for all the parameters. The statistics are very close to one, which is the desired value 
in support of convergence and mixing of the chains. 

Using the posterior samples for θ, the posterior predictive distribution can be approxi- 

mated by 
p y y 

  

p y p y d 
1  N 

p y p y (15) 
( pred| ) = ( pred|θ) (θ| ) θ ≈ ∑ 

i=1 

( pred |θi ) (θi| ) 
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The resulting posterior predictive distribution accounts for uncertainties in both 

the data-generating process and unknown model parameters. This posterior predictive 
distribution is used to validate the fitted model with the validation dataset. 

R software, version 4.2.1 [27], was used for the Bayesian model calibration method. 
The R package “deSolve” [28] was used for the fourth-order Runge–Kutta method in 

solving the system of ODE’s (8). The adaptive Metropolis algorithm was coded in-house 
using base R. 

3. Numerical Results 

In this section, we discuss the model calibration results for five representative Indian 
states, namely, Maharashtra, Karnataka, Kerala, West Bengal, and Andhra Pradesh. Using 
the state of Karnataka as a demonstration, we studied the effect of various hypothetical 
scenarios of two less-restrictive initial lockdown policies compared to the original sud- 

den strict lockdown policy, mixed with different levels of public behavior factors and 
testing strategies. 

3.1. Calibration Results and Retrospective Analysis 

The posterior means and 95% credible intervals of the unknown parameters from 
the calibrated models are summarized in Table 2. The posterior means and 95% credible 
intervals of daily new tested positive cases, recoveries, and deaths of the calibrated SEIR 

models are shown in Figure 2 for the state of Karnataka. The corresponding posterior 
predictive mean for different infection stages and other time-dependent parameters are 
shown in Figures 3 and 4 respectively. The posterior means and 95% credible intervals 

of daily new tested positive cases, recoveries, and deaths of the calibrated SEIR models 
for other states are shown in Figure 5. The 95% credible intervals contain the observed 

training and validation data for all the cases. This shows that the fitted model can explain 
the disease dynamics very well and it is also able to predict short-term disease progression. 

 
Table 2. The posterior mean, the associated 95% credible intervals, and the corresponding prior 

support for the unknown parameters. 
 

State/Parameters q β0 κ x1 b1 

Maharashtra 0.7314 0.3740 0.0215 95 0.1 
 [0.6116, 0.8517] [0.3125, 0.4355] [0.0171, 0.0239] [79.3739, 110.6261] [0.1172, 0.163] 

Karnataka 0.6865 0.3026 0.0235 77 0.2242 
 [0.5756, 0.7995] [0.2528, 0.3524] [0.0196, 0.0274] [64.3346, 89.6654] [0.1873, 0.2611] 

Andhra Pradesh 0.6988 0.2711 0.0112 70 0.2235 
 [0.5853, 0.8138] [0.2265, 0.3157] [0.0094, 0.013] [58.486, 81.514] [0.1867, 0.2603] 

Kerala 0.6924 0.1839 0.0104 69 0.2223 
 [0.5802, 0.8064] [0.1537, 0.2141] [0.0087, 0.0121] [57.6505, 80.3495] [0.1857, 0.2589] 

West Bengal 0.6883 0.4723 0.0647 41 0.1575 
 [0.577, 0.8016] [0.3946, 0.55] [0.0541, 0.0753] [34.2561, 47.7439] [0.1316, 0.1834] 

Prior support [0.5, 1] [0.1, 2] [0.001, 1] [1, 150] [0.1, 0.5] 

State/Parameters 1/µE 1/α kI c  

Maharashtra 21 7 39 0.4243  

 [17.5458, 24.4542] [5.8486, 8.1514] [32.5851, 45.4149] [0.3545, 0.4941]  

Karnataka 23 6 70 0.17442  

 [19.2166, 26.7778] [5.0131, 6.9869] [58.486, 81.514] [0.1457, 0.2031]  

Andhra Pradesh 21 6.5 69 0.4974  

 [17.5458, 24.4542] [5.4308, 7.5692] [57.6505, 80.3495] [0.4156, 0.5792]  

Kerala 17 5 10 0.3903  

 [14.207, 19.7964] [4.5953, 6.4047] [10.0627, 11.96] [0.3261, 0.4545]  

West Bengal 19 5.5 71 0.4505  

 [15.875, 22.1252] [4.1776, 5.8224] [59.3215, 82.6785] [0.3764, 0.5246]  

Prior support [11, 31] [2, 14] [10, 200] [0.001, 1]  
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Figure 2. The posterior mean and 95% credible bands for reported tested positive cases, death, and 
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lines divide the training and validation dataset. 

The posterior means of the undetected infected proportion in Maharashtra, Karnataka, 
Andhra Pradesh, Kerala, and West Bengal are 46%, 49%, 48%, 43%, 52%, respectively. 

This indicates that the number of daily reported cases did not reflect the actual infected 
population, which might mislead decision-makers of the public health authorities and the 

public awareness and related preventive measures. The initial transmission rate β0 is the 
biological transmission rate times the frequency of contact. β0 for West Bengal is almost 

twice that of other states. Since the biological transmission rate should be the same, the 
average contact rate in West Bengal can be assumed to be twice that of other states. One 
possible reason for this could be the highest population density of West Bengal among 

these five states. The 95% credible interval for incubation periods 1/α is 5–7 days for all 
states, which is similar to what has been reported in [29]. 

The posterior mean for the proportions of the asymptomatic and symptomatic cases 
for all five states are all around 30%. The posterior mean of the odd ratio kI’s is around 70 

for most of the states, which indicates that the symptomatic population has a much higher 
chance to be tested than the general public. However, we observed that the odd ratio kI 

for Kerala is around seven times lower than the average, which reflects the fact that the 
general public without any symptoms in Kerala has a much higher chance of being tested 

than in other states. This implies that the reported infected cases in Kerala reflect the actual 
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infected cases more reliably. The 95% CI for the testing odd ratios of pre-symptomatic 

E(e) against a random individual are (24.5, 38.5), which are still quite high. The result is 

consistent with other reports stating that all the states have some contact tracing policies, 
and Kerala is one of the states which implemented a good testing policy at the very early 
stage of the pandemic. 
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3.2. Effect of Various Intervention Policies 

We use the calibrated model for Karnataka as an example to study the effect of various 
possible government intervention policies, especially in terms of lockdown, testing, and 

tracing. The calibrated state variables and time-dependent parameters of the SEIR model 
for Karnataka are displayed in Figures 3 and 4. We consider the combinations of two 

possible initial lockdown strategies, one possible public awareness and personal behavior 
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scenario, and one possible testing strategy, and their effects on the pandemic using the 

calibrated SEIR model. 
The two proposed lockdown strategies are both less strict than the complete shutdown 

policy implemented by the government. The idea of the first one is to make the initial 
lockdown process a gradual one, very similar to the reverse of how the lockdown was lifted 
gradually during May and June 2020. We fit a linear regression for the mobility data from 
20 April to 15 June 2020, and the negative of the fitted slope is used to construct the possible 
mobility function from 10 March to 20 April 2021. The second initial lockdown scenario is 
about implementing a sudden lockdown but with fewer restrictions, which would translate 
to a higher minimum mobility level than the value from the observed mobility data. The 
blue dash curves in Figure 6a,b show the mobility function for lock-down scenarios one 

and two respectively. For the individual behavior factor function p(t), we considered a 

scenario where the initial response is 90% of the base scenario, which represents the public 
awareness based on the concurrent situations in other countries. The blue dash curve in 
Figure 6c shows the possible individual behavior function. An exponential acceleration of 

the reported positive cases started from the time around 1 July 2021, which might be due to 
the increase in testing during the same period. From Figure 7, our model indicates that the 

actual outbreak may have already started around 1 May 2021, and the actual infected cases 
are much higher than the reported data before 1 July 2021. Our hypothetical testing scenario 

shifts the testing trend that is observed from 1 July to the beginning of the pandemic and 
then maintains a constant test level from August. Figure 6d plot the hypothetical daily 
tests, which represent a better intervention strategy in terms of testing and tracking. 

Results of different combinations of the proposed intervention strategies are shown in 
Figure 8, and Table 3. The posterior predictive mean of the outbreak size and outbreak peak 

both in terms of death and infected cases are shown in this table. We used the following 
notations to represent different combinations of these intervention factors. Mi, i = 0, 1, 2 

represents lockdown scenario i, PBi, i = 0, 1 represents the public behavior scenario i, and 

Ti, i = 0, 1 represents the testing scenario i. Here i = 0 represents the base case, i.e., the 
true observed data for each of these factors. MiPBjTk represents the scenario which is the 

combination of Mi, PBj, and Tk. As expected, both of the proposed lockdown strategies 

result in higher expected cumulative infected cases and peak infected cases when the 

individual behavior and the testing strategies remain the same at the base level. However, 

the improved testing strategy reduces the cumulative deaths, peak deaths, cumulative 

cases, and peak cases significantly even with both proposed lockdown strategies. The effect 

of the second initial lockdown strategy is significantly better for both cumulative and peak 

cases and deaths than the first one when the public behavior and the testing scenarios 

are held constant. It is also observed that implementing the new testing strategy with the 

baseline p(t) has a higher impact on the mitigation than considering the new p(t) with 

baseline testing. Our study suggests that if better public awareness, individual response, 

and testing strategies are implemented, then the number of deaths could be dramatically 

reduced from 11,219 to below one thousand, even with the proposed relaxed lockdown 

policies. Similarly, the cumulative infected cases can be reduced from 883,632 to 27,777 

and the peak daily positive cases can be reduced from 10,037 to a few hundred. This 

would help in reducing the burden on the healthcare system significantly. A less restrictive 

lockdown with better public awareness and an improved testing strategy would not only 

help in mitigating the disease substantially but could also avoid the tremendous personal 

agony, job loss, deaths, etc., that migrant workers suffered due to the original sudden and 

strict lockdown. 
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Figure 8. The posterior predictive mean for the various intervention scenarios for Karnataka. 
 

In conclusion, to relieve stress for migration workers, a less strict initial lockdown 
could have been implemented. At the same time, in order to control the disease outbreak 
size, it is critical to educate the public on the importance of individual prevention measures 
such as social distancing, wearing masks and personal hygiene, and symptomatic self- 
quarantine. If the vast majority of people can cooperate with government policies, maintain 

a certain social distance, and wear face masks, the transmission rate β(t) will be reduced. 

Our study also indicates that establishing convenient and adequate testing as early as 
possible is the most crucial intervention strategy in mitigating the disease. 
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Table 3. Summaries of outcomes for different intervention strategies. 
 

Scenarios Cumulative Infected Cumulative Death Peak Infected Peak Death 

M0PB0T0 883,632 11,219 10,037 138 

M1PB0T0 7,033,837 127,646 90,784 1505 

M1PB0T1 1,307,246 42,159 19,911 644 

M1PB1T0 1,077,677 15,627 11,445 162 

M1PB1T1 110,325 3901 1702 59 

M2PB0T0 5,163,521 73,859 67,834 989 

M2PB0T1 338,997 7731 4035 101 

M2PB1T0 558,504 7277 6163 87 

M2PB1T1 27,777 728 335 9 

 
4. Discussion and Conclusions 

We propose a population-based modified SEIR compartmental model to conduct a 

retrospective analysis of the effects of government policies regarding lockdown, testing, 

individual protective actions, and screening strategies on the transmission of COVID-19 in 

India during the period of mid-March to early December 2020. It is to be noted that much 

simpler parametric models such as exponential and Gompertz growth models are also 

good alternatives to SEIR models for infectious disease modeling and are generally used 

for short-term prediction [30,31]. However, these methods do not explicitly consider the 

lockdown, personal behavior, testing, and quarantining effect in the model. So, it is difficult 

to conduct a retrospective analysis of these interventions using such models. Our modified 

SEIR model takes into account two different pathways, viz. S → E → I → R and s → e → r 

for disease progression. We also consider a variable time-dependent disease-transmission 

rate based on the mobility data and a personal behavioral function. The testing data are 

used in determining the transition rate from asymptomatic and symptomatic states to the 

tested positive state. To ensure the efficiency of the healthcare system over time, the death 

and recovery rates are also considered to be time-varying functions. This novel approach of 

including all these factors together in the SEIR model facilitates the retrospective analysis of 

different types of intervention policies, viz., less extreme shutdown policies, new testing and 

contact tracing policies, and personal behavioral effects. We also use a Bayesian inferential 

method to calibrate the model to the reported data on daily infected cases, daily death 

cases, and daily recovered cases. A non-Bayesian approach provides only the best possible 

estimates of the parameters and an optimal prediction for disease progression. On the other 

hand, the Bayesian method also provides uncertainties in the estimates and predictions. The 

uncertainties in the model were expressed as a posterior probability distribution of model 

parameters, which provides additional valuable insights for healthcare decision-makers. 
A retrospective analysis was carried out using the calibrated SEIR model for five rep- 

resentative Indian states. The calibrated model is used to estimate the undetected infected 

cases in each of these states, and shows that the actual outbreak started much earlier than 

implied by the publicly reported data on infection. Using the calibrated model, we study a 
few alternative lockdown strategies other than the original sudden strict lockdown which 
can reduce the humanitarian crisis for millions of migrant workers. The study suggests that 

the strict practice of individual protective actions such as social distancing, mask-wearing, 
self-quarantine, and adequate early testing is critical to incorporate a much moderate initial 

lockdown policy and simultaneously mitigate the disease progression. Therefore, it is 
recommended that during the onset of such infectious diseases, the government should 

focus on increasing testing rates, contact tracing, and public awareness along with less 
severe and gradual shutdown policies. These alternative intervention strategies could 
potentially avoid the tremendous economic, physical, and social stress for all the citizens 

and the humanitarian crisis faced by migrant workers and laborers. 
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It is to be noted that medical intervention strategies such as vaccinations and drug 

therapies are not considered in our model as they were not available at the time period 
considered. Our SEIR model can be extended to incorporate these medical intervention 

effects, especially for the later period (e.g., the second and the third wave) of the disease 
progression. This is one of our future research goals. 
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