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ABSTRACT: Herein, a synthetic method was developed to o 2 M KOH ' _
prepare a series of tris(dialkylamino)sulfonium and sulfoxonium Cation] "X "CD,OH, 80 °C Investigate Degradation
cations from sulfur monochloride. Alkaline stability studies of these 0.05M

two cation families in 2 M KOH/CD;OH solution at 80 °C
revealed how degradation pathways change as a function of the
oxidation state of the S center, as determined by 'H NMR

spectroscopy. The sulfonium cations (*S(NR;);) typically degrade R N N ('J'fr,”N/ /f»'llN/} ? .~

by nucleophilic attack at the sulfur atom with loss of an amino T \N\/ 7‘/ N O \N\ C’\l/ N\
group and a proton transfer reaction to produce sulfoxides, while / / Q D
the sulfoxoniums (*O=S(NR,);) tend to degrade by loss of an R 100% 5%
group to form sulfoximines. From the group of sulfoniums and  degraded degraded
sulfoxoniums explored in this work, the tris(piperidino)- i 3days after 30 days

sulfoxonium cation was noted to have excellent alkaline stability.
This sulfoxonium should be suitable for future examination as a tethered cation in anion-exchange membranes (AEMs), or as a
phase-transfer catalyst in biphasic reactions.

. INTRODUCT'ON Previous Work - Phosphonium Cations
Polymer electrol.ytes with covalently attached catlF)nlc.grouPs ) R R-R Ennanced alkaline
have attracted interest for transport of hydroxide ions in ~pr_ . L stability due to

. - / 1.¢ch localizati
alkaline fuel cells and electrolyzers." ' These polymer / ®\© R’N\R R czlat;%z f,? ,;’°§r§§p'°"
electrolytes (known as anion-exchange membranes or AEMs)
commonly have pendant ammonium cations to promote This Work - Sulfonium and Sulfoxonium Cations
hydroxide transport, but concerns about the alkaline stability of

. . . - R .
ammoniums has led to exploration of alternatives.' > The L ©\ 9 R EZT:;ﬁteyddal:l;atléne
stability of any cation to hydroxide must be considered prior to /i \© RR/N' \"{R 1. charge delocalization
use in AEMs, and a number of studies have offered insight into R 2. type of R group
the alkaline stability of imidazoliums,>~*¢ guanidiniums,w_lg
. 20-30 .

allkyl g?j‘B aryl phosp }.10n1113111_s§6 tetr;.ian?mop hosp.ho- Figure 1. (Top) Phosphorus-based cations examined in AEMs.
nums, cobaltoceniums, and cationic ruthenium (Bottom) Sulfur-based cations explored in alkaline stability studies as

complexes."’7 To our knowledge, no extensive alkaline stability part of this work for potential future use in AEMs.
studies on sulfur-based cations have been conducted, and only

two examples of sulfur-based cations in AEMs have appeared ) ) ) )
in the literature 3> attaching three dialkylamino groups to form the tris-

Herein, we illustrate that the design principles for enhancing (dialkylamino)sulfonium cation or oxidizing further to make

the stability of phosphonium cations to alkaline media are also 2 trlz(dlalkzlamllr:o) sTll(fC{?(onlumb.fatlon ¢ (F'lgudr.e I 1%' Some
applicable to sulfur-based cations, where a change from alkyl or precedent for the alkaline stability of tris(dialkylamino)-
phenyl substituents to more electron donating amino groups
offers improved resistance to "OR and “OH (Figure 1).*>* Received:  May 31, 2022
The exceptional resistance of *P(NR,), cations to alkali
hydroxides is a function of charge delocalization between the
central atom and attached amino groups, as well as the
tunability of the substituents on the nitrogen atom.’*** Sulfur-
based cations can be designed in nearly the same fashion, by

© XXXX American Chemical Society https://doi.org/10.1021/acs.joc.2c01289

W ACS PUbl ications A J. Org. Chem. XXXX, XXX, XXX—XXX


https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Megan+Treichel"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Ruiran+Xun"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Camille+F.+Williams"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Jamie+C.+Gaitor"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Samantha+N.+MacMillan"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Jessica+L.+Vinskus"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Jessica+L.+Vinskus"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="C.+Tyler+Womble"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Tomasz+Kowalewski"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Kevin+J.+T.+Noonan"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/showCitFormats?doi=10.1021/acs.joc.2c01289&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.joc.2c01289?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.joc.2c01289?goto=articleMetrics&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.joc.2c01289?goto=recommendations&?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.joc.2c01289?goto=supporting-info&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.joc.2c01289?fig=agr1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.joc.2c01289?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.joc.2c01289?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.joc.2c01289?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.joc.2c01289?fig=fig1&ref=pdf
pubs.acs.org/joc?ref=pdf
https://pubs.acs.org?ref=pdf
https://pubs.acs.org?ref=pdf
https://doi.org/10.1021/acs.joc.2c01289?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://pubs.acs.org/joc?ref=pdf
https://pubs.acs.org/joc?ref=pdf

The Journal of Organic Chemistry

pubs.acs.org/joc

A. Natural Atomic Charge and Bond Order
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N

B. Charge Delocalization in Amino-Substituted Sulfur Cations
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Figure 2. (A) Natural charge on the central element (either N or S) and bond orders for central element bonds (either N—C, S—C, or S—N)
computed from NBO analysis. (B) Charge stabilization of sulfur-based cations through resonance with attached amino groups.

Scheme 1. Synthesis of Tris(dialkylamino)sulfoniums and Tris(dialkylamino)sulfoxoniums

r 1 1.1equiv. SOCl 1) 1 equiv. BtCI R...R  PFg
. | b )
C[/S\S/Cl 5 equiv. HNR, R. ’S\S’N‘R 2) 5 equiv. HNR, >R, _.S. R 2) 1.2 equiv. HNR, R. ,It R
Et,0, 0 °C Et,0, 0 °C NN CH.Clp,—20°Cc  N° N
R R KPFg workup R R
Amine Sulfonium
¥ 10 equiv. mCPBA | CH,Cly/hexanes
HNMe, +S(NMez)3 5 equiv. K,CO3 22 °C
iPrN(H)Me +S(NiPrMe)3
HNEt, S(NEty)3 R\ “PFg
HNPr, *S(NPr)s O N-R
.y +
pyrrolidine +S(Pyr)3 R-N" 'N-R
piperidine S(Pip)3 I\R R,

sulfoxonium cations exists, as Kobayashi and co-workers have
shown that the *O=S(N-morpholino), cation is particularly
resistant to bases, as significant degradation with NaDMSO
was noted only at 150 °C.*

Alkaline stability is a key factor in the selection of cations for
hydroxide transport, but many alternatives to ammoniums
(e.g., imidazoliums, phosphoniums, cobaltoceniums) are larger
and heavier than the nitrogen derivatives.'”'> This size
difference can lead to larger occupied volumes in AEMs,
limiting ion-exchange capacity (IEC) and, in some instances,
increasing water uptake in the material.' "> Our group has
focused on tetraaminophosphonium-based AEMs due to their
exceptional alkaline stability,*"** and we envisioned that
tris(dialkylamino)sulfonium/sulfoxonium cations should have
improved alkaline stability relative to alkyl or aryl-substituted
sulfoniums. Given the limited exploration of sulfur-based
cations as AEMs,***” we synthesized a series of *S(NR,); and
*O=S(NR,); cations to examine their stability in alkaline
media. Model studies revealed that the oxo moiety is key to
enhancing the stability of these molecules, as nearly all the
sulfoxonium derivatives were more stable than the correspond-
ing sulfoniums. Moreover, the appropriate choice of
dialkylamino substituents produced cations which rival the
stability of ammonium and phosphonium cations currently
used in AEMs.*** The tris(piperidino )sulfoxonium cation was
identified as a stable phase-transfer catalyst under highly
alkaline conditions, and was also noted to be redox stable
under neutral conditions from —2 to 2 V (versus standard
hydrogen electrode or SHE). Altogether, the data suggest that
amino-substituted sulfur cations have potential for future use in
AEM materials.

B RESULTS AND DISCUSSION

DFT Calculations. Prior to carrying out synthetic work,
structure optimizations of sulfonium and sulfoxonium cations
were carried out at the wB97XD/6-31g(d,p) level. Natural
bond orbital analysis*~** provided insight into the electronic
differences between the different classes of sulfur cations.
Specifically, the trimethyl-, triphenyl-, and tris(dimethyl-
amino)sulfonium cations were computed, along with their
corresponding sulfoxonium derivatives. The natural atomic
charge (NAC) on sulfur markedly increased when substituted
with dialkylamino groups, demonstrating the difference in
charge distribution when compared to the alkyl and aryl
derivatives (Figure 2A). These values are quite different when
compared against the benchmark tetramethylammonium
cation, where the NAC on the central nitrogen atom is
negative.

Bond order analysis for the different sulfur cations also
revealed differences between the alkyl, aryl, and amino sulfur
cations. Specifically, the S—C bonds in trimethyl and triphenyl
sulfur cations are largely covalent, while the S—N bonds for the
amino cations have much more ionic character (>30% ionic)
as shown in Figure 2A. This suggests that the amino
sulfoniums and sulfoxoniums are better suited to accommodate
positive charge. This mirrors the high ionic character noted in
the N—C bonds of the tetramethylammonium cation (Figure
2A). In addition to the ionic character for the S—N bonds,
natural resonance theory (NRT) analysis confirmed that
charge delocalization in tris(dialkylamino)sulfonium and
tris(dialkylamino )sulfoxonium occurs via lone pair donation
from N and O to adjacent antibonding S—N and S=O
orbitals (Figure 2B).
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Figure 3. 'H NMR spectra (left) and *C{'H} NMR spectra (right) of diethylamino derivatives collected in CDCl; (500 and 126 MHz,
respectively). The diaminosulfide is contaminated with ~10% of the disulfide. The asterisk signals (*) correspond to H,O.

Synthesis of Sulfoxonium Cations. Given the expected
improvements in alkaline stability for tris(dialkylamino)-
sulfoxonium cations, we set out to synthesize a series of
derivatives. Kobayashi and co-workers previously synthesized
tris(dialkylamino)sulfonium cations via oxidation of bisamino-
sulfides using N-chlorobenzotriazole or N-chlorosuccinimide,
followed by substitution with a secondary amine.”” These 3-
coordinate sulfur cations were then oxidized to the
corresj‘)onding sulfoxonium using sodium perbenzoate in
water.” This approach was expanded upon here, and a
modular 4-step synthesis was developed to construct these
cations (Scheme 1). No column chromatography was
necessary for any of the synthetic steps shown in Scheme 1,
and all purification was accomplished via precipitation or
recrystallization.

Sodium tetrathionate has been used previously as the sulfur
source for the preparation of bis(dialkylamino)sulfides.’
Though this could be employed for the preparation of a few
select bis(dialkylamino )sulfides, the method was best suited for
water-soluble amines. Given this, we employed an alternative
approach, where sulfur monochloride was combined with
excess dialkylamine to generate a disulfide, along with some
sulfide and trisulfide byproducts. The ratios of these products
were determined by gas chromatography (GC) and 'H NMR.
In the crude form, this mixture could then be near
quantitatively converted to the desired bis(dialkylamino)-
sulfide through reaction with sulfuryl chloride, forming a
sulfenyl chloride intermediate that was subsequently treated
with excess amine.”' Disulfide impurities were noted in the
spectra for the bis(dialkylamino)sulfides, but further purifica-
tion was unnecessary, as these impurities are removed in the
workup of the following reaction. The bis(dialkylamino)-
sulfides were oxidized using N-chlorobenzotriazole (BtCl) at
—20 °C,>* followed by combination with another secondary
amine to produce the desired sulfonium cations. Aqueous
KPF workup was employed to enable manipulation in organic
solvents and afford the [S(NR,);][PF] salts.

Oxidation to the sulfoxonium was attempted using m-
chloroperoxybenzoic acid (mCPBA) in combination with
KOH to oxidize the [S(NR,);][Cl] salts in water. However,
only partial conversion to the desired sulfoxonium was
observed in most instances. Only the tris(dimethylamino)-
sulfoxonium was successfully synthesized using this approach.
Since m-chloroperoxybenzoate can be used to oxidize electron-
poor olefins in CH,ClL,”” we attempted to oxidize the
[S(NR,);][PFq] salts in organic solvents. Though oxidation
in pure CH,Cl, was incomplete, oxidization could be

accomplished essentially quantitatively using excess mCPBA/
K,CO; in a 1:1 mixture of CH,Cl,:hexanes. We suspect that
the low polarity solvents decrease the solvation of both the
cation and m-chloroperoxybenzoate, improving reactivity.
Using the methods described above, six tris(dialkylamino)-
sulfonium and sulfoxonium derivatives were synthesized
(Scheme 1), with 'H and “C{'H} NMR spectra for each
compound available in the Supporting Information. The
oxidation conditions could also be applied to the oxidation
of [SPh;][BF,] (Experimental Section).

In the 'H NMR spectra, a progressive downfield shift of the
protons nearest to the sulfur center indicates the change in
chemical environment from disulfide to sulfoxonium. This is
clear in the spectra for the diethylamino derivative, where the
triplet signal for the CH, group (H,) shifts downfield from
2.73 to 3.45 ppm upon conversion from the disulfide to the
corresponding sulfoxonium (left in Figure 3). The carbon
atom of the same methylene group, is shifted upfield in the
BC{'H} NMR spectra upon oxidation (right in Figure 3).

Single crystal X-ray diffraction was attempted to determine
the bond order for the S—N and S=O bonds in these salts.
Crystals suitable for X-ray diffraction were obtained for
[S(Pip);][PFs] by vapor diffusion of diethyl ether into a
CH,Cl, solution of the sulfonium (Figure 4). Attempts to
crystallize the corresponding sulfoxonium in a similar manner

E— —

Figure 4. Solid-state molecular structure of [S(Pip);][PFe]. Thermal
ellipsoids at 50% probability. Selected bond lengths (A) and bond
angles (deg): S—N1 1.6858(9); S—N2 1.6265(10); S—N3
1.6124(10); N2—S—N1 98.03(5); N3—S—NI1 99.29(5); N3—S—N2
116.29(5).
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produced thin plates which did not diffract as well. The
connectivity of [O=S(Pip);][PFs] was confirmed from
diffraction data, with the counterions on special positions
(CIF file included as Supporting Information), but discussion
of the bond lengths and angles for this derivative is not
possible.

The solid-state molecular structure of [S(Pip);][PFq] is
shown in Figure 4. The S—N bond distances range from
1.6124(10) to 1.6858(9) A. The mean S—N bond length
(1.642 A) was then used to estimate bond order in this
structure (B.O. = 1.36).>* The B.O. value suggests additional
7-bonding character between the S and N atoms, as expected
from the resonance forms shown in Figure 2B. While the bond
lengths of O=S(Pip);[PF¢] cannot be discussed in extensive
detail, a further increase in B.O. seems likely upon oxidation, as
the S—N bond lengths are shorter in that derivative.

Degradation Studies in 2 M KOH/CD;OH. Cation
stability studies are generally performed in alkaline media
where the concentration of base, reaction medium, and
temperature all impact degradation rates. Though H,O is the
most relevant solvent for H,-based fuel cells, the solvating
power of water limits the nucleophilicity and basicity of the
hydroxide anion and leads to long experiment times.”*° The
use of alternative solvents such as methanol can increase anion
reactivity resulting in faster degradation rates though it should
also be noted that degradation can occur via the methoxide
anion in this solvent. Since Coates and co-workers recently
developed a standardized protocol to examine cation stability
in KOH/CD;OH, this approach was used here.*>** Stability
studies were carried out in flame-sealed NMR tubes using 2 M
KOH/CD;0H at 80 °C as the reaction medium, and '"H NMR
analysis every $ days was used to quantify degradation.”**

To confirm that methyl and phenyl sulfonium and
sulfoxonium derivatives are not suitable cations for AEMs,
we evaluated the alkaline stability of [SMe;][1], [O=
SMe,][1], [SPh,][BE,], and [O=SPh,][PF,] in 2 M KOH/
CD;OH at 80 °C (Scheme 2). The four different sulfur salts

Scheme 2. Degradation Products of Alkyl and Aryl
Sulfonium and Sulfoxonium Cations
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N Goecop S
80°C,2h SO
100% degraded
+§ 2M KOH/CD;0H
<N’ 80°C, 2h PN
100% degraded
*s.,, =
©/ 2M KOH/CD3OH,_ ©/ \© + unidentified
80°C,2h products
32% degraded

o, 0O

N

o
+§_ =N S
q 2M KOH/CD;0H,_ ©/ \© + unidentified
@ 80°C, 2h products
100% degraded

were all highly soluble in this alkaline medium, ensuring the
reaction with base was homogeneous. All derivatives except
triphenylsulfonium (32% degraded in 2 h) were completely
degraded within 2 h. Trimethylsulfonium and trimethylsul-
foxonium are known to react with base,””*® and in 2 M KOH/
CD;OH these derivatives were converted to the corresponding
dimethyl sulfide and dimethyl sulfoxide, respectively (Scheme
2). Triarylsulfonium cations have been previously reported to
react with hydroxide and alkoxides through either direct attack
at the central sulfur or on one of the carbons attached to sulfur,

with formation of diarylsulfides and other aryl byproducts.®”*°

Here, the triphenylsulfonium and sulfoxonium degraded to the
diphenyl sulfide and diphenyl sulfone respectively, along with
other unidentified aryl products. Formation of these sulfur
products was confirmed by mass spectrometry analysis of the
reaction mixtures, with observation of diphenyl sulfoxide and
diphenyl sulfone in each case (Figure S106 and S107).

The tris(dialkylamino)sulfoniums and sulfoxoniums have
markedly improved alkaline stability when compared to the
alkyl and aryl derivatives (Figure 5). None of the tris-
(dialkylamino)sulfoxoniums examined in this study fully
degraded over 30 days at 80 °C in 2 M KOH/CD;OH.
Generally, the oxidized sulfoxoniums were more stable than
the corresponding sulfoniums except in the case of
isopropylmethylamino sulfonium and sulfoxonium. The [S-
(NMe,);][PF4] cation is the least stable of all derivatives
tested, and completely degraded after ~5 days. Oxidation to

[O=S(NMe,),][PF¢] leads to a markedly more alkaline-stable
cation, with ~18% remaining after 30 days in 2 M KOH/
CD;OH at 80 °C (left in Figure S). Use of N-isopropylmethyl-
amine in place of dimethylamine improves stability for both
the sulfonium and sulfoxonium derivatives (left in Figure S)
but only 64% and 60% of [S(NiPrMe);][PF;] and [O=
S(NiPrMe),][PF,] remained after 30 days, respectively. The
limited stability of these derivatives with secondary alkyl
groups is surprising, given that this type of substitution leads to
significant stability enhancements for tetraaminophosphonium
cations.”*? In our own work, we noted that tetraaminophos-
phonium stability in 2 M KOH/2-(2-methoxyethoxy)ethanol
solution at 160 °C was more than doubled (t,,, = 1.3 to 2.8 h)
by moving from diethylamino to N-methylisopropylamino
substituents.””

Both [S(NEt,);][PFs] and [S(NPr,);][PFs] behaved
similarly in the stability study, with roughly 58% and 56%
remaining after 30 days, respectively. In both cases, oxidation
leads to a significant stability enhancement, with near 90% of
each cation remaining after ~1 month (middle in Figure 5).
The cyclic substituents also had a clear impact on alkaline
stability. The [S(Pyr);][PFq] derived from pyrrolidine was
much less stable than the cation derived from piperidine
([S(Pip);][PF4]). Once again, oxidation improves stability and
the [O=S(Pip);][PF,] proved to be the most stable cation
exammed in this study, with 95% remaining after 30 days in 2
M KOH/CD;OH at 80 °C (right in Figure 5).

Proposed Degradation Pathways. The possible modes
of degradation for the tris(dialkylamino)sulfonium and
sulfoxonium cations under basic conditions are noted in
Scheme 3. These mirror the modes of attack in the analogous
tetraaminophosphonium cations: nucleophilic attack at the
central atom and a-carbon, or deprotonation of the a-H and f-
H’s to form imines or alkenes, respectively.’”** In the case of
the tris(dialkylamino)sulfonium cations, "H NMR analysis of
the reaction mixture suggested the major product to be only
the secondary amine in all instances (e.g, [S(NPr,);][PFq]
had degraded nearly exclusively to HNPr,). This suggested
pathway A was operative but surprisingly, no signals
corresponding to the sulfoxide were observed in the 'H
NMR spectrum. The formation of dipropylamine from
[S(NPr,);][PF] was confirmed by spiking an aliquot of the
reaction mixture, leading to an increase in signal intensity for
the degradation product (Figure S88). Further confirmation of
amine formation was obtained by analysis of the reaction
mixture using direct analysis in real time mass spectrometry
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Figure S. Degradation of sulfonium and sulfoxonium cations in 2 M KOH/CD;OH at 80 °C over 30 days. Percent cation remaining was
determined by integration of the '"H NMR signals for the cation relative to an internal standard, every 5 days. All sulfonium degradation data are
plotted using squares and dashed lines, while sulfoxonium degradation data are plotted with circles and solid lines.

Scheme 3. Degradation Pathways for Tris(dialkylamino)sulfonium and Sulfoxonium Cations
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(DART-MS), with an ion signal observed corresponding to \LHBrHC
*H,NPr, (Figure S100), along with a weak ion signal N Ha T 4 equiv. KOH 0 Hy He
corresponding to the protonated sulfide (*HS(NPr,),). SN T MeOH T Ny
: ; . —KPFq M
As sulfoxides are known to hydrolyze to produce amines,” it H H olowen oy 3

is reasonable to assume that the major degradation pathway of
the sulfonium cation would likely be Pathway A in Scheme 3,
where the anion attacks the sulfur atom and loss of an amino
group with proton transfer results in the sulfoxide. To provide
additional evidence for the hypothesized sulfonium degrada-
tion pathway, [S(NPr,);][PFs] was reacted with 1 equiv of
KOH in methanol. Upon filtration and removal of the solvent,
roughly 8% of the sulfonium had been converted to O=
S(NPr,),. The identity of the sulfoxide was confirmed by
direct synthesis via reaction of thionyl chloride with dipropyl-
amine (Figure 6). Since all tris(dialkylamino)sulfonium cations
degrade to the corresponding amine, it is likely that the first
step for degradation of all sulfoniums synthesized here is
Pathway A (Scheme 3), which is similar to the degradation
mechanism for phosphoniums.”' ~*°

The possibilities for sulfoxonium degradation (nucleophilic
attack or deprotonation) are identical to those possible for the
sulfoniums (Scheme 3). Both '"H NMR and mass spectrometry
revealed that sulfoxoniums degrade primarily through loss of
an alkyl group to produce a sulfoximine, RN=S(O)(NR,),.
This suggests either attack at the R group or S-H elimination
as the possible degradation pathways (B and D in Scheme 3).
Attack at the R group seems to be the primary mode of
degradation for the two cyclic derivatives, where ring-opened
products can be clearly identified using DART-MS (Figure
$103 and S105). The O=S(NMe,), seems to follow the same
mechanism, as a signal appears at 3.29 ppm in the '"H NMR
spectrum which is likely attributed to methoxymethane-d;
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Figure 6. (Top) 'H NMR spectrum (500 MHz, CD;0D) of the
crude reaction mixture after reaction of S(NPr,);[PF¢] with KOH.
(Bottom) "H NMR spectrum (500 MHz, CD;0D) of O=S(NPr,),
prepared from thionyl chloride and dipropylamine. The asterisk (*)
signal corresponds to residual protiosolvent in the CD;OD. The star
signal corresponds to CH;OH.

(CD;OCHj;). The degradation mechanism for the unsym-
metrical *O=S(NiPrMe); was more difficult to determine.
Both MeN=S(O)(NiPrMe), and iPrN=S(O)(NiPrMe),
were observed as decomposition products in DART-MS.
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Though the loss of the a-Me group is clearly occurring via
nucleophilic attack, the loss of the iPr group is more likely via
B-H elimination, though no signals attributed to propylene
were observed in the 'H NMR spectrum. Since both
mechanisms are likely operative, this may contribute to the
limited stability of this derivative as compared to the other
sulfoxoniums. Both *O=S(NEt,); and *O=S(NPr,); degrade
to EtN=S(O)(NEt,), and PrN=S(O)(NPr,),, which was
clear from both '"H NMR and DART-MS. We suspect that this
occurs via attack at the a-position as seen in the cyclic
derivatives, but it is difficult to rule out f-H elimination as a
possibility.

Phase-Transfer Reactions. In addition to the 2 M KOH/
CD;OH studies, we wanted to examine the alkaline stability of
*S(Pip); and *O=$(Pip); in biphasic C¢H;Cl/NaOH,,
solutions as this type of experiment can afford information
rapidly.”® Alkaline stability studies in C¢H;Cl/NaOH,  have
been used previously to determine whether tetraalkylammo-
nium and tetraalkylphosphonium salts are suitable phase
transfer catalysts in the presence of “TOH.” In these biphasic
reactions, cation degradation rate is dictated by the choice of
counterion, reaction temperature, concentration of base, and
stir rate.””>%* Conditions used here were very similar to those
employed by Landini and co-workers so that direct comparison
to tetraalkylammoniums and tetraalkylphosphoniums could be
made.”

The four onium salts examined in phase-transfer studies
were [O=S(Pip),;][Cl], its corresponding sulfonium [S-
(Pip);][Cl], the tetraaminophosphonium analogue [P(Pip),]-
[C1],°* and tetrabutylammonium chloride ([N(nBu),][Cl])
for direct comparison with prior work. Each cation was
dissolved in C4HCl (0.04 M) and combined with 300 equiv of
50 wt.% NaOH in H,O at 60 °C to examine degradation with
excess ~OH. The rate constant for cation degradation by "OH
was determined assuming a pseudo first-order process (NaOH
in large excess). The percent cation remaining in each instance
was determined by periodic sampling of the organic phase
(C¢HsCl). At 60 °C, the degradation of [S(Pip);][Cl] and
[P(Pip),][Cl] were too rapid to obtain reliable kinetics data,
so their stability was examined at room temperature (Table 1,
Entries 1—4). These cations had similar half-lives at 22 °C
(Table 1, Entries 2 and 4). Kinetic data for both [O=

Table 1. Half-Lives for Quaternary Onium Degradation in a
Chlorobenzene—50% NaOH Phase Transfer Reaction

entry cation” anion temperature (°C) t1, (h)°
1° *P(Pip), ~Cl 60 <0.1
2 22 4.5
3 *S(Pip), -Cl 60 <0.1
4 22 3.6
5 *N(nBu), -l 60 0.3
6 +0=5(Pip), -l 60 43

“Cation degradation by “TOH was examined by combination of the
onium salt (0.04 M in C4HCl) with SO wt % NaOH (300 equiv).
Cation degradation was monitored by sampling the C;H;Cl phase
periodically and analyzing the reaction mixture using 'H NMR
spectroscopy. The loss of cation was determined by comparison of the
C4H;Cl solvent signal as an internal standard. YHalf-lives were
calculated from the pseudo-first-order rate constants (k') of cation
degradation according to the equation f,,, = 0.693/k’. “In the case of
[P(Pip),][Cl], ratios of the starting material to the O=P(Pip),
decomposition product were used to determine k'.

S(Pip);][Cl] and [N(nBu),][Cl] could be obtained reliably at
60 °C, indicating both cations are more alkaline stable than
[P(Pip),][Cl] and [S(Pip);][Cl] (Table 1, Entries S and 6). In
1 b, ~16% of the [O=S(Pip);][Cl] had degraded at 60 °C,
while [N(nBu),][Cl] was 50% percent degraded in only 0.33 h
indicating that [O=S(Pip);][Cl] was the most stable cation in
the series.

Both [P(Pip),][Cl] and [S(Pip),][Cl] appear to degrade by
Pathway A as outlined in Scheme 3 (similar pathway for the
phosphonium cation). This highlights the importance of bulky
groups to enhance alkaline stability of tetraaminophospho-
niums,>” as it will increase the activation barrier for "OH
attack at the central element. Tentatively, 'H NMR data
suggests [O=S(Pip),][Cl] degrades to the sulfoximine (Figure
$93), similar to the degradation pathway noted in the 2 M
KOH/CD;0H studies (nucleophilic attack at the R group,
Scheme 3), but the signals for the degradation product get
more complicated over time. The [O=S(Pip),;][Cl] half-life at
60 °C (4.3 h) is particularly striking when benchmarked
against quaternary ammonium salts typically used for phase
transfer catalysis, as [NBu,][Cl] only has a t,, of ~0.33 h
under identical conditions, suggesting [O=S(Pip);][Cl] may
also be valuable for this purpose.

Redox Stability. Finally, cations for AEMs must be
electrochemically stable. To test this, we conducted a cyclic
voltammetry experiment using [O=S(Pip);][PFs] as the
supporting electrolyte for the ferrocene/ferrocenium redox
couple (Figure 7). The sulfoxonium salt was effective as the
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Figure 7. Cyclic voltammogram of ~1 mM ferrocene (blue trace)
recorded at SO mV/s in degassed MeCN with O=S(Pip);[PF,] as
the supporting electrolyte (0.05S M). The green trace corresponds to a
voltammogram with only the supporting electrolyte. The voltammo-
gram was referenced versus the standard hydrogen electrode (SHE)
with Fc/Fc* as an internal standard (0.624 V vs SHE).®®

supporting electrolyte operating from approximately —2.0 to
2.0 V (referenced versus the standard hydrogen electrode or
SHE). Beyond —2.0 V, an irreversible reduction for [O=
S(Pip);][PF¢] was observed. The wide electrochemical
window of the [O=S(Pip);][PF¢] salt provides evidence
that this cation is suitable for use in hydrogen fuel cells, as the
redox potentials for hydrogen oxidation and oxygen reduction
range from —0.83—0.0 V for hydrogen oxidation and from
0.4—1.23 V for oxygen reduction, depending on pH.

B CONCLUSION

In conclusion, the tris(dialkylamino)sulfoxonium cations have
been identified as promising candidates for use in AEMs, when
decorated with the appropriate amino groups. These cations
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can be obtained through a simple 4-step synthesis, and the
*O=S(NEt,),;, *O=S(NPr,);, and "O=S(Pip), in particular
were identified as potential targets for future examination in
AEMs. A phase transfer study in 50 wt % NaOH/C¢H;Cl
indicated that tris(piperidino)sulfoxonium salts should also be
suitable phase-transfer catalysts. Future work will focus on
synthesizing novel polymers with pendant tris(dialkylamino)-
sulfoxonium cations to compare with some of our prior work
on AEI}AS4 24;6lgrived from tetrakis(dialkylamino)phosphonium
cations.” "™

B EXPERIMENTAL SECTION

Materials and Methods. Reactions were carried out under N,
and in anhydrous solvents unless otherwise specified. All solvents,
sulfur monochloride, thionyl chloride, sulfuryl chloride, secondary
amines, trimethylsulfonium iodide, trimethylsulfoxonium iodide, and
triphenylsulfonium tetrafluoroborate were purchased from commer-
cial sources and used as received. N-Chlorobenzotriazole was
prepared according to a previous report.’”

NMR Analysis. All NMR spectra were recorded on a 500 MHz
Bruker Avance 3 Spectrometer or a 500 MHz Bruker Neo
Spectrometer with Prodigy Cryoprobe. The 'H NMR spectra were
referenced to residual protio solvents (7.26 ppm for CHCL;, 5.32 ppm
for CH,Cl,, 3.31 ppm for CH;OH, and 2.50 ppm for DMSO) and
BC{'H} NMR were referenced to the solvent signal (CDCl;: 77.16
ppm).

High Resolution Mass Spectrometry (HRMS). ESI-MS and
DART-MS were performed on a Thermo Scientific Exactive Plus
EMR Orbitrap Mass Spectrometer operating with XCalibur software.
ESI-MS samples were prepared as 10 M solutions in methanol, and
data were recorded continuously in positive mode with a scanned
mass range of 50—1000 m/z using a spray voltage of 4.2 kV, a
capillary temperature of 270 °C, a nitrogen sheath gas flow rate of 20,
and a solvent flow rate of 10 yL/min. DART-MS data were recorded
in positive mode between 200 and 400 °C with He or N, as the
carrier gas. In some cases, [2 M + H]" and [M + NH,]" species were
also observed.*®

Gas Chromatography—Mass Spectrometry. GC-MS analysis
was performed on a Hewlett-Packard Agilent 6890—5973 GC-MS
workstation. The GC column was a Restek fused silica capillary
column (RTX-S) with helium used as the carrier gas. The following
conditions were used for all GC-MS analyses: injector temperature,
250 °C; initial temperature, 70 °C; temperature ramp, 10 °C/min;
final temperature, 280 °C (the experiment with S,(NMe,), began at
50 °C with a temperature ramp of 10 °C/min and a final temperature
of 170 °C). Samples were prepared by dissolving 2—3 mg of disulfide
into 20.0 mL of diethyl ether (stabilized with BHT). This solution
was then filtered through a 0.22 um PTFE syringe filter into a 2 mL
vial for analysis.

Cyclic Voltammetry. CV studies were carried out using a Bio-
Logic SP-150 potentiostat at room temperature (~22 °C). A 1 mm?
glassy carbon working electrode (polished with diamond paste), a
platinum coil counter electrode, and a silver wire pseudoreference
electrode were employed for the measurements. The voltammogram
was referenced versus the standard hydrogen electrode (SHE) with
Fc/Fct as an internal standard (0.624 V vs SHE).*> The O=
S(Pip);[PFq] supporting electrolyte (purified through vapor diffusion
recrystallization in CH,Cl, and diethyl ether) was used at a
concentration of 0.05 M in MeCN. The MeCN solutions with the
supporting electrolyte and analyte were degassed for 20 min with Ar
prior to measurement. The initial potential for these measurements
was E; = 0V, scanning to E; ~ 2V and reversing to E, ~ —2.0 V with
a potential sweep rate of 50 mV/s.

X-ray Crystallography. Low-temperature X-ray diffraction data
for S(Pip);[PFs] were collected on a Rigaku XtaLAB Synergy
diffractometer coupled to a Rigaku Hypix detector with Cu Ka
radiation (4 = 1.54184 A), from a PhotonJet microfocus X-ray source
at 100 K. The diffraction images were processed and scaled using the

CrysAlisPro software.”” The structures were solved through intrinsic
phasing using SHELXT”® and refined against F2 on all data by full-
matrix least-squares with SHELXL'" following established refinement
strategies.”” All non-hydrogen atoms were refined anisotropically. All
hydrogen atoms bound to carbon were included in the model at
geometrically calculated positions and refined using a riding model.
The isotropic displacement parameters of all hydrogen atoms were
fixed to 1.2 times the U, value of the atoms they are linked to (1.5
times for methyl groups).

Computational Studies. Density functional theory calculations
were performed with Gaussian 16.”° Geometry optimizations were
performed at the @wB97XD/6-31g(d,p) level. Natural Bond Orbital
and Natural Resonance Theory calculations were performed using the
NBO 7 package.”*

Sulfoxonium Cation Synthesis. General Procedure: Diamino-
disulfide. Sulfur monochloride (1.0 equiv) in diethyl ether (0.25 M)
was cooled to 0 °C in an ice bath for 30 min. Then, a secondary
amine (~5.0 equiv) was slowly added to the solution over 30 min.
The reaction mixture was stirred overnight and warmed to room
temperature, after which it was washed with a saturated NaCl solution
(3 X 100 mL), dried with anhydrous sodium sulfate and filtered. The
solvent was then removed via rotary evaporation to produce the crude
diaminodisulfide which was used without further purification.
Diaminosulfide and diaminotrisulfide were observed in both GC-
MS and '"H NMR analysis of the crude products (Supporting
Information), though these did not interfere with subsequent
reactions.

S,(NMej),. The reaction was performed using sulfur monochloride
(3.0 mL, 37.5 mmol) and dimethylamine solution (93.8 mL, 188
mmol, 2 M in THF) in diethyl ether (150 mL) to obtain the product
as an orange liquid (3.81 g, 67%). '"H NMR (500 MHz, CDCL;) &
2.62 (s, 12H). BC{'H} NMR (126 MHz, CDCl;) § 48.4. EI-MS
[M]* caled. for C,H,,N,S,, 152.04, found 152.0.

Sa(NiPrMe),. The reaction was performed using sulfur mono-
chloride (0.50 mL, 6.3 mmol) and N-isopropylmethylamine (3.3 mL,
31.7 mmol) in diethyl ether (25 mL) to obtain the product as an
orange liquid (1.01 g, 78%). '"H NMR (500 MHz, CDCl,) § 3.10
(hept, J = 6.5 Hz, 2H), 2.75 (s, 6H), 1.15 (d, ] = 6.5 Hz, 12H).
BC{'H} NMR (126 MHz, CDCl;) § 58.4, 43.3, 21.3. EI-MS [M]*
caled. for CgH,(N,S,, 208.11, found 208.1.

S,(NEt,),. The reaction was performed using sulfur monochloride
(0.50 mL, 6.3 mmol) and diethylamine (3.3 mL, 31.9 mmol) in
diethyl ether (25 mL) to obtain the product as a red-orange liquid
(1.20 g, 92%). "H NMR (500 MHz, CDCL,) § 2.74 (q, J = 7.1 Hz,
8H), 1.15 (t, ] = 7.1 Hz, 12H). BC{*H} NMR (126 MHz, CDCl;) §
52.0, 14.0. ELMS [M]* calcd. for CgH,oN,S,, 208.11, found 208.1.

S2(NPry),. The reaction was performed using sulfur monochloride
(3.0 mL, 37.5 mmol) and dipropylamine (25.6 mL, 187 mmol) in
diethyl ether (150 mL) to obtain the product as a yellow liquid (7.23
g, 73%). '"H NMR (500 MHz, CDCl;) § 2.64 (t, ] = 7.1 Hz, 8H),
1.63—1.54 (m, 8H), 0.89 (t, J = 7.4 Hz, 12H). BC{'H} NMR (126
MHz, CDCl,) 6 59.9, 21.5, 11.5. EI-MS [M]" calcd. for C;,H,gN,S,,
264.17, found 264.2.

S,Pyr;. The reaction was performed using sulfur monochloride
(0.50 mL, 6.3 mmol) and pyrrolidine (2.6 mL, 31.1 mmol) in diethyl
ether (25 mL) to obtain the product as a red-purple liquid (0.91 g,
71%). "H NMR (500 MHz, CDCl,) § 2.92—2.86 (m, 8H), 1.86—1.81
(m, 8H). BC{'H} NMR (126 MHz, CDCl;) § 55.8, 25.2. EI-MS
[M]* caled. for CgH 4N,S,, 204.08, found 204.1.

S,Pip,. The reaction was performed using sulfur monochloride (4.0
mL, 50 mmol) and piperidine (24.8 mL, 251 mmol) in diethyl ether
(200 mL) to obtain the product as a yellow solid (9.20 g, 79%). 'H
NMR (500 MHz, CDCl;) §2.78 (t, ] = 5.5 Hz, 8H), 1.64 (p, J = 5.7
Hz, 8H), 1.42—1.36 (m, 4H). *C{'H} NMR (126 MHz, CDCl;) §
57.7, 27.2, 23.0. EI-MS [M]* caled. for C,gHyN,S,, 232.11, found
232.1.

Bis(piperidino)sulfide (SPip,). Adapted from previous report.” In a
round-bottom flask, sodium tetrathionate dihydrate (5.01 g, 16.4
mmol) in water (25 mL) was combined with piperidine (6.5 mL, 65.8
mmol) in pentane (25 mL) and stirred vigorously for 17 h at room

50
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temperature. The layers were separated, and the aqueous layer
extracted with pentane (1 X 25 mL). The organic layers were
combined and washed with water (1 X 25 mL) and sat. NaCl solution
(2 X 25 mL). The organic layer was then dried with anhydrous
sodium sulfate, filtered, and the solvent removed via rotary
evaporation to produce bis(piperidino)sulfide as a pale-yellow solid
(1.60 g, 24% yield). 'H NMR (500 MHz, CDCl;) & 3.30-3.22 (m,
8H), 1.53 (p, ] = 5.7 Hz, 8H), 1.46—1.38 (m, 4H). BC{'H} NMR
(126 MHz, CDCL,) & $9.4, 27.7, 23.8. HRMS (DART) [M + HJ*
calcd. for C,(H,,N,S*, 201.1420, found 201.1419.

General Procedure: Diaminosulfide. Adapted from a previous
report.>* A diaminodisulfide (1.0 equiv) solution in diethyl ether (0.4
M) was cooled to 0 °C in an ice bath for 30 min. Sulfuryl chloride
(1.1 equiv) was then added to this solution dropwise. The reaction
was stirred at 0 °C for 30 min, and then warmed to room temperature
for SO min. A separate solution of secondary amine (5.0 equiv) in
diethyl ether (2 M) was cooled to 0 °C. Then, the sulfide solution is
slowly added to the flask containing the cooled amine and stirred at 0
°C for 1 h. The reaction mixture was then washed with saturated
NaCl solution (3 X 100 mL), dried with anhydrous sodium sulfate,
filtered, and the solvent removed via rotary evaporation to produce
the crude diaminosulfide which was used without further purification.
In some cases, a minor amount of the diaminodisulfide starting
material was present in the crude product, but this did not affect
subsequent reactions.

S(NMe,),. The reaction was performed using dimethylaminodi-
sulfide (3.00 g, 19.7 mmol) in diethyl ether (49 mL), sulfuryl chloride
(1.75 mL, 21.6 mmol), and dimethylamine solution (49.0 mL, 2 M in
THEF) to obtain the product as an orange liquid (1.39 g, 29%). 'H
NMR (500 MHz, CDCl;) § 3.01 (s, 12H). *C{*H} NMR (126 MHz,
CDCL,) & 49.8. HRMS (DART) [M + H]* caled. for C,H,3N,S*,
121.0794, found 121.0796.

S(NiPrMe),. The reaction was performed using (N-
isopropylmethylamino)disulfide (1.01 g, 4.85 mmol) in diethyl
ether (12 mL), sulfuryl chloride (0.45 mL, 5.6 mmol), and N-
isopropylmethylamine (2.5 mL, 24.0 mmol) in diethyl ether (12 mL)
to obtain the product as an orange liquid (1.50 g, 88%). '"H NMR
(500 MHz, CDCly) & 3.38 (sept, ] = 6.6 Hz, 2H), 2.83 (s, 6H), 1.11
(d,J = 6.6 Hz, 12H). C{'H} NMR (126 MHz, CDCl,) & 58.5, 40.7,
21.2. HRMS (DART) [M + H]* caled. for CgH,N,S", 177.1420,
found 177.1419.

S(NEt;);. The reaction was performed using diethylaminodisulfide
(5.00 g, 24.0 mmol) in diethyl ether (60 mL), sulfuryl chloride (2.13
mL, 26.3 mmol), and diethylamine (12.6 mL, 122 mmol) in diethyl
ether (60 mL) to obtain the product as an orange liquid (4.16 g
49%). "H NMR (500 MHz, CDCl;) 6 3.07 (q, J = 7.1 Hz, 8H), 1.13
(t,J = 7.1 Hz, 12H). BC{'"H} NMR (126 MHz, CDCL;) § 51.5, 14.5.
HRMS (DART) [M + H]* caled. for CgH, N,S*, 177.1420, found
177.1418.

S(NPr,),. The reaction was performed using dipropylaminodisulfide
(4.20 g, 15.9 mmol) in diethyl ether (40 mL), sulfuryl chloride (1.41
mL, 17.4 mmol), and dipropylamine (10.9 mL, 79.5 mmol) in diethyl
ether (40 mL) to obtain the product as a yellow-orange liquid (6.75 g,
91%). 'H NMR (500 MHz, CDCL,) 5 2.98 (t, ] = 7.2 Hz, 8H), 1.61—
1.51 (m, 8H), 0.86 (t, J = 7.4 Hz, 12H). C{'H} NMR (126 MHz,
CDCly) 6 59.9, 22.2, 11.6. HRMS (DART) [M + H]" calcd. for
C1,HyoN,S*, 233.2046, found 233.2035.

SPyr,. The reaction was performed using pyrrolidinodisulfide (0.91
g, 445 mmol) in diethyl ether (11 mL), sulfuryl chloride (0.40 mL,
4.9 mmol), and pyrrolidine (1.8 mL, 21.8 mmol) in diethyl ether (11
mL) to obtain the product as a red-orange liquid (1.25 g, 82%). 'H
NMR (500 MHz, CDCl;) § 3.28—3.22 (m, 8H), 1.81—1.75 (m, 8H).
13C{'H} NMR (126 MHz, CDCL,) & 56.5, 26.2. HRMS (DART) [M
+ H]* caled. for CgH,,N,S*, 173.1107, found 173.1106.

SPip,. The reaction was performed using piperidinodisulfide (2.50
g, 10.8 mmol) in diethyl ether (27 mL), sulfuryl chloride (0.96 mL,
11.9 mmol), and piperidine (5.3 mL, 53.7 mmol) in diethyl ether (27
mL) to obtain the product as an off-white solid (3.67 g, 85%). NMR
shifts match those listed above.

General Procedure: Tris(dialkylamino)sulfonium. Adapted from a
previous report.”” A diaminosulfide (1.0 equiv) solution in CH,Cl,
(1.5 M) was cooled to —20 °C for 20 min. N-Chlorobenzotriazole
(~1.0 equiv) in CH,Cl, (0.5 M) was slowly added to this solution
and the reaction was stirred for 15 min at —20 °C. The relevant
secondary amine (1.2 equiv) was then added, and the reaction was
warmed to room temperature overnight. The reaction mixture was
transferred to a separatory funnel and the organic phase was washed
with saturated KPFg solution (3 X 50 mL) and H,0O (1 X 50 mL).
The organic layer was then dried with anhydrous sodium sulfate,
filtered, and the solvent was removed via rotary evaporation. The
resultant crude product was then precipitated into diethyl ether to
afford the sulfonium cation.

[S(NMe,);][PF4s]. The reaction was performed using bis-
(dimethylamino)sulfide (0.63 g, 5.2 mmol) in CH,Cl, (3.5 mL), N-
chlorobenzotriazole (0.80 g, 5.2 mmol) in CH,Cl, (10 mL), and
dimethylamine solution (3.1 mL, 2 M in THF) to obtain the product
as a white solid (0.25 g, 15%). "H NMR (500 MHz, CDCl;) § 2.95 (s,
18H). 3C{'"H} NMR (126 MHz, CDCL,) & 38.6. HRMS (ESI) [M]*
calcd. for C¢H gN,3S*, 164.1216, found 164.1221.

[S(NiPrMe);][PF4]. The reaction was performed using bis(N-
isopropylmethylamino)sulfide (2.00 g, 11.3 mmol) in CH,Cl, (7.6
mL), N-chlorobenzotriazole (1.74 g, 11.3 mmol) in CH,ClL, (22.7
mL), and N-isopropylmethylamine (1.4 mL, 13.4 mmol) to obtain the
product as a tan solid (2.28 g, 51%). 'H NMR (500 MHz, CDCL;) &
3.70 (sept, ] = 6.7 Hz, 3H), 2.72 (s, 9H), 1.29 (d, ] = 6.7 Hz, 18H).
BC{'H} NMR (126 MHz, CDCl;) § 53.6, 27.7, 20.2. HRMS (ESI)
[M]* caled. for C;,H,N,S*, 248.215S, found 248.2156.

[S(NEt,);][PFs]. The reaction was performed using bis-
(diethylamino)sulfide (2.00 g, 11.3 mmol) in CH,Cl, (7.6 mL), N-
chlorobenzotriazole (1.74 g, 11.3 mmol) in CH,Cl, (22.7 mL), and
diethylamine (1.4 mL, 13.5 mmol) to obtain the product as a white
solid (1.76 g, 40%). 'H NMR (500 MHz, CDCL,) 5 3.28 (q, J = 7.2
Hz, 12H), 1.25 (t, ] = 7.2 Hz, 18H). BC{'H} NMR (126 MHz,
CDCL) & 41.6, 12.6. HRMS (ESI) [M]* caled. for Cj,HiN5S",
248.2155, found 248.2158.

[S(NPr;);][PFg]l. The reaction was performed using bis-
(dipropylamino)sulfide (1.41 g, 6.07 mmol) in CH,Cl, (4.0 mL),
N-chlorobenzotriazole (0.94 g, 6.12 mmol) in CH,Cl, (12 mL), and
dipropylamine (1.0 mL, 7.30 mmol) to obtain the product as an
orange oil (1.19 g, 41%). '"H NMR (500 MHz, CDCl,) & 3.15—3.07
(m, 12H), 1.70—1.59 (m, 12H), 0.96 (t, ] = 7.4 Hz, 18H). BC{'H}
NMR (126 MHz, CDCl,) § 49.3, 20.9, 11.4. HRMS (ESI) [M]*
caled. for C,gH,,N,S*, 332.3094, found 332.3095.

[S(Pyr);][PFg]. The reaction was performed using bis(pyrrolidino)—
sulfide (0.23 g, 1.3 mmol) in CH,Cl, (5 mL), N-chlorobenzotriazole
(0.21 g, 1.4 mmol) in CH,Cl, (5 mL), and pyrrolidine (0.13 mL, 1.6
mmol) to obtain the product as a tan solid (0.33 g, 64%). '"H NMR
(500 MHz, CDCl;) 6 3.41-3.35 (m, 12H), 2.03—1.98 (m, 12H).
BC{'H} NMR (126 MHz, CDCl;) § 49.3, 25.3. HRMS (ESI) [M]*
calcd. for C,H,,N;S%, 242.1685, found 242.1687.

[S(Pip);][PF4]. The reaction was performed using bis(piperidino)—
sulfide (2.88 g, 14.4 mmol) in CH,Cl, (10 mL), N-chlorobenzo-
triazole (2.20 g, 14.3 mmol) in CH,Cl, (29 mL), and piperidine (1.7
mL, 17.2 mmol) to obtain the product as a white solid (3.92 g, 64%).
'"H NMR (500 MHz, CDCl;) 6 3.30—3.20 (m, 12H), 1.76—1.64 (m,
18H). BC{'H} NMR (126 MHz, CDCl;) & 48.5, 25.7, 23.6. HRMS
(ESI) [M]* calcd. for C;sH;,N,S", 284.2155, found 284.2160.

Tris(dimethylamino)sulfoxonium hexafluorophosphate [0O=S-
(NMe,);][PF4]. Adapted from previous report.40 In a round-bottom
flask, m-chloroperoxybenzoic acid (0.93 g, 3.8 mmol, 70% in water)
and potassium hydroxide (0.42 g, 7.5 mmol) were combined in water
(10.0 mL) and stirred for 15 min. To this mixture, tris-
(dimethylamino)sulfonium chloride (0.25 g, 1.25 mmol) dissolved
in water (3.5 mL) was added and stirred at room temperature for 17
h. Conversion to sulfoxonium was monitored via 'H NMR in D,0.
Excess KPFq salt was added to the aqueous solution, which was then
extracted with CH,Cl, (3 X 10 mL). The combined organic extracts
were then washed with water (1 X 10 mL), dried with anhydrous
sodium sulfate and filtered. The solvent was removed via rotary
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evaporation, and the crude product was precipitated in diethyl ether
to afford a white solid (0.11 g, 27% yield). '"H NMR (500 MHz,
CDCly) 6 3.12 (s, 18H). *C{'H} NMR (126 MHz, CDCl,) & 38.8.
HRMS (ESI) [M]* caled. for C4H;gN,OS*, 180.1165, found
180.1162.

General Procedure: Tris(dialkylamino)sulfoxonium. To a round-
bottom flask, m-chloroperoxybenzoic acid (10.0 equiv, 70% in water),
potassium carbonate (5.0 equiv), and 50:50 CH,Cl,:hexanes (~0.1
M) were added and stirred vigorously under air, producing a white
precipitate. To this mixture, the tris(dialkylamino)sulfonium (1.0
equiv) was added and stirred overnight. The mixture was filtered, and
the precipitate was rinsed with CH,Cl,. Rotary evaporation of the
filtrate afforded the crude product, which was redissolved in CH,Cl,
(50 mL) and washed with sat. KPFg solution (3 X 50 mL). The
organic phase was then dried with anhydrous sodium sulfate, filtered,
and the solvent was removed via rotary evaporation. The resultant
crude product was then precipitated into diethyl ether to afford the
tris(dialkylamino ) sulfoxonium.

[O=S(NiPrMe);][PF,]. The reaction was performed using tris(N-
isopropylmethylamino) sulfonium (0.10 g, 0.25 mmol), mCPBA
(0.63 g, 2.6 mmol), and K,CO; (0.18 g, 1.3 mmol) in CH,Cl, (14
mL) and hexanes (14 mL) to obtain the product as a white solid
(0.055 g, 54%). "H NMR (500 MHz, CDCl,) & 4.08 (sept, ] = 6.7 Hz,
3H), 2.93 (s, 9H), 1.32 (d, ] = 6.7 Hz, 18H). BC{'H} NMR (126
MHz, CDCly) § 52.2, 29.7, 20.1. HRMS (ESI) [M]" calcd. for
C1oHyoN, 087, 264.2104, found 264.2106.

[O=S(NEt,);][PFs]. The reaction was performed using tris-
(diethylamino)sulfonium (0.10 g, 0.25 mmol), mCPBA (0.63 g, 2.6
mmol), and K,CO; (0.18 g 1.3 mmol) in CH,Cl, (14 mL) and
hexanes (14 mL) to obtain the product as a white solid (0.044 g,
43%). '"H NMR (500 MHz, CDCl) 6 3.45 (q, J = 7.1 Hz, 12H), 1.33
(t, J = 7.2 Hz, 18H). BC{'H} NMR (126 MHz, CDCL,) § 44.0, 13.7.
HRMS (ESI) [M]* caled. for Cp,HyN;OS*, 264.2104, found
264.2107.

[O=S(NPr,);][PF¢]. The reaction was performed using tris-
(dipropylamino)sulfonium (0.10 g, 0.21 mmol), mCPBA (0.52 g,
2.1 mmol), and K,CO; (0.15 g, 1.1 mmol) in CH,Cl, (12 mL) and
hexanes (12 mL) to obtain the product as a white solid (0.04S g, 0.09
mmol, 44%). 'H NMR (500 MHz, CDCL) & 3.31-3.23 (m, 12H),
1.75—1.65 (m, 12H), 0.98 (t, ] = 7.4 Hz, 18H). *C{'H} NMR (126
MHz, CDCly) § 514, 22.0, 11.1. HRMS (ESI) [M]" calcd. for
CsH,,N,0S7, 348.3043, found 348.3042.

[O=S(Pyr);][PF¢]. The reaction was performed using tris-
(pyrrolidino)sulfonium (0.10 g, 0.26 mmol), mCPBA (0.64 g, 2.6
mmol), and K,CO; (0.18 g, 1.3 mmol) in CH,Cl, (14.5 mL) and
hexanes (14.5 mL) to obtain the product as a white solid (0.05S g,
53%). 'H NMR (500 MHz, CDCL,) § 3.57-3.51 (m, 12H), 2.12—
2.06 (m, 12H). *C{'H} NMR (126 MHz, CDCl;) 6 49.7, 25.8.
HRMS (ESI) [M]* caled. for C,,H,,N;0S*, 258.1635, found
258.1637.

[O=S(Pip);][PF4]. The reaction was performed using tris-
(piperidino)sulfonium (0.10 g, 0.23 mmol), mCPBA (0.57 g, 2.3
mmol), and K,CO; (0.16 g, 1.2 mmol) in CH,Cl, (13 mL) and
hexanes (13 mL) to obtain the product as a white solid (0.062 g,
60%). 'H NMR (500 MHz, CDCL,) § 3.51-3.43 (m, 12H), 1.81—
1.65 (m, 18H). BC{'H} NMR (126 MHz, CDCl;) § 48.8, 25.5, 23.1.
HRMS (ESI) [M]" caled. for C;sH;oN;0S*, 300.2104, found
300.2100.

[O=SPh;][PF4]. The reaction was performed using triphenylsulfo-
nium tetrafluoroborate (0.25 g, 0.71 mmol), mCPBA (1.75 g, 7.10
mmol), and K,CO; (049 g, 3.5 mmol) in CH,Cl, (11 mL) and
hexanes (11 mL) to obtain the product as a white solid (0.12 g, 46%).
'"H NMR (500 MHz, CDCl;) § 8.01-7.93 (m, 9H), 7.87 (m, 6H).
BC{'H} NMR (126 MHz, CDCl;) § 138.0, 131.6, 129.2. HRMS
(ESI) [M]* calcd. for C;gH;s0S", 279.0838, found 279.0840.

Degradation Studies in 2 M KOH/CD;OH. Solutions of base in
methanol were prepared by dissolving potassium hydroxide (2 M)
and 3-(trimethylsilyl)-1-propanesulfonic acid sodium salt (0.025 M)
in CD;OH (0.5 mL). The tris(dialkylamino)sulfonium or sulfoxo-
nium salt in the PF;~ form (0.05 M) was dissolved in this solution

and added to an NMR tube. The NMR tube was flame-sealed and
then heated to 80 °C for 30 min in an oil bath, after which it was
analyzed by '"H NMR spectroscopy for the initial time point. The
NMR tube was heated to 80 °C in an oil bath for the duration of the
study and removed once every S days, cooled to room temperature,
and '"H NMR spectroscopy was used to assess cation degradation.
Solvent impurities associated with the CD;OH can be seen between
1.85—2.55 ppm. Each proton signal for the cation was integrated
against a 3-(trimethylsilyl)-1-propanesulfonic acid sodium salt signal,
and divided by the f, integration value to give the percent cation
remaining (values were averaged). After 30 days, the tubes were
broken and the solution inside was analyzed using DART-MS.

Phase Transfer Experiments. Both [S(Pip);][PFs] and [O=
S(Pip);][PF¢] were exchanged to the chloride form by dissolution in
1:1 acetone/methanol. To this solution was added an Amberlite
exchange resin. The solution was left for 24 h and disappearance of
the PF,~ signal was monitored via *'P NMR spectroscopy. Once
complete, the resin was filtered off and all solvent removed. The
relevant cation was then dissolved in chlorobenzene (0.04 M) and
separately, an equal volume of 50% w/w NaOH in deionized water
was prepared. The two solutions were combined in a round-bottom
flask and stirred rapidly at room temperature for 30 s, after which a 50
puL aliquot was removed from the organic layer and diluted with
DMSO-dg or CD,Cl, to record an initial NMR spectrum (t,). The
flask was then submerged in an oil bath at 60 °C and the reaction
mixture was stirred rapidly. The flask was removed from heat and the
stirring was stopped at specific time intervals, to allow the layers to
separate before removal of a 50 yL aliquot from the organic layer for
NMR analysis.
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