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ABSTRACT

Graphs are powerful representations for relations among objects,
which have attracted plenty of attention in both academia and in-
dustry. A fundamental challenge for graph learning is how to train
an effective Graph Neural Network (GNN) encoder without labels,
which are expensive and time consuming to obtain. Contrastive
Learning (CL) is one of the most popular paradigms to address this
challenge, which trains GNNs by discriminating positive and neg-
ative node pairs. Despite the success of recent CL methods, there
are still two under-explored problems. Firstly, how to reduce the
semantic error introduced by random topology based data augmen-
tations. Traditional CL defines positive and negative node pairs via
the node-level topological proximity, which is solely based on the
graph topology regardless of the semantic information of node at-
tributes, and thus some semantically similar nodes could be wrongly
treated as negative pairs. Secondly, how to effectively model the
multiplexity of the real-world graphs, where nodes are connected
by various relations and each relation could form a homogeneous
graph layer. To solve these problems, we propose a novel multiplex
heterogeneous graph prototypical contrastive leaning (X-GOAL)
framework to extract node embeddings. X-GOAL is comprised of
two components: the GOAL framework, which learns node em-
beddings for each homogeneous graph layer, and an alignment
regularization, which jointly models different layers by aligning
layer-specific node embeddings. Specifically, the GOAL framework
captures the node-level information by a succinct graph transfor-
mation technique, and captures the cluster-level information by
pulling nodes within the same semantic cluster closer in the embed-
ding space. The alignment regularization aligns embeddings across
layers at both node level and cluster level. We evaluate the proposed
X-GOAL on a variety of real-world datasets and downstream tasks
to demonstrate the effectiveness of the X-GOAL framework.
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1 INTRODUCTION

Graphs are powerful representations of formalisms and have been
widely used to model relations among various objects [13, 23, 50, 65,
66, 74, 75], such as the citation relation and the same-author relation
among papers. One of the primary challenges for graph representa-
tion learning is how to effectively encode nodes into informative
embeddings such that they can be easily used in downstream tasks
for extracting useful knowledge [13]. Traditional methods, such as
Graph Convolutional Network (GCN) [23], leverage human labels
to train the graph encoders. However, human labeling is usually
time-consuming and expensive, and the labels might be unavail-
able in practice [6, 29, 60, 72, 73]. Self-supervised learning [29, 60],
which aims to train graph encoders without external labels, has
thus attracted plenty of attention in both academia and industry.

One of the predominant self-supervised learning paradigms in
recent years is Contrastive Learning (CL), which aims to learn an
effective Graph Neural Network (GNN) encoder such that positive
node pairs will be pulled together and negative node pairs will be
pushed apart in the embedding space [60]. Early methods, such as
DeepWalk [42] and node2vec [12], sample positive node pairs based
on their local proximity in graphs. Recent methods rely on graph
transformation or augmentation [60] to generate positive pairs and
negative pairs, such as random permutation [16, 18, 53], structure
based augmentation [14, 67], sampling based augmentation [17, 45]
as well as adaptive augmentation [76].

Albeit the success of these methods, they define positive and
negative node pairs based upon the node-level information (or local
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topological proximity) but have not fully explored the cluster-level
(or semantic cluster/prototype) information. For example, in an
academic graph, two papers about different sub-areas in graph
learning (e.g., social network analysis and drug discovery) might
not topologically close to each other since they do not have a direct
citation relation or same-author relation. Without considering their
semantic information such as the keywords and topics, these two
papers could be treated as a negative pair by most of the existing
methods. Such a practice will inevitably induce semantic errors to
node embeddings, which will have a negative impact on the per-
formance of machine learning models on downstream tasks such
as classification and clustering. To address this problem, inspired
by [27], we introduce a graph prototypical contrastive learning
(GOAL) framework to sim_ultaneously capture both node-level and
cluster-level information. At the node level, GOAL trains an en-
coder by distinguishing positive and negative node pairs, which
are sampled by a succinct graph transformation technique. At the
cluster level, GOAL employs a clustering algorithm to obtain the
semantic clusters/prototypes and it pulls nodes within the same
cluster closer to each other in the embedding space.

Furthermore, most of the aforementioned methods ignore the
multiplexity [18, 39] of the real-world graphs, where nodes are
connected by multiple types of relations and each relation formu-
lates a layer of the multiplex heterogeneous graph. For example, in
an academic graph, papers are connected via the same authors or
the citation relation; in an entertainment graph, movies are linked
through the shared directors or actors/actresses; in a product graph,
items have relations such as also-bought and also-view. Different
layers could convey different and complementary information. Thus
jointly considering them could produce more informative embed-
dings than separately treating different layers and then applying
average pooling over them to obtain the final embeddings [18, 39].
Most of the prior deep learning methods use attention mechanism
[4, 18, 30, 31, 38, 58] to combine embeddings from different layers.
However, attention modules usually require extra tasks or loss func-
tions to train, such as node classification [58] and concensus loss
[38]. Besides, some attention modules are complex which require
significant amount of extra efforts to design and tune, such as the hi-
erarchical structures [58] and complex within-layer and cross-layer
interactions [31]. Different from the prior methods, we propose an
alternative nimble alignment regularization to jointly model and
propagate information across different layers by aligning the layer-
specific embeddings without extra neural network modules, and
the final node embeddings are obtained by simply average pooling
over these layer-specific embeddings. The key assumption of the
alignment regularization is that layer-specific embeddings of the
same node should be close to each other in the embedding space
and they should also be semantically similar. We also theoretically
prove that the proposed alignment regularization could effectively
maximize the mutual information across layers.

We comprehensively evaluate X-GOAL on a variety of real-world
attributed multiplex heterogeneous graphs. The experimental re-
sults show that the embeddings learned by GOAL and X-GOAL
could outperform state-of-the-art methods of homogeneous graphs
and multiplex heterogeneous graphs on various downstream tasks.

The main contributions are summarized as follows:
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Figure 1: Illustration of the multiplex heterogeneous graph
GM, which can be decomposed into homogeneous graph lay-
ers G! and G? according to the types of relations. Different
colors represent different relations.

e Method. We propose a novel X-GOAL framework to learn
node embeddings for multiplex heterogeneous graphs, which
is comprised of a GOAL framework for each single layer and
an alignment regularization to propagate information across
different layers. GOAL reduces semantic errors, and the align-
ment regularization is nimbler than attention modules for
combining layer-specific node embeddings.

e Theoretical Analysis. We theoretically prove that the pro-
posed alignment regularization can effectively maximize the
mutual information across layers.

e Empirical Evaluation. We comprehensively evaluate the
proposed methods on various real-world datasets and down-
stream tasks. The experimental results show that GOAL and
X-GOAL outperform the state-of-the-art methods for homo-
geneous and multiplex heterogeneous graphs respectively.

2 PRELIMINARY

Definition 2.1 (Attributed Multiplex Heterogeneous Graph). An
attributed multiplex heterogeneous graph with V layers and N
nodes is denoted as GM = {g”}};l, where GY(A?, X) is the v-th
homogeneous graph layer, A € RN*N and X € RN*% is the
adjacency matrix and the attribute matrix, and dy is the dimension

of attributes. An illustration is shown in Figure 1.

Problem Statement. The task is to learn an encoder & for gM,
which maps the node attribute matrix X € RV Xdx to node embed-
ding matrix HM e RN*4 without external labels, where N is the
number of nodes, dy and d are the dimension sizes.

3 METHODOLOGY

We present the X-GOAL framework for multiplex heterogeneous
graphs GM, which is comprised of a GOAL framework and an
alignment regularization. In Section 3.1, we present the GOAL
framework, which simultaneously captures the node-level and the
cluster-level information for each layer G = (A, X) of GM. In Sec-
tion 3.2, we introduce a novel alignment regularization to align node
embeddings across layers at both node and cluster level. In section
3.3, we provide theoretical analysis of the alignment regularization.
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3.1 The GOAL Framework

The node-level graph topology based transformation techniques
might contain semantic errors since they ignore the hidden seman-
tics and will inevitably pair two semantically similar but topologi-
cally far nodes as a negative pair. To solve this issue, we introduce a
GOAL framework for each homogeneous graph layer! G = (A, X)
to capture both node-level and cluster-level information. An illus-
tration of GOAL is shown in Figure 2. Given a homogeneous graph
G and an encoder &, GOAL alternatively performs semantic clus-
tering and parameter updating. In the semantic clustering step, a
clustering algorithm C is applied over the embeddings H to obtain
the hidden semantic clusters. In the parameter updating step, GOAL
updates the parameters of & by the loss £ given in Equation (4),
which pulls topologically similar nodes closer and nodes within
the same semantic cluster closer by the node-level loss and the
cluster-level loss respectively.

A - Node-Level Loss. To capture the node-level information, we
propose a graph transformation technique 7" = {7+, 7"}, where
7+ and 7~ denote positive and negative transformations, along
with a contrastive loss similar to InfoNCE [36].

Given an original homogeneous graph G = (A, X), the positive
transformation 7 applies the dropout operation [48] over A and
X with a pre-defined probability pgop € (0,1). We choose the
dropout operation rather than the masking operation since the
dropout re-scales the outputs by 1= Paron during training, which

improves the training results. The negative transformation 7~
is the random shuffle of the rows for X [53]. The transformed
positive and negative graphs are denoted by G* = 7+(G) and
G~ = 7 (@), respectively. The node embedding matrices of G,
Gtand G” arethus H = E(G), H" = E(G*) and H™ = &(G7).
We define the node-level contrastive loss as:
N ecos(hy hh)

__Z gecos(h h}) 4 ecos(hy,hy) @

n=1

Ly=

where cos(, ) denotes the cosine similarity, hy,, h}; and h;, are the
n-th rows of H, H" and H™.
B - Cluster-Level Loss. We use a clustering algorithm C to obtain
the semantic clusters of nodes {cy }Ik(:l’ where ¢;, € R? is the clus-
ter center, K and d are the number of clusters and the dimension
of embedding space. We capture the cluster-level semantic infor-
mation to reduce the semantic errors by pulling nodes within the
same cluster closer to their assigned cluster center. For clarity, the
derivations of the cluster-level loss are provided in Appendix.

We define the probability of h, belongs to the cluster k by:

I e(cz *hy/7)
[ 2
Pk = S @

where 7 > 0 is the temperature parameter to re-scale the values.

The cluster-level loss is defined as the negative log-likelihood of
the assigned cluster k, for hy:

ok, Ba/D)
=——Zl e} ®3)

n=1 ZK

where k,, € [1,...,K] is the cluster index assigned to the n-th node.

IFor clarity, we drop the script v of G¥, A” and H? for this subsection.
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Figure 2: Illustration of GOAL. & and C are the encoder
and clustering algorithm. G is a homogeneous graph layer
and H is the embedding matrix. £ is given in Equation (4).
The circles and diamonds denote nodes and cluster centers.
Blue and orange denote different hidden semantics. The
green line is the cluster boundary. “Back Prop.” means back
propagation. The node-level topology based negative sam-
pling treats the semantic similar node 0 and 2 as a negative
pair. The cluster-level loss reduces semantic error by pulling
node 0 and 2 closer to their cluster center.

C - Overall Loss. Combing the node-level loss in Equation (1) and
the cluster-level loss in Equation (3), we have:

L=AnLy+AcLe (4)

where A and A¢ are tunable hyper-parameters.

3.2 Alignment Regularization

Real-world graphs are often multiplex in nature, which can be de-
composed into multiple homogeneous graph layers G M= {Q”}Z:1
The simplest way to extract the embedding of a node x, in GM is
separately extracting the embedding {hg}vv=1 from different layers
and then combing them via average pooling. However, it has been
empirically proven that jointly modeling different layers could usu-
ally produce better embeddings for downstream tasks [18]. Most
prior studies use attention modules to jointly learn embeddings
from different layers, which are clumsy as they usually require
extra efforts to design and train [18, 30, 39, 58]. Alternatively, we
propose a nimble alignment regularization to jointly learn embed-
dings by aligning the layer-specific {h“ —; Without introducing
extra neural network modules, and the ﬁnal node embedding of
xn is obtained by simply averaging the layer-specific embeddings

ZV hY. The underlying assumption of the alignment is
that hfl should be close to and reflect the semantics of {hﬁl }L/, 4o The
proposed alignment regularization is comprised of both node-level
and cluster-level alignments.

Given gM = {Q”}V with encoders {2}V o=1» We first apply
GOAL to each layer Q” and obtain the original and negative node
embeddings {H”}UV and {H°~ }ZJ 1» as well as the cluster centers
{C”}X:l, where C? € RK"*d i5 the concatenation of the cluster cen-
ters for the v-th layer, K? is the number of clusters for the v-the layer.
The node-level alignment is applied over {H”}L/:1 and {H”‘}le.
The cluster-level alignment is used on {C"}vV:1 and {HZ’}X:1
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Figure 3: Cluster-level alignment. x;, is the node attribute. h?
and hgl are the layer-specific embeddings. C° is the anchor
cluster center matrix. p3 and q? are the anchor and recov-
ered semantic distributions. RUC is given in Equation (6).

A - Node-Level Alignment. For a node xj, its embedding hY)
should be close to embeddings {h” }U 14, and far away from the
negative embedding h%~. Analogous to Equation (1), we define the
node-level alignment regularization as:

N V V cos(h?,h?)

=77 Z Z Z cos(hﬁjlﬁl) +:CZS(hgshz_) ©)

n 1o0=1v"#v

where Z = NV(V - 1) is the normalization factor.

B - Cluster-Level Alignment. Similar to the node-level loss in
Equation (1), the node-level alignment in Equation (5) could also
introduce semantic errors since h%~ might be topologically far from
but semantically similar to h. To reduce the semantic error, we also
align the layer-specific embeddings {hﬁ’l}Xz1 at the cluster level.

Let the v-th layer be the anchor layer and its semantic cluster
centers C? € RK°*4 a5 the anchor cluster centers. For a node x;,,
we call its layer-specific embedding hY as the anchor embedding,
and its semantic distribution pg € RX * as the anchor semantics,
which is obtained via Equation (2) based on hY and C°. Our key idea
of the cluster-level alignment is to recover the anchor semantics

Y from embeddings {h? }U /4, Of other layers based on C®.

Our idea can be justified from two perspectives. Firstly, {hg}gzl
reflect information of x,, from different aspects, if we can recover
the anchor semantics p? from the embedding h of another layer
o’ # v, then it indicates that hY and hflr share hidden semantics to
a certain degree. Secondly, it is impractical to directly align p5 and
pY, since their dimensions might be different K% # K¥, and even
ifK? =K ”/, the cluster center vectors C° and C¥ are distributed at
different positions in the embedding space.

An illustration of the cluster-level alignment is presented in
Figure 3. Given a node x,, on the anchor layer v, we have the
anchor cluster centers C?, the anchor embedding hY, and the anchor
semantic distribution p3. Next, we use the embedding hfl/ from the
layer o’ # o to obtain the recovered semantic distribution q% based
on C? via Equation (2). Then we align the semantics of h% and h?
by minimizing the KL-divergence of pﬁ and q¥:

RE = N(V ZZKL(pnnqn ©)

n=1v#v

where pY is treated as the ground-truth and the gradients are not
allowed to pass through pJ during training.
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Finally, we alternatively use all V layers as anchor layers and use
the averaged KL-divergence as the final semantic regularization:

1 \4
=5 2, Rs )
v=1

C - Overall Loss. By combining the node-level and cluster-level
regularization losses, we have:

R =puNnRN +pcRe 8)
where pp and p¢ are tunable hyper-parameters.
The final training objective of the X-GOAL framework is the com-
bination of the contrastive loss £ in Equation (4) and the alignment
regularization R in Equation (8):

\4
Lx=) LO+R )

v=1

where L is the loss of layer v

3.3 Theoretical Analysis

We provide theoretical analysis for the proposed regularization
alignments. In Theorem 3.1, we prove that the node-level alignment
maximizes the mutual information of embeddings X € {hY }nN= 1
of the anchor layer o and embeddings X¥ € {h }N_ ; of another
layer v’. In Theorem 3.2, we prove that the cluster-level alignment
maximizes the mutual information of semantic cluster assignments
C? € [1,---,K?] for embeddings {hg}ﬁ:’:l of the anchor layer v

and embeddings H? € {hg/}szl of the layer v’.

THEOREM 3.1 (MAXIMIZATION OF MI oF EMBEDDINGS FROM DIF-
FERENT LAYERS). Let H® € {h3}N and HY € {hY}N_ be the
random variables for node embeddings of the v-th and v’-th layers,
then the node-level alignment maximizes I(H®; HY).

Proor. According to [36, 43], the following inequality holds:

ef(xlsyz

Zl"g L3R of ) I (10)

LetK; =1, K3 = 2, f() = cos(), x1 = hy, y1

I(X;Y) > E[—

=h?, y; = h,,?, then:
ecos(h“ h” )

I(H%HY) > E[1 11
( ) [ 08 ecos(hi’l,hﬁ) + ecos(hi’,,hfl’) ] ( )

The expectation E is taken over all the N nodes, and all the pairs
of V layers, and thus we have:

N V V cos(h”,h”l)

e nollp
Z Z Z o8 ecos(h}’,,hﬁ/) + eCOS(hZ,hﬁ_) (12)

n 1o=1v'#v

where Z = NV(V — 1) is the normalization factor, and the right
side is R sy in Equation (7). O

I(H%HY)

THEOREM 3.2 (MAXIMIZATION OF MI BETWEEN EMBEDDINGS AND
SEMANTIC CLUSTER ASSIGNMENTS). Let C° € [1,---,K?] be the
random variable for cluster assignments for {h2}_ of the anchor
layerv, and HY € {hg/}fl\lz1 be the random variable for node embed-
dings of the v’ -th layer, then the cluster-level alignment maximizes
the mutual information of C° and HY : 1(C?; HY').



X-GOAL: Multiplex Heterogeneous Graph Prototypical Contrastive Learning

CIKM ’22, October 17-21, 2022, Atlanta, GA, USA.

Table 1: Statistics of the datasets

Graphs | # Nodes Views # Edges # Attributes # Labeled Data | # Classes

Paper-Subject-Paper (PSP) 2,210,761 1,830

ACM 3,025 Paper-Author-Paper (PAP) 29,281 (Paper Abstract) 600 3
Movie-Actor-Movie (MAM) 66,428 1,007

IMDB 3,550 Movie-Director-Movie (MDM) 13,788 (Movie plot) 300 3
Paper-Author-Paper (PAP) 144,783 2,000

DBLP 7,907 Paper-Paper-Paper (PPP) 90,145 (Paper Abstract) 80 4

Paper-Author-Term-Author-Paper (PATAP) | 57,137,515

Item-AlsoView-Item (IVI) 266,237 2,000

Amazon 7,621 Item-AlsoBought-Item (IBI) 1,104,257 (Item description) 80 4

Item-BoughtTogether-Item (IOI) 16,305

ProoF. In the cluster-level alignment, the anchor distribution p%
is regarded as the ground-truth for the n-th node, and ¢ = f(hY)
is the recovered distribution from the v’-th layer, where f() is a K°
dimensional function defined by Equation (2). Specifically,

(et /1)

) [k] = p(klh?) = ——
T =) = S o

(13)

where {cg }f:l is the set of cluster centers for the v-th layer.

Since pY is the ground-truth, and thus its entropy H(p3) is a
constant. As a result, the KL divergence in Equation (6) is equiva-
lent to cross-entropy H(p$, qﬁl) = KL(pﬁHq,Z{) + H(py). Therefore,
minimizing the KL-divergence will minimize H(pZ, q2 ).

On the other hand, according to [33, 44], we have the following
variational lower bound for I(C?; H”/):

e9(h% )

I(C%HY) > E[log ———— (14)
Kv hY k
Zk’:l eg( n k')
where ¢() is any function of hﬁ, and k.
In our case, we let
/ 1 /
g(hiy. k) = —ci by (15)

where ¢y is the k-th semantic cluster center of the v-th layer, and 7
is the temperature parameter.

As a result, we have
SUR K = o 1 (16)

ke e o =dn 16

2115:1 eg(hy k')

The expectation E is taken over the ground-truth distribution of
the cluster assignments for the anchor layer v:

/ / / 1
Pt (b . k) = pgr (hy )pge (klhy ) = < pn k] (17)

where pgt(k|h2/) = pY[k] is the ground-truth semantic distribution
for hg' on the anchor layer v, which is different from the recovered
distribution p(k|h?{) = qf{ [k] shown in Equation (13).

Therefore, we have

N K? N
0, 170 1 v o _ 1 v U
1Y HY) 2 Z;;pn[k] log K] = ~7 >, Hp )

(18)
where Z = NK? is the normalization factor.
Thus, minimizing H(p%, q5 ) will maximize I(C%; H?). ]

4 EXPERIMENTS
4.1 Experimental Setups

Datasets. We use publicly available multiplex heterogeneous graph
datasets [18, 39]: ACM, IMDB, DBLP and Amazon to evaluate the
proposed methods. The statistics is summarized in Table 1.
Comparison Methods. We compare with methods for (1) attrib-
uted graphs, including methods disregarding node attributes: Deep-
Walk [42] and node2vec [12], and methods considering attributes:
GCN [23], GAT [52], DGI [53], ANRL [71], CAN [34], DGCN [77],
HDI[18], GCA [76] and GraphCL [67]; (2) attributed multiplex het-
erogeneous graphs, including methods disregarding node attributes:
CMNA [5], MNE [68], and methods considering attributes: mGCN
[31], HAN [58], MVAGC [28], DMGIL DMGl,tin [39] and HDMI [18].
Evaluation Metrics. Following [18], we first extract embeddings
from the trained encoder. Then we train downstream models with
the extracted embeddings, and evaluate models’ performance on
the following tasks: (1) a supervised task: node classification; (2) un-
supervised tasks: node clustering and similarity search. For the node
classification task, we train a logistic regression model and evaluate
its performance with Macro-F1 (MaF1) and Micro-F1 (MiF1). For the
node clustering task, we train the K-means algorithm and evaluate
it with Normalized Mutual Information (NMI). For the similarity
search task, we first calculate the cosine similarity for each pair of
nodes, and for each node, we compute the rate of the nodes to have
the same label within its 5 most similar nodes (Sim@5).
Implementation Details. We use the one layer 1st-order GCN
[23] with tangent activation as the encoder &% = tanh(A’XW +
XW’ +b). We set dimension d = 128 and pgyp = 0.5. The models
are implemented by PyTorch [40] and trained on NVIDIA Tesla
V-100 GPU. During training, we first warm up the encoders by
training them with the node-level losses £ and R p.. Then we
apply the overall loss £ x with the learning rate of 0.005 for IMDB
and 0.001 for other datasets. We use K-means as the clustering
algorithm, and the semantic clustering step is performed every 5
epochs of parameter updating. We adopt early stopping with the
patience of 100 to prevent overfitting.

4.2 Overall Performance

X-GOAL on Multiplex Heterogeneous Graphs. The overall per-
formance for all of the methods is presented in Tables 2-3, where
the upper and middle parts are the methods for homogeneous
graphs and multiplex heterogeneous graphs respectively. “OOM”
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Table 2: Overall performance of X-GOAL on the supervised task: node classification.

Dataset ACM IMDB DBLP Amazon
Metric Macro-F1  Micro-F1 | Macro-F1  Micro-F1 | Macro-F1 = Micro-F1 | Macro-F1 =~ Micro-F1
DeepWalk 0.739 0.748 0.532 0.550 0.533 0.537 0.663 0.671
node2vec 0.741 0.749 0.533 0.550 0.543 0.547 0.662 0.669
GCN/GAT 0.869 0.870 0.603 0.611 0.734 0.717 0.646 0.649
DGI 0.881 0.881 0.598 0.606 0.723 0.720 0.403 0.418
ANRL 0.819 0.820 0.573 0.576 0.770 0.699 0.692 0.690
CAN 0.590 0.636 0.577 0.588 0.702 0.694 0.498 0.499
DGCN 0.888 0.888 0.582 0.592 0.707 0.698 0.478 0.509
GraphCL 0.884 0.883 0.619 0.623 0.814 0.806 0.461 0.472
GCA 0.798 0.797 0.523 0.533 OOM OOM 0.408 0.398
HDI 0.901 0.900 0.634 0.638 0.814 0.800 0.804 0.806
CMNA 0.782 0.788 0.549 0.566 0.566 0.561 0.657 0.665
MNE 0.792 0.797 0.552 0.574 0.566 0.562 0.556 0.567
mGCN 0.858 0.860 0.623 0.630 0.725 0.713 0.660 0.661
HAN 0.878 0.879 0.599 0.607 0.716 0.708 0.501 0.509
DMGI 0.898 0.898 0.648 0.648 0.771 0.766 0.746 0.748
DMGlttn 0.887 0.887 0.602 0.606 0.778 0.770 0.758 0.758
MvAGC 0.778 0.791 0.598 0.615 0.509 0.542 0.395 0.414
HDMI 0.901 0.901 0.650 0.658 0.820 0.811 0.808 0.812
X-GOAL 0.922 0.921 0.661 0.663 0.830 0.819 0.858 0.857

Table 3: Overall performance of X-GOAL on the unsupervised tasks: node clustering and similarity search.

Dataset ACM IMDB DBLP Amazon
Metric NMI Sim@5 | NMI Sim@5 | NMI Sim@5 | NMI  Sim@5
DeepWalk | 0.310 0.710 0.117 0.490 0.348 0.629 0.083 0.726
node2vec 0.309 0.710 0.123 0.487 0.382 0.629 0.074 0.738
GCN/GAT | 0.671 0.867 0.176 0.565 0.465 0.724 0.287 0.624
DGI 0.640 0.889 0.182 0.578 0.551 0.786 0.007 0.558
ANRL 0.515 0.814 0.163 0.527 0.332 0.720 0.166 0.763
CAN 0.504 0.836 0.074 0.544 0.323 0.792 0.001 0.537
DGCN 0.691 0.690 0.143 0.179 0.462 0.491 0.143 0.194
GraphCL 0.673 0.890 0.149 0.565 0.545 0.803 0.002 0.360
GCA 0.443 0.791 0.007 0.496 OOM OOM 0.002 0.478
HDI 0.650 0.900 0.194 0.605 0.570 0.799 0.487 0.856
CMNA 0.498 0.363 0.152 0.069 0.420 0.511 0.070 0.435
MNE 0.545 0.791 0.013 0.482 0.136 0.711 0.001 0.395
mGCN 0.668 0.873 0.183 0.550 0.468 0.726 0.301 0.630
HAN 0.658 0.872 0.164 0.561 0.472 0.779 0.029 0.495
DMGI 0.687 0.898 0.196 0.605 0.409 0.766 0.425 0.816
DMGI,ttn 0.702 0.901 0.185 0.586 0.554 0.798 0.412 0.825
MvAGC 0.665 0.824 0.219 0.525 0.281 0.437 0.082 0.237
HDMI 0.695 0.898 0.198 0.607 0.582 0.809 0.500 0.857
X-GOAL 0.773 0924 | 0.221 0.613 | 0.615 0.809 | 0.556 0.907

means out-of-memory. Among all the baselines, HDMI has the best
overall performance. The proposed X-GOAL further outperforms
HDMI. The proposed X-GOAL has 0.023/0.019/0.041/0.021 average
improvements over the second best scores on Macro-F1/Micro-
F1/NMI/Sim@5. For Macro-F1 and Micro-F1 in Table 2, X-GOAL
improves the most on the Amazon dataset (0.050/0.044). For NMI
and Sim@5 in Table 3, X-GOAL improves the most on the ACM
(0.071) and Amazon (0.050) dataset respectively. The superior over-
all performance of X-GOAL demonstrate that the proposed ap-
proach can effectively extract informative node embeddings for
multiplex heterogeneous graph.

GOAL on Homogeneous Graph Layers. We compare the pro-
posed GOAL framework with recent infomax-based methods (DGI
and HDI) and graph augmentation based methods (GraphCL and
GCA). The experimental results for each single homogeneous graph
layer are presented in Tables 4-5. It is evident that GOAL signif-
icantly outperforms the baseline methods on all single homoge-
neous graph layers. On average, GOAL has 0.137/0.129/0.151/0.119
improvements on Macro-F1/Micro-F1/NMI/Sim@5. For node clas-
sification in Table 4, GOAL improves the most on the PATAP layer
of DBLP: 0.514/0.459 on Macro-F1/Micro-F1. For node clustering
and similarity search in Table 5, GOAL improves the most on the
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Table 4: Overall performance of GOAL on each layer: node classification.

Dataset ACM IMDB DBLP Amazon
View PSP PAP MDM MAM PAP PPP PATAP VI TBI 101
Metric | MaFl__MiFl | MaFl__ MiFl | MaFl __ MiFl | MaFl__ MiFl | MaFl _ MiFl | MaFl _ MiFl | MaFl _MiFl | MaFl__ MiFl | MaFl__MiFl | MaFl__MiF1
e 0663 0.668 | 0855 0853 | 0573 0586 | 0558 0564 | 0804 079 | 0728 0717 | 0240 0272 | 0380 0388 | 038 0410 | 0569 0574
GraphCL | 0.649 0658 | 0.833 0824 | 0551 0566 | 0.554 0562 | 0.806 0779 | 0.678  0.675 | 0.236 0286 | 0.290 0305 | 0.335 0348 | 0506 0516
GCA 0.645 0656 | 0.748 0749 | 0.534 0537 | 0489 0500 | 0.716 0710 | 0679 0.665 | OOM OOM | 0300 0312 | 0289 0304 | 0532 0526
HDI 0742 0744 | 0.889  0.888 | 0.626  0.631 | 0.600 0606 | 0812  0.803 | 0751 0745 | 0241 0284 | 0581 0583 | 0524 0529 | 079 0799
GOAL 0.833 0.836 0.908 0.908 0.649 0.653 0.653  0.652 0.817 0.804 0.765 0.755 0.755 0.745 0.849 0.848 0.850 0.848 0.851 0.851
Table 5: Overall performance of GOAL on each layer: node clustering and similarity search.
Dataset ACM IMDB DBLP Amazon
View PSP PAP MDM MAM PAP PPP PATAP VI TBI 101
Mectric | NMI__Sim@5 | NMI__Sim@5 | NMI__Sim@5> | NMI__Sim@5 | NMI__Sim@5 | NMI__Sim@5 | NMI__Sim@5 | NMI__Sim@5 | NMI__Sim@5 | NMI__Sim@5
DGI 0.526 0.698 0.651 0.872 0.145 0.549 0.089 0.495 0.547 0.800 0.404 0.741 0.054 0.583 0.002 0.395 0.003 0.414 0.038 0.701
GraphCL | 0.524 0.735 0.675 0.874 0.128 0.554 0.060 0.485 0.539 0.794 0.347 0.702 0.052 0.595 0.001 0.334 0.002 0.360 0.036 0.630
GCA 0.389 0.662 0.062 0.764 0.008 0.491 0.008 0.463 0.076 0.775 0.223 0.683 OOM OOM 0.002 0.315 0.007 0.329 0.008 0.588
HDI 0.528 0.716 0.662 0.886 0.194 0.592 0.143 0.527 0.562 0.805 0.408 0.742 0.054 0.591 0.169 0.544 0.153 0.525 0.407 0.826
GOAL 0.600 0.851 0.735 0.917 0.210 0.602 0.180 0.585 0.589 0.809 0.447 0.757 0.412 0.733 0.551 0.901 0.544 0.903 0.536 0.905
Table 6: Ablation study of X-GOAL at the multiplex heterogeneous graph level.
Dataset ACM IMDB DBLP Amazon
Metric MaFl__MiFl__NMI__ Sim@5 | MaFl__Mifl __NMI__ Sim@5 | MaFl _ MiFl___NMI _ Sim@5> | MaFl__ MaFl__ MiFl__ Sim@5
X-GOAL 0.922 0.921 0.773 0.924 0.661 0.663 0.221 0.613 0.830 0.819 0.615 0.809 0.858 0.857 0.556 0.907
w/o Rs 0.919 0.917 0.770 0.922 0.658 0.661 0.211 0.606 0.817 0.807 0.611 0.804 0.856 0.856 0.555 0.906
wio Ry, Rs | 0893 0893 0724 0912 | 0.651  0.658 0194  0.606 | 0803 0791 059 0801 | 0.835 0834 0506 0.904

IBI layer of Amazon: 0.391 on NMI and 0.378 on Sim@5. The supe-
rior performance of GOAL indicates that the proposed prototypi-
cal contrastive learning strategy is better than the infomax-based
and graph augmentation based instance-wise contrastive learn-
ing strategies. We believe this is because prototypical contrasive
learning could effectively reduce the semantic errors.

4.3 Ablation Study

Multiplex Heterogeneous Graph Level. In Table 6, we study the
impact of the node-level and semantic-level alignments. The results
in Table 6 indicate that both of the node-level alignment (Ry) and
the semantic-level alignment (Rs) can improve the performance.
Homogeneous Graph Layer Level. The results for different con-
figurations of GOAL on the PAP layer of ACM are shown in Table 7.
First, all of the warm-up, the semantic-level loss £ g and the node-
level loss L p are critical. Second, comparing GOAL (1st-order GCN
with tanh activation) with other GCN variants, (1) with the same
activation function, the 1st-order GCN perform better than the
original GCN; (2) tanh is better than relu. We believe this is because
the 1st-order GCN has a better capability for capturing the attribute
information, and tanh provides a better normalization for the node
embeddings. Finally, for the configurations of graph transformation,
if we replace dropout with masking, the performance will drop. This
is because dropout re-scales the outputs by 1/(1 — pgrop), which
improves the performance. Besides, dropout on both attributes and
adjacency matrix is important.

4.4 Number of Clusters

Figure 4 shows the Macro-F1 and NMI scores on the PSP and PAP
layers of ACM w.r.t. the number of clusters K € [3, 4, 5, 10, 20, 30, 50].
For PSP and PAP, the best Macro-F1 and NMI scores are obtained
when K = 30 and K = 5. The number of ground-truth classes for

Table 7: Ablation study of GOAL on the PAP layer of ACM.

MaF1  MiF1 NMI  Sim@5
GOAL 0.908 0.908 0.735 0.917
Ww/0 warm-up 0.863  0.865  0.721 0.903
w/o Lg 0.865 0.867  0.693 0.899
w/o Ly 0.878 0.880  0.678 0.881
1st-ord. GCN (relu) 0.865 0.866  0.559 0.859
GCN (tanh) 0.881  0.881  0.486 0.886
GCN (relu) 0.831 0.831 0.410 0.837
dropout — masking | 0.888 0.890 0.716  0.903
w/o attribute drop 0.843  0.845 0.568  0.869
w/o adj. matrix drop | 0.888  0.888 0.715  0.903

0.95 0.8

0.85
0.6/
0.80 f
0.5/
0.75 —*— PAP —*— PAP
—s— PSP —e— PSP
0707510 20 30 s0 %4 510 20 30 50
(a) Macro-F1v.s. K (b) NMI v.s. K

Figure 4: The number of K on PSP and PAP of ACM

ACM is 3, and the results in Figure 4 indicate that over-clustering
is beneficial. We believe this is because there are many sub-clusters
in the embedding space, which is consistent with the prior findings
on image data [27].
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Figure 5: Visualization of the embeddings for the PAP and PSP layers of the ACM graph.
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Figure 6: Visualization of the combined embeddings for the ACM graph.

4.5 Visualization

Homogeneous Graph Layer Level. The t-SNE [32] visualizations
of the embeddings for PSP and PAP of ACM are presented in Figure
5. Ln, Lc, Ry and R are the node-level loss, cluster-level loss,
node-level alignment and cluster-level alignment. The embeddings
extracted by the full GOAL framework (L + L) are better sepa-
rated than the node-level loss L p only. For GOAL, the numbers
of clusters for PSP and PAP are 30 and 5 since they have the best
performance as shown in Figure 4.

Multiplex Heterogeneous Graph Level. The visualizations for
the combined embeddings are shown in Figure 6. Embeddings in
Figures 6a-6b are the average pooling of the layer-specific embed-
dings in Figure 5. Figure 6c and 6d are X-GOAL w/o cluster-level
alignment and the full X-GOAL. Generally, the full X-GOAL best
separates different clusters.

5 RELATED WORK

5.1 Contrastive Learning for Graphs

The goal of CL is to pull similar nodes into close positions and push
dis-similar nodes far apart in the embedding space. Inspired by
word2vec [35], early methods, such as DeepWalk [42] and node2vec
[12] use random walks to sample positive pairs of nodes. LINE [50]
and SDNE [56] determine the positive node pairs by their first and
second-order structural proximity. Recent methods leverage graph
transformation to generate node pairs. DGI [53], GMI [41], HDI [18]
and CommDGI [69] obtain negative samples by randomly shuffling
the node attributes. MVGRL [14] transforms graphs via techniques
such as graph diffusion [24]. The objective of the above methods
is to maximize the mutual information of the positive embedding

pairs. GraphCL [67] uses various graph augmentations to obtain
positive nodes. GCA [76] generates positive and negative pairs
based on their importance. gCool [25] introduces graph communal
contrastive learning. Ariel [8, 9] proposes a information regular-
ized adversarial graph contrastive learning. These methods use the
contrastive losses similar to InfoNCE [36].

For multiplex heterogeneous graphs, MNE [68], MVN2VEC [47]
and GATNE [4] sample node pairs based on random walks. DMGI
[39] and HDMI [18] use random attribute shuffling to sample neg-
ative nodes. HeCo [59] decides positive and negative pairs based
on the connectivity between nodes. Above methods mainly rely on
the topological structures to pair nodes, yet do not fully explore
the semantic information, which could introduce semantic errors.

5.2 Deep Clustering and Contrastive Learning

Clustering algorithms [2, 62] can capture the semantic clusters of
instances. DeepCluster [2] is one of the earliest works which use
cluster assignments as “pseudo-labels" to update the parameters of
the encoder. DEC [62] learns a mapping from the data space to a
lower-dimensional feature space in which it iteratively optimizes a
clustering objective. Inspired by these works, SWAV [3] and PCL
[27] combine deep clustering with CL. SWAV compares the cluster
assignments rather than the embeddings of two images. PCL is
the closest to our work, which alternatively performs clustering
to obtain the latent prototypes and train the encoder by contrast-
ing positive and negative pairs of nodes and prototypes. However,
PCL has some limitations compared with the proposed X-GOAL:
it is designed for single view image data; it heavily relies on data
augmentations and momentum contrast [15]; it has some complex
assumptions over cluster distributions and embeddings.
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5.3 Multiplex Heterogeneous Graph Neural
Networks

The multiplex heterogeneous graph [4] considers multiple relations
among nodes, and it is also known as multiplex graph [18, 39],
multi-view graph [46], multi-layer graph [26] and multi-dimension
graph [30]. MVE [46] and HAN [58] uses attention mechanisms to
combine embeddings from different views. mGCN [31] models both
within and across view interactions. VANE [11] uses adversarial
training to improve the comprehensiveness and robustness of the
embeddings. Multiplex graph neural networks have been used in
many applications [7], such as time series [19], text summarization
[21], temporal graphs [10], graph alignment [63], abstract reasoning
[57], global poverty [22] and bipartite graphs [64].

5.4 Deep Graph Clustering

Graph clustering aims at discovering groups in graphs. SAE [51]
and MGAE [55] first train a GNN, and then run a clustering algo-
rithm over node embeddings to obtain the clusters. DAEGC [54]
and SDCN [1] jointly optimize clustering algorithms and the graph
reconstruction loss. AGC [70] adaptively finds the optimal order for
graph filters based on the intrinsic clustering scores. M3S [49] uses
clustering to enlarge the labeled data with pseudo labels. SDCN [1]
proposes a structural deep clustering network to integrate the struc-
tural information into deep clustering. COIN [20] co-clusters two
types of nodes in bipartite graphs. MvAGC [28] extends AGC [70] to
multi-view settings. However, MvAGC is not neural network based
methods which might not exploit the attribute and non-linearity
information. Recent methods combine CL with clustering to fur-
ther improve the performance. SCAGC [61] treats nodes within
the same cluster as positive pairs. MCGC [37] combines CL with
MvAGC [28], which treats each node with its neighbors as positive
pairs. Different from SCAGC and MCGC, the proposed GOAL and
X-GOAL capture the semantic information by treating a node with
its corresponding cluster center as a positive pair.

6 CONCLUSION

In this paper, we introduce a novel X-GOAL framework for multi-
plex heterogeneous graphs, which is comprised of a GOAL frame-
work for each homogeneous graph layer and an alignment regu-
larization to jointly model different layers. The GOAL framework
captures both node-level and cluster-level information. The align-
ment regularization is a nimble technique to jointly model and
propagate information across different layers, which could maxi-
mize the mutual information of different layers. The experimental
results on real-world multiplex heterogeneous graphs demonstrate
the effectiveness of the proposed X-GOAL framework.

A DERIVATION OF SEMANTIC LEVEL LOSS

The node-level contrastive loss is usually noisy, which could intro-
duce semantic errors by treating two semantic similar nodes as a
negative pair. To tackle this issue, we use a clustering algorithm
C (e.g. K-means) to obtain the semantic clusters of nodes, and we
use the EM algorithm to update the parameters of & to pull node
embeddings closer to their assigned clusters (or prototypes).

CIKM ’22, October 17-21, 2022, Atlanta, GA, USA.

Following [27], we maximize the following log likelihood:

N N K
D logp(hn|6,C) = Y log > p(hy, kl6,C)  (19)
n=1

n=1 k=1

where hy, is the n-th row of h, ® and C are the parameters of &
and K-means algorithm C, k € [1,---, K] is the cluster index, and
K is the number of clusters. Directly optimizing this objective is
impracticable since the cluster index is a latent variable.

The Evidence Lower Bound (ELBO) of Equation (19) is given by:

ELBO = Z Z Q(k[hy) log

n=1k=1

p(hp, k|©,C)
~ Q(klhy)
where Q(k|hy) = p(k|h,, ©,C) is the auxiliary function.

In the E-step, we fix © and estimate the cluster centers C and the

(20)

cluster assignments Q(k|h,,) by running the K-means algorithm
over the embeddings of the original graph H = &(G). If a node h,,
belongs to the cluster k, then its auxiliary function is an indicator
function satisfying O(k|hy,) = 1, and O(k’|h,,) = 0 for VK’ # k.

In the M-step, based on € and Q(k|hn) obtained in the E-step,
we update © by maximizing ELBO:

ELBO = Z Z (k|hy) log p(hp, k|©, €)
n=1 k=1

N K
= > >, O(klhn) log O(kh,)

n=1k=1

(1)

Dropping the second term of the above equation, which is a con-
stant, we will minimize the following loss function:

N K

Ls==Y > O(klhy)logp(hy,k|©,C) (22)

n=1k=1
Assuming a uniform prior distribution over h;,, we have:
p(hy, k|©,C) e p(k|hy, ©,C) (23)
We define p(k|hy, ©,C) by:
e(&f hn/7)

kh,,©0,0) = —————— 24
P00 = o T (24)
=1

where h,, € R? is the embedding of the node xy, & € R is the
vector of the k-th cluster center, 7 is the temperature parameter.

Let’s use ky, to denote the cluster assignment of h,, and normalize
the loss by % then Equation (22) can be rewritten as:

(Ckn h,/7)

Y Z 8 K hjn) ZK o(h hn/7) (25)

The above loss function captures the semantic similarities be-
tween nodes by pulling nodes within the same cluster closer to
their assigned cluster center.
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