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Abstract — The increasing penetration of inverter-based
resources (IBRs) is changing grid dynamics and challenging safe
and reliable grid operation. Particularly, the increasing
integration of IBRs may cause the small-signal stability issues
resulting from the dynamic interaction between the IBR inverter
controls and the power network in a power system with high
penetration of IBRs. It is challenging for assessing the small-
signal stability in such a power system due to the complex
interaction between IBRs interconnected through the power
network. The assessment complexity is further increased when
considering variable IBR generation. To address the challenges,
this paper proposes a method for small-signal stability analysis of
a multi-IBR power system under uncertain renewable generation.
First, we derive that the small-signal stability of a multi-IBR
power system can be estimated based on the smallest eigenvalue
of a weighted Laplacian matrix of the power network. Then, a
robust optimization problem is formulated to analyze the small-
signal stability of a multi-IBR power system under variable
renewable generation. The efficacy of the proposed method is
demonstrated on a power system with three IBRs by eigenvalue
analysis and electromagnetic transient simulations.

Index Terms— Inverter-based resources, small-signal stability,
uncertain renewable generation.

I. INTRODUCTION

To address the impact of climate change, renewable energy
resources such as wind and solar are increasingly integrated
into the nation's electric power grid to reduce reliance on
fossil fuels. These renewable resources are interfaced with the
power grid through power electronic inverters that use control
algorithms to define their performance characteristics [1]. As a
group, these types of resources are commonly referred to as
inverter-based resources (IBRs). While IBRs offer fast and
advanced control for energy efficiency, they are also are
changing grid dynamics and challenging safe and stable grid
operation. Particularly, the dynamic interaction between IBRs
and the power network have cause new types of multi-
frequency oscillation stability issues under weak grid
connections, such as sub-/super synchronous and high-
frequency oscillations [2]-[5]. The emerging oscillation
stability issues are becoming a major threat to grid reliability
and a great bottleneck to the accommodation of IBRs.

Since the oscillation stability issues belong to the small-
signal stability category, they have mainly been investigated
by time-domain [6]-[7] and frequency-domain [8]-[9] methods.
The most widely used time-domain methods are the
eigenvalue analysis method and the electromagnetic transient
simulation. In the eigenvalue analysis method, the studied
system is usually represented with state-space models and
then the eigenvalue analysis method is used to analyze the
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small-signal stability. This method requires detailed models
and parameters of inverters to build the state-space model. It is
challenging for using the method in a large-scale power
system with large IBR integration since the dimensions of the
system state matrix may be too high to be numerically handled
for eigenvalue analysis. While the electromagnetic transient
simulations can be used for verification purposes, they hardly
reveal the mechanism of small-signal instability. Recently, the
impedance-based analysis method in the frequency domain
has been used for the small-signal stability analysis as the
impedance model can be obtained through measurements,
even though the detailed parameters of the inverter are
unknown. Although the small-signal stability has been
analyzed with the various approaches in time and frequency
domains, it is still challenging to analyze the stability issue
while considering the impact of variable renewable generation
[10]-[11]. Moreover, the analysis complexity is further
increased when considering the interaction between IBRs
interconnected through the power network in a multi-IBR
power system.

To address the challenges, the paper proposes a method for
analyzing the impact of uncertain renewable generation on the
small-signal stability in a multi-IBR power system. To this
end, the modeling of a multi-IBR power system is first
constructed based on the state-space model. With this
modeling, the small-signal stability of the system is analyzed,
and then a robust optimization is formulated to assess the
small-signal stability under uncertain renewable generation.
The efficacy of the proposed method is demonstrated on a
power system with multiple IBRs. The rest of this paper is
organized as follows. In Section II, the modeling of the power
system with multiple IBRs will be presented. In Section III,
the model will be used to analyze the small-signal stability of
the multi-IBR system. In Section IV, our method will be
proposed to assess the small-signal stability of the multi-IBR
system under uncertain IBR generation. In Section V, the
efficacy of the proposed method will be demonstrated. In
Section VI, the conclusions are drawn.

II. MODELING FOR POWER SYSTEMS WITH MULTIPLE IBRS

Let us consider a power system with n IBRs. The system
modeling includes the IBR models and the network models.
The state-space model of the i-th IBR can be represented as
iAXmi =4,AX,;+B, AU,
dt ’ ' ' ' '

Mm,i = PBi : Cm,iAXm,l

(M

where A denotes small increment of a variable vector; X, €
R™"!is the vector of all the state variables of i-th IBR; I, =[/.,
1,)" and U,,=[Ux; U,,]" are the output current and terminal
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voltage at the point 7 of interconnection, respectively.
expressed in the common x-y coordinate: 4,,; ER™™ and B,
€ R™? are the state matrix and control matrix of the i-th IBR,
respectively; and C,,;€R>™ is the output matrix of the i-th
IBR. which is normalized by the injected power Pg; of the i-th
IBR.
Based on (1), the state-space model of the i-th IBR can be
rewritten in the following matrix format:
mx]
SRR e
AL, PC,, 0 AU,

where 0! and 0%? are two null matrices; s represents
Laplace operator: and I, denotes the m-dimensional identity
matrix.

Thus, the state-space model of the power system with »
IBRs can be represented as

o] [t ) amCmITo
ax.-[axi, o axL]
AL, =[ AL, AL, ]T
av, =[AUZ, - AULT

where 0=*! and 02**2® are two null matrices; symbol diag(-)
represents the diagonal matrix.

By eliminating AXj, in (3) through the Kron reduction [12],
the relationship between Al, and AU, at the IBR terminals in
(3) can be represented

AL, =diag| Py, -Ypz ,(5)|AU, .i=1...n 4
where
YBR_:‘ {S] = Cm,i (SIm - Amr ]_1 Bm,i (5)

In the power system with » IBRs, the power network

interconnecting #» IBRs can be modeled:

-AL, =[ B®y(s)]AT, (6)
where
B(s) a(s)
r(s)= —afs s)|
{ ©) )] -
a(s) = sz?aﬁ > ﬂ(s) = st-f)caﬁ

where B is the reduced node susceptance matrix after
eliminating passive nodes and infinite nodes: @y is the rated
angular velocity of the ac system: and ® denotes the
Kronecker product.

By integrating the IBR modeling (4) and the power
network modeling (6). the power system with #» IBRs can be
modeled by an equivalent multi-input multi-output feedback
control system as shown in Fig. 1 below. The closed-loop
characteristic equation of the system can be represented by

det(diag[Pm-Ym_f(s)J+B®y(s))=0 (8)
where det(-) denotes the determinant function. The system is

stable if and only if all the eigenvalues of (8) are in the left-
half of the complex plane.
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Fig. 1 Closed-loop diagram of the power system with n IBRs.

III. SMALL-SIGNAL STABILITY ANALYSIS OF POWER SYSTEMS
WITH MULTIPLE IBRS

The closed-loop characteristic equation (8) allows us to
analyze the small-signal stability of the power system with n
IBRs. To simplify this analysis, let us consider each IBR in
the system has the same dynamic control strategy and
parameters. That is, Am=Am. Bw—=Bm. Cni~Cpns i =1..... 0, in
(8). Under this condition, the closed-loop characteristic
equation (8) can be rewritten:

det[ ¥, .. |= det[(},r O ¥ [s]y(s]-l] +Y, ® IJ =0 (9)
where
Yz (s)=Co(sT, —4,) B,. (10)
where Y.,=Pg'B; Pp=diag(Ps:), i=1,....n; I, is a n-dimension
identity matrix.

Equation (9) characterizes the small-signal stability of the
power system interconnecting # IBRs through the power
network in the multi-IBR power system. The interaction
between n IBRs will increases the complexity of the small-
signal stability analysis in the system. To reduce the analysis
complexity, we will decouple the »n-IBR system into a set of
single-IBR subsystems based on the following Lemma 1:

Lemma 1. matrix ¥, is diagonalizable, and its all
eigenvalues are positive.

Proof: In a power system with # IBRs, Pg; in matrix Py
meets Pp>0, i=1,....n. Thus, PB;"* are positive definite. As
matrix B is a Hermitian diagonally dominant matrix with
positive diagonal entries, B is positive definite in (6), and then
the P?’BP;"? s positive definite. Since
PY, P = P'?BP;"? | Y, is similar to P;°BP;"? and is
positive definite matrix. Thus, ¥, is diagonalizable and its
eigenvalues are all positive. This concludes the proof m.

According to Lemma 1, there is a matrix W that can
decompose matrix ¥, into a diagonal matrix in which the
diagonal elements consist of the eigenvalues (o,, i=1.....n) in
the order of 0=<01=<0,'--= 0,. That is,

W_leqW =A=diag(o,) i=Ll....n (11)
Combining (11) with (9) yields,
flldet(lfm(s);y(s)_1 +0, ®12]=0 (12)

Equation (12) shows that the power system with » IBRs
can be decoupled into » dynamically independent subsystems
for the small-signal stability analysis. The multi-IBR system is
stable if and only if all the equivalent subsystems are stable. In
other words, if one of the equivalent subsystems is unstable,
the entire system will be unstable. In the multi-IBR system.
each IBR has the same dynamic control strategy and
parameters. For the given control strategy and parameters, the
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stability of each subsystem depends on the eigenvalues o;
(7=1.....n). The smaller eigenvalue ¢; means its corresponding
subsystem is more likely to be unstable. The smallest
eigenvalue g, is corresponding the subsystem, which is the
most critical. Thus, the small-signal stability of the entire
system depends on the critical subsystem. and the stability of
the entire multi-IBR system can be characterized by the
smallest eigenvalue o;.

IV. PROPOSED METHOD FOR SMALL-SIGNAL STABILITY
ASSESSMENT UNDER UNCERTAIN RENEWABLE GENERATION

According to the small-signal stability analysis in the
Section III, it is known that the small-signal stability of the
power system with » IBRs can be assessed based on the
smallest eigenvalue o, of weighted matrix ¥, in (9) for the
power network. However, matrix ¥,, is the function of IBR
generation Pg. When IBR generation is uncertain, the small-
signal stability assessment based on the smallest eigenvalue o4
is required for all feasible uncertain scenarios, which is
computationally daunting.

To address this issue, a robust optimization model can be
formulated for assessing the small-signal stability in the
worst-scenario under uncertain IBR generation based on the
smallest eigenvalue og; of matrix ¥, If under the worst
scenario the power grid stable, all other uncertain scenarios
are also stable. To this end. let A € R" be an uncertain set, and
the IBR generation is constrained within A (i.e., Ps€EA). For
the power system with n IBRs, when its power network
parameters are given, matrix Y., only changes with IBR
generation Pz (i.e., ¥Yo(P5)). Thus, the smallest eigenvalue of
matrix  ¥Y4(P3) under uncertainty is defined as
Omin=in {A(¥,4(Pg)): PEA}, where A(-) is the function to
yield the eigenvalues of a given matrix. Let y be a given
threshold to guarantee dynamic confrol stability of a power
grid. When omin™>y, every uncertain scenario must be stable.
Equivalently, the stability identification based on the g is to
verify if all eigenvalues of Y. (P5) under uncertainty A are
larger than threshold y. Thus, the small-signal stability under
uncertainty A can be analyzed by solving the following
optimization problem to verify if all eigenvalues of ¥.,(Pg) are
in the subset H for Pg€A, where H=(y.o0) is an open subset of
the complex plane, and its complement A*=(0.y) is a semi-
algebraic set.

max x| (13)

xeR" PyeA yeR
st. (¥, (P)—0l,)x=0 (14)
IxB<1, o e H* (15)

Equations (13)-(15) show that if all eigenvalues of matrix
Y.,(Pg) are located in subset H, there exists no ¢€H® and
PzeA, which make the matrix (¥.4(Ps)-0l,) singular. Thus,
only the trivial solution x=0 satisfies the constraint (14). That
is, the system is stable under uncertain IBR generation PsEA
if the solution of the problem in (13)-(15) is equal to zero. To
solve this problem in (3)-(5). this problem can be converted
into an optimization problem with linear matrix inequality
(LMI) constraints, and then solve the converted problem by
building up LMI relaxations to relax the optimization problem
into a sequence of semidefinite optimization problems [13].
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V. CASE STUDIES

In this section, the efficacy of the proposed method is
demonstrated on a power system with three IBRs by
eigenvalue analysis and electromagnetic transient simulations.
The system topology is shown in Fig. 2 while the network
parameters of the system are presented in Table I. All
inverters use the same control strategy shown in Fig. 3, and
the control parameters of each inverter are shown in Table II.
In the system, let us consider the injected power P; (i=1.2.3)
of each IBR varies in the interval (0, 2) p.u.. The varying
generation of these three IBRs can be illustrated by a cube in a
three-dimensional space, which is shown in Fig.4. In this
figure, the cube is divided into 8 sub cubes numbered as (D~
for validating the proposed method.

In the system. the proposed optimization problem in (13)-
(15) is solved under variable IBR generation. For the given
inverter control strategy and parameters in the system, we can
evaluate the threshold wvalue y=3.1 for the proposed
optimization problem (13)-(15) by either analytical calculation
or numerical simulation method. Thus, semi-algebraic set A*
in (15) is (0, 3.1). Table III presents the solutions to
optimization problem in (13)-(15) under different scenarios of
variable IBR generation A; (i=1,..., 8) as illustrated in Fig. 4.
It can be seen from Table III that the system is stable under
scenarios Aj~A; and As~As, but there is an instability risk in
the system under scenario As;. As shown in Table III. the
solutions to the optimization problem is 0 under scenarios
A1~A; and As~Ag, which means the system is stable under
these scenarios of variable IBR generation: on the other hand,
the solutions to the optimization problem is 1 under scenario
As, which indicates these exits an instability risk under this
scenario.

U,£6, E

IBR;
Fig. 2 Diagram of the power system with three IBRs
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Fig. 3 The control block diagram of IBR inverter used in the system in Fig. 2
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Table I Network parameters of the system shown in Fig_ 2 in per unit
Lyg | 025 | Ly | 020 | Ly | 0.15
Ly; 1 020 ] Lz | 015 | Lys | 0.10

Table IT Parameters of IBRs in the system shown in Fig_ 2

PI parameters of current control loop: 1, 10

PI parameters of the constant DC voltage control loop: 0.5, 5
Parameters of the voltage feedforward filter: 0.01

PI parameters of the PLL: 20, 7500

Parameters of active power output and g-axis current reference: 1, 0
Rated capacity of converters in per umt: 1

P;

P
Fig. 4 The cube related to the uncertain IBR generation in the system shown in
Fig. 2

Table II The solutions to optinuzation problem (14)-(16) in the system shown
mn Fig. 2 under different scenarios of variable IBR generation

. . Solutions to optimization
IBR generation scenarios problem ?1111)— (16)
A:1=((1,2),(0,1),(1,2)) 0
A:=((0,1),(0,1),(1,2)) 0
A;=((1,2),(1,2),(1,2)) 1
A=((0,1),(1,2),(1,2)) 0
As=((1,2),(0,1),(0,1)) 0
As=((0,1),(0,1),(0,1)) 0
A=((1,2),(1,2),(0,1)) 0
A:=((0,1),(1,2),(0,1)) 0

To validate the solutions to the proposed optimization
problem in Table III, eigenvalue analysis is first conducted by
MATLAB/Simulink in the system under these scenarios of
variable IBR generations. In the eigenvalue analysis, many
different IBR generation conditions in the system is randomly
selected under each of these 8 scenarios listed in Table III.
Under each selected IBR generation condition, the eigenvalue
analysis is carried out. Table IV demonstrates the typical
results of eigenvalue amalysis in the system under each
scenario. As observed from Table IV, the dominant
eigenvalues of the system under scenarios Aj~A; and As~Ag
are located in the left-half complex plane, which indicates the
system is stable. On the other hand, the dominant eigenvalues
of the system under scenario A; are located in the right-half
complex plane, which indicates there is an instability risk in
the system. The analysis results are consistent with the
solutions to the proposed optimization problem in Table III.
Thus, the proposed method is validated.

Further, electromagnetic transient simulations are
performed by MATLAB/Simulink to validate the solutions in
Table III. In the simulations, many different IBR generation
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conditions in the system is also randomly chosen under each
of these 8 scenarios listed in Table III. Under each chosen IBR
generation condition, the electromagnetic transient simulation
is conducted. Fig. 5 demonstrates the typical simulation
results in the system under each scenario. It can be observed
from Fig. 5. the voltage trajectories at three IBR buses in the
system under scenarios A;~A; and As~Ag are convergent,
which indicates the system is stable. By contrast, the voltage
trajectories at three IBR buses in the system under scenario As
are divergent, which indicates there exists an instability risk in
the system. Again, the analysis results agree with the solutions
to the proposed optimization problem in Table III, which thus
validates the proposed method.

Table IV The typical results of eigenvalue analysis in the system shown m Fig.
2 under different scenarios of variable IBR generation

IBR generation scenarios Dominant eigenvalues
Ay -1.57+£8922i
Ay -4.59+88.721
Az 1.18+89.261
Ay -1.92+89.191
As -3.78+88.91:
As -6.76+88.001
Aq -1.33+£8924
Ag -4.26+88 801
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Fig. 5 The typical results of voltage trajectories at IBR buses in the system
shown in Fig. 2 under different scenarios of variable IBR generation

VI. CONCLUSION

In this paper, a method was proposed for the small-signal
stability analysis of a multi-IBR power system under variable
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renewable generation. Due to the complex interaction between
IBRs interconnected through the power network and variable
renewable generation, it is challenging for the small-signal
stability analysis in a multi-IBR power system. To address the
challenges. it was theoretically proved that the small-signal
stability can be characterized by the smallest eigenvalue of a
weighted Laplacian matrix of the power network in a multi-
IBR power system. On the basis, a robust optimization was
formulated to assess the smallest eigenvalue under variable
renewable generation for the small-signal stability analysis of
a multi-IBR power system while considering under uncertain
renewable generation. The efficacy of the proposed method
was demonstrated on a power system with three IBRs through
both electromagnetic transient simulation and modal analysis.
The proposed method is helpful for grid planners and
operators to understand the impact of uncertain renewable
generation on the small-signal stability resulting from the
interaction between IBRs and the power network in the power
system with large-scale IBR integration.
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