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Abstract—The increasing integration of renewable energy
resources (RERs) such as wind and solar onto the electric power
grid through power electronic interface is challenging safe and
reliable grid operation. Particularly, the high penetration of the
inverter-based RERs (IB-RERs) may drive the grid towards
weak grid conditions, which may cause grid stability issues. Grid
strength assessment is helpful to identify these weak grid issues.
However, it is challenging to assess grid strength while
considering the impact of uncertain renewable generation. This
paper presents an approach for quantifying the probabilistic
characteristics of grid strength under uncertain renewable
generation based on the probabilistic collocation method, which
is a computationally efficient technique to reduce the
computational burden without compromising the result
accuracy compared with traditional Monte Carlo simulation.
The efficacy of the proposed approach is demonstrated on the
modified IEEE 9-bus system.

Keywords—renewable energy resources, grid strength,
probabilistic collocation method

1. INTRODUCTION

Renewable energy resources (RERs) are being
increasingly integrated into the electric power grid to reduce
greenhouse gas emissions. Most renewable energy resources
are interfaced with the power grid through power electronic
inverters. While the inverter-based RERs (IB-RERs) supply
clean energy to electricity customers, they are also
challenging grid planning and operation. The IB-RERs
provide expected real and reactive power based on their
electronic controls, which link renewable energy resources to
the grid. These controls may in turn depend on a stable
voltage reference from the grid. As the grid is weakened due
to the increasing displacement of synchronous generators by
IB-RERs, the voltage reference becomes less stable, and
control dynamics and tuning become increasingly influential
on overall system behavior [1]. The weak grid issues may
become prominent due to the variability of IB-RER
generation under uncertain weather conditions [2][3].

Potential weak grid issues are usually analyzed and
identified based on grid strength assessment. Short-circuit
ratio (SCR) is an index recommended by North American
Electric Reliability Corporation (NERC) to quantify the grid
strength [1][4]. Commonly used SCR calculation methods
ignore the impact of interactions among IB-RERs on grid
strength and thus may cause an inaccurate estimation of grid
strength at points of interconnection (POI) for IB-RERs
[1][5]- To consider the effect of IB-RERSs interactions on the
grid strength, several new methods have been developed,
such as the weighted short-circuit ratio (WSCR) method
developed by the Electric Reliability Council of Texas [5]
and the composite short-circuit ratio (CSCR) method

978-1-6654-1211-7/22/$31.00 ©2022 IEEE

Almir Ekic
Electrical and Computer Engineering
North Dakota State University
Fargo, ND, USA
almir.ekic@ndsu.edu

Di Wu
Electrical and Computer Engineering
North Dakota State University
Fargo, ND, USA
di.wu.3@ndsu.edu

developed by GE Energy Consulting [6]. Both the CSCR and
the WSCR methods do not consider the real electrical
network connections among IB-RERs, which may not reflect
the actual strength of the grid at the POIs. Also, both the
CSCR and WSCR methods mainly provide the aggregated
strength of a power grid in the area where the IB-RERs are
interconnected electrically close, but they do not calculate the
strength of the grid at each individual POIs in the specific
area. To overcome these shortcomings, the site-dependent
short-circuit ratio (SDSCR) method is proposed in [7].

While various methods have been proposed to improve the
accuracy of grid strength assessment, it is still challenging to
assess grid strength under uncertain IB-RER generation.
Generally, the impact of uncertain IB-RERs on grid strength
can be evaluated by integrating the methods for grid strength
assessment with Monte Carlo simulation (MCS). Thus, MCS
can be used to obtain a large number of IB-RER generation
samples [8]-[10], and grid strength assessment is repeated
with these samples to render the uncertainty characteristics of
the results. For large power systems with large-scale
integration of IB-RERs, such uncertainty evaluation for grid
strength needs tens of thousands of simulations to achieve
accurate results.

To improve the computational efficiency, the paper
proposes a probabilistic approach for assessing the impact of
uncertain IB-RER generation on grid strength by integrating
the probabilistic collocation method (PCM) with the SDSCR-
based method. The PCM has been studied for uncertainty
analysis in numerous power system studies [11]-[15].
Compared to other probabilistic methods used in power
system probabilistic studies, the PCM can characterize the
uncertainty of renewable generation by more types of
distributions obtained from the historical or predicted data.
Thus, the proposed method can use the probability
distributions of renewable generation to quantify the
probabilistic characteristics of grid strength through a set of
orthogonal polynomials to establish the probabilistic
approximation functions for grid strength analysis. Since a
small number of grid strength assessment are required to
determine the parameters in the approximation functions, the
proposed method can significantly reduce computational
burden and outperforms MCS in terms of simulation
efficiency.

The rest of this paper is organized as follows. In Section
II, grid strength assessment is discussed. In Section III, the
principle of PCM is introduced. Section IV presents our
proposed method for grid strength analysis of power systems
under uncertain renewable generation. The efficacy of the
proposed method is demonstrated in Section V. In Section VI,
the conclusions are drawn.

Authorized licensed use limited to: NORTH DAKOTA STATE UNIV. Downloaded on November 06,2022 at 12:54:17 UTC from IEEE Xplore. Restrictions apply.



II. GRID STRENGTH ASSESSMENT

Grid strength assessment can help grid engineers identify
and understand weak grid issues for reliably planning and
operating the power grid. Grid strength is a characteristic of
an electrical power system that relates to the size of the
change in voltage following a fault or disturbance on the
power system [16]. The stronger a grid is, the less risks the
grid will have for weak grid issues. The strength of a power
grid at (POI) is commonly quantified by SCR, which is the
ratio of the short circuit capacity at the POI to the rated
capacity or injected power from the IB-RER [17]. That is,

|Sac,i| —_ |VR,i|2 1

SR = o = Pt T M
where symbol || indicates the magnitude of a complex
quantity; Se.=|Vr{*/|Zr, is the short-circuit capacity of the
grid at POI i; Vz; is the voltage at POI i; Zg; is the Thevenin
equivalent impedance seen at POI i; and Pg; is the rated
capacity or injected power from the IB-RER to be integrated
at POI i.

Since the SCR defined in (1) does not account for the
interactions among multiple IB-RERs, its evaluation results
may be inaccurate, especially for grid strength assessment at
POIs, where IB-RERs are electrically close. To improve the
accuracy of grid strength assessment, the SDSCR was
proposed in [7] by analyzing the relationship between the
SCR and voltage stability in a power grid with a single IB-
RER and then extending this relationship to a power grid with
multiple IB-IBRs. The SDSCR is defined as [7],
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where R is the set of all POIs for IB-RER integration; Zgg,; is
the (i, /") element in submatrix of bus impedance matrix that
is only related to buses connected to IB-RERs; and symbol *
indicates the conjugate of a complex quantity.

Compared with the SCR in (1), the SDSCR in (2)
improves the accuracy of grid strength assessment by
considering the impact of the interactions among IB-RER
generation on the assessment results at POl i via the
interaction factor w;. The SCR in (1) can be considered as a
special case of the SDSCR when only one IB-RER is
connected to the power grid. Thus, the SCR ranges for grid
strength evaluation can also be applied to SDSCR. That is,
the grid is strong at a POl if its SDSCR value is larger than 3;
the grid is weak at a POl if its SDSCR value is between 2 and
3; and the grid is very weak at a bus if its SDSCR value is
smaller than 2 [9]. To accurately assess grid strength at POI i
using the SDSCR, it needs to consider not only the renewable
generation Pr; to be integrated at POI i but also the renewable
generation Pr; to be integrated at the other POIs. Thus,
increasing renewable generation at any of these POIs may
reduce grid strength.

The uncertainty and intermittency characteristics of
renewable energy could affect grid strength and thus grid
stability, and this impact could be aggravated with the
increase in the penetration level of renewable energy. To
evaluate the impact of uncertain renewable generation on grid
strength, MCS can typically be used to generate a large
number of IB-RER generation samples; then, grid strength
assessment is repeated with these samples to render the

uncertainty characteristics of the results. Such uncertainty
evaluation needs to consider various combinations of IB-
RER generations at different POIs. In large power systems
with large-scale integration of IB-RERs, the uncertainty
evaluation is computational expensive. To improve the
computational efficiency, the paper proposes a probabilistic
approach by integrating the PCM with the SDSCR-based
method to quantify the probabilistic characteristics of grid
strength under uncertain renewable generation.

III. PRINCIPLE OF PROBABILISTIC COLLOCATION METHOD

The PCM is an approach using Gaussian quadrature to map
the relationship between the uncertain input parameters and
the output [11]. It simplifies the relationship between the
uncertain parameters and the desired output by identifying a
good set of simulations for correctly and robustly determining
the mapping. The coefficients of this polynomial mapping
equation are determined by methodically selecting the
collocation points. The basic principles of the PCM are
derived from the concepts of orthogonal polynomials and
Gaussian quadrature integration [12].

A. Orthogonal polynomials and Gaussian quadrature

For a single uncertain parameter x, two polynomial
functions g(x) and A(x) are orthogonal only if their inner
product is zero [18]. The inner product of g(x) and A(x) is
defined as

(9, h(x) = [, fF)g(h(x) dx (4)

where f(x) is any non-negative weighting function defined in
a space A, and it can be represented with the probability
density function (pdf) in the PCM. A set of orthogonal
polynomial functions {Hi(x), Hi(x), ..., Ha(x)} can be defined,

) ={o. 2] )

where H; is a polynomial of order i. For each order i, H; has
exactly 7 roots within the space of 4. These roots are the
collocation points to evaluate the coefficients of g(x) used in
the PCM. The (-1)"" and 0% order polynomials are defined to
be 0 and 1, respectively.

H_;(x)=0
Ho(x) = 1 (6)

Gaussian quadrature integration in (4) approximates the
numeric value for the integral by selecting appropriate x
values to evaluate g(x) and calculate the integral,

S, FG)gh(x) dx =~ X fig(x:) (7

where f; is the coefficient determined by the weighting
function f(x), and g(x;) is computed based on x;, which is the
roots of the higher orthogonal polynomials selected based on
the order of the PCM model.

B. PCM with a single input parameter

For a single uncertain parameter x with its pdf f(x), the
output Y is a function of the input uncertain parameter x. The
function g(x) maps the relationship between x and Y. The

estimated output ¥ in PCM can be represented
Y = g(x) = koHo(x) + ki Hy(x) + .. +kp_1Hp_1(x)  (8)

where k; are constant coefficients, H; are orthogonal
polynomials of uncertain input x, and # is the order of the PCM
model. The coefficients k; are solved by replacing the

Authorized licensed use limited to: NORTH DAKOTA STATE UNIV. Downloaded on November 06,2022 at 12:54:17 UTC from IEEE Xplore. Restrictions apply.



estimated output and orthogonal polynomials for the
collocation points.

The collocation points are selected as the roots of the next
higher order orthogonal polynomial H,+1 of the uncertain
parameter x for the n" order PCM approximation model. This
approach allows the collocation points to traverse the high
probability regions of their distribution and to capture the
behavior of the estimated output to the fullest extent [13]. The
coefficients k; can be solved by

k1 Hp_1(x1) Ho(x)] ' [9Cx1)
P = : : i )
ko Hp1(xp) Ho(xy) G(xn)
where x;, ..., x, are the collocation points, §(x;),..., §(x,) are

the responses of the output at the collocation points, and
Hy(x), ..., Hy1(x) are the orthogonal polynomials calculated
at the collocation points. These coefficients are replaced in
(8) to obtain the PCM approximation model. The statistics of
the output response for a given range of the uncertain input
parameter can be calculated simply using these coefficients.
The expected value of output is E/§(x)]= ko and the variance
of the output value is ¢2[g(x)] = X7 k2.

C. PCM with multiple input parameters

When multiple uncertain parameters x;, x, ..., x, with
independent pdfs f(x;), f(xz),..., fix,) are considered in a
system, the approximation for the output can be obtained by,

P = kg ) Tia iy G+ K Him GO + Y Y iy (e ()]
i=1 i=1j=1
J#i
(10)
where ky, kij, ..., kin are the coefficients, and H;(x), ..., Him(x:)
are orthogonal polynomials for uncertain parameter x; [13].

Equation (10) shows that as the number of input
parameters and the order of orthogonal polynomials grow, the
size and complexity of the approximation polynomial
functions increases. Thus, the number of simulation samples
required for determining the coefficients also increases
dramatically. Therefore, to retain the advantages of PCM, the
number of input variables and the order of polynomials need
to be relatively small [14].

IV. PROBABILISTIC APPROXIMATION METHOD FOR GRID
STRENGTH ASSESSMENT

To assess the impact of uncertain renewable generation
on grid strength, the SDSCR-based method is integrated with
the PCM, which models the impact of uncertain renewable
generation probabilistically based on their historical data and
evaluates the probabilistic results.

A. Probabilistic model of renewable generation

The actual historical data can be used to characterize the
uncertainty of renewable generation. For example, uncertain
wind generation is related to variable wind speed. Thus, the
forecasted or the historical data for wind speed can be used
for probabilistically modeling the uncertain feature of wind
generation. The mechanical power output P of wind turbine
can be calculated using the equation below [19],

0, ifw< wh
w-win . i
P = Pt i <w s wen (I
Pg, otherwise

where w is the wind speed, Py is the rated power of wind
generator, wi™ and w2%¢ are the cut-in and cut-out wind
speed, and the uncertainty of the wind speed can be

represented by the Weibull distribution below [13],
—_ w Kk
fon= ()" L] (12)

c c

where f{w) is the pdf of the wind speed, & is the shape factor
and c is the scale factor of the distribution of wind speed w.
Fig. 1 shows the pdf curve of wind speed modeled as Weibull
distribution to represent the uncertainty in wind generation.
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Fig. 1. Probability density of wind speed with Weibull distribution.

TABLE L. ORTHOGONAL POLYNOMIALS FOR WIND GENERATORS

Wind Generator 1

G, (y1) =y, — 14872

G,(y,) = y,2 — 4.9743y, + 3.6988

G5(y,) = y,° —10.4615y,% + 26.0197y, — 12.8986

Gy(y1) = y,* — 17.9487y,° + 93.8856y,% — 155.6735y, + 57.8786

Wind Generator 2

Hy(y;) =y, — 1.5454

H,(y,) = y,% — 5.0909y, + 3.9338

H;(y,) = y,° — 10.6363y,2 + 27.0743y, — 13.9474

H,(y,) = y,* — 18.1818y,% + 96.6942y,% — 164.0871y, + 63.3973

To derive the orthogonal polynomials of wind speed for
the application of the PCM, we consider the associated
Laguerre polynomial, which is orthogonal over [0, o) with
respect to the weighting function v “e™” with an arbitrary real z.

IS e P ML Wdv=0, i (13)

The weighting function for the Weibull distribution can
be rearranged to be expressed in the form of the Laguerre
polynomial [13]. Thus, the orthogonal polynomials for the
representative distribution can be derived by the method
described in [20]. Equation (10) can be rearranged by
comparing it with the Weibull distribution and is written as
in terms of y as a transitional variable.

o ko1
J, yE e YHMH;()dy =0, i7  (14)

y=()" (15)

c

where

Based on (14) and the Gram-Schmidt process [18], we can
derive the orthogonal polynomials for the wind speed in wind
generators, such as those listed in Table I, where Gi(y1)
represents the orthogonal polynomials for wind generator 1
and Hi(y,) for wind generator 2. The roots from Gi(y1) and
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Hi(y») are later converted back to relevant wind speeds. Using
these wind speeds, the coefficients of the approximation
model for SDSCR can be evaluated.

B. Probabilistic approximation method for grid strength
assessment

By integrating the PCM with the SDSCR-based method,
the main steps of the proposed approach for probabilistically
assessing the impact of uncertain renewable generation on
grid strength can be summarized as follows:

1) Obtain the actual historical/predicted data of uncertain
input parameters, such as wind speed and wind power
generation, and convert them into intermediate variables
using (13)-(14) to obtain appropriate pdfs of uncertain
parameters. Evaluate orthogonal polynomial functions
from the obtained pdfs based on equations (4)-(6).

2) Develop the polynomial models of the output response
with respect to input variables of corresponding wind
speed in step 1) using (8) or (10) and unknown
coefficients.

3) Compute the collocation points from the orthogonal
polynomials in step 1) and run power flow calculation at
these points to find the corresponding output of SDSCR
defined in (2).

4) Use the -calculated collocation points and the
corresponding outputs of SDSCR in step 3) to obtain the
unknown coefficients of the approximation model for
SDSCR developed in step 2) to quantify the impact of
uncertain wind generation on grid strength.

V. CASE STUDIES

The efficacy of the proposed method for quantifying the
impact of uncertain renewable generation on grid strength is
demonstrated on the modified IEEE 9-bus system with two
wind generators. The diagram of the system is shown in Fig.
2, where the original synchronous generator at bus 2 is
replaced with a doubly fed induction generator (DFIG), and
another DFIG is added at bus 6. The wind speed input for these
two DFIGs are the uncertain parameters that are used in the
proposed method for approximating the SDSCR at buses 3
and 6. The other parameters of the two DFIGs are presented
in Table II, and the other network parameters of the system
can be founded in [21].
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Fig. 2. Diagram of the modified IEEE 9-bus system with two DFIGs.

To evaluate the approximation accuracy of the proposed
approach, the results of MCS method are used as a reference.
Usually, the stopping criteria is used to determine the

required number of MCS runs so that the sample mean error
is below a specific threshold. In various power system
applications such as transient stability and small-disturbance
stability, the sample mean error is reduced to acceptable
limits with 5000 runs for MCS method [22]. Thus, 5000 MCS
runs are adopted as the benchmark value for the grid strength
assessment in this paper. In each simulation, the power
outputs of wind generators are changed due to the varying
wind speed following the Weibull distribution as shown in
Fig. 1, and the power outputs of the synchronous generators
are adjusted to balance the power uncertainty in the system.
The grid strength is evaluated based on the SDSCR defined
in (2). The sum- of square-root error (essz) is computed as an
index for evaluating the approximation accuracy [11].

T, (Pi=Y )2 ()
e (16)

where Y; is the i the output from the MCS simulation, ¥; is
the i" estimated output based on the proposed approach, 7 is
the number of the collocation points used in the PCM, f($) is
the joint pdf and f{d) is the pdf of the highest probability
collocation point. Here, the acceptable error threshold is 0.3
for grid strength application.

€ssr =

TABLEII. DFIG PARAMETERS
Parameters DFIG 1 DFIG 2
k=195 k=22
Shape and scale parameters =8 =105
Cut-in speed (m/s) wi =3 win =3
Cut-out speed (m/s) wait =15 wyt =15
Rated power (MW) Pr=100 Pr>=50

A. PCM simulation in various orders

In this case, the wind generation penetration is 20% of the
total load in the system. The proposed method is used to
approximate the results of grid strength evaluated based on
the SDSCR at buses 2 and 3 under uncertain wind generation.
Various orders (the first order, the first two orders, and the
first three orders) of the orthogonal polynomials of each wind
generation are considered in the approximation model, and
the simulation results are compared with MCS results. Due to
the page limitation, the results of grid strength assessment at
bus 3 are selected as an example, and the observed
conclusions are also applicable to the results at bus 6.

Fig. 3 and Fig. 4 shows the pdf and cumulative
distribution function (cdf) curves from grid strength at bus 3
under uncertain wind generation injected at buses 3 and 6
from the three different approximation orders and MCS.
Table III compares the probabilistic results of essz error, the
mean value, the variance value, the simulation runs and
computational time. Equations (17)-(19) show the three
approximation models with three different orders for SDSCR
at bus 3 in terms of transitional variable y shown in (14) and

(15).
§() = 0.6326y, — 0.8881y, + 3.5424 (17)

§() = —0.2035y2 + 2.3564y; — 0.6866Y, (18)
—0.5032y,y, + 3.4626

d(y) = 0.0503y3 — 0.8867yZ + 1.1687y% + 5.005y;  (19)
— 43125y, — 1.2076y,y,
+5.1262
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Fig. 3. pdf curves for grid strength evaluated based on SDSCR at bus 3 for
different polynomuial orders.
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Fig 4. cdf curves for grid strength evaluated based on SDSCR at bus 3 for
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It can be observed from Fig. 3 and Fig. 4 that among all
three approximation models with different orders of
orthogonal polynomials, the approximation model with the
first two polynomial orders provides more accuracy fitting
results. In Fig. 3 and Fig. 4, the approximation model with
the first two polynomial orders provides the estimated pdf
and cdf curves closer to those obtained from MCS than the
approximation models with the other polynomial orders.
Moreover, Table III shows that the means and variances from
the approximation model with the first two polynomial orders
are 4.28 and 2.95, which are closer to 4.53 and 3.97 from
MCS results. In addition, the approximation model with the
first two polynomial orders has the smallest error (i.e., 0.27)
among the three approximation models with different orders
of orthogonal polynomials. Thus, the approximation model
with the first three polynomial orders provides more accuracy
approximation results than the other two approximation
models with different orders of orthogonal polynomials.

It can be seen from Table III that the proposed method can
save a huge amount of simulation time, since it reduces
simulation burden significantly. To obtain the results of Figs.
2 and 3, the approximation model with the first two
polynomial orders requires only 8 simulation runs, but the
MCS requires 5000 simulation runs. The time spent by MCS
method is also almost 20 times larger than the proposed
method.

TABLE IIL. COMPARISON OF SDSCR. AT BUS 3 FOR MCS AND
APPROXIMATION MODELS WITH DIFFERENT POLYNOMIALS ORDERS

mcs POV PAMD o PO
mean 453 335 428 499
variance 397 1.45 295 3.08
€ssr - 0.59 0.27 0.29
runs 5000 3 8 15
Time (s) 102.71 432 491 511

B. Estimating SDSCR for Different Wind Penetration

To analyze the impact of uncertain wind generation on
grid strength, the wind power penetration is increased from
20% of total load power to 40% in the system, and the power
outputs of synchronous generators are also adjusted to
balance the power in the system. Fig. 5 shows the cdf curves
of the grid strength evaluated based on the SDSCR at bus 3
for the two different wind penetrations, respectively. The
approximation model with the first two polynomial orders is
used for the evaluation. Table IV compares the mean value
and variance value for the different penetration cases.

It can be observed from Fig. 5 and Table III that the
increasing penetration of uncertain wind generation reduces
the grid strength, thus increasing the risk of weak grid issues.
As shown in Fig. 6, when the wind penetration is 20% of total
load power, the SDSCR values changes between 0.93 and
15.88: when the wind generation is increased to 40% of total
load power, the SDSCR values are reduced to the range
between 0.41 to 8.04. Also, Table IV shows that the means
and variances of SDSCR at bus 3 are reduced after the wind
power penetration is increased from 20% of total load power
to 40% in the system. Thus, the increasing wind generation
reduces the changing range of the SDSCR and thus the grid
strength. Particularly, as discussed in Section II, the weak
grid issues may become significant when SDSCR is smaller
than 3. It can be observed from Fig. 5 that when the wind
penetration is 20% of total load power, the probability of
SDSCR smaller than 3 is 0.027; on the other hand, when the
wind generation is increased to 40% of total load power, the
probability is increased to 0.2. This indicates that the risk of
weak grid issues increases with the wind generation
penetration. Thus, the proposed method can quantify the
probabilistic impact on grid strength due to uncertain wind
generation.

1 13

09

05

01F 20% penetration | -
L ~0.027 — = 4()% penetration
0 . L ! L

0 3 5 10 15 20
SDSCR at bus 3
Fig. 5. cdf curves of SDSCR at bus 3 for different wind power penetration
based on the approximation model with the first two polynomuial orders.
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TABLE IV. COMPARISION OF SDSCR AT BUS 3 FOR DIFFERENT WIND
PENETRATION USING THE APPROXIMATION MODEL WITH THE FIRST TWO

POLYNOMIAL ORDERS
Wind Generation 40% of total load 20% of total load
(150 MW) (75 MW)
mean 4.28 8.52
variance 2.56 10.14

VI. CONCLUSION

This paper proposed an approach for assessing the impact
of uncertain renewable generation on grid strength by
integrating the PCM with the SDSCR-based method. In the
proposed approach, the PCM was used to establish the
approximation polynomial functions with multiple input
variables for modeling the probabilistic impact of uncertain
renewable generation on grid strength evaluated based on the
SDSCR-based method. The PCM is a computationally
efficient technique, which can reduce the computation burden
without compromising the result accuracy compared to
traditional Monte Carlo simulation. The efficacy of the
proposed method is demonstrated on the modified IEEE 9-
bus system. The proposed approach is promising to guide grid
planning and operation for identifying potential weak grid
issues in power systems under uncertain renewable
generation. In our further research, we will further improve
the proposed method for large-scale power system
application. We will design algorithms to select the
approximation samples of input variables to improve the
approximation accuracy. Also, the actual historical data of
renewable generation will be used to capture the distribution
of renewable generation.
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