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Abstract—The increasing integration of renewable energy 

resources (RERs) such as wind and solar onto the electric power 

grid through power electronic interface is challenging safe and 

reliable grid operation. Particularly, the high penetration of the 

inverter-based RERs (IB-RERs) may drive the grid towards 

weak grid conditions, which may cause grid stability issues. Grid 

strength assessment is helpful to identify these weak grid issues. 

However, it is challenging to assess grid strength while 

considering the impact of uncertain renewable generation. This 

paper presents an approach for quantifying the probabilistic 

characteristics of grid strength under uncertain renewable 

generation based on the probabilistic collocation method, which 

is a computationally efficient technique to reduce the 

computational burden without compromising the result 

accuracy compared with traditional Monte Carlo simulation. 

The efficacy of the proposed approach is demonstrated on the 

modified IEEE 9-bus system.  

Keywords—renewable energy resources, grid strength, 

probabilistic collocation method  

I. INTRODUCTION  

Renewable energy resources (RERs) are being 
increasingly integrated into the electric power grid to reduce 
greenhouse gas emissions. Most renewable energy resources 
are interfaced with the power grid through power electronic 
inverters. While the inverter-based RERs (IB-RERs) supply 
clean energy to electricity customers, they are also 
challenging grid planning and operation. The IB-RERs 
provide expected real and reactive power based on their 
electronic controls, which link renewable energy resources to 
the grid. These controls may in turn depend on a stable 
voltage reference from the grid. As the grid is weakened due 
to the increasing displacement of synchronous generators by 
IB-RERs, the voltage reference becomes less stable, and 
control dynamics and tuning become increasingly influential 
on overall system behavior [1]. The weak grid issues may 
become prominent due to the variability of IB-RER 
generation under uncertain weather conditions [2][3]. 

Potential weak grid issues are usually analyzed and 
identified based on grid strength assessment. Short-circuit 
ratio (SCR) is an index recommended by North American 
Electric Reliability Corporation (NERC) to quantify the grid 
strength [1][4]. Commonly used SCR calculation methods 
ignore the impact of interactions among IB-RERs on grid 
strength and thus may cause an inaccurate estimation of grid 
strength at points of interconnection (POI) for IB-RERs 
[1][5]. To consider the effect of IB-RERs interactions on the 
grid strength, several new methods have been developed, 
such as the weighted short-circuit ratio (WSCR) method 
developed by the Electric Reliability Council of Texas [5] 
and the composite short-circuit ratio (CSCR) method 

developed by GE Energy Consulting [6]. Both the CSCR and 
the WSCR methods do not consider the real electrical 
network connections among IB-RERs, which may not reflect 
the actual strength of the grid at the POIs. Also, both the 
CSCR and WSCR methods mainly provide the aggregated 
strength of a power grid in the area where the IB-RERs are 
interconnected electrically close, but they do not calculate the 
strength of the grid at each individual POIs in the specific 
area. To overcome these shortcomings, the site-dependent 
short-circuit ratio (SDSCR) method is proposed in [7].  

While various methods have been proposed to improve the 
accuracy of grid strength assessment, it is still challenging to 
assess grid strength under uncertain IB-RER generation. 
Generally, the impact of uncertain IB-RERs on grid strength 
can be evaluated by integrating the methods for grid strength 
assessment with Monte Carlo simulation (MCS). Thus, MCS 
can be used to obtain a large number of IB-RER generation 
samples [8]-[10], and grid strength assessment is repeated 
with these samples to render the uncertainty characteristics of 
the results. For large power systems with large-scale 
integration of IB-RERs, such uncertainty evaluation for grid 
strength needs tens of thousands of simulations to achieve 
accurate results.  

To improve the computational efficiency, the paper 
proposes a probabilistic approach for assessing the impact of 
uncertain IB-RER generation on grid strength by integrating 
the probabilistic collocation method (PCM) with the SDSCR-
based method. The PCM has been studied for uncertainty 
analysis in numerous power system studies [11]-[15]. 
Compared to other probabilistic methods used in power 
system probabilistic studies, the PCM can characterize the 
uncertainty of renewable generation by more types of 
distributions obtained from the historical or predicted data. 
Thus, the proposed method can use the probability 
distributions of renewable generation to quantify the 
probabilistic characteristics of grid strength through a set of 
orthogonal polynomials to establish the probabilistic 
approximation functions for grid strength analysis. Since a 
small number of grid strength assessment are required to 
determine the parameters in the approximation functions, the 
proposed method can significantly reduce computational 
burden and outperforms MCS in terms of simulation 
efficiency.  

The rest of this paper is organized as follows. In Section 
II, grid strength assessment is discussed. In Section III, the 
principle of PCM is introduced. Section IV presents our 
proposed method for grid strength analysis of power systems 
under uncertain renewable generation. The efficacy of the 
proposed method is demonstrated in Section V. In Section VI, 
the conclusions are drawn.  
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II. GRID STRENGTH ASSESSMENT 

Grid strength assessment can help grid engineers identify 
and understand weak grid issues for reliably planning and 
operating the power grid. Grid strength is a characteristic of 
an electrical power system that relates to the size of the 
change in voltage following a fault or disturbance on the 
power system [16]. The stronger a grid is, the less risks the 
grid will have for weak grid issues. The strength of a power 
grid at (POI) is commonly quantified by SCR, which is the 
ratio of the short circuit capacity at the POI to the rated 
capacity or injected power from the IB-RER [17]. That is,  

SCRi =
|Sac,i|

PR,i
=

|VR,i|
2

PR,i
.

1

|ZR,i|
       (1) 

where symbol |∙| indicates the magnitude of a complex 
quantity; Sac,i=|VR,i|2/|ZR,i| is the short-circuit capacity of the 
grid at POI i; VR,i is the voltage at POI i; ZR,i is the Thevenin 
equivalent impedance seen at POI i; and PR,i is the rated 
capacity or injected power from the IB-RER to be integrated 
at POI i. 

Since the SCR defined in (1) does not account for the 
interactions among multiple IB-RERs, its evaluation results 
may be inaccurate, especially for grid strength assessment at 
POIs, where IB-RERs are electrically close. To improve the 
accuracy of grid strength assessment, the SDSCR was 
proposed in [7] by analyzing the relationship between the 
SCR and voltage stability in a power grid with a single IB-
RER and then extending this relationship to a power grid with 
multiple IB-IBRs. The SDSCR is defined as [7], 

𝑆𝐷𝑆𝐶𝑅𝑖 =
|𝑉𝑅,𝑖|2

(|𝑃𝑅,𝑖+∑ 𝑤𝑖𝑗𝑃𝑅,𝑗|)|𝑍𝑅𝑅,𝑖𝑖|𝒋𝝐𝑹,𝑗≠𝑖
  (2) 

𝑤𝑖𝑗 =
𝑍𝑅𝑅,𝑖𝑗

𝑍𝑅𝑅,𝑖𝑖
× (

𝑉𝑅,𝑖

𝑉𝑅,𝑗
)

∗

                   (3) 

where R is the set of all POIs for IB-RER integration; ZRR,ij is 
the (ith, jth) element in submatrix of bus impedance matrix that 
is only related to buses connected to IB-RERs; and symbol * 
indicates the conjugate of a complex quantity.  

Compared with the SCR in (1), the SDSCR in (2) 
improves the accuracy of grid strength assessment by 
considering the impact of the interactions among IB-RER 
generation on the assessment results at POI i via the 
interaction factor ωij. The SCR in (1) can be considered as a 
special case of the SDSCR when only one IB-RER is 
connected to the power grid. Thus, the SCR ranges for grid 
strength evaluation can also be applied to SDSCR. That is, 
the grid is strong at a POI if its SDSCR value is larger than 3; 
the grid is weak at a POI if its SDSCR value is between 2 and 
3; and the grid is very weak at a bus if its SDSCR value is 
smaller than 2 [9]. To accurately assess grid strength at POI i 
using the SDSCR, it needs to consider not only the renewable 
generation PR,i to be integrated at POI i but also the renewable 
generation PR,j to be integrated at the other POIs. Thus, 
increasing renewable generation at any of these POIs may 
reduce grid strength. 

The uncertainty and intermittency characteristics of 
renewable energy could affect grid strength and thus grid 
stability, and this impact could be aggravated with the 
increase in the penetration level of renewable energy. To 
evaluate the impact of uncertain renewable generation on grid 
strength, MCS can typically be used to generate a large 
number of IB-RER generation samples; then, grid strength 
assessment is repeated with these samples to render the 

uncertainty characteristics of the results. Such uncertainty 
evaluation needs to consider various combinations of IB-
RER generations at different POIs. In large power systems 
with large-scale integration of IB-RERs, the uncertainty 
evaluation is computational expensive. To improve the 
computational efficiency, the paper proposes a probabilistic 
approach by integrating the PCM with the SDSCR-based 
method to quantify the probabilistic characteristics of grid 
strength under uncertain renewable generation. 

III. PRINCIPLE OF PROBABILISTIC COLLOCATION METHOD  

The PCM is an approach using Gaussian quadrature to map 
the relationship between the uncertain input parameters and 
the output [11]. It simplifies the relationship between the 
uncertain parameters and the desired output by identifying a 
good set of simulations for correctly and robustly determining 
the mapping. The coefficients of this polynomial mapping 
equation are determined by methodically selecting the 
collocation points. The basic principles of the PCM are 
derived from the concepts of orthogonal polynomials and 
Gaussian quadrature integration [12].  

A. Orthogonal polynomials and Gaussian quadrature 

For a single uncertain parameter x, two polynomial 
functions g(x) and h(x) are orthogonal only if their inner 
product is zero [18]. The inner product of g(x) and h(x) is 
defined as  

⟨𝑔(𝑥), ℎ(𝑥)⟩ = ∫ 𝑓(𝑥)𝑔(𝑥)ℎ(𝑥) 𝑑𝑥
𝐴

                (4) 

where f(x) is any non-negative weighting function defined in 
a space A, and it can be represented with the probability 
density function (pdf) in the PCM. A set of orthogonal 
polynomial functions {H1(x), H1(x), …, Hn(x)} can be defined, 

⟨𝐻𝑖 , 𝐻𝑗⟩ = {
1,  𝑖 = 𝑗
0,  𝑖 ≠ 𝑗

                             (5) 

where Hi is a polynomial of order 𝑖. For each order i, Hi has 
exactly i roots within the space of A. These roots are the 
collocation points to evaluate the coefficients of g(x) used in 
the PCM. The (-1)th and 0th order polynomials are defined to 
be 0 and 1, respectively. 

𝐻−1(𝑥) = 0  

𝐻0(𝑥) = 1                            (6) 

Gaussian quadrature integration in (4) approximates the 
numeric value for the integral by selecting appropriate x 
values to evaluate g(x) and calculate the integral, 

∫ 𝑓(𝑥)𝑔(𝑥)ℎ(𝑥) 𝑑𝑥
𝐴

≈ ∑ 𝑓𝑖𝑔(𝑥𝑖)𝑛
𝑖=1    (7) 

where fi is the coefficient determined by the weighting 
function f(x), and g(xi) is computed based on xi, which is the 
roots of the higher orthogonal polynomials selected based on 
the order of the PCM model. 

B.  PCM with a single input parameter 

For a single uncertain parameter x with its pdf f(x), the 
output Y is a function of the input uncertain parameter x. The 
function g(x) maps the relationship between x and Y. The 

estimated output Ŷ in PCM can be represented 

  𝑌̂ = 𝑔̂(𝑥) = 𝑘0𝐻0(𝑥) + 𝑘1𝐻1(𝑥) + ⋯ . . +𝑘𝑛−1𝐻𝑛−1(𝑥)    (8) 

where ki are constant coefficients, Hi are orthogonal 
polynomials of uncertain input x, and n is the order of the PCM 
model. The coefficients ki are solved by replacing the 
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estimated output and orthogonal polynomials for the 
collocation points. 

The collocation points are selected as the roots of the next 
higher order orthogonal polynomial Hn+1 of the uncertain 
parameter x for the nth order PCM approximation model. This 
approach allows the collocation points to traverse the high 
probability regions of their distribution and to capture the 
behavior of the estimated output to the fullest extent [13]. The 
coefficients ki can be solved by 

[
𝑘𝑛−1

⋮
𝑘0

] = [
𝐻𝑛−1(𝑥1) ⋯ 𝐻0(𝑥1)

⋮ ⋱ ⋮
𝐻𝑛−1(𝑥𝑛) … 𝐻0(𝑥𝑛)

]

−1

[
𝑔̂(𝑥1)

⋮
𝑔̂(𝑥𝑛)

]              (9) 

where x1, …, xn are the collocation points, 𝑔̂(𝑥1),…, 𝑔̂(𝑥𝑛) are 
the responses of the output at the collocation points, and 
H0(x), …, Hn-1(x) are the orthogonal polynomials calculated 
at the collocation points. These coefficients are replaced in 
(8) to obtain the PCM approximation model. The statistics of 
the output response for a given range of the uncertain input 
parameter can be calculated simply using these coefficients. 
The expected value of output is E[𝑔(𝑥)]= k0 and the variance 
of the output value is  𝜎2[𝑔(𝑥)] = ∑ 𝑘𝑖

2𝑛−1
𝑖=1 .  

C.  PCM with multiple input parameters 

When multiple uncertain parameters x1, x2, …, xn with 
independent pdfs f(x1), f(x2),…, f(xn) are considered in a 
system, the approximation for the output can be obtained by, 

𝑌̂ = 𝑘0 + ∑[𝑘𝑖1𝐻𝑖1(𝑥𝑖) + ⋯ + 𝑘𝑖𝑚𝐻𝑖𝑚(𝑥𝑖)] + ∑ ∑[𝑘𝑙𝐻𝑖1(𝑥𝑖)𝐻𝑗1(𝑥𝑗)]

𝑛

𝑗=1
𝑗≠𝑖

𝑛

𝑖=1

𝑛

𝑖=1

 

(10) 

where k0, ki1, …, kim are the coefficients, and Hi1(xi), …, Him(xi) 
are orthogonal polynomials for uncertain parameter xi [13]. 

Equation (10) shows that as the number of input 
parameters and the order of orthogonal polynomials grow, the 
size and complexity of the approximation polynomial 
functions increases. Thus, the number of simulation samples 
required for determining the coefficients also increases 
dramatically. Therefore, to retain the advantages of PCM, the 
number of input variables and the order of polynomials need 
to be relatively small [14].  

IV. PROBABILISTIC APPROXIMATION METHOD FOR GRID 

STRENGTH ASSESSMENT  

To assess the impact of uncertain renewable generation 
on grid strength, the SDSCR-based method is integrated with 
the PCM, which models the impact of uncertain renewable 
generation probabilistically based on their historical data and 
evaluates the probabilistic results.  

A. Probabilistic model of renewable generation 

The actual historical data can be used to characterize the 
uncertainty of renewable generation. For example, uncertain 
wind generation is related to variable wind speed. Thus, the 
forecasted or the historical data for wind speed can be used 
for probabilistically modeling the uncertain feature of wind 
generation. The mechanical power output P of wind turbine 
can be calculated using the equation below [19], 

𝑃(𝑤) =  {

0,                    𝑖𝑓 𝑤 ≤  𝑤𝑐
𝑖𝑛 

𝑃𝑅
𝑤−𝑤𝑐

𝑖𝑛

𝑤𝑐
𝑜𝑢𝑡− 𝑤𝑐

𝑖𝑛 ,       𝑖𝑓 𝑤𝑐
𝑖𝑛 < 𝑤 ≤  𝑤𝑐

𝑜𝑢𝑡

𝑃𝑅,               𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                       (11) 

where w is the wind speed, 𝑃𝑅  is the rated power of wind 

generator, 𝑤𝑐
𝑖𝑛  and 𝑤𝑐

𝑜𝑢𝑡  are the cut-in and cut-out wind 
speed, and the uncertainty of the wind speed can be 
represented by the Weibull distribution below [13], 

𝑓(𝑤) = (
𝑘

𝑐
) (

𝑤

𝑐
)

𝑘−1
𝑒

[−(
𝑤

𝑐
)

𝑘
]
                (12) 

where f(w) is the pdf of the wind speed, k is the shape factor 
and c is the scale factor of the distribution of wind speed w. 
Fig. 1 shows the pdf curve of wind speed modeled as Weibull 
distribution to represent the uncertainty in wind generation. 

 
Fig. 1. Probability density of wind speed with Weibull distribution. 

TABLE I.  ORTHOGONAL POLYNOMIALS FOR WIND GENERATORS 

Wind Generator 1 

𝐺1(𝑦1) = 𝑦1 − 1.4872 
𝐺2(𝑦1) = 𝑦1

2 − 4.9743𝑦1 + 3.6988 
𝐺3(𝑦1) = 𝑦1

3 − 10.4615𝑦1
2 + 26.0197𝑦1 − 12.8986 

𝐺4(𝑦1) = 𝑦1
4 − 17.9487𝑦1

3 + 93.8856𝑦1
2 − 155.6735𝑦1 + 57.8786 

… 

Wind Generator 2 

𝐻1(𝑦2) = 𝑦2 − 1.5454 
𝐻2(𝑦2) = 𝑦2

2 − 5.0909𝑦2 + 3.9338 
𝐻3(𝑦2) = 𝑦2

3 − 10.6363𝑦2
2 + 27.0743𝑦2 − 13.9474 

𝐻4(𝑦2) = 𝑦2
4 − 18.1818𝑦2

3 + 96.6942𝑦2
2 − 164.0871𝑦2 + 63.3973 

… 

 
To derive the orthogonal polynomials of wind speed for 

the application of the PCM, we consider the associated 
Laguerre polynomial, which is orthogonal over [0, ∞) with 
respect to the weighting function 𝜈 ze-v with an arbitrary real z. 

 ∫ 𝜈𝑧∞

0
𝑒−𝜈𝐿𝑖

(𝑧)
(𝜈)𝐿𝑗

(𝑧)
(𝜈)𝑑𝜈 = 0 ,     i≠j          (13) 

The weighting function for the Weibull distribution can 
be rearranged to be expressed in the form of the Laguerre 
polynomial [13]. Thus, the orthogonal polynomials for the 
representative distribution can be derived by the method 
described in [20]. Equation (10) can be rearranged by 
comparing it with the Weibull distribution and is written as 
in terms of y as a transitional variable. 

  ∫ 𝑦
𝑘−1

𝑘
∞

0
𝑒−𝑦𝐻𝑖(𝑦)𝐻𝑗(𝑦)𝑑𝑦 = 0 ,    i≠j        (14) 

where      𝑦 = (
𝜈

𝑐
)

𝑘
                             (15) 

 
Based on (14) and the Gram-Schmidt process [18], we can 

derive the orthogonal polynomials for the wind speed in wind 
generators, such as those listed in Table I, where Gi(y1) 
represents the orthogonal polynomials for wind generator 1 
and Hi(y2) for wind generator 2. The roots from Gi(y1) and 
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Hi(y2) are later converted back to relevant wind speeds. Using 
these wind speeds, the coefficients of the approximation 
model for SDSCR can be evaluated. 

B. Probabilistic approximation method for grid strength 

assessment 

By integrating the PCM with the SDSCR-based method, 
the main steps of the proposed approach for probabilistically 
assessing the impact of uncertain renewable generation on 
grid strength can be summarized as follows: 

1) Obtain the actual historical/predicted data of uncertain 
input parameters, such as wind speed and wind power 
generation, and convert them into intermediate variables 
using (13)-(14) to obtain appropriate pdfs of uncertain 
parameters. Evaluate orthogonal polynomial functions 
from the obtained pdfs based on equations (4)-(6). 

2) Develop the polynomial models of the output response 
with respect to input variables of corresponding wind 
speed in step 1) using (8) or (10) and unknown 
coefficients. 

3) Compute the collocation points from the orthogonal 
polynomials in step 1) and run power flow calculation at 
these points to find the corresponding output of SDSCR 
defined in (2). 

4) Use the calculated collocation points and the 
corresponding outputs of SDSCR in step 3) to obtain the 
unknown coefficients of the approximation model for 
SDSCR developed in step 2) to quantify the impact of  
uncertain wind generation on grid strength.  

V. CASE STUDIES 

The efficacy of the proposed method for quantifying the 
impact of uncertain renewable generation on grid strength is 
demonstrated on the modified IEEE 9-bus system with two 
wind generators. The diagram of the system is shown in Fig. 
2, where the original synchronous generator at bus 2 is 
replaced with a doubly fed induction generator (DFIG), and 
another DFIG is added at bus 6. The wind speed input for these 
two DFIGs are the uncertain parameters that are used in the 
proposed method for approximating the SDSCR at buses 3 
and 6. The other parameters of the two DFIGs are presented 
in Table II, and the other network parameters of the system 
can be founded in [21]. 

 
Fig. 2. Diagram of the modified IEEE 9-bus system with two DFIGs. 

To evaluate the approximation accuracy of the proposed 
approach, the results of MCS method are used as a reference. 
Usually, the stopping criteria is used to determine the 

required number of MCS runs so that the sample mean error 
is below a specific threshold. In various power system 
applications such as transient stability and small-disturbance 
stability, the sample mean error is reduced to acceptable 
limits with 5000 runs for MCS method [22]. Thus, 5000 MCS 
runs are adopted as the benchmark value for the grid strength 
assessment in this paper. In each simulation, the power 
outputs of wind generators are changed due to the varying 
wind speed following the Weibull distribution as shown in 
Fig. 1, and the power outputs of the synchronous generators 
are adjusted to balance the power uncertainty in the system. 
The grid strength is evaluated based on the SDSCR defined 
in (2). The sum- of square-root error (eSSR) is computed as an 
index for evaluating the approximation accuracy [11].  

𝑒𝑆𝑆𝑅 =  √
∑ (𝑌̂𝑖−𝑌𝑖)2𝑓(𝜗𝑖)ŋ

𝑖=1

ŋ𝑓(𝜗̂)
                   (16) 

where Yi is the ith the output from the MCS simulation, 𝑌̂𝑖 is 
the ith estimated output based on the proposed approach, η is 
the number of the collocation points used in the PCM, f(ϑi) is 

the joint pdf and f(𝜗̂) is the pdf of the highest probability 
collocation point. Here, the acceptable error threshold is 0.3 
for grid strength application. 

TABLE II.  DFIG PARAMETERS 

Parameters DFIG 1 DFIG 2 

Shape and scale parameters 
k1 = 1.95 

c1 = 8 
k1 = 2.2 

c1 = 10.5 

Cut-in speed (m/s) 𝑤𝑐,1
𝑖𝑛 =3 𝑤𝑐,2

𝑖𝑛 =3 

Cut-out speed (m/s) 𝑤𝑐,1
𝑜𝑢𝑡 =15 𝑤𝑐,2

𝑜𝑢𝑡 =15 

Rated power (MW) PR,1=100 PR,2=50 

A. PCM simulation in various orders 

In this case, the wind generation penetration is 20% of the 
total load in the system. The proposed method is used to 
approximate the results of grid strength evaluated based on 
the SDSCR at buses 2 and 3 under uncertain wind generation. 
Various orders (the first order, the first two orders, and the 
first three orders) of the orthogonal polynomials of each wind 
generation are considered in the approximation model, and 
the simulation results are compared with MCS results. Due to 
the page limitation, the results of grid strength assessment at 
bus 3 are selected as an example, and the observed 
conclusions are also applicable to the results at bus 6.   

Fig. 3 and Fig. 4 shows the pdf and cumulative 
distribution function (cdf) curves from grid strength at bus 3 
under uncertain wind generation injected at buses 3 and 6 
from the three different approximation orders and MCS. 
Table III compares the probabilistic results of eSSR error, the 
mean value, the variance value, the simulation runs and 
computational time. Equations (17)-(19) show the three 
approximation models with three different orders for SDSCR 
at bus 3 in terms of transitional variable y shown in (14) and 
(15).  

𝑔̂(𝑦) = 0.6326𝑦1 − 0.8881𝑦2 + 3.5424 

 
(17) 

𝑔̂(𝑦) =  −0.2035𝑦1
2 + 2.3564𝑦1 − 0.6866𝑦2

− 0.5032𝑦1𝑦2 + 3.4626 

 

(18) 

𝑔̂(𝑦) =  0.0503𝑦1
3 − 0.8867𝑦1

2 + 1.1687𝑦2
2 + 5.005𝑦1

− 4.3125𝑦2 − 1.2076𝑦1𝑦2

+ 5.1262 

(19) 
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Fig. 3. pdf curves for grid strength evaluated based on SDSCR at bus 3 for 
different polynomial orders. 

  
Fig. 4. cdf curves for grid strength evaluated based on SDSCR at bus 3 for 
different polynomial orders. 

It can be observed from Fig. 3 and Fig. 4 that among all 
three approximation models with different orders of 
orthogonal polynomials, the approximation model with the 
first two polynomial orders provides more accuracy fitting 
results. In Fig. 3 and Fig. 4, the approximation model with 
the first two polynomial orders provides the estimated pdf 
and cdf curves closer to those obtained from MCS than the 
approximation models with the other polynomial orders. 
Moreover, Table III shows that the means and variances from 
the approximation model with the first two polynomial orders 
are 4.28 and 2.95, which are closer to 4.53 and 3.97 from 
MCS results. In addition, the approximation model with the 
first two polynomial orders has the smallest error (i.e., 0.27) 
among the three approximation models with different orders 
of orthogonal polynomials. Thus, the approximation model 
with the first three polynomial orders provides more accuracy 
approximation results than the other two approximation 
models with different orders of orthogonal polynomials.  

It can be seen from Table III that the proposed method can 
save a huge amount of simulation time, since it reduces 
simulation burden significantly. To obtain the results of Figs. 
2 and 3, the approximation model with the first two 
polynomial orders requires only 8 simulation runs, but the 
MCS requires 5000 simulation runs. The time spent by MCS 
method is also almost 20 times larger than the proposed 
method. 

 

TABLE III.  COMPARISON OF SDSCR AT BUS 3 FOR MCS AND 
APPROXIMATION MODELS WITH DIFFERENT POLYNOMIALS ORDERS 

 MCS 
PCM 
1st 

PCM 
2nd 

PCM 
3rd 

mean 4.53 3.35 4.28 4.99 

variance 3.97 1.45 2.95 3.08 

eSSR - 0.59 0.27  0.29 

runs 5000 3 8 15 

Time (s) 102.71 4.32 4.91 5.11 
 
 

B. Estimating SDSCR for Different Wind Penetration 

To analyze the impact of uncertain wind generation on 
grid strength, the wind power penetration is increased from 
20% of total load power to 40% in the system, and the power 
outputs of synchronous generators are also adjusted to 
balance the power in the system. Fig. 5 shows the cdf curves 
of the grid strength evaluated based on the SDSCR at bus 3 
for the two different wind penetrations, respectively. The 
approximation model with the first two polynomial orders is 
used for the evaluation. Table IV compares the mean value 
and variance value for the different penetration cases.  

It can be observed from Fig. 5 and Table III that the 
increasing penetration of uncertain wind generation reduces 
the grid strength, thus increasing the risk of weak grid issues. 
As shown in Fig. 6, when the wind penetration is 20% of total 
load power, the SDSCR values changes between 0.93 and 
15.88; when the wind generation is increased to 40% of total 
load power, the SDSCR values are reduced to the range 
between 0.41 to 8.04. Also, Table IV shows that the means 
and variances of SDSCR at bus 3 are reduced after the wind 
power penetration is increased from 20% of total load power 
to 40% in the system. Thus, the increasing wind generation 
reduces the changing range of the SDSCR and thus the grid 
strength. Particularly, as discussed in Section II, the weak 
grid issues may become significant when SDSCR is smaller 
than 3. It can be observed from Fig. 5 that when the wind 
penetration is 20% of total load power, the probability of 
SDSCR smaller than 3 is 0.027; on the other hand, when the 
wind generation is increased to 40% of total load power, the 
probability is increased to 0.2. This indicates that the risk of 
weak grid issues increases with the wind generation 
penetration. Thus, the proposed method can quantify the 
probabilistic impact on grid strength due to uncertain wind 
generation.  

 
Fig. 5. cdf curves of SDSCR at bus 3 for different wind power penetration 
based on the approximation model with the first two polynomial orders. 
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TABLE IV.  COMPARISION OF SDSCR AT BUS 3 FOR DIFFERENT WIND 

PENETRATION USING THE APPROXIMATION MODEL WITH THE FIRST TWO 

POLYNOMIAL ORDERS 

Wind Generation 
40% of total load 

(150 MW)   
20% of total load 

(75 MW) 

mean 4.28 8.52 

variance 2.56 10.14 

VI. CONCLUSION 

This paper proposed an approach for assessing the impact 
of uncertain renewable generation on grid strength by 
integrating the PCM with the SDSCR-based method. In the 
proposed approach, the PCM was used to establish the 
approximation polynomial functions with multiple input 
variables for modeling the probabilistic impact of uncertain 
renewable generation on grid strength evaluated based on the 
SDSCR-based method. The PCM is a computationally 
efficient technique, which can reduce the computation burden 
without compromising the result accuracy compared to 
traditional Monte Carlo simulation. The efficacy of the 
proposed method is demonstrated on the modified IEEE 9-
bus system. The proposed approach is promising to guide grid 
planning and operation for identifying potential weak grid 
issues in power systems under uncertain renewable 
generation. In our further research, we will further improve 
the proposed method for large-scale power system 
application. We will design algorithms to select the 
approximation samples of input variables to improve the 
approximation accuracy. Also, the actual historical data of 
renewable generation will be used to capture the distribution 
of renewable generation. 
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