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ABSTRACT

Multi-layered inter-dependent networks have emerged in a wealth
of high-impact application domains. Cross-layer dependency in-
ference, which aims to predict the dependencies between nodes
across different layers, plays a pivotal role in such multi-layered
network systems. Most, if not all, of existing methods exclusively
follow a coupling principle of design and can be categorized into
the following two groups, including (1) heterogeneous network
embedding based methods (data coupling), and (2) collaborative
filtering based methods (module coupling). Despite the favorable
achievement, methods of both types are faced with two intricate
challenges, including (1) the sparsity challenge where very limited
observations of cross-layer dependencies are available, resulting
in a deteriorated prediction of missing dependencies, and (2) the
dynamic challenge given that the multi-layered network system is
constantly evolving over time.

In this paper, we first demonstrate that the inability of exist-
ing methods to resolve the sparsity challenge roots in the coupling
principle from the perspectives of both data coupling and module
coupling. Armed with such theoretical analysis, we pursue a new
principle where the key idea is to decouple the within-layer connec-
tivity from the observed cross-layer dependencies. Specifically, to
tackle the sparsity challenge for static networks, we propose FITO-
S, which incorporates a position embedding matrix generated by
random walk with restart and the embedding space transformation
function. More essentially, the decoupling principle ameliorates the
dynamic challenge, which naturally leads to FITO-D, being capable
of tracking the inference results in the dynamic setting through
incrementally updating the position embedding matrix and fine-
tuning the space transformation function. Extensive evaluations
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on real-world datasets demonstrate the superiority of the proposed
framework FITO for cross-layer dependency inference.
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ter network, while the internet center network is dependent on
the power grid for electricity supply. ! In this example, accurately
inferring the cross-layer dependency is critical for providing cost-
effective internet center service for users and efficient power distri-
bution. Besides the infrastructure network, cross-layer dependency
inference also plays an essential role in a variety of high-impact

! The dependency relationship between nodes can be either one-to-one or one-to-many.
Our model can handle both cases without necessarily distinguishing them.
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data mining applications, including new drug discovery in biologi-
cal networks [33], recommendation in e-commerce networks [56],
and team management in collaboration networks [5].

To predict unknown cross-layer dependencies, the vast majority
of existing methods follow a coupling principle and can be cat-
egorized into two groups according to different coupling stages,
including (1) data coupling for heterogeneous network embedding
(HNE)-based methods in data ingestion stage, and (2) module cou-
pling for collaborative filtering (CF)-based methods in module design
stage. Concretely, first, heterogeneous network embedding (HNE)-
based methods advocate the data coupling approach by viewing the
multi-layered inter-dependent network as a world-view network,
where all layers’ networks are combined into one large hetero-
geneous network and the cross-layer dependency inference task
is formulated as a link prediction problem on this heterogeneous
network. In this category, existing methods propose to learn high-
quality heterogeneous network representations through (1) gener-
ating metapaths [10, 17], (2) capturing node attribute information
with graph neural network (GNN) [4, 29], and (3) leveraging knowl-
edge graph embedding techniques to boost the link prediction
performance [34]. Second, collaborative filtering (CF)-based meth-
ods, from data perspective, regard the input as a multiple-layered
collection of homogeneous networks with cross-layer dependent
interactions and pursue a module coupling approach. Specifically,
CF-based methods aim to model the cross-layer dependency inter-
action and collectively exploit the within-layer connectivity as a
regularization term in the final objective. To name a few, Singh et al.
formulate this task as a collective matrix factorization (CMF) prob-
lem by equally treating the within-layer network adjacency matrix
and the observed dependency matrix in factorization [43]. Homo-
geneous network embedding approaches such as DeepWalk [40]
and LINE [44] are applied to capture the within-layer connectivity
in [9, 62], where the key idea is to replace direct factorization in
CMF with the corresponding node embedding method.

Nonetheless, most, if not all, of existing methods face two key
challenges, including (1) the sparsity challenge and (2) the dynamic
challenge. To be specific, sparsity challenge refers to the deteriorated
prediction of missing dependencies when very limited observed
cross-layer dependencies are available. For HNE-based methods,
sparse cross-layer observations induce a remarkable distortion of
the underlying connectivity distribution (e.g., insufficient gener-
ated high-quality metapaths) and consequently diminish the per-
formance in inferring unobserved links between nodes of various
types. In addition, the performance of CF-based approaches is excep-
tionally hindered by the dominating unlabeled data, which consists
of both non-existing dependency and unobserved dependency. Fur-
thermore, most existing methods assume that the multi-layered
inter-dependent networks are static, despite the fact that the com-
plex network system is topologically evolving over time in terms
of both within-layer connectivity and newly observed cross-layer
dependencies, which demands a novel method being capable of
efficiently updating the inference results in the dynamic setting.

In this paper, we first tackle the sparsity challenge in static cross-
layer dependency inference. We conduct a comprehensive theoreti-
cal analysis and demonstrate the deficiency of the aforementioned
methods in the sparse setting roots in the coupling principle. Specifi-
cally, we uncover that the essence of HNE-based methods following
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data coupling is constructing a cross-layer similarity matrix for de-
pendency inference. As the observed dependencies become sparse,
conventional HNE-based methods cannot generate sufficient high-
quality positive node pairs to construct the cross-layer similarity
matrix, thereby bearing the defect in predicting cross-layer de-
pendency. In addition, CF-based methods exclusively embrace the
module coupling approach by regarding the within-layer connectiv-
ity as a regularization term in the final objective. Through detailed
analysis, we demonstrate it is incapable of capturing the so-called
total connectivity information (see details in Definition 2).

Based on the theoretical analysis, we pursue a decoupling princi-
ple in both data ingestion stage and module design stage and propose
a novel algorithm FITO-S to address the sparsity challenge in the
static setting. FITO-S first delves into each within-layer network
and distills the total connectivity information into a position em-
bedding matrix with random walk with restart (RWR) [45]. Then,
FITO-S learns a space transformation function by exploiting the
observed cross-layer dependency, which translates the obtained
representations from various layers to a unified latent embedding
space. Additionally, the decoupling principle naturally leads to a
dynamic version of the algorithm (FITO-D) upon the static FITO-S.
For dynamic systems, FITO-D follows a two-step procedure, in-
cluding (1) incrementally updating the RWR position embedding
matrix, and (2) fine-tuning the space transformation function by
capitalizing on the newly observed cross-layer dependencies.

The main contributions of the paper are summarized as follows,

e Analysis. We conduct a theoretical analysis on the existing two
main categories of methods for cross-layer dependency inference,
centered around the coupling principle in different stages, which
reveals some fundamental limitations of the existing methods in
resolving the sparsity challenge.

e Algorithms. We propose a family of novel algorithms, FITO,
based on the idea of decoupling the within-layer connectivity
from cross-layer dependency, to effectively and efficiently infer
cross-layer dependencies in both static and dynamic settings.

e Evaluations. We perform extensive empirical evaluations on
real-world datasets from different domains. The evaluation results
demonstrate (1) effectiveness for the sparsity challenge, where
FITO-S outperforms all baseline methods in terms of inference
accuracy; (2) efficiency for the dynamic challenge, where the
proposed FITO-D achieves 29 — 39X speed-up over retraining the
FITO-S in dynamic steps.

2 PROBLEM DEFINITION

In this section, we first introduce the notations and then formally
define the problem of cross-layer dependency inference.

The main symbols used in this paper are summarized in Table 1.
We use bold uppercase letters for matrices (e.g., A), bold lowercase
letters for vectors (e.g., r) and lowercase letters for scalars (e.g., @) .
To index a matrix/vector, we use A(u,v) to represent the entry at
the u-th row and the v-th column of matrix A, A(u, :) to denote the
u-th row of A, A(;,0) to denote the v-th column of A.

For a multi-layered inter-dependent network I' composed of g
layers of networks, there exist dependencies between some specific
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Table 1: Symbols and Notations.

Symbol ‘ Definition
r the multi-layered network
G; the network of the i-th layer in T’
A adjacency matrix
L;”j, L;j | observed and predicted dependency matrices of (G;, G;)
L" homophily-based similarity matrix in HNE-based methods
D the diagonal degree matrix of A
AA; perturbation matrix of A;
ALY ; newly observed dependency matrix
R RWR matrix
F embedding matrix
Rp RWR position embedding matrix
AT transpose of A
A row normalized matrix of A
nj numbers of nodes in G;
u; the u-th node of G;
k the second dimension of Ry,
apy parameters
tr(A) trace of A
- H?, Frobenius norm of matrix

layers (e.g., the i-th layer G; and the j-th layer Gj).2 Given the
network connectivity for each layer’s network (adjacency matrix
A;) and some observed dependencies (L?, j), the task of static depen-
dency inference is to find all dependencies across G; and G;, which
can be defined similarly as in [7]:

Problem 1. Static Cross-Layer Dependency Inference

Given: amulti-layered networkT = (A, L), where (1) A = {Ay, ...
is the set of within-layer adjacency matrices; and (2) L° =
{sz|i,j =1,...,9g} is the set of observed cross-layer depen-
dency matrices.

Output: (1)embedding matrices {Fy,...,F4};(2) the predicted cross-
layer dependency matrices {L;j|i,j =1,...,g}.

Accordingly, the dynamic cross-layer dependency inference prob-
lem is defined as follows.

Problem 2. Dynamic Cross-Layer Dependency Inference

Given: (1) an original multi-layered network I' = {A, L°}; (2) the
change of the multi-layer network AT = {AA, AL°}, where
AA = {AAy,...,AAy} is the perturbation on connectivity
occurring within layers and AL° = {AL2j|i,j =1,...,9} is
newly observed dependency set.3

Output: (1) new embedding matrices {F1,...,Fg}; (2) new predicted
cross-layer dependency matrices {L; jli,j = 1,...,g}.

The dynamic change of the multi-layered network (i.e., AT) re-
ferrs to the following two perspectives. First, the topological pertur-
bations may appear in each layer of network, i.e., AA. For example,
in a given layer of network G;, we might observe the vanishing of
existing edges and new links to be established, which change the
corresponding entries in A;. Besides, new nodes can be inserted in
G, which extends the index in A;.*Second, additional cross-layer

2Multi-layered inter-dependent networks are different from multiplex/multi-view
network defined in [38, 58], where each layer has same set of nodes and represents
different edge types. They can be viewed as a general form of heterogeneous network.
3In this paper, we only consider cumulative dependency. For example, once a product
has been bought by a user, the dependency (having been bought) between the product
and the user will stay.
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dependencies might emerge as the multi-layered network I evolves
over time, i.e., AL°.

Remarks. The cross-layer dependency inference (Problems 1 and 2)
studied in this paper is quite general and it relates to several classic
data mining tasks. For example, if g = 2 and both within-layer ma-
trices are absent, the cross-layer dependency inference degenerates
to the classic collaborative filtering problem [25, 37]; if g = 2 and
only one of the two within-layer adjacency matrix is available, we
can view cross-layer dependency inference as social recommenda-
tion problem [56]; if g = 2 and both layers are for the same type
of nodes (e.g., the same populations from two different social plat-
forms), cross-layer dependency inference becomes (soft) network
alignment problem [59]; and if g > 2 and all the within-layer adja-
cency matrices are absent, cross-layer dependency inference can
be viewed as collective collaborative filtering problem [43].

3 ANALYSIS

In this section, we theoretically demonstrate that under the sparsity
challenge in static setting, both HNE-based and CF-based methods
bear some fundamental limitations rooted in the coupling princi-
ple. Concretely, we reveal that the nature of data coupling HNE-
based methods is to construct a cross-layer similarity matrix to
predict cross-layer dependency link. When facing the sparsity chal-
lenge, they fall short in generating sufficient positive cross-layer
node pairs to construct this matrix. For CF-based methods, viewing

,Ag} within-layer connectivity as regularization of cross-layer depen-

dency and optimizing them in a coupling way result in the inability
of capturing the total connectivity information of each layer.

3.1 Data Coupling HNE-Based Methods

In this subsection, we conduct a theoretical analysis about the lim-
itations of HNE-based methods under the sparsity challenge. We
demonstrate that HNE-based methods with the homophily assump-
tion essentially construct a homophily-based cross-layer similar-
ity matrix, which is used to predict cross-layer dependency link,
thereby encountering a problem similar to cold-start in traditional
collaborative filtering tasks. We start from the homophily assump-
tion used in a variety of network embedding algorithms, including
random walk (RW)-based, metapath-based, GNN-based and knowl-
edge graph-based:

DEeFINITION 1. Homophily Assumption: The homophily as-
sumption in network embedding algorithm is that nodes topologically
“close” to each other should have “similar” embedding vectors, while
distant nodes should have disparate embedding representations.

Here the term “close” does not limit to direct connectivity in
networks like in LINE [44], other patterns also satisfy the definition
of "close". To name a few, a node pair sampled from random walk is
considered to be "close" in DeepWalk [40] and node2vec [21]. The
“neighboring nodes” sampled from GNN with a fixed number of
layers [22, 29] and nodes connected by a metapath [10, 17] can be
interpreted as "close". The term “similar” refers to small distance

“Deleting node is equivalent to removing all incident edges.
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measure or large dot product among the node embeddings. In RW-
based methods, the homophily loss can be formulated as follows:

Jn= ., Y, ~loglew W) =Q By, log(o(-vTw) (1)

/
uev v,0 €V

where (u,v) denotes a positive “close” node pair sampled by the
model and (u, v”) represents a negative “distant” pair. By minimiz-
ing Eq. (1), the model is driven to produce similar embeddings for
“close” nodes (i.e., large dot-product) and distant embeddings oth-
erwise. By putting the dot products of all node pairs together, we
can find that the homophily assumption in RW-based embedding
aims to construct a new similarity matrix. For graph auto-encoder
(GAE) [30], the similarity matrix is exactly the adjacency matrix.
For metapath-based methods, they have similar homophily loss
functions as RW-based methods. For GNN-based and knowledge
graph-based methods, they adopt embedding distance measure-
ments, which can also be transformed into a similarity score be-
tween 0 and 1 (e.g.,e_d(”’z’)). Hence, the similarity matrix can be
constructed.

With the underlying homophily assumption, HNE-based methods
attempt to construct one integrated similarity matrix L”, and they
essentially utilize the cross-layer (i.e., type) similarity matrices (LZJ.)

to predict the dependency link, which are sub-matrices of L" with
type-i nodes and type-j nodes as rows and columns in the coupled
world-view network, respectively.

Therefore, we have the following claim about HNE-based meth-
ods under the sparsity challenge:

CramM 1. Sparsity challenge for HNE-based methods: Under
the sparsity challenge, HNE-based methods with finite length of meta-
paths or number of GNN layers cannot generate sufficient high-quality
“similar” cross-layer (type) node pairs. The constructed similarity ma-
trix Lh] will become sparse when the number of observed dependencies
decreases (equivalent to that matrix L0 becomes sparse.), thereby
resulting in a similar cold-start problem in collaborative filtering.

The correctness of this claim is shown as follows. Since the
constructed cross-layer similarity matrix Lh i.j measures the simi-
larity between nodes from different layers (i.e., different types in
the heterogeneous network), it has a type transition process. In
metapath-based methods, this implies that at least one observed
cross-layer dependency link is covered in the finite-length metap-
ath. For GNN-based methods, it corresponds to the fact that nodes
with different types reach each other in finite layers/hops, which
passes at least one observed cross-layer dependency link. Therefore,
when the observed L0 becomes extremely sparse, the number of
cross-layer links and posmve similar cross-layer node pairs will be
reduced. Then, these positive “similar” node pairs might be falsely
treated as negative “disparate” ones. Consequently, the constructed
matrix Lh from HNE-based methods bears a similar cold-start
problem as in CF task.

To summarize, we conclude that HNE-based methods will con-
struct a cross-layer similarity matrix LZ]. for every network layer
pair (i, j), as the result of data coupling approach, since the connec-
tivity of each layer’s network is fused in one matrix L.
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3.2 Module Coupling CF-Based Methods

Collaborative filtering (CF)-based methods do not follow the cou-
pling principle in the data ingestion stage, where within-layer con-
nectivity matrices are separated from cross-layer dependency matri-
ces. Instead, they follow the coupling principle in the module design
stage. In this subsection, we investigate the limitation of CF-based
methods under the sparsity challenge. To better assist the analy-
sis, we first give the definition of the concept, total connectivity
information, as follows,

DerFINITION 2. Total Connectivity Information. Given the ad-
Jjacency matrix A; of a single layer network G;, we say that the total
connectivity information of G; is captured if the learned node embed-
dings or some specific matrix to be factorized satisfy the following
two conditions:

o High Order Connectivity: If two nodes in G; are connected within

an arbitrary number of steps, the high order connectivity informa-
tion should be preserved by the embedding vectors or the specific
matrix.

e Homophily Assumption: Nodes topologically “close” to each other

should be discriminated with nodes topologically “distant” to each
other by embedding vectors or some specific matrix.

We now claim that under the sparsity challenge, the existing
CF-based methods are unable to capture the total connectivity in-
formation of each layer as a consequence of the module coupling
approach. In the executing process, CF-based methods exploit and
optimize the within-layer connectivity and cross-layer dependency
in a coupling fashion, and the within-layer connectivity information
is formulated as a regularization term to facilitate the cross-layer
dependency inference.

To demonstrate the correctness of the claim, we initiate the
analysis on the objective function of FASCINATE [7], a typical
CF-based method for cross-layer dependency inference:

Dlwij o)

Lj

min 9 =

—F;F])|?
F; >0(i=1,....9) lj)”F

C1: Matching observed cross-layer dependencies

9 9
a " (F] (D = ADFi) + £ ) IF%
i=1 i=1

C2: Within-layer connectivity regularization

@)

where © represents the element-wise product, W; ; is particularly
defined as a weight matrix to alleviate the sparsity challenge. The
goal of the term C1 is to match the observed cross-layer depen-
dencies, and C2 is the within-layer connectivity regularization,
including a trace term and a matrix Frobenius norm of F;. We start
with analyzing C2 in Eq. (2). tr(F;r (D; — Aj)F;) can be further re-
written as 3, A; (us, 0;)||F; (u;, 1) — Fi(v;,:)||2. By minimizing it, the
learned node embeddings become similar for the connected nodes
in network G;. Combining with the Frobenius norm, i.e., ||F;|| % di-
rectly optimizing C2 will, in consequence, deliver a trivial solution
for F;. Namely, the term C2 only satisfies the high order connectivity
condition in total connectivity information but does not conform
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the homophily assumption since minimizing C2 is equivalent to
factorizing a zero matrix.

FASCINATE [7] avoids the trivial solution issue by introduc-
ing C1, which can significantly improve the performance when
the observed cross-layer dependency matrix (i.e., L;.’, ) is relatively
dense. Nonetheless, under circumstance that very limited observed
cross-layer dependencies are available, i.e., the sparsity challenge,
the solution matrices F; will be primarily determined by C2 and
thus tend to become trivial.

Actually, the C2 term can be replaced with a variety of homo-
geneous network embedding approaches based on collaborative
filtering. For example, in collective matrix factorization (CMF) [43],
C2 = ||Fl-Fl.T - Al-||12D. For other methods [9, 62], C2 is modified
according to different network embedding algorithms, e.g., Deep-
walk [40] or LINE [44]. Table 2 summarizes the formats of C2 for
different methods. It is straightforward to conduct a similar analy-
sis on other CF-based methods and then we introduce Claim 2 as
follows:

CraIM 2. In the existing CF-based methods, minimizing the within-
layer connectivity term (i.e., C2 in Eq. (2)) w.r.t. the i-th layer of
network is equivalent to directly factorizing some specific matrix, and
it cannot capture total connectivity information of G;, under the
sparsity challenge.

To be specific, for CMF, the claim obviously holds because mini-
mizing ||F;F; — Aj| % is equivalent to factorizing the within-layer
adjacency matrix (i.e., A;), which does not satisfy the high order
connectivity condition. For network embedding related methods,
according to [41], a variety of network embedding algorithms can
be unified in the format of matrix factorization. Given the network
of the i-th layer (i.e., G;), DeepWalk encodes the within-layer con-
nectivity as, log(vol(Ai)(% Zstl (Di_lAi)s)Di_l)—log b, where T is
the context window length, b is the number of negative samples in
skip-gram [35] and vol(A;) = 3, 5, Ai(u;,v;) is defined as the vol-
ume of network G;j. In addition, for LINE-based methods, the within
layer connectivity can be written as, log(vol(Gi)Di_lAiDi_l) —logb.
In Table 2, we summarize the corresponding matrices on which
factorization is applied for different methods, given the network of
the i-th layer (i.e., G;).

Table 2: Matrices factorized by different choices of within-
layer connectivity term for G;.

Methods ‘ Matrices
FASCINATE 0
CMF adjacency matrix A;
DeepWalk | log(vol(A;)( % Zstl (Di’lAi)s)Dl.’l)-log b
LINE log(vol(A;)D;*A;D;!) - log b

For methods following LINE to capture within-layer connectivity,
they are similar to CMF and can only extract the information from
one-hop neighboring nodes, which is not in accordance with the
high order connectivity condition in Claim 2.

For DeepWalk related methods, we give a brief discussion from
the perspective of the walk length, i.e., T. When the context window
length T = 1, the matrix is exactly the same as that in LINE. When
T is small, the high order connectivity condition is not satisfied. For
a large walk length, we have the following lemma,
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LEMMA 1. For an undirected connected network Gj, if T — oo,
(% Zstl (Di_lAi)S) — M;, where M; is a matrix where all rows are
the identical eigenvectors corresponding to the eigenvalue equaling 1
associated with the matrix (D;1A;) .

The proof of Lemma 1 is attached in Appendix due to the page
limit. It indicates that DeepWalk-based methods will hamper the ho-
mophily assumption with a large T, because for each column of M;,
i.e., M;(;, uj), the entries are identical values. Therefore, DeepWalk-
based methods cannot strike a balance between capturing the high
order connectivity (i.e., large walk length T) and satisfying the
homophily assumption (i.e., small T).

Remarks. The violation of the homophily assumption appears to
be similar to the over-smoothing issue [31] discovered in GNN [29],
however, they are actually separate problems. To be specific, the
over-smoothing issue in GNN is designed to directly learn the final
node embeddings, whereas our analysis focuses on the constructed
matrix M;, which will be further factorized to obtain the final node
representations. One typical characteristic of the over-smoothing
issue in GNN, is that the final embeddings tend to become identical
for all nodes. For DeepWalk-based methods, when T approaches
infinity, the entry values in a specific column of M; are the same,
nevertheless, the column-wise values are different. Therefore, the
obtained node embeddings after factorization remain distinct.

To summarize, following the module coupling approach, exist-
ing CF-based methods optimize the within-layer connectivity and
the cross-layer dependency in a coupling fashion while regarding
the within-layer connectivity information as a regularization term.
However, when L ; degenerates into a sparse matrix (i.e., the spar-
sity challenge), the regularization term representing within-layer
connectivity becomes the dominant term in the objective function.
Therefore, it cannot capture the total connectivity information of
G;, falling short of striking a good balance between propagating
critical information (i.e., high order connectivity) and differentiating
adjacent nodes from distant ones (i.e., homophily assumption).

4 METHOD

In this section, we introduce our proposed method, including First-
Inner-Then-Quter-Static (FITO-S) to resolve the sparsity challenge
in the static setting and FITO-D to tackle the dynamic challenge.
Armed with the theoretical analysis in Section 3, the key idea of
our proposed model is to pursue a decoupling principle in both the
data ingestion stage and the module design stage. To be specific,
in the data ingestion stage, following a similar procedure in CF-
based methods, we separate the within-layer connectivity from
the cross-layer dependency. In the module design stage, instead of
simultaneously exploiting the within-layer connectivity and the
cross-layer dependency, we first focus on the within-layer con-
nectivity and design a random walk with restart (RWR) position
embedding module to capture the total connectivity information (i.e.,
First-Inner). Then, we leverage a space transformation function to
translate the node embeddings from different layers to the same
latent space (i.e., Then-Outer). An add-on benefit of this decou-
pling design is that it naturally leads to an efficient and effective
model FITO-D in the dynamic setting, which can separately up-
date the RWR position embedding matrix and fine-tune the space
transformation functions.
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4.1 FITO-S

In this subsection, we present our proposed model FITO-S to resolve
the sparsity challenge in the static setting. According to the analysis
on the CF-based algorithms, we first introduce the proposed within-
layer RWR position embedding module whose goal is to capture
the total connectivity information (i.e., Definition 2).

A - RWR Position Embedding Module. Regarding within-layer
connectivity, we have demonstrated that for existing CF-based
methods, matrices associated with C2 in Eq. (2) are unable to cap-
ture the total connectivity information due to the coupling principle.
Alternatively, random walk with restart (RWR) [45], a popular al-
gorithm to measure the node proximity, manages to preserve the
connectivity information, and we have the following claim:

CrLamm 3. Random walk with restart (RWR) matrix is capable of
capturing the total connectivity information.

To prove the correctness of the claim, we first present the mathe-
matical details of the information propagation mechanism of RWR
in the following equation,

Iy, = cA;rrui +(1-c)ey, 3)

where A; = Dl._lAi is the row-normalized adjacency matrix of G;,
1y, denotes the node proximity vector for node u;, 1—c is the restart
probability and ey, represents a one-hot starting vector with the
uj-th element equal to 1.

From Eq. 3, we can derive the closed-form solution of the RWR
matrix, R; = (1 —¢)(I - cA;'—)_l where I is the identity matrix.
The corresponding Taylor series can be calculated as R; = (1 —
€) Yao (CA;I—)SI. The column of R, (e.g., R;(:, u;)) represents the
RWR vector ry; of node u;, ry; = (1 —c¢) Z?;O(CA;'—)Seui.

Comparing R; with the matrices in Table 2, we can see that the
RWR matrix R; can indeed capture the total connectivity informa-
tion. For the high order connectivity condition, R; contains the terms
when s is large and approaches infinity, such that the high-order
information can be captured. For the homophily assumption con-
dition, the decaying factor ¢ along with the walk length s ensures
that a close node pair has a larger value than a distant node pair in
the position matrix R;. Therefore, Claim 3 holds.

Actually, the u;-th row of R; (i.e., R; (u;, :)) measures the relevant
position of node u; from all nodes in network G;. n; is the number
of nodes in network G;, which implies that the size of matrix R; may
be too large thereby decreasing the model efficiency. To address
this issue, we identify k nodes with the top-k highest PageRank
scores [36] in G; as the node set ;.5 Note that other sampling
methods to construct P; (e.g., random selection) will also be evalu-
ated in the experimental section. The RWR vectors of all selected
nodes in P; form the RWR position embedding matrix Rp, € Rmixk
where k is the dimension of RWR position embedding vector (i.e.,
Ry, (uj, :)) for node u;. After the First-Inner step, we get RWR posi-
tion embedding matrices for networks of all layers-{Rp,, ..., Rpg}
from the multi-layered networks.

B - Space Transformation. The RWR position embedding matrix
Ry, represents a relevant position embedding space w.r.t. P; of
network G;, it is crucial to transform the embedding matrices of

Sifk > n;, we set k = n;.
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different layers to one unified space as follows:
F; = transform; (Ryp,) (4)

The space transformation can be achieved with various functions,
e.g., a linear layer or a multi-layer perceptron (MLP) [19].
To guide the model training, we adopt a ranking loss which is
similar to Bayesian personalized ranking (BPR) [42]:
9. 9
=2 D N

i=1 j=1

max{0,y+d(u;,0;) —d(ul,0})} (5)
IN(L2, (ui0p)=1) | ’ o v

where d(u;,0;) = ||Fi(ui,:) — F;(vj,:)|l1 denotes the L1 norm dis-
tance between node embeddings F; (u;,:) and F;(vj, :), y is the mar-
gin parameter and N, {L2; (us,0))=1} represents the set of negative
samples for the observed dependency (i.e., L;’,j(ui,vj) = 1). For
an observed cross-layer dependency (u;, v;), the negative sample
(u], U;) is obtained by randomly selecting a node from either G; or
Gj to replace either u; or v;. The cross layer dependency inference
matrix L; j can be constructed as follows,

Ly j(us,05) = e~ 0400 (6)

To summarize, FITO-S effectively resolves the sparsity challenge
from the following aspects, including (1) inner part: capturing the
total connectivity information with RWR position embedding ma-
trix; and (2) outer part: unifying the obtained embeddings from all
layers with a space transformation function with a ranking loss.

4.2 FITO-D

The decoupling idea to resolve the sparsity challenge further moti-
vates predicting cross-layer dependencies by tracking the complex
and evolving multi-layered network systems. In this subsection,
we leverage the First-Inner-Then-Outer approach to tackle the dy-
namic challenge. Starting from the inner layer, after the set of RWR
position embedding matrices (i.e., {R;fw, s R;:w}) of the new

multi-layered network (i.e., I + AT') is updated, we fine-tune outer
space transformation functions of different layers with the newly
observed dependencies.

For the i-th layer network G;, its dynamic change includes
edge/node deletion and insertion, which are represented in the
perturbation matrix (i.e., AA;). Note that if the number of nodes in
the network changes due to node deletion/insertion, we can zero out
the corresponding row/column or insert row/column, respectively.

We refer to Offset Score Propagation (OSP) algorithm [57] for
solving the dynamic random walk with restart in a single graph.
Assuming node u; in network G; is a selected node with high PageR-
ank score in P;, we use r,]q and rpew to denote the RWR vectors
of node u; in A; and B; = A; + AA; for brevity. We represent
AA; = B; — A; as the difference between the new row-normalized
ad)acency matrix B; and the old row-normalized adjacency matrix
A;. Note that AA; is not the row-normalized matrix of AA;. The
new RWR vector rpew can be calculated as,

A s)
Qoffset = CAA;] Tolg, X(ffset (eB])’ Qo ffset ()

_ (s) -
Toffset = Z X ffset’ Hew = Told + Toffset ®)
s=0
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THEOREM 1. (EXACTNESS) [57] tpew is exact the RWR score vector
of node u; in the updated network B; = A; + AA;.

ProOOF. See the original paper [57]. ]

Here, we give a proposition about the necessary iterations for
convergence by re-running the RWR algorithm on the updated
network B; and the computation of rpew-.

PROPOSITION 1. Given the convergence tolerance € in L1 norm, the
number of iterations that is necessary for 1y, and e to converge
arelog,. (=) andlog,.(—=5——), respectively.

8e(3=) andloge (g, ). respectively

PRrOOF. Since A; and B; are both row normalized stochas
matrices, |IA;'—||1 = 1and ||ﬁ;r||1 = 1. So, the convergence it
ation number for ry,, can be calculated by || (cA;'—)s(l —c)ey |l

(1 =c)ey, ||1 < e. We can get the number of iterations (i.e.,
for ry, is log. (5 ) Similarly, the number of iterations (i.e., 5) 1

Toffset 1 log, ).

Having completed the update of the inner part, we further inve
gate the newly observed cross-layer dependencies in the outer p:
According to the space transformation function trained in FITC
we adapt the transformation function to the dynamic systems
fine-tuning with few newly observed cross-layer dependencies. T
fine-tuning can be efficiently achieved because the newly observ
dependency matrix (i.e., ALZ j) is very sparse considering that nu

( ”qoﬂsetlll

ber of perturbations is limited within a short period of time. \
fine-tune the parameters using the following loss function with a

few epochs
g
= max{0,y + d(u;,0;) — d(uj,0%)}
— ; |N{AL (up0;)=1} ] v

)
Note that the difference between J; and J; in Eq. (5) is the
training set, i.e., AL and L" , respectively.

4.3 Complexity Analysis

For FITO-S, we adopt one linear layer as the space transformation
function in our experiment. The time complexity of FITO-S with
vanilla implementation is composed of three parts: (1) P; gener-
ated by PageRank for each layer network G;. The corresponding
time complexity is O(svol(A;) + n; log(k)), where vol(A;) is the
number of edges in G;, s is the number of iterations in PageRank
and O(n; log(k)) is the time for picking top-k nodes with largest
PageRank scores; (2) RWR for each node in P; for each layer net-
work G;, the time complexity is O(ks - vol(A;)); and (3) the space
transformation function training for each dependency matrix L;” It
For this part, time is mainly consumed in negative sampling. It is
related to the size of training set (i.e., vol(Lﬁ j))’ multiplied by the
number of negative samples nneg for each observed dependency.

For FITO-D, it can achieve better performance in terms of effi-
ciency than FITO-S from the following three aspects, including: (1)
time saved in updating RWR position embedding matrix, as stated
in Proposition 1, (2) a small number of epochs for fine-tuning and
(3) the sparse newly observed dependency matrix (i.e., ALg ; is even
sparser than L?, j), which requires less time for obtaining negative
samples.
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5 EXPERIMENT
We evaluate the proposed FITO in the following aspects:

e How effective is our proposed FITO-S handling the sparsity chal-
lenge compared with the existing methods?

e How sensitive is the proposed FITO-S w.r.t. model components
and parameters?

e When the multi-layered network I evolves, how can FITO-D
resolve the dynamic challenge effectively and efficiently?

5.1 Experimental Setup

G1: Internet

G1: Paper G1: Product
: : g G2: Power Grid 1 G5: Power Grid 4
G2: Venue  G3: Author G2: User G3: Power Grid 2 G4: Power Grid 3
(a) Aminer (b) Ciao (c) Italy

Figure 2: The abstract dependency structures.
5.1.1 Datasets. Our method is evaluated mainly on three datasets.
The dataset statistics are summarized in Table 3 and the abstract
layer-layer dependency graphs are shown in Figure 2. The detailed
descriptions of datasets are presented in Appendix.

5.1.2  Scenarios. We have two settings in our experiments, includ-
ing the static setting and the dynamic setting. In the static setting, to
reflect the sparsity challenge, we set the observed dependency matri-
ces, L;.’, joto be extremely sparse (i.e., with a very small training ratio).
Taking the Aminer dataset as an example, if we set the training
ratio as 0.01, it means that we only have 1% observed dependencies
for both Paper-Venue (G1: G2) and Paper-Author (G1: G3). For Gi:
G2, we randomly select 79 dependencies from 7,925 groundtruth
dependencies. For G;: Gs, the prior dependency number is 93 out
of 9,299 groundtruth dependencies. We have five scenarios for the
static task, including (1) Aminer-0.01 (2) Aminer-0.05 (3) Ciao-
0.005 (4) Ciao-0.01 and (5) Italy-0.1, where {0.01, 0.05, 0.005, 0.01,
0.1} are different training ratios. In the dynamic setting, we set five
steps for the Aminer dataset. In step 0, we randomly reserve 90%
within-layer edges in each layer and set the training ratio as 0.025.
Then, at each step, we add 2% within-layer edges in each layer
network and 0.5% of the groundtruth cross-layer dependencies. For
example, at step 2, we have 94% within-layer edges with a 0.035
training ratio and the test set has the remaining 96.5% groundtruth
cross-layer dependencies. Notice that at step 5, the setting is same
as Aminer-0.05. FITO-S is run at step 0 as the starting model for
FITO-D at step 1. Then, FITO-D at each step fine-tunes model
parameters based on previous step’s FITO-D.

5.1.3 Baselines & Metrics. For the static task, we select seven rep-
resentative baselines from two main categories of existing methods:
(1) hin2vec [17], GATNE [4] and RHINE [34] are metapath-based,
GNN-based and knowledge graph embedding based HNE methods
respectively; and (2) CMF [43], wpZAN [56] and FASINATE [7]
are CF-based methods. node2vec [21] functions as homogeneous
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Table 4: Performance on Cross-Layer Dependency Inference for Aminer and Ciao (Higher is better).

Dataset Aminer-0.01 Aminer-0.05 Ciao-0.005 Ciao-0.01
Layer pair G1: Gy G1: Gs G1: Gy G1: G3 G1: Gy G1: Go
Metrics Hit@5 Hit@10 | Hit@50 Hit@100 | Hit@5 Hit@10 | Hit@50 Hit@100 | Hit@50 Hit@100 | Hit@50 Hit@100
RHINE 0.36% 0.70% 0.90% 1.64% 0.31% 0.69% 0.61% 1.23% 1.00% 2.02% 1.12% 2.31%
GATNE 0.61% 1.55% 0.32% 0.76% 0.60% 0.96% 0.42% 0.94% 0.94% 1.67% 3.05% 3.80%
hin2vec 9.14% 14.49% 0.34% 0.63% 18.36%  28.14% 2.89% 3.83% 0.61% 1.31% 0.89% 1.70%
node2vec 12.15% 17.58% | 3.97% 5.98% 20.22%  2857% | 14.79% 20.15% 2.94% 5.20% 4.10% 6.45%
wpZAN 5.33% 11.45% | 4.51% 7.65% 16.07% 25.21% | 14.11%  19.87% 1.48% 3.32% 3.29% 5.94%
CMF 7.18% 11.93% | 5.54% 7.76% 17.63%  24.52% | 12.64% 17.15% 3.99% 6.74% 5.09% 8.45%
FASINATE | 6.67% 12.73% | 4.84% 7.73% 17.33%  26.60% | 14.17%  19.77% 1.42% 3.21% 3.31% 5.85%
FITO-S 17.05% 24.40% | 7.57% 11.90% 30.90% 40.44% | 13.63% 20.37% 5.52% 9.79% 6.07% 11.25%

Table 5: Performance for Italy (Higher is better).

Dataset Italy-0.1

Layer pair G1:Gy G1:G3 G1: Gy G1:Gs
Metrics Hit@l Hit@5 | Hit@l Hit@5 | Hit@1 Hit@5 | Hit@l Hit@5
RHINE 0.00% 17.69% | 0.00% 0.00% 20.00% 34.67% | 0.00% 0.00%
GATNE 0.00%  4.69% 0.00% 18.39% | 0.00% 5.33% 0.00% 5.45%
hin2vec 1.44%  7.94% 3.45% 12.64% | 2.67% 16.00% | 3.64% 7.27%
node2vec 2.17% 11.55% | 4.60% 24.14% | 4.00% 36.00% | 3.64% 20.00%
wpZAN 0.00%  4.33% 1.15% 19.54% | 4.00% 36.00% | 5.45% 12.73%
CMF 0.00%  6.50% 1.15% 21.84% | 5.33% 36.00% | 5.45% 18.18%
FASINATE | 0.00%  3.97% 2.30% 19.54% | 4.00% 36.00% | 5.45% 20.00%
FITO-S 2.52% 13.72% | 17.24% 41.37% | 8.00%  38.66% | 16.36% 30.90%

network embedding baseline for comparison. The metrics is Hit@K.
We select different Ks according to sizes of different layers.

5.14
limit.

Implementation Details. See the Appendix due to the page

5.2 Effectiveness of FITO-S in Static Setting

The results of FITO-S and different methods are presented in Ta-
bles 4 and 5. We can see that FITO-S achieves the best performance
in almost all scenarios. For example, in Aminer-0.01, FITO-S has
a 5% advantage in Hit@5 on Gp: Gz than the best baseline (i.e.,
node2vec). In the second dataset Ciao, CMF has the best perfor-
mance among all baselines. FITO-S has a 3% improvement over
CMF in Hit@100 in both scenarios. For the smallest dataset Italy,
we use the stricter Hit@1 and Hit@5. FITO-S’s performance is at
least 3 times better than the best baseline in Hit@1 on both G1: G3
and G1: Gs. Among baselines, RHINE achieves good performance in
Hit@5 on Gi: Gy and Hit@1 on Gi: G4. This is because RHINE uses
all information from Gj to Gs to predict the cross-layer dependency
for these two graph pairs (G1: G2 and G1: G4), which sacrifices the
performance for other graph pairs (0 Hit@5 for G;: G and G;: Gs).
These results are consistent with the theoretical analysis in Sec-
tion 3. For HNE-based methods (i.e., RHINE, GATNE and hin2vec),
the experiments show that this category of methods have the lowest
performance compared with other baselines, including the homo-
geneous network embedding baseline node2vec. The reason is that
these methods embrace the coupling principle in the data ingestion
stage, which leads to the inability of generating sufficient cross-
layer similar node pairs under the sparsity challenge. For CF-based
methods, when the observed cross-layer dependency matrix be-
comes sparse, the within-layer connectivity dominates the coupled
objective function, which in turn hurts their overall performance.

5.3 Parameter Study and Ablation Study

5.3.1 Hit@K for different Ks. We focus on one scenario (i.e., Ciao-
0.005-G1: Gy) with different Ks in {1, 5, 10, 30, 50, 100}. The results

e FITO-S o CMF .
+— wpZAN ©-¢ FASINCATE| =—* Aminer-0.05-G1:G3
0.08]{+— nodezvec  »—» GATNE ~— Cia0-0.01-G1:G2
*—_hin2vec <+ RHINE 0.3
. 0.06 g
9 ©® 0.2 U _
*0.04 H -
0.1 —_—
0.02
0009510 30 50 100 0% 80 120 160 200
K k

(a) Hit@K for Ciao-0.005-G1: G,. (b) Size of RWR seeds set Rp; .

Figure 3: Parameter studies.

are shown in Figure 3 (a). From the figure we can see that for all
Ks, FITO-S consistently obtains the best performance.

5.3.2  Size of RWR seed set k. Since we select nodes with top-k
PageRank score as RWR seeds, we only keep k columns of the RWR
matrix R;. Here, we study the effect of k on the performance of
FITO-S on two scenarios: (1) Aminer-0.05-G;: G3 and (2) Ciao-
0.01-G1: Gy. k ranges from 40 to 200. The results (Hit@100) are
shown in Figure 3 (b). We can see that Hit@100 largely remains
stable with a slight increase with k.

I PageRank
Random

I one linear layer
0.20] [ one non-linear layer
[ two non-linear layers

0.00, iner-0.05-61:63

Cia0-0.01-G1:G2

-0 Aminer-0.05-G1:G2

‘Aminer-0.05-G1:G3
Scenario

Scenario

(a) RWR seeds generation methods. (b) Space transformation functions.

Figure 4: Ablation study for RWR seeds generation and space
transformation functions in FITO-S.

5.3.3  RWR seeds generation methods. We use PageRank to gener-
ate RWR seeds for FITO-S with the intuition that nodes with highest
PageRank scores dominate the entire network. In this subsection,
we replace it with random selection and Figure 4 (a) demonstrates
the difference between them. FITO-S with PageRank consistently
has better performance than that with random selection, which
shows the effectiveness of PageRank component.

5.3.4  Space transformation function. The space transformation
function in FITO is one linear layer. Here we study three different
forms of space transformation functions, including (1) one linear
layer, (2) one non-linear layer (one linear layer plus relu activation



Dissecting Cross-Layer Dependency Inference
on Multi-Layered Inter-Dependent Networks

function [20]), and (3) two non-linear layers. From Figure 4 (b)
we can notice that for both datasets (i.e., Aminer-0.05-G1: G3 and
Ciao-0.01-G;: Gy), linear transformation outperforms non-linear
transformation, which suggests that embedding spaces of different
layers are linearly related with each other.

5.4 Effectiveness and Efficiency of FITO-D

In this subsection, we present the results of FITO-D compared with
FITO-S in the dynamic setting. As shown in Figure 5 (a), FITO-
D’s performance is very close to that of retraining FITO-S, with
less than 1% Hit@K loss at each step. However, in Figure 5 (b),
FITO-S’s running time increases linearly from 430s to 731s as multi-
layered network evolves, due to the linearly increasing training
set in each epoch. On the contrary, it takes only about 20s for
FITO-D to update node embeddings and dependency inferences,
which is 29 — 39X faster than FITO-S. As analyzed in Subsection 4.3,
the efficiency comes from three aspects: (1) the time saved in RWR
updating process; (2) a smaller size of newly observed dependencies-
ALz j used in fine-tuning compared with the whole training set for
FITO-S at each step. (3) a smaller training epoch number for FITO-
D (200) than FITO-S (1500). To summarize, FITO-D enjoys both
effectiveness and efficiency in the dynamic setting.

«—= FITO-S-G1:G2-Hit@5

a—a FITO-SGLG2HIL@5 a4 FITO-D-GLG2-HIt@S, ‘
4— FITO-D-G1:G2-Hit@5|

+— FITOS.GLG3-HIt@50  *— FITO-D-GL:G3-Hit@50

39x speed u

Time (100s)
SR VRS ST G- N

29;

Step Step

(a) Performances of FITO-S and FITO-D. (b) Running time of FITO-S and FITO-D.

Figure 5: FITO-D’s effectiveness and efficiency.

6 RELATED WORK

Multi-layered network mining. Multi-layered networks [13]
naturally exist in real-world applications and can be in a variety
of types, including multi-modal networks [24], multi-dimensional
networks [2], multiplex networks [1, 26, 28] and inter-dependent
networks [6, 8, 39]. Enormous research efforts have been directed
towards investigating the problem of multi-layered network min-
ing. For example, [53, 65] studies the network alignment problem
on multi-layered networks and [59] proposes to transform one
layer network to another in the multi-layered network. [63, 64]
investigates the adversarial problem in the multi-network setting.
For dynamic multi-layered networks that evolve over time, [54]
achieves tracking the evolution of entity linking on multiple knowl-
edge graphs. Our work focuses on inferring the cross-layer depen-
dencies and hence is related to multi-layered network mining.

Collaborative filtering. The cross-layer dependency inference
task[11, 12] is related to one-class collaborative filtering (OCCF)
problem. [25, 37] adopt matrix factorization (MF) based methods on
the observed rating matrix. [32] further incorporates the user infor-
mation to improve the performance in inference. In wpZAN [56],
the authors regularize the OCCF with the social network and the
product similarity network. Recently, neural networks are leveraged
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to replace the dot product in MF [23]. The relations of items are cap-
tured in RCF [52] to boost the performance in recommendation task.
NGCF [50] utilizes GNN [29] to propagate the collaborative signal
along the interaction in a bipartite graph. FASCINATE [7] general-
izes collaborative filtering to cross-layer dependency inference on
multi-layered networks.

Network representation learning. Network representation learn-
ing, which aims to effectively embed the network elements in a
low-dimensional latent space, is an essential topic in network min-
ing. For homogeneous networks, DeepWalk [40] inherits ideas from
word2vec [35] to preserve local context of nodes. Node2vec [21] ex-
ploits an interpolation strategy in random walk sampling. LINE [44]
incorporates both the first order and the second order proximity to
learn high-quality node-level representations. More recently, neu-
ral network based approaches for graph structured data have been
widely explored, including graph convolution network (GCN) [29],
graph attention network (GAT) [46], etc. In addition, [14, 15, 47,
48, 60] are algorithms specially designed for on dynamic temporal
graph representation learning. Regarding heterogeneous networks,
metapath2vec [10] and hin2vec [17] are proposed based on metap-
ath generation. GATNE [4] and HANE [51] are graph neural net-
work based methods. Yang et al. summarize the recent development
in heterogeneous network representation learning in a detailed sur-
vey [55]. Our work learns the node representation of multi-layered
inter-dependent network.

7 CONCLUSION

In this paper, we reveal that the coupling principle underlying the
existing cross-layer dependence inference methods bears both the
sparsity challenge and the dynamic challenge in cross-layer depen-
dency inference. In response, we start from the key insight of de-
coupling and propose a family of novel algorithms FITO. FITO-S
leverages random walk with restart to capture the within-layer
total connectivity information, followed by the space transformation
functions. FITO-D further updates the RWR position embedding
matrix and fine-tunes space transformation function. We perform
extensive experiments to validate and verify the effectiveness and
the efficiency of our models.
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