
Dissecting Cross-Layer Dependency Inference
on Multi-Layered Inter-Dependent Networks

Yuchen Yan

yucheny5@illinois.edu

University of Illinois at

Urbana-Champaign

urbana, IL, USA

Qinghai Zhou

qinghai2@illinois.edu

University of Illinois at

Urbana-Champaign

urbana, IL, USA

Jinning Li

jinning4@illinois.edu

University of Illinois at

Urbana-Champaign

urbana, IL, USA

Tarek Abdelzaher

zaher@illinois.edu

University of Illinois at

Urbana-Champaign

urbana, IL, USA

Hanghang Tong

htong@illinois.edu

University of Illinois at

Urbana-Champaign

urbana, IL, USA

ABSTRACT
Multi-layered inter-dependent networks have emerged in a wealth

of high-impact application domains. Cross-layer dependency in-

ference, which aims to predict the dependencies between nodes

across different layers, plays a pivotal role in such multi-layered

network systems. Most, if not all, of existing methods exclusively

follow a coupling principle of design and can be categorized into

the following two groups, including (1) heterogeneous network

embedding based methods (data coupling), and (2) collaborative

filtering based methods (module coupling). Despite the favorable
achievement, methods of both types are faced with two intricate

challenges, including (1) the sparsity challenge where very limited

observations of cross-layer dependencies are available, resulting

in a deteriorated prediction of missing dependencies, and (2) the

dynamic challenge given that the multi-layered network system is

constantly evolving over time.

In this paper, we first demonstrate that the inability of exist-

ing methods to resolve the sparsity challenge roots in the coupling
principle from the perspectives of both data coupling and module
coupling. Armed with such theoretical analysis, we pursue a new

principle where the key idea is to decouple the within-layer connec-
tivity from the observed cross-layer dependencies. Specifically, to

tackle the sparsity challenge for static networks, we propose FITO-
S, which incorporates a position embedding matrix generated by

random walk with restart and the embedding space transformation

function. More essentially, the decoupling principle ameliorates the

dynamic challenge, which naturally leads to FITO-D, being capable

of tracking the inference results in the dynamic setting through

incrementally updating the position embedding matrix and fine-

tuning the space transformation function. Extensive evaluations
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on real-world datasets demonstrate the superiority of the proposed

framework FITO for cross-layer dependency inference.
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1 INTRODUCTION

Power Grid

Router Network

Internet Center Network

Figure 1: An inter-dependent in-
frastructure network. Dashed ar-
rows represent dependencies.

In the era of big data, net-

works [49, 61] are often collected

from multiple domains with inter-
dependent relations, resulting in

the emergence of multi-layered
inter-dependent networks [3, 16, 18,
27, 39]. A typical example of such

multi-layered networks is the inter-

dependent infrastructure network.

As illustrated in Figure 1, the router

network relies on the internet cen-

ter network, while the internet center network is dependent on

the power grid for electricity supply.
1
In this example, accurately

inferring the cross-layer dependency is critical for providing cost-

effective internet center service for users and efficient power distri-

bution. Besides the infrastructure network, cross-layer dependency

inference also plays an essential role in a variety of high-impact

1
The dependency relationship between nodes can be either one-to-one or one-to-many.

Our model can handle both cases without necessarily distinguishing them.
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data mining applications, including new drug discovery in biologi-

cal networks [33], recommendation in e-commerce networks [56],

and team management in collaboration networks [5].

To predict unknown cross-layer dependencies, the vast majority

of existing methods follow a coupling principle and can be cat-

egorized into two groups according to different coupling stages,

including (1) data coupling for heterogeneous network embedding

(HNE)-based methods in data ingestion stage, and (2) module cou-
pling for collaborative filtering (CF)-basedmethods inmodule design
stage. Concretely, first, heterogeneous network embedding (HNE)-

based methods advocate the data coupling approach by viewing the

multi-layered inter-dependent network as a world-view network,

where all layers’ networks are combined into one large hetero-

geneous network and the cross-layer dependency inference task

is formulated as a link prediction problem on this heterogeneous

network. In this category, existing methods propose to learn high-

quality heterogeneous network representations through (1) gener-

ating metapaths [10, 17], (2) capturing node attribute information

with graph neural network (GNN) [4, 29], and (3) leveraging knowl-

edge graph embedding techniques to boost the link prediction

performance [34]. Second, collaborative filtering (CF)-based meth-

ods, from data perspective, regard the input as a multiple-layered

collection of homogeneous networks with cross-layer dependent

interactions and pursue a module coupling approach. Specifically,
CF-based methods aim to model the cross-layer dependency inter-

action and collectively exploit the within-layer connectivity as a

regularization term in the final objective. To name a few, Singh et al.

formulate this task as a collective matrix factorization (CMF) prob-

lem by equally treating the within-layer network adjacency matrix

and the observed dependency matrix in factorization [43]. Homo-

geneous network embedding approaches such as DeepWalk [40]

and LINE [44] are applied to capture the within-layer connectivity

in [9, 62], where the key idea is to replace direct factorization in

CMF with the corresponding node embedding method.

Nonetheless, most, if not all, of existing methods face two key

challenges, including (1) the sparsity challenge and (2) the dynamic
challenge. To be specific, sparsity challenge refers to the deteriorated
prediction of missing dependencies when very limited observed

cross-layer dependencies are available. For HNE-based methods,

sparse cross-layer observations induce a remarkable distortion of

the underlying connectivity distribution (e.g., insufficient gener-

ated high-quality metapaths) and consequently diminish the per-

formance in inferring unobserved links between nodes of various

types. In addition, the performance of CF-based approaches is excep-

tionally hindered by the dominating unlabeled data, which consists

of both non-existing dependency and unobserved dependency. Fur-

thermore, most existing methods assume that the multi-layered

inter-dependent networks are static, despite the fact that the com-

plex network system is topologically evolving over time in terms

of both within-layer connectivity and newly observed cross-layer

dependencies, which demands a novel method being capable of

efficiently updating the inference results in the dynamic setting.

In this paper, we first tackle the sparsity challenge in static cross-

layer dependency inference. We conduct a comprehensive theoreti-

cal analysis and demonstrate the deficiency of the aforementioned

methods in the sparse setting roots in the coupling principle. Specifi-
cally, we uncover that the essence of HNE-based methods following

data coupling is constructing a cross-layer similarity matrix for de-

pendency inference. As the observed dependencies become sparse,

conventional HNE-based methods cannot generate sufficient high-

quality positive node pairs to construct the cross-layer similarity
matrix, thereby bearing the defect in predicting cross-layer de-

pendency. In addition, CF-based methods exclusively embrace the

module coupling approach by regarding the within-layer connectiv-

ity as a regularization term in the final objective. Through detailed

analysis, we demonstrate it is incapable of capturing the so-called

total connectivity information (see details in Definition 2).

Based on the theoretical analysis, we pursue a decoupling princi-
ple in both data ingestion stage andmodule design stage and propose
a novel algorithm FITO-S to address the sparsity challenge in the

static setting. FITO-S first delves into each within-layer network

and distills the total connectivity information into a position em-

bedding matrix with random walk with restart (RWR) [45]. Then,

FITO-S learns a space transformation function by exploiting the

observed cross-layer dependency, which translates the obtained

representations from various layers to a unified latent embedding

space. Additionally, the decoupling principle naturally leads to a

dynamic version of the algorithm (FITO-D) upon the static FITO-S.

For dynamic systems, FITO-D follows a two-step procedure, in-

cluding (1) incrementally updating the RWR position embedding

matrix, and (2) fine-tuning the space transformation function by

capitalizing on the newly observed cross-layer dependencies.

The main contributions of the paper are summarized as follows,

• Analysis. We conduct a theoretical analysis on the existing two

main categories of methods for cross-layer dependency inference,

centered around the coupling principle in different stages, which

reveals some fundamental limitations of the existing methods in

resolving the sparsity challenge.
• Algorithms. We propose a family of novel algorithms, FITO,

based on the idea of decoupling the within-layer connectivity

from cross-layer dependency, to effectively and efficiently infer

cross-layer dependencies in both static and dynamic settings.

• Evaluations. We perform extensive empirical evaluations on

real-world datasets from different domains. The evaluation results

demonstrate (1) effectiveness for the sparsity challenge, where

FITO-S outperforms all baseline methods in terms of inference

accuracy; (2) efficiency for the dynamic challenge, where the

proposed FITO-D achieves 29− 39× speed-up over retraining the

FITO-S in dynamic steps.

2 PROBLEM DEFINITION
In this section, we first introduce the notations and then formally

define the problem of cross-layer dependency inference.

The main symbols used in this paper are summarized in Table 1.

We use bold uppercase letters for matrices (e.g., A), bold lowercase

letters for vectors (e.g., r) and lowercase letters for scalars (e.g., 𝛼) .

To index a matrix/vector, we use A(𝑢, 𝑣) to represent the entry at

the 𝑢-th row and the 𝑣-th column of matrix A, A(𝑢, :) to denote the

𝑢-th row of A, A(:, 𝑣) to denote the 𝑣-th column of A.
For a multi-layered inter-dependent network Γ composed of 𝑔

layers of networks, there exist dependencies between some specific



Dissecting Cross-Layer Dependency Inference
on Multi-Layered Inter-Dependent Networks CIKM ’22, October 17–21, 2022, Atlanta, GA, USA.

Table 1: Symbols and Notations.
Symbol Definition

Γ the multi-layered network

𝐺𝑖 the network of the 𝑖-th layer in Γ

A adjacency matrix

L𝑜
𝑖,𝑗
, L𝑖, 𝑗 observed and predicted dependency matrices of (𝐺𝑖 , 𝐺 𝑗 )

Lℎ homophily-based similarity matrix in HNE-based methods

D the diagonal degree matrix of A
ΔA𝑖 perturbation matrix of A𝑖
ΔL𝑜

𝑖,𝑗
newly observed dependency matrix

R RWR matrix

F embedding matrix

RP RWR position embedding matrix

A⊤
transpose of A

Â row normalized matrix of A

𝑛𝑖 numbers of nodes in 𝐺𝑖
𝑢𝑖 the 𝑢-th node of 𝐺𝑖
𝑘 the second dimension of RP𝑖

𝛼, 𝛽,𝛾 parameters

tr(A) trace of A
| | · | |2

𝐹
Frobenius norm of matrix

layers (e.g., the 𝑖-th layer 𝐺𝑖 and the 𝑗-th layer 𝐺 𝑗 ).
2
Given the

network connectivity for each layer’s network (adjacency matrix

A𝑖 ) and some observed dependencies (L𝑜
𝑖,𝑗
), the task of static depen-

dency inference is to find all dependencies across𝐺𝑖 and𝐺 𝑗 , which

can be defined similarly as in [7]:

Problem 1. Static Cross-Layer Dependency Inference

Given: amulti-layered network Γ = (A,L𝑜 ), where (1)A = {A1, . . . ,A𝑔}
is the set of within-layer adjacency matrices; and (2) L𝑜 =

{L𝑜
𝑖,𝑗
|𝑖, 𝑗 = 1, . . . , 𝑔} is the set of observed cross-layer depen-

dency matrices.
Output: (1) embeddingmatrices {F1, . . . , F𝑔}; (2) the predicted cross-

layer dependency matrices {L𝑖, 𝑗 |𝑖, 𝑗 = 1, . . . , 𝑔}.

Accordingly, the dynamic cross-layer dependency inference prob-

lem is defined as follows.

Problem 2. Dynamic Cross-Layer Dependency Inference

Given: (1) an original multi-layered network Γ = {A, L𝑜 }; (2) the
change of the multi-layer network ΔΓ = {ΔA, ΔL𝑜 }, where
ΔA = {ΔA1, . . . ,ΔA𝑔} is the perturbation on connectivity
occurring within layers and ΔL𝑜 = {ΔL𝑜

𝑖,𝑗
|𝑖, 𝑗 = 1, . . . , 𝑔} is

newly observed dependency set.3

Output: (1) new embedding matrices {F1, . . . , F𝑔}; (2) new predicted
cross-layer dependency matrices {L𝑖, 𝑗 |𝑖, 𝑗 = 1, . . . , 𝑔}.

The dynamic change of the multi-layered network (i.e., ΔΓ) re-
ferrs to the following two perspectives. First, the topological pertur-

bations may appear in each layer of network, i.e., ΔA. For example,

in a given layer of network 𝐺𝑖 , we might observe the vanishing of

existing edges and new links to be established, which change the

corresponding entries in A𝑖 . Besides, new nodes can be inserted in

𝐺𝑖 , which extends the index in A𝑖 .4Second, additional cross-layer

2
Multi-layered inter-dependent networks are different from multiplex/multi-view

network defined in [38, 58], where each layer has same set of nodes and represents

different edge types. They can be viewed as a general form of heterogeneous network.

3
In this paper, we only consider cumulative dependency. For example, once a product

has been bought by a user, the dependency (having been bought) between the product

and the user will stay.

dependencies might emerge as the multi-layered network Γ evolves

over time, i.e., ΔL𝑜 .
Remarks. The cross-layer dependency inference (Problems 1 and 2)

studied in this paper is quite general and it relates to several classic

data mining tasks. For example, if 𝑔 = 2 and both within-layer ma-

trices are absent, the cross-layer dependency inference degenerates

to the classic collaborative filtering problem [25, 37]; if 𝑔 = 2 and

only one of the two within-layer adjacency matrix is available, we

can view cross-layer dependency inference as social recommenda-

tion problem [56]; if 𝑔 = 2 and both layers are for the same type

of nodes (e.g., the same populations from two different social plat-

forms), cross-layer dependency inference becomes (soft) network

alignment problem [59]; and if 𝑔 > 2 and all the within-layer adja-

cency matrices are absent, cross-layer dependency inference can

be viewed as collective collaborative filtering problem [43].

3 ANALYSIS
In this section, we theoretically demonstrate that under the sparsity

challenge in static setting, both HNE-based and CF-based methods

bear some fundamental limitations rooted in the coupling princi-
ple. Concretely, we reveal that the nature of data coupling HNE-

based methods is to construct a cross-layer similarity matrix to

predict cross-layer dependency link. When facing the sparsity chal-

lenge, they fall short in generating sufficient positive cross-layer

node pairs to construct this matrix. For CF-based methods, viewing

within-layer connectivity as regularization of cross-layer depen-

dency and optimizing them in a coupling way result in the inability

of capturing the total connectivity information of each layer.

3.1 Data Coupling HNE-Based Methods
In this subsection, we conduct a theoretical analysis about the lim-

itations of HNE-based methods under the sparsity challenge. We

demonstrate that HNE-based methods with the homophily assump-
tion essentially construct a homophily-based cross-layer similar-
ity matrix, which is used to predict cross-layer dependency link,

thereby encountering a problem similar to cold-start in traditional

collaborative filtering tasks. We start from the homophily assump-
tion used in a variety of network embedding algorithms, including

random walk (RW)-based, metapath-based, GNN-based and knowl-

edge graph-based:

Definition 1. Homophily Assumption: The homophily as-
sumption in network embedding algorithm is that nodes topologically
“close” to each other should have “similar” embedding vectors, while
distant nodes should have disparate embedding representations.

Here the term “close” does not limit to direct connectivity in

networks like in LINE [44], other patterns also satisfy the definition

of "close". To name a few, a node pair sampled from random walk is

considered to be "close" in DeepWalk [40] and node2vec [21]. The

“neighboring nodes” sampled from GNN with a fixed number of

layers [22, 29] and nodes connected by a metapath [10, 17] can be

interpreted as "close". The term “similar” refers to small distance

4
Deleting node is equivalent to removing all incident edges.
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measure or large dot product among the node embeddings. In RW-

based methods, the homophily loss can be formulated as follows:

Jℎ =
∑︁
𝑢∈V

∑︁
𝑣,𝑣

′∈V

− log(𝜎 (v𝑇 u)) −𝑄 · E
𝑣
′∼𝑃 (𝑣′ ) log (𝜎 (−v

′𝑇 u)) (1)

where (𝑢, 𝑣) denotes a positive “close” node pair sampled by the

model and (𝑢, 𝑣 ′) represents a negative “distant” pair. By minimiz-

ing Eq. (1), the model is driven to produce similar embeddings for

“close” nodes (i.e., large dot-product) and distant embeddings oth-

erwise. By putting the dot products of all node pairs together, we

can find that the homophily assumption in RW-based embedding

aims to construct a new similarity matrix. For graph auto-encoder

(GAE) [30], the similarity matrix is exactly the adjacency matrix.

For metapath-based methods, they have similar homophily loss

functions as RW-based methods. For GNN-based and knowledge

graph-based methods, they adopt embedding distance measure-

ments, which can also be transformed into a similarity score be-

tween 0 and 1 (e.g.,𝑒−𝑑 (𝑢,𝑣) ). Hence, the similarity matrix can be

constructed.

With the underlying homophily assumption, HNE-based methods

attempt to construct one integrated similarity matrix Lℎ , and they

essentially utilize the cross-layer (i.e., type) similaritymatrices (Lℎ
𝑖,𝑗
)

to predict the dependency link, which are sub-matrices of Lℎ with

type-𝑖 nodes and type- 𝑗 nodes as rows and columns in the coupled
world-view network, respectively.

Therefore, we have the following claim about HNE-based meth-

ods under the sparsity challenge:

Claim 1. Sparsity challenge for HNE-based methods: Under
the sparsity challenge, HNE-based methods with finite length of meta-
paths or number of GNN layers cannot generate sufficient high-quality
“similar” cross-layer (type) node pairs. The constructed similarity ma-
trix Lℎ

𝑖,𝑗
will become sparse when the number of observed dependencies

decreases (equivalent to that matrix L𝑜
𝑖,𝑗

becomes sparse.), thereby
resulting in a similar cold-start problem in collaborative filtering.

The correctness of this claim is shown as follows. Since the

constructed cross-layer similarity matrix Lℎ
𝑖,𝑗

measures the simi-

larity between nodes from different layers (i.e., different types in

the heterogeneous network), it has a type transition process. In

metapath-based methods, this implies that at least one observed

cross-layer dependency link is covered in the finite-length metap-

ath. For GNN-based methods, it corresponds to the fact that nodes

with different types reach each other in finite layers/hops, which

passes at least one observed cross-layer dependency link. Therefore,

when the observed L𝑜
𝑖,𝑗

becomes extremely sparse, the number of

cross-layer links and positive similar cross-layer node pairs will be

reduced. Then, these positive “similar” node pairs might be falsely

treated as negative “disparate” ones. Consequently, the constructed

matrix Lℎ
𝑖,𝑗

from HNE-based methods bears a similar cold-start

problem as in CF task.

To summarize, we conclude that HNE-based methods will con-

struct a cross-layer similarity matrix Lℎ
𝑖,𝑗

for every network layer

pair (𝑖, 𝑗), as the result of data coupling approach, since the connec-
tivity of each layer’s network is fused in one matrix Lℎ .

3.2 Module Coupling CF-Based Methods
Collaborative filtering (CF)-based methods do not follow the cou-
pling principle in the data ingestion stage, where within-layer con-
nectivity matrices are separated from cross-layer dependency matri-

ces. Instead, they follow the coupling principle in the module design
stage. In this subsection, we investigate the limitation of CF-based

methods under the sparsity challenge. To better assist the analy-

sis, we first give the definition of the concept, total connectivity
information, as follows,

Definition 2. Total Connectivity Information. Given the ad-
jacency matrix A𝑖 of a single layer network 𝐺𝑖 , we say that the total
connectivity information of 𝐺𝑖 is captured if the learned node embed-
dings or some specific matrix to be factorized satisfy the following
two conditions:

• High Order Connectivity: If two nodes in 𝐺𝑖 are connected within
an arbitrary number of steps, the high order connectivity informa-
tion should be preserved by the embedding vectors or the specific
matrix.

• Homophily Assumption: Nodes topologically “close” to each other
should be discriminated with nodes topologically “distant” to each
other by embedding vectors or some specific matrix.

We now claim that under the sparsity challenge, the existing

CF-based methods are unable to capture the total connectivity in-
formation of each layer as a consequence of the module coupling
approach. In the executing process, CF-based methods exploit and

optimize the within-layer connectivity and cross-layer dependency

in a coupling fashion, and thewithin-layer connectivity information

is formulated as a regularization term to facilitate the cross-layer

dependency inference.

To demonstrate the correctness of the claim, we initiate the

analysis on the objective function of FASCINATE [7], a typical

CF-based method for cross-layer dependency inference:

min

F𝑖 ≥0(𝑖=1,...,𝑔)
J =

∑︁
𝑖, 𝑗

∥W𝑖, 𝑗 ⊙ (L𝑜𝑖,𝑗 − F𝑖F⊤𝑗 )∥
2

𝐹︸                               ︷︷                               ︸
C1: Matching observed cross-layer dependencies

𝛼

𝑔∑︁
𝑖=1

tr(F⊤𝑖 (D𝑖 − A𝑖 )F𝑖 ) + 𝛽
𝑔∑︁
𝑖=1

∥F𝑖 ∥2𝐹︸                                             ︷︷                                             ︸
C2: Within-layer connectivity regularization

(2)

where ⊙ represents the element-wise product, W𝑖, 𝑗 is particularly

defined as a weight matrix to alleviate the sparsity challenge. The
goal of the term C1 is to match the observed cross-layer depen-

dencies, and C2 is the within-layer connectivity regularization,

including a trace term and a matrix Frobenius norm of F𝑖 . We start

with analyzing C2 in Eq. (2). tr(F⊤
𝑖
(D𝑖 − A𝑖 )F𝑖 ) can be further re-

written as

∑
A𝑖 (𝑢𝑖 , 𝑣𝑖 )∥F𝑖 (𝑢𝑖 , :) − F𝑖 (𝑣𝑖 , :)∥2. By minimizing it, the

learned node embeddings become similar for the connected nodes

in network𝐺𝑖 . Combining with the Frobenius norm, i.e., ∥F𝑖 ∥2𝐹 , di-
rectly optimizing C2 will, in consequence, deliver a trivial solution

for F𝑖 . Namely, the term C2 only satisfies the high order connectivity
condition in total connectivity information but does not conform
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the homophily assumption since minimizing C2 is equivalent to

factorizing a zero matrix.

FASCINATE [7] avoids the trivial solution issue by introduc-

ing C1, which can significantly improve the performance when

the observed cross-layer dependency matrix (i.e., L𝑜
𝑖,𝑗
) is relatively

dense. Nonetheless, under circumstance that very limited observed

cross-layer dependencies are available, i.e., the sparsity challenge,
the solution matrices F𝑖 will be primarily determined by C2 and

thus tend to become trivial.

Actually, the C2 term can be replaced with a variety of homo-

geneous network embedding approaches based on collaborative

filtering. For example, in collective matrix factorization (CMF) [43],

C2 = ∥F𝑖F⊤𝑖 − A𝑖 ∥2𝐹 . For other methods [9, 62], C2 is modified

according to different network embedding algorithms, e.g., Deep-

walk [40] or LINE [44]. Table 2 summarizes the formats of C2 for

different methods. It is straightforward to conduct a similar analy-

sis on other CF-based methods and then we introduce Claim 2 as

follows:

Claim 2. In the existing CF-based methods, minimizing the within-
layer connectivity term (i.e., C2 in Eq. (2)) w.r.t. the 𝑖-th layer of
network is equivalent to directly factorizing some specific matrix, and
it cannot capture total connectivity information of 𝐺𝑖 , under the
sparsity challenge.

To be specific, for CMF, the claim obviously holds because mini-

mizing ∥F𝑖F′𝑖 − A𝑖 ∥2𝐹 is equivalent to factorizing the within-layer

adjacency matrix (i.e., A𝑖 ), which does not satisfy the high order
connectivity condition. For network embedding related methods,

according to [41], a variety of network embedding algorithms can

be unified in the format of matrix factorization. Given the network

of the 𝑖-th layer (i.e., 𝐺𝑖 ), DeepWalk encodes the within-layer con-

nectivity as, log(vol(A𝑖 ) ( 1𝑇
∑𝑇
𝑠=1 (D−1

𝑖
A𝑖 )𝑠 )D−1

𝑖
)-log𝑏, where 𝑇 is

the context window length, 𝑏 is the number of negative samples in

skip-gram [35] and vol(A𝑖 ) =
∑
𝑢𝑖 ,𝑣𝑖 A𝑖 (𝑢𝑖 , 𝑣𝑖 ) is defined as the vol-

ume of network𝐺𝑖 . In addition, for LINE-based methods, the within

layer connectivity can be written as, log(vol(𝐺𝑖 )D−1
𝑖

A𝑖D−1
𝑖
) − log𝑏.

In Table 2, we summarize the corresponding matrices on which

factorization is applied for different methods, given the network of

the 𝑖-th layer (i.e., 𝐺𝑖 ).
Table 2: Matrices factorized by different choices of within-
layer connectivity term for 𝐺𝑖 .

Methods Matrices

FASCINATE 0
CMF adjacency matrix A𝑖

DeepWalk log(vol(A𝑖 ) ( 1𝑇
∑𝑇
𝑠=1 (D−1

𝑖
A𝑖 )𝑠 )D−1

𝑖
)-log𝑏

LINE log(vol(A𝑖 )D−1
𝑖
A𝑖D−1

𝑖
) − log𝑏

For methods following LINE to capture within-layer connectivity,

they are similar to CMF and can only extract the information from

one-hop neighboring nodes, which is not in accordance with the

high order connectivity condition in Claim 2.

For DeepWalk related methods, we give a brief discussion from

the perspective of the walk length, i.e.,𝑇 . When the context window

length 𝑇 = 1, the matrix is exactly the same as that in LINE. When

𝑇 is small, the high order connectivity condition is not satisfied. For

a large walk length, we have the following lemma,

Lemma 1. For an undirected connected network 𝐺𝑖 , if 𝑇 → ∞,
( 1
𝑇

∑𝑇
𝑠=1 (D−1

𝑖
A𝑖 )𝑠 ) → M𝑖 , where M𝑖 is a matrix where all rows are

the identical eigenvectors corresponding to the eigenvalue equaling 1
associated with the matrix (D−1

𝑖
A𝑖 )⊤.

The proof of Lemma 1 is attached in Appendix due to the page

limit. It indicates that DeepWalk-based methods will hamper the ho-

mophily assumption with a large𝑇 , because for each column ofM𝑖 ,
i.e.,M𝑖 (:, 𝑢 𝑗 ), the entries are identical values. Therefore, DeepWalk-

based methods cannot strike a balance between capturing the high

order connectivity (i.e., large walk length 𝑇 ) and satisfying the

homophily assumption (i.e., small 𝑇 ).

Remarks. The violation of the homophily assumption appears to

be similar to the over-smoothing issue [31] discovered in GNN [29],

however, they are actually separate problems. To be specific, the

over-smoothing issue in GNN is designed to directly learn the final

node embeddings, whereas our analysis focuses on the constructed

matrix M𝑖 , which will be further factorized to obtain the final node

representations. One typical characteristic of the over-smoothing

issue in GNN, is that the final embeddings tend to become identical

for all nodes. For DeepWalk-based methods, when 𝑇 approaches

infinity, the entry values in a specific column ofM𝑖 are the same,

nevertheless, the column-wise values are different. Therefore, the

obtained node embeddings after factorization remain distinct.

To summarize, following the module coupling approach, exist-
ing CF-based methods optimize the within-layer connectivity and

the cross-layer dependency in a coupling fashion while regarding

the within-layer connectivity information as a regularization term.

However, when L𝑜
𝑖,𝑗

degenerates into a sparse matrix (i.e., the spar-
sity challenge), the regularization term representing within-layer

connectivity becomes the dominant term in the objective function.

Therefore, it cannot capture the total connectivity information of

𝐺𝑖 , falling short of striking a good balance between propagating

critical information (i.e., high order connectivity) and differentiating

adjacent nodes from distant ones (i.e., homophily assumption).

4 METHOD
In this section, we introduce our proposed method, including First-
Inner-Then-Outer-Static (FITO-S) to resolve the sparsity challenge
in the static setting and FITO-D to tackle the dynamic challenge.
Armed with the theoretical analysis in Section 3, the key idea of

our proposed model is to pursue a decoupling principle in both the

data ingestion stage and the module design stage. To be specific,

in the data ingestion stage, following a similar procedure in CF-

based methods, we separate the within-layer connectivity from

the cross-layer dependency. In the module design stage, instead of

simultaneously exploiting the within-layer connectivity and the

cross-layer dependency, we first focus on the within-layer con-

nectivity and design a random walk with restart (RWR) position

embedding module to capture the total connectivity information (i.e.,
First-Inner). Then, we leverage a space transformation function to

translate the node embeddings from different layers to the same

latent space (i.e., Then-Outer). An add-on benefit of this decou-
pling design is that it naturally leads to an efficient and effective

model FITO-D in the dynamic setting, which can separately up-

date the RWR position embedding matrix and fine-tune the space

transformation functions.
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4.1 FITO-S
In this subsection, we present our proposedmodel FITO-S to resolve

the sparsity challenge in the static setting. According to the analysis

on the CF-based algorithms, we first introduce the proposed within-

layer RWR position embedding module whose goal is to capture

the total connectivity information (i.e., Definition 2).

A - RWR Position Embedding Module. Regarding within-layer

connectivity, we have demonstrated that for existing CF-based

methods, matrices associated with C2 in Eq. (2) are unable to cap-

ture the total connectivity information due to the coupling principle.
Alternatively, random walk with restart (RWR) [45], a popular al-

gorithm to measure the node proximity, manages to preserve the

connectivity information, and we have the following claim:

Claim 3. Random walk with restart (RWR) matrix is capable of
capturing the total connectivity information.

To prove the correctness of the claim, we first present the mathe-

matical details of the information propagation mechanism of RWR

in the following equation,

r𝑢𝑖 = 𝑐Â
⊤
𝑖 r𝑢𝑖 + (1 − 𝑐)e𝑢𝑖 (3)

where Â𝑖 = D−1
𝑖
A𝑖 is the row-normalized adjacency matrix of 𝐺𝑖 ,

r𝑢𝑖 denotes the node proximity vector for node𝑢𝑖 , 1−𝑐 is the restart
probability and e𝑢𝑖 represents a one-hot starting vector with the

𝑢𝑖 -th element equal to 1.

From Eq. 3, we can derive the closed-form solution of the RWR

matrix, R𝑖 = (1 − 𝑐) (I − 𝑐Â⊤
𝑖
)−1 where I is the identity matrix.

The corresponding Taylor series can be calculated as R𝑖 = (1 −
𝑐)∑∞

𝑠=0 (𝑐Â⊤
𝑖
)𝑠 I. The column of R𝑖 , (e.g., R𝑖 (:, 𝑢𝑖 )) represents the

RWR vector r𝑢𝑖 of node 𝑢𝑖 , r𝑢𝑖 = (1 − 𝑐)∑∞
𝑠=0 (𝑐Â⊤

𝑖
)𝑠e𝑢𝑖 .

Comparing R𝑖 with the matrices in Table 2, we can see that the

RWR matrix R𝑖 can indeed capture the total connectivity informa-
tion. For the high order connectivity condition, R𝑖 contains the terms

when 𝑠 is large and approaches infinity, such that the high-order

information can be captured. For the homophily assumption con-

dition, the decaying factor 𝑐 along with the walk length 𝑠 ensures

that a close node pair has a larger value than a distant node pair in

the position matrix R𝑖 . Therefore, Claim 3 holds.

Actually, the 𝑢𝑖 -th row of R𝑖 (i.e., R𝑖 (𝑢𝑖 , :)) measures the relevant

position of node 𝑢𝑖 from all nodes in network 𝐺𝑖 . 𝑛𝑖 is the number

of nodes in network𝐺𝑖 , which implies that the size of matrix R𝑖 may

be too large thereby decreasing the model efficiency. To address

this issue, we identify 𝑘 nodes with the top-𝑘 highest PageRank

scores [36] in 𝐺𝑖 as the node set P𝑖 .5 Note that other sampling

methods to construct P𝑖 (e.g., random selection) will also be evalu-

ated in the experimental section. The RWR vectors of all selected

nodes in P𝑖 form the RWR position embedding matrix RP𝑖
∈ R𝑛𝑖×𝑘 ,

where 𝑘 is the dimension of RWR position embedding vector (i.e.,

RP𝑖
(𝑢𝑖 , :)) for node 𝑢𝑖 . After the First-Inner step, we get RWR posi-

tion embedding matrices for networks of all layers-{RP1
, . . . ,RP𝑔

}
from the multi-layered networks.

B - Space Transformation. The RWR position embedding matrix

RP𝑖
represents a relevant position embedding space w.r.t. P𝑖 of

network 𝐺𝑖 , it is crucial to transform the embedding matrices of

5
if 𝑘 > 𝑛𝑖 , we set 𝑘 = 𝑛𝑖 .

different layers to one unified space as follows:

F𝑖 = transform𝑖 (RP𝑖
) (4)

The space transformation can be achieved with various functions,

e.g., a linear layer or a multi-layer perceptron (MLP) [19].

To guide the model training, we adopt a ranking loss which is

similar to Bayesian personalized ranking (BPR) [42]:

J𝑠 =
𝑔∑︁
𝑖=1

𝑔∑︁
𝑗=1

1

|N{L𝑜
𝑖,𝑗

(𝑢𝑖 ,𝑣𝑗 )=1} |
max{0, 𝛾 +𝑑 (𝑢𝑖 , 𝑣 𝑗 ) −𝑑 (𝑢 ′𝑖 , 𝑣

′
𝑗 )} (5)

where 𝑑 (𝑢𝑖 , 𝑣 𝑗 ) = ∥F𝑖 (𝑢𝑖 , :) − F𝑗 (𝑣 𝑗 , :)∥1 denotes the 𝐿1 norm dis-

tance between node embeddings F𝑖 (𝑢𝑖 , :) and F𝑗 (𝑣 𝑗 , :), 𝛾 is the mar-

gin parameter and N{L𝑜
𝑖,𝑗

(𝑢𝑖 ,𝑣𝑗 )=1} represents the set of negative

samples for the observed dependency (i.e., L𝑜
𝑖,𝑗
(𝑢𝑖 , 𝑣 𝑗 ) = 1). For

an observed cross-layer dependency (𝑢𝑖 , 𝑣 𝑗 ), the negative sample

(𝑢 ′
𝑖
, 𝑣 ′
𝑗
) is obtained by randomly selecting a node from either 𝐺𝑖 or

𝐺 𝑗 to replace either 𝑢𝑖 or 𝑣 𝑗 . The cross layer dependency inference

matrix L𝑖, 𝑗 can be constructed as follows,

L𝑖, 𝑗 (𝑢𝑖 , 𝑣 𝑗 ) = 𝑒−𝑑 (𝑢𝑖 ,𝑣𝑗 ) (6)

To summarize, FITO-S effectively resolves the sparsity challenge
from the following aspects, including (1) inner part: capturing the
total connectivity information with RWR position embedding ma-

trix; and (2) outer part: unifying the obtained embeddings from all

layers with a space transformation function with a ranking loss.

4.2 FITO-D
The decoupling idea to resolve the sparsity challenge further moti-

vates predicting cross-layer dependencies by tracking the complex

and evolving multi-layered network systems. In this subsection,

we leverage the First-Inner-Then-Outer approach to tackle the dy-
namic challenge. Starting from the inner layer, after the set of RWR

position embedding matrices (i.e., {R𝒏𝒆𝒘
P1

, . . . ,R𝒏𝒆𝒘
P𝑔

}) of the new
multi-layered network (i.e., Γ + ΔΓ) is updated, we fine-tune outer
space transformation functions of different layers with the newly

observed dependencies.

For the 𝑖-th layer network 𝐺𝑖 , its dynamic change includes

edge/node deletion and insertion, which are represented in the

perturbation matrix (i.e., ΔA𝑖 ). Note that if the number of nodes in

the network changes due to node deletion/insertion, we can zero out

the corresponding row/column or insert row/column, respectively.

We refer to Offset Score Propagation (OSP) algorithm [57] for

solving the dynamic random walk with restart in a single graph.

Assuming node𝑢𝑖 in network𝐺𝑖 is a selected node with high PageR-

ank score in P𝑖 , we use rold and rnew to denote the RWR vectors

of node 𝑢𝑖 in A𝑖 and B𝑖 = A𝑖 + ΔA𝑖 for brevity. We represent

ΔÂ𝑖 = B̂𝑖 − Â𝑖 as the difference between the new row-normalized

adjacency matrix B̂𝑖 and the old row-normalized adjacency matrix

Â𝑖 . Note that ΔÂ𝑖 is not the row-normalized matrix of ΔA𝑖 . The
new RWR vector rnew can be calculated as,

q
offset

= 𝑐ΔÂ⊤
𝑖 rold, x(𝑠)

offset
= (𝑐B̂⊤𝑖 )

𝑠q
offset

(7)

r
offset

=

∞∑︁
𝑠=0

x(𝑠)
offset

, rnew = r
old

+ r
offset

(8)
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Theorem 1. (EXACTNESS) [57] rnew is exact the RWR score vector
of node 𝑢𝑖 in the updated network B𝑖 = A𝑖 + ΔA𝑖 .

Proof. See the original paper [57]. □

Here, we give a proposition about the necessary iterations for

convergence by re-running the RWR algorithm on the updated

network B𝑖 and the computation of rnew.

Proposition 1. Given the convergence tolerance 𝜖 in L1 norm, the
number of iterations that is necessary for r𝑢𝑖 and roffset to converge
are log𝑐 ( 𝜖

1−𝑐 ) and log𝑐 (
𝜖

∥q
offset

∥1 ), respectively.

Proof. Since Â𝑖 and B̂𝑖 are both row normalized stochastic

matrices, ∥Â⊤
𝑖
∥1 = 1 and ∥B̂⊤

𝑖
∥1 = 1. So, the convergence iter-

ation number for r𝑢𝑖 can be calculated by ∥(𝑐Â⊤
𝑖
)𝑠 (1 − 𝑐)e𝑢𝑖 ∥1 =

𝑐𝑠 ∥(1 − 𝑐)e𝑢𝑖 ∥1 ≤ 𝜖 . We can get the number of iterations (i.e., 𝑠)

for r𝑢𝑖 is log𝑐 ( 𝜖
1−𝑐 ). Similarly, the number of iterations (i.e., 𝑠) for

r
offset

is log𝑐 ( 𝜖
∥q

offset
∥1 ). □

Having completed the update of the inner part, we further investi-

gate the newly observed cross-layer dependencies in the outer part.

According to the space transformation function trained in FITO-S,

we adapt the transformation function to the dynamic systems via

fine-tuning with few newly observed cross-layer dependencies. The

fine-tuning can be efficiently achieved because the newly observed

dependency matrix (i.e., ΔL𝑜
𝑖,𝑗
) is very sparse considering that num-

ber of perturbations is limited within a short period of time. We

fine-tune the parameters using the following loss function with a

few epochs,

J𝑑 =

𝑔∑︁
𝑖=1

𝑔∑︁
𝑗=1

1

|N{ΔL𝑜
𝑖,𝑗

(𝑢𝑖 ,𝑣𝑗 )=1} |
max{0, 𝛾 + 𝑑 (𝑢𝑖 , 𝑣 𝑗 ) − 𝑑 (𝑢 ′𝑖 , 𝑣

′
𝑗 )}

(9)

Note that the difference between J𝑑 and J𝑠 in Eq. (5) is the

training set, i.e., ΔL𝑜
𝑖,𝑗

and L𝑜
𝑖,𝑗
, respectively.

4.3 Complexity Analysis
For FITO-S, we adopt one linear layer as the space transformation

function in our experiment. The time complexity of FITO-S with

vanilla implementation is composed of three parts: (1) P𝑖 gener-
ated by PageRank for each layer network 𝐺𝑖 . The corresponding

time complexity is 𝑂 (𝑠vol(A𝑖 ) + 𝑛𝑖 log(𝑘)), where vol(A𝑖 ) is the
number of edges in 𝐺𝑖 , 𝑠 is the number of iterations in PageRank

and 𝑂 (𝑛𝑖 log(𝑘)) is the time for picking top-𝑘 nodes with largest

PageRank scores; (2) RWR for each node in P𝑖 for each layer net-

work 𝐺𝑖 , the time complexity is 𝑂 (𝑘𝑠 · vol(A𝑖 )); and (3) the space

transformation function training for each dependency matrix L𝑜
𝑖,𝑗
.

For this part, time is mainly consumed in negative sampling. It is

related to the size of training set (i.e., vol(L𝑜
𝑖,𝑗
)), multiplied by the

number of negative samples 𝑛neg for each observed dependency.

For FITO-D, it can achieve better performance in terms of effi-

ciency than FITO-S from the following three aspects, including: (1)

time saved in updating RWR position embedding matrix, as stated

in Proposition 1, (2) a small number of epochs for fine-tuning and

(3) the sparse newly observed dependency matrix (i.e., ΔL𝑜
𝑖,𝑗

is even

sparser than L𝑜
𝑖,𝑗
), which requires less time for obtaining negative

samples.

5 EXPERIMENT
We evaluate the proposed FITO in the following aspects:

• How effective is our proposed FITO-S handling the sparsity chal-
lenge compared with the existing methods?

• How sensitive is the proposed FITO-S w.r.t. model components

and parameters?

• When the multi-layered network Γ evolves, how can FITO-D

resolve the dynamic challenge effectively and efficiently?

5.1 Experimental Setup
Table 3: Dataset Statistics.

Dataset # of Layers # of Nodes # of Edges # of Dependencies
Aminer 3 17,608 90,354 17,259

Ciao 2 8,308 114,349 60,053

Italy 5 349 379 547

G1: Paper

G2: Venue G3: Author

G1: Product

G2: User

G1: Internet

G2: Power Grid 1 G5: Power Grid 4

G3: Power Grid 2 G4: Power Grid 3
(a) Aminer (b) Ciao (c) Italy

Figure 2: The abstract dependency structures.
5.1.1 Datasets. Our method is evaluated mainly on three datasets.

The dataset statistics are summarized in Table 3 and the abstract

layer-layer dependency graphs are shown in Figure 2. The detailed

descriptions of datasets are presented in Appendix.

5.1.2 Scenarios. We have two settings in our experiments, includ-

ing the static setting and the dynamic setting. In the static setting, to

reflect the sparsity challenge, we set the observed dependency matri-

ces, L𝑜
𝑖,𝑗
, to be extremely sparse (i.e., with a very small training ratio).

Taking the Aminer dataset as an example, if we set the training

ratio as 0.01, it means that we only have 1% observed dependencies

for both Paper-Venue (𝐺1: 𝐺2) and Paper-Author (𝐺1: 𝐺3). For 𝐺1:

𝐺2, we randomly select 79 dependencies from 7,925 groundtruth

dependencies. For 𝐺1: 𝐺3, the prior dependency number is 93 out

of 9,299 groundtruth dependencies. We have five scenarios for the

static task, including (1) Aminer-0.01 (2) Aminer-0.05 (3) Ciao-
0.005 (4) Ciao-0.01 and (5) Italy-0.1, where {0.01, 0.05, 0.005, 0.01,
0.1} are different training ratios. In the dynamic setting, we set five

steps for the Aminer dataset. In step 0, we randomly reserve 90%

within-layer edges in each layer and set the training ratio as 0.025.

Then, at each step, we add 2% within-layer edges in each layer

network and 0.5% of the groundtruth cross-layer dependencies. For

example, at step 2, we have 94% within-layer edges with a 0.035

training ratio and the test set has the remaining 96.5% groundtruth

cross-layer dependencies. Notice that at step 5, the setting is same

as Aminer-0.05. FITO-S is run at step 0 as the starting model for

FITO-D at step 1. Then, FITO-D at each step fine-tunes model

parameters based on previous step’s FITO-D.

5.1.3 Baselines & Metrics. For the static task, we select seven rep-

resentative baselines from two main categories of existing methods:

(1) hin2vec [17], GATNE [4] and RHINE [34] are metapath-based,

GNN-based and knowledge graph embedding based HNE methods

respectively; and (2) CMF [43], wpZAN [56] and FASINATE [7]

are CF-based methods. node2vec [21] functions as homogeneous
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Table 4: Performance on Cross-Layer Dependency Inference for Aminer and Ciao (Higher is better).
Dataset Aminer-0.01 Aminer-0.05 Ciao-0.005 Ciao-0.01
Layer pair 𝐺1: 𝐺2 𝐺1: 𝐺3 𝐺1: 𝐺2 𝐺1: 𝐺3 𝐺1: 𝐺2 𝐺1: 𝐺2

Metrics Hit@5 Hit@10 Hit@50 Hit@100 Hit@5 Hit@10 Hit@50 Hit@100 Hit@50 Hit@100 Hit@50 Hit@100

RHINE 0.36% 0.70% 0.90% 1.64% 0.31% 0.69% 0.61% 1.23% 1.00% 2.02% 1.12% 2.31%

GATNE 0.61% 1.55% 0.32% 0.76% 0.60% 0.96% 0.42% 0.94% 0.94% 1.67% 3.05% 3.80%

hin2vec 9.14% 14.49% 0.34% 0.63% 18.36% 28.14% 2.89% 3.83% 0.61% 1.31% 0.89% 1.70%

node2vec 12.15% 17.58% 3.97% 5.98% 20.22% 28.57% 14.79% 20.15% 2.94% 5.20% 4.10% 6.45%

wpZAN 5.33% 11.45% 4.51% 7.65% 16.07% 25.21% 14.11% 19.87% 1.48% 3.32% 3.29% 5.94%

CMF 7.18% 11.93% 5.54% 7.76% 17.63% 24.52% 12.64% 17.15% 3.99% 6.74% 5.09% 8.45%

FASINATE 6.67% 12.73% 4.84% 7.73% 17.33% 26.60% 14.17% 19.77% 1.42% 3.21% 3.31% 5.85%

FITO-S 17.05% 24.40% 7.57% 11.90% 30.90% 40.44% 13.63% 20.37% 5.52% 9.79% 6.07% 11.25%

Table 5: Performance for Italy (Higher is better).
Dataset Italy-0.1
Layer pair 𝐺1:𝐺2 𝐺1: 𝐺3 𝐺1: 𝐺4 𝐺1: 𝐺5

Metrics Hit@1 Hit@5 Hit@1 Hit@5 Hit@1 Hit@5 Hit@1 Hit@5

RHINE 0.00% 17.69% 0.00% 0.00% 20.00% 34.67% 0.00% 0.00%

GATNE 0.00% 4.69% 0.00% 18.39% 0.00% 5.33% 0.00% 5.45%

hin2vec 1.44% 7.94% 3.45% 12.64% 2.67% 16.00% 3.64% 7.27%

node2vec 2.17% 11.55% 4.60% 24.14% 4.00% 36.00% 3.64% 20.00%

wpZAN 0.00% 4.33% 1.15% 19.54% 4.00% 36.00% 5.45% 12.73%

CMF 0.00% 6.50% 1.15% 21.84% 5.33% 36.00% 5.45% 18.18%

FASINATE 0.00% 3.97% 2.30% 19.54% 4.00% 36.00% 5.45% 20.00%

FITO-S 2.52% 13.72% 17.24% 41.37% 8.00% 38.66% 16.36% 30.90%

network embedding baseline for comparison. The metrics is Hit@𝐾 .

We select different 𝐾s according to sizes of different layers.

5.1.4 Implementation Details. See the Appendix due to the page
limit.

5.2 Effectiveness of FITO-S in Static Setting
The results of FITO-S and different methods are presented in Ta-

bles 4 and 5. We can see that FITO-S achieves the best performance

in almost all scenarios. For example, in Aminer-0.01, FITO-S has
a 5% advantage in Hit@5 on 𝐺1: 𝐺2 than the best baseline (i.e.,

node2vec). In the second dataset Ciao, CMF has the best perfor-

mance among all baselines. FITO-S has a 3% improvement over

CMF in Hit@100 in both scenarios. For the smallest dataset Italy,
we use the stricter Hit@1 and Hit@5. FITO-S’s performance is at

least 3 times better than the best baseline in Hit@1 on both 𝐺1: 𝐺3

and𝐺1:𝐺5. Among baselines, RHINE achieves good performance in

Hit@5 on𝐺1:𝐺2 and Hit@1 on𝐺1:𝐺4. This is because RHINE uses

all information from𝐺1 to𝐺5 to predict the cross-layer dependency

for these two graph pairs (𝐺1: 𝐺2 and 𝐺1: 𝐺4), which sacrifices the

performance for other graph pairs (0 Hit@5 for𝐺1:𝐺3 and𝐺1:𝐺5).

These results are consistent with the theoretical analysis in Sec-

tion 3. For HNE-based methods (i.e., RHINE, GATNE and hin2vec),

the experiments show that this category of methods have the lowest

performance compared with other baselines, including the homo-

geneous network embedding baseline node2vec. The reason is that

these methods embrace the coupling principle in the data ingestion
stage, which leads to the inability of generating sufficient cross-

layer similar node pairs under the sparsity challenge. For CF-based

methods, when the observed cross-layer dependency matrix be-

comes sparse, the within-layer connectivity dominates the coupled

objective function, which in turn hurts their overall performance.

5.3 Parameter Study and Ablation Study
5.3.1 Hit@𝐾 for different 𝐾s. We focus on one scenario (i.e., Ciao-
0.005-𝐺1: 𝐺2) with different 𝐾𝑠 in {1, 5, 10, 30, 50, 100}. The results
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Figure 3: Parameter studies.
are shown in Figure 3 (a). From the figure we can see that for all

𝐾𝑠 , FITO-S consistently obtains the best performance.

5.3.2 Size of RWR seed set 𝑘 . Since we select nodes with top-𝑘

PageRank score as RWR seeds, we only keep 𝑘 columns of the RWR

matrix R𝑖 . Here, we study the effect of 𝑘 on the performance of

FITO-S on two scenarios: (1) Aminer-0.05-𝐺1: 𝐺3 and (2) Ciao-
0.01-𝐺1: 𝐺2. 𝑘 ranges from 40 to 200. The results (Hit@100) are

shown in Figure 3 (b). We can see that Hit@100 largely remains

stable with a slight increase with 𝑘 .
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Figure 4: Ablation study for RWR seeds generation and space
transformation functions in FITO-S.

5.3.3 RWR seeds generation methods. We use PageRank to gener-

ate RWR seeds for FITO-S with the intuition that nodes with highest

PageRank scores dominate the entire network. In this subsection,

we replace it with random selection and Figure 4 (a) demonstrates

the difference between them. FITO-S with PageRank consistently

has better performance than that with random selection, which

shows the effectiveness of PageRank component.

5.3.4 Space transformation function. The space transformation

function in FITO is one linear layer. Here we study three different

forms of space transformation functions, including (1) one linear

layer, (2) one non-linear layer (one linear layer plus relu activation
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function [20]), and (3) two non-linear layers. From Figure 4 (b)

we can notice that for both datasets (i.e., Aminer-0.05-𝐺1: 𝐺3 and

Ciao-0.01-𝐺1:𝐺2), linear transformation outperforms non-linear

transformation, which suggests that embedding spaces of different

layers are linearly related with each other.

5.4 Effectiveness and Efficiency of FITO-D
In this subsection, we present the results of FITO-D compared with

FITO-S in the dynamic setting. As shown in Figure 5 (a), FITO-

D’s performance is very close to that of retraining FITO-S, with

less than 1% Hit@𝐾 loss at each step. However, in Figure 5 (b),

FITO-S’s running time increases linearly from 430s to 731s as multi-

layered network evolves, due to the linearly increasing training

set in each epoch. On the contrary, it takes only about 20s for

FITO-D to update node embeddings and dependency inferences,

which is 29− 39× faster than FITO-S. As analyzed in Subsection 4.3,

the efficiency comes from three aspects: (1) the time saved in RWR

updating process; (2) a smaller size of newly observed dependencies-

ΔL𝑜
𝑖,𝑗

used in fine-tuning compared with the whole training set for

FITO-S at each step. (3) a smaller training epoch number for FITO-

D (200) than FITO-S (1500). To summarize, FITO-D enjoys both

effectiveness and efficiency in the dynamic setting.
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Figure 5: FITO-D’s effectiveness and efficiency.

6 RELATED WORK
Multi-layered network mining. Multi-layered networks [13]

naturally exist in real-world applications and can be in a variety

of types, including multi-modal networks [24], multi-dimensional

networks [2], multiplex networks [1, 26, 28] and inter-dependent

networks [6, 8, 39]. Enormous research efforts have been directed

towards investigating the problem of multi-layered network min-

ing. For example, [53, 65] studies the network alignment problem

on multi-layered networks and [59] proposes to transform one

layer network to another in the multi-layered network. [63, 64]

investigates the adversarial problem in the multi-network setting.

For dynamic multi-layered networks that evolve over time, [54]

achieves tracking the evolution of entity linking on multiple knowl-

edge graphs. Our work focuses on inferring the cross-layer depen-

dencies and hence is related to multi-layered network mining.

Collaborative filtering. The cross-layer dependency inference

task[11, 12] is related to one-class collaborative filtering (OCCF)

problem. [25, 37] adopt matrix factorization (MF) based methods on

the observed rating matrix. [32] further incorporates the user infor-

mation to improve the performance in inference. In wpZAN [56],

the authors regularize the OCCF with the social network and the

product similarity network. Recently, neural networks are leveraged

to replace the dot product in MF [23]. The relations of items are cap-

tured in RCF [52] to boost the performance in recommendation task.

NGCF [50] utilizes GNN [29] to propagate the collaborative signal

along the interaction in a bipartite graph. FASCINATE [7] general-

izes collaborative filtering to cross-layer dependency inference on

multi-layered networks.

Network representation learning.Network representation learn-
ing, which aims to effectively embed the network elements in a

low-dimensional latent space, is an essential topic in network min-

ing. For homogeneous networks, DeepWalk [40] inherits ideas from

word2vec [35] to preserve local context of nodes. Node2vec [21] ex-

ploits an interpolation strategy in randomwalk sampling. LINE [44]

incorporates both the first order and the second order proximity to

learn high-quality node-level representations. More recently, neu-

ral network based approaches for graph structured data have been

widely explored, including graph convolution network (GCN) [29],

graph attention network (GAT) [46], etc. In addition, [14, 15, 47,

48, 60] are algorithms specially designed for on dynamic temporal

graph representation learning. Regarding heterogeneous networks,

metapath2vec [10] and hin2vec [17] are proposed based on metap-

ath generation. GATNE [4] and HANE [51] are graph neural net-

work based methods. Yang et al. summarize the recent development

in heterogeneous network representation learning in a detailed sur-

vey [55]. Our work learns the node representation of multi-layered

inter-dependent network.

7 CONCLUSION
In this paper, we reveal that the coupling principle underlying the
existing cross-layer dependence inference methods bears both the

sparsity challenge and the dynamic challenge in cross-layer depen-

dency inference. In response, we start from the key insight of de-
coupling and propose a family of novel algorithms FITO. FITO-S

leverages random walk with restart to capture the within-layer

total connectivity information, followed by the space transformation

functions. FITO-D further updates the RWR position embedding

matrix and fine-tunes space transformation function. We perform

extensive experiments to validate and verify the effectiveness and

the efficiency of our models.
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