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ABSTRACT 4 

Porous materials exhibit complex deformation when interacting with adsorbates in the environment. 5 

Depending on the size and shape of individual pores, interactions between solid and adsorbates can give 6 

rise to several pore-scale forces that impacts the overall adsorption and strain isotherms. Accurate 7 

prediction of the adsorption-deformation behavior of a porous material would benefit from the 8 

consideration of its pore network characteristics described by the pore size distribution (PSD). This 9 

paper presents a theoretical investigation on how the pore size distribution can affect the sorption-10 

induced deformation of micro/meso/macro porous solids. The recently developed surface 11 

poromechanics theory is generalized to account for the information of arbitrary pore size distributions. 12 

The adsorptive energetics of a generic pore network is statistically upscaled from the solid-adsorbate 13 

interaction in a single slit pore geometry, which is then infused into the thermodynamics of a deformable 14 

body. The theory is first validated against the experimental data on microporous carbon interacting with 15 

nitrogen gas. Then the same parameter set is used to study the effects of pore size on the adsorption and 16 

strain isotherms of porous materials. By only varying the input PSDs, a variety of adsorption-17 

deformation behaviors that are commonly observed from experiments is reproduced by the model. 18 

Conclusions are drawn from this analysis regarding the relative dominance of different pore-scale forces 19 

at varying pore size ranges, and the circumstances where simplified representation of the pore network 20 

can be acceptable. 21 

KEYWORDS 22 

Poromechanics, Adsorption, Pore size distribution, Swelling/shrinkage23 

                                                 
1 Postdoctoral Associate, Department of Civil, Environmental and Architectural Engineering, University of Colorado Boulder, 
Boulder, CO, USA. 
2 Assistant professor, Department of Civil, Environmental and Architectural Engineering, University of Colorado Boulder, 
Boulder, CO, USA. Email: yida.zhang@colorado.edu 

Revised Manuscript (Unmarked) Doc. or Latex format Click here to view linked References

https://www.editorialmanager.com/ijss/viewRCResults.aspx?pdf=1&docID=25437&rev=2&fileID=826884&msid=51d8a683-d7c5-4fed-a075-be571b83ae33
https://www.editorialmanager.com/ijss/viewRCResults.aspx?pdf=1&docID=25437&rev=2&fileID=826884&msid=51d8a683-d7c5-4fed-a075-be571b83ae33


1  INTRODUCTION 1 

The coupling between adsorption and deformation in porous solids has long intrigued engineers and 2 

materials scientists (Bangham and Fakhoury, 1928; Gor et al., 2017; Lakhanpal and Flood, 1957). 3 

During adsorption, fluid molecules (adsorbate) spontaneously gathers and structuralizes near a solid 4 

surface (adsorbent) (Rahaman et al., 2008). The occurrence of such process in a porous network can 5 

exert stresses onto the solid skeleton and thus induce volumetric strain with magnitude ranging from 10-3 6 

for charcoal (Balzer et al., 2015) and porous glass (Amberg and McIntosh, 1952), to tens of percent for 7 

silica aerogels (Reichenauer and Scherer, 2001), clay (Lyu et al., 2015), polymeric fibers (Champeau et 8 

al., 2014), and cellulose (Chen et al., 2018), and up to hundreds of percent for metal-organic frameworks 9 

(Serre et al., 2007). Nature takes advantage of such stimuli-responsive feature of cellulose nanofibers to 10 

facilitate the dispersal of plant seeds upon humidity change (Dawson et al., 1997; Elbaum et al., 2007; 11 

Van Opdenbosch et al., 2016). Bio-inspired nanoporous networks have been recently developed for fast 12 

and reliable actuators (Zhao et al., 2014), gas sensors muscles (Lee et al., 2019), and artificial (Yang et 13 

al., 2018) driven by sorption of gas molecules. On the other hand, adsorption/desorption can negatively 14 

impact the health of structural materials by triggering cracking (Colina and Roux, 2000), degradation 15 

(Baek and Pence, 2009) and plastic deformation (Hansen, 1987). For the ubiquitousness of sorption-16 

induce deformation, it is crucial to pursue fundamental mechanistic understanding of such phenomenon 17 

in generic fluid - porous solid systems.  18 

Various porous materials exhibit drastically different adsorption and strain isotherms. They can be 19 

roughly categorized in three types: Early experiments on charcoal show monotonic expansion upon gas 20 

uptake (Type I behavior as sketched in Fig. 1), which was explained by the decrease of pore surface 21 

energy due to adsorption (also known as the Bangham effect) (Bangham and Fakhoury, 1928; Meehan, 22 

1927). Later, Haines and McIntosh (1947) and Lakhanpal and Flood (1957) studied activated 23 

microporous carbon and found that a small amount of volumetric shrinkage occurs at extremely low 24 

pressure regime before Bangham’s expansion (Type II behavior as sketched in Fig. 1). This was 25 

attributed to an attractive “bridging” of adsorbate molecules from one side of the pore wall to the 26 

opposing side. Amberg and McIntosh (1952) studied the interaction between mesoporous Vycor glass 27 

and water vapor and observed two distinct expansion segments, separated by a contraction regime in the 28 

intermediate pressure range, on the adsorption strain isotherm (Type III behavior as sketched in Fig. 1). 29 

The contraction was related to Laplace pressure caused by concave menisci formed during condensation 30 



(Amberg and McIntosh, 1952; Haines and McIntosh, 1947; Wiig and Juhola, 1949). A forth type of 31 

behavior can be also be observed when both initial contraction and capillary contraction occur (Balzer et 32 

al., 2015). After 1970s, numerous in-situ dilatometer tests have been conducted on other porous 33 

materials including zeolites (Fomkin, 2005), porous silicon (Dolino et al., 1996), biopolymers (Rey and 34 

Vandamme, 2013), aerogel (Reichenauer and Scherer, 2001), natural coal (Levine, 1996), shale (Heller 35 

and Zoback, 2014), and cement (Setzer and Wittmann, 1974). Their strain isotherms can be all 36 

categorized as one of the four types. Our hypothesis here is that the different types of strain isotherms 37 

are tightly associated with the adsorbent’s pore structures. For example, the “bridging” in Lakhanpal and 38 

Flood’s notion is only possible for pore size of nanometers, giving rise to the so-called disjoining 39 

pressure (de Feijter, 1988) that is largely attractive at low pressures (Ash et al., 1973). This effect is 40 

recently quantitatively studied in a continuum poromechanics setting and shown to create an overall 41 

contractive stress on the pore skeleton (Eskandari-Ghadi and Zhang, 2021). On the other hand, 42 

mesoporous materials have pores large enough that meniscus can develop upon capillary condensation 43 

(El Tabbal et al., 2020). Materials that have a wide range of pore sizes or dual porosity networks may 44 

co-exhibit initial contraction and condensation contraction (Balzer et al., 2015).  45 

 46 
Fig. 1. Schematic of categorization of adsorption-deformation behavior. 47 

Quantitative simulation of the adsorption-deformation process requires proper consideration of the 48 

underlying physics. Molecular simulations based on approximation of particle-particle interactions can 49 



reasonably capture pore-scale and even meso-scale processes. In particular, such simulations have 50 

demonstrated the variation of disjoining pressure with respect to changing gas pressure and pore size 51 

(Kowalczyk et al., 2008), swelling and contraction upon capillary condensation and adsorption 52 

hysteresis (Chen et al., 2019), and initial contraction based on disjoining pressure calculations 53 

(Kowalczyk et al., 2012). Density functional theory simulations have also provided insights on 54 

adsorption and strain correlation at a molecular level (Ravikovitch and Neimark, 2006) and two-way 55 

coupling of adsorption and deformation (Gor and Bernstein, 2016). On the other hand, poromechanics 56 

which incorporates the mechanical interactions of solids and fluids at macroscale (Coussy, 2004) allows 57 

one to efficiently obtain the response of a continuum with spatially variable properties, arbitrary 58 

boundary conditions, and coupled with time-dependent processes (e.g. diffusion) at low computational 59 

cost. Such an efficient and versatile tool for engineering analysis, however, is only as accurate as the 60 

underlying pore-scale physics that the constitutive models incorporate. For example, the classical 61 

poromechanical framework laid out by Biot (1941) and Coussy (2010) considered the effect of fluid 62 

pressure exerted on the pore walls and the compressibility of the solid phase in describing the response 63 

of inert, saturated porous media. Recent advances have elegantly accounted for several pore-scale 64 

mechanisms to reproduce adsorption straining in mesopores and micropores (Brochard et al., 2012b; 65 

Eskandari-Ghadi and Zhang, 2021; Pijaudier-Cabot et al., 2011; Vandamme et al., 2010; Zhang, 2018). 66 

Pijaudier-Cabot et al. (2011) have attempted to integrate the information of pore network in the 67 

macroscale modeling of porous media. Brochard et al. (2012a) have performed one-dimensional 68 

molecular simulations to study the two-way adsorption-deformation coupling in a uniform and random 69 

distribution of pore sizes. However, there are no systematic theoretical studies unveiling the effect of 70 

pore size distribution on the distinct adsorption-deformation characteristics of porous continua to the 71 

best of our knowledge.  72 

To address the above, the current work is presented with two main objectives: (1) put forward a 73 

continuum framework that accounts for the change of surface tension and disjoining pressure upon gas 74 

uptake in pores with various sizes, and (2) study the influence of pore size distribution on the adsorption 75 

strain isotherms under the proposed framework, in hoping to clarify the transition between the type I and 76 

type II behaviors. Capturing the Type III and IV behaviors requires the incorporation of capillary 77 

condensation at pore scale, which is beyond the scope of this paper and will be pursued elsewhere. In 78 

this aspiration, the thermodynamics of a generic adsorptive pore network is established based on that of 79 

a single slit pore and then integrated with the kinematics of a deformable body in Section 2 . After 80 



linearizing the constitutive equation, the framework is cast into incremental form to acquire versatility 81 

and simplicity in its numerical implementation in Section 3 . In Section 4 , an explicit adsorption-82 

deformation model is obtained by specifying proper poroelasticity, microstructure, and adsorption 83 

models, which is then subjected to validation against experimental data of N2 adsorption on microporous 84 

carbon in Section 5 . Finally, systematic parametric studies on the effect of pore size distribution on the 85 

characteristics of sorption strain isotherm are presented in Section 6 . 86 

2  SURFACE POROMECHANICS: FROM INDIVIDUAL PORES TO THE POROUS MEDIUM 87 

When guest molecules (adsorbate) approach to internal pore surface of a porous medium (adsorbent), 88 

they are influenced by surface forces such as van der Waals force, electrostatic force and hydration 89 

forces (Israelachvili, 2011), modifying the properties of the solid-fluid interface. The resultant stresses 90 

exerted onto the pore surface can be studied in a thermodynamic setting which is detailed below. The 91 

IUPAC nomenclature is adopted throughout this paper: micropore denotes pore size less than 2 nm, 92 

macropore for sizes larger than 50 nm, and mesopore refers to everything in between (Everett, 1972). 93 

Surface forces in a slit pore 94 

Consider adsorption inside a slit pore. Some fluid molecules are in its “free” bulk state, while others 95 

are influenced by the surface force fields and thus in the structured and adsorbed state. In reality, there is 96 

no jump from one state to the other and their thermodynamic properties undergo a gradual transition. 97 

Details of such transition can be circumvented through the Gibbs’ surface excess treatment, permitting a 98 

much-simplified mathematical description of the energetics inside the pore. As illustrated in Fig. 2a, the 99 

Gibbs’ treatment defines a zero-thickness geometrical surface that lumps all the extensive properties 100 

inside the pore excess to the bulk fluid phase, thus accounting for fluid properties near the pore walls 101 

(DeHoff, 2006). The mere definition of such a surface phase gives rise to the notion of surface energy or 102 

surface tension, i.e., the thermodynamic force conjugated to the change of pore surface area (Zhang, 103 

2018). For small enough confinements as represented in Fig. 2b, the interfacial regions of the opposing 104 

pore walls may overlap and interact. Such interaction may be described by an extra work necessary to 105 

change the distance between the two surfaces, which is additional to the work necessary to push the bulk 106 

fluid out of the pore. Inspired by the works of Rusanov (1966) and de Feijter (1988) on thin liquid films 107 

and consulting with the analysis of Ash et al. (1973), Eskandari-Ghadi and Zhang (2021) has recently 108 

considered the micropore system in Fig. 2b in terms of Gibbs’ excess convention and derived the 109 

expressions of surface force terms including disjoining pressure and surface tension inside a slit 110 



micropore. However, the effects of the distributed pore sizes on the REV scale are smeared into the 111 

adsorption-deformation of one or two average pores. An extension to the same line of thought is 112 

presented in what follows for the consideration of an arbitrary number of pore sizes in the REV. The 113 

internal energy of the surface phase for single-species adsorption in a slit pore can be written as 114 

(Eskandari-Ghadi and Zhang, 2021) 115 

 1
2

surf surf surfdU TdS dh d dN       (1) 116 

where surfU  is the internal energy of the surface phase; T  is the system temperature; surfS  is the entropy 117 

of the surface phase;  is the total surface area available to adsorption; h  is the thickness of the slit 118 

pore;   is the chemical potential of the adsorbate; surfN  is the number of adsorbed moles to the surface 119 

phase;   is the surface tension, considered independent of the surface strain and to be distinguished 120 

from the stretch-dependent surface stress (Kramer and Weissmüller, 2007);   is the disjoining pressure 121 

denoting the additional normal force per unit area generated by the overlapping of adsorbed regions of 122 

two opposing pore walls (Fig. 2b) and is responsible for the deviation of actual pore pressure pp  from 123 

the bulk fluid in micropores p  (i.e., pp p   ). Throughout this paper, we use superposed “tilde” to 124 

denote extensive quantities pertaining to a single pore. Superscripts s , f , and surf  refer to quantities 125 

belonging to the solid, the bulk fluid and the surface phases, respectively. 126 

Eq. (1) can be re-written in terms of the volume of a single slit-pore, / 2v h  , as 127 

 surf surf v surf
pdU TdS d d dN       (2) 128 

where 129 

 1
2p h     (3) 130 

is referred to as the equivalent surface tension. The total form of the surfU  can be achieved by 131 

integrating Eq. (2) along a specific path in the variable space (Ash et al., 1973; Zhang, 2018). An 132 

alternative way to obtain the total form of Eq. (2) is to recognize that surfU  is a homogenous function of 133 

degree one (de Feijter, 1988). Specifically, a system consisting of λ copies of the same pore must have 134 

an internal energy of surfU  with volume and surface area of v  and  , and entropy and number of 135 



mole of surfS  and surfN . Invoking Euler’s homogeneous function theorem readily gives us 136 

(Eskandari-Ghadi and Zhang, 2021): 137 

 surf surf v surf
pU TS N      (4) 138 

 139 
Fig. 2. Schematic of the Gibbs’ surface excess treatment for a meso/macro pore in which the adsorbed regions do not overlap 140 

(a) and a micropore where the adsorbed regions overlap (b). 141 

With the aid of Eq. (3), subtracting Eq. (2) from the total derivative of Eq. (4), and considering 142 

isothermal condition gives the surface tension increment (Ash et al., 1973) 143 

 1
2

d d dh      (5) 144 

where /surfN   is the surface excess concentration. Eq. (5) is a modification to the classical Gibbs’ 145 

adsorption isotherm by considering the presence of an opposing wall with separation h . The Maxwell 146 

relation of Eq. (5) gives 147 

 2
h h 

 


 
 (6) 148 



One may refer to Eskandari-Ghadi and Zhang (2021) for more detailed discussions of Eqs. (1) through 149 

(6). Assuming that the external gas reservoir can be described as ideal gas and invoking /d RTdp p  , 150 

one can write the disjoining pressure increment: 151 

 2RTd dp dh
p h h

 
  

 
 (7) 152 

Substituting Eq. (5) into the incremental form of Eq. (3) and considering Eq. (7) gives: 153 

 
2p

RT hd h dp dh
p h h


  

    
  

 (8) 154 

Eqs. (7) and (8) are the bases for computing the changes of surface forces (  and p ) induced by 155 

adsorption via dp  and nanoconfinement via dh . These effects then alter the stresses in the vicinity of 156 

individual pores and thus impact the macroscopic response of porous materials. 157 

Alternatively, the energetics of the surface phase can be expressed in terms of the Helmholtz free 158 

energy by performing Legendre transformation of Eq. (2) with respect to T : 159 

 surf surf v surf
pdF S dT d d dN        (9) 160 

Smeared surface forces in deformable porous skeleton 161 

Consider a porous representative elementary volume (REV) in Fig. 3. It has volume 0  at time 162 

0t  , volume   and total pore surface area  at time t . The Lagrangian porosity and volume-163 

specific area are defined as 0/v     and 0/sA   ; respectively, where v  is the total current 164 

pore volume. The initial pore volume is therefore 0 0 0
v    , where 0  is the initial porosity. Let us 165 

further categorize the pores of the same size as the same “type” K  which constitutes the fraction Kr  of 166 

the total pore volume. The volume and surface area of pore group K  are respectively written as 167 

0 0
v v
K K K Kr r          and , 0K s KA  , with 1K

K
r  , K

K
  , and ,s K s

K
A A . From here 168 

on, 
K
 will be denoted by just  for simplicity if not specified otherwise. We shall assume that each 169 

type of pore can be mapped to an equivalent slit pore which behaves similarly in terms of adsorption 170 

isotherm and surface forces. This allows us to associate the pore-scale thermodynamics of any pore 171 



shape to that of a slit pore which is our building block derived in the previous section (see Section 4.2 172 

for more discussions). Considering the system is thermally and chemically equilibrated everywhere and 173 

knowing that each pore group K  consists of Kn  copies of identical pores, the free energy increment of 174 

each pore group can be directly written from Eq. (9) as 175 

 ,
surf surf v surf

K K K K p K K KdF S dT d d dN        (10) 176 

where surf surf
K K KF n F , surf surf

K K KS n S , surf surf
K K Kn   , surf surf

K K Kn , and surf surf
K K KN n N . According 177 

to Eqs. (7) and (8), the Maxwell relations between the intensive properties of each pore group are 178 

written as: 179 

 2

K

K K

Kh p

RT
p p h

 


 
, ,p K K

K K
K

RT h
p p h

  
   

  
, ,

2
p K K K

K K

h
h h
 


 

 (11) 180 

 181 
Fig. 3. Schematic of REV composition. The pore network is divided into four groups of identical pores. Each pore group 182 

consists of pores of the same type (i.e. size and shape). 183 

Summing up the surface free energies of all pore groups from Eq. (10) gives the total free energy 184 

possessed by the surface phase of the entire REV: 185 



 ,

p

v
surf surf v surfK K

K p KvdF S dT d d dN



 



   
         

   
   (12) 186 

where surf surf
KF F , surf surf

KS S , and surf surf
KN N ; p  and   are respectively the smeared 187 

equivalent surface tension and the smeared disjoining pressure that reflect the collective effect of surface 188 

forces on the REV: 189 

 ,
K

p p K 





  and 
v
K

K v


  


  (13) 190 

Eq. (12) can be compared with Eq. (24) in Eskandari-Ghadi and Zhang (2021). Evidently, the smeared 191 

surface forces in the multi-pore REV manifest in the same manner in the overall surface free energy 192 

potential as those of the single-pore REV. Note that the surface tension is obtained by area averaging 193 

while disjoining pressure is smeared over the pore volume.  194 

The area-specific surface free energy, adsorbed moles, and entropy are then defined respectively as: 195 

 0/surf surf
sF A   , 0/surf

sN A   , and 0/surf surf
ss S A   (14) 196 

Using Eq. (14), the total surface free energy, Eq. (12), can be cast in terms of intensive quantities: 197 

 

 

0
0

1 1

1

surf surf surf
p s

s s

surf
p

s

d s dT d d dA
A A

d
A

     


  

        

 
      
  

 (15) 198 

Eq. (15) must hold for an arbitrary domain 0d , thus the last term on the RHS must vanish 199 

 surf
p

sA


       and surf surf

s

d s dT d d
A


 
 

     
 

 (16) 200 

The second equation is essentially the specific free energy balance equation of the surface phase in a 201 

porous REV.  202 

The above derivations are conducted without considering the kinematics of the porous skeleton. Now 203 

let us incorporate the energetics into a deformable body. Per the conventional continuum mechanics 204 



notation, the motion of solid skeleton is described by  ,tx x X , where x  is the current spatial 205 

position of the solid particle at time t , and X  is the position of the solid particle at time 0t  . It 206 

follows the definition of deformation gradient XF x  and the Jacobian detJ  F  which respectively 207 

map a line segment dX  and a volume element 0d  in the reference configuration to the current 208 

configuration dx  and d  via d d x F X  and 0d Jd  . By defining the displacement vector 209 

s  u x X , the Green-Lagrange strain is written as   / 2s T s T s s
X X X X      E u u u u , where X  210 

denotes gradient with respect to material coordinate X . Considering separately the mass, momentum, 211 

and energy balance of all phases and the interaction between the fluid and surface phase through 212 

adsorption, the Clausius-Duhem inequality of the system can be derived which gives the requirement of 213 

nonnegative material dissipation rate, 0M  . The derivation is detailed in Zhang (2018) and 214 

Eskandari-Ghadi and Zhang (2021). The total material dissipation can be further decomposed into 215 

dissipation caused by changes of the states of the solid, the fluid, and the surface phases 216 
s f surf

M M M M     guided by the free energy balance equations of each phase: 217 

  
  ˆ

ˆ ˆ:
s s

s s surf surf f s
M

s

JATp S M
t t t A t t

   
  

     
         

     

ES  (17) 218 

 
ˆ1 ˆ

f
f f f
M f

Tp s
t t t


 



    
      

    
 (18) 219 

 ˆˆ ˆ
surf surf

surf f surf surf
M s

s

TA M s
t t t A t

  
 

     
      

     

 (19) 220 

where the superposed “hat” denotes mass-specific quantities; S  the second Piola-Kirchhoff stress;   221 

denotes density; M  the molar mass of the fluid. For reversible processes, one can set 0surf
M   and 222 

0f
M  to retrieve the free energy balance of the surface phase, Eq. (16), and the usual equations of state 223 

of the fluid phase (Coussy, 2004). Similarly, the free energy balance of adsorptive porous solid can be 224 

retrieved by considering 0s
M  , substituting Eq. (16) into Eq. (17), and adopting small-strain 225 

assumption: 226 



  :s s
p sd d p d S dT dA      σ ε  (20) 227 

where σ  and ε  are the Cauchy stress tensor and infinitesimal strain tensor, respectively; s  is the free 228 

energy of the solid phase. Comparing Eq. (20) with the free energy balance of classical porous solid 229 

(Coussy, 2004), it is clear that adsorption influences the material behavior through the smeared surface 230 

force terms p  and  . It should be noted that although the alteration of the pore pressures   arise 231 

from the short-range interactions inside pores of molecular length-scale (Fig. 2b), the surface tension p  232 

exists regardless of the pore size (Coussy, 2010; Vandamme et al., 2010) which is responsible for the 233 

Bangham’s effect. Finally, the choice of infinitesimal strain formulation is just for convenience, which is 234 

equivalent to focusing this study on relatively stiff porous skeletons. Eq. (17) can be directly used to 235 

theorize adsorption-induced finite deformations in soft porous materials if desired (see Zhang (2018)). 236 

Specific surface area must be a function of the kinematics of the REV, i.e.,  , ,s kA ε . Eq. (20) can thus 237 

be written as 238 

 :s s s
p p

A Ad d p d  


    
      

    
σ ε

ε
 (21) 239 

By specifying a strain-energy potential  ,s  ε , the constitutive relations for a deformable 240 

adsorptive porous material with a generic pore network are finally retrieved 241 

 ;
s s

a ap p


 
   

 
σ σ

ε
 (22) 242 

where /a p sA  σ ε  and /a p sp A      are adsorption stresses which collect the effect of 243 

adsorption on the “effective stresses” felted by the solid skeleton (Eskandari-Ghadi and Zhang, 2021; 244 

Gor et al., 2017; Ravikovitch and Neimark, 2006; Vandamme, 2019; Zhang, 2018). The theory is now 245 

completed. Constitutive models can be readily obtained by specifying the expressions of adsorption 246 

isotherm ( , )K Kp h , the geometrical relation  , ,s KA ε , and the strain-energy potential  ,s  ε . 247 

3  INCREMENTAL FORM OF A GENERAL MODEL 248 

Before specializing the theory for particular material systems, it is desirable to write the constitutive 249 

relation Eq. (22) in incremental form first. The primary reason is that Eq. (22) involves the derivatives of 250 



sA  and the integral of pd  and d  from Eqs. (7) and (8). The former can be easily computed having 251 

defined the , ( , )s KA ε  function, while the analytical integration of pd  and d  has some 252 

complications, especially if the adsorption isotherm ( , )K Kp h  in Eq. (11) takes a sophisticated form. By 253 

casting the constitutive relations in incremental form, we can discretize these integrations in the stepwise 254 

stress-strain solutions and thus circumvent the direct numerical evaluations of the surface force terms. 255 

Besides, the incremental form also allows us to modularize the numerical solver such that the 256 

constitutive components  , sA , and s  can be easily swapped upon desire. This makes the theory 257 

versatile to handle a wide range of porous materials with different physical and geometrical properties. 258 

Consider a quadratic form of s  which corresponds to a general linear poroelastic model 259 
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C ε ε ε ε C ε ε  (23) 260 

where the symmetric fourth-rank tensor C , the symmetric second-rank tensor C , and the scalar C , 261 

are the “stiffness coefficients”;  ,r rε  is an arbitrary reference state. Substitution of Eq. (23) into Eq. 262 

(22) gives: 263 
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In deriving Eq. (24) we have taken the stress-free state ( ε 0  and 0  ) in vacuum as the reference 265 

state (Eskandari-Ghadi and Zhang, 2021). The   symbol denotes the changes of the adsorption stresses, 266 

aσ  and ap , from vacuum to the current environment. By differentiating Eq. (24), the incremental form 267 

is acquired and can be written in indicial notation as 268 
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Recalling from Eqs. (7), (8), and (11) that the surface forces are functions of p  and Kh , and noting 270 

that the pore size Kh  is functions of global deformation ε and   in a general case, Eq. (25) can be 271 

expanded and reorganized to give the stress and pressure increments (see Appendix A for full details): 272 

    , ,ads ads
ij ijkl ijkl kl ij ijd C C d C C d          (26) 273 
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where 275 
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The smeared quantities in Eqs. (28)-(32) are given by 281 
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Evaluating Eq. (33)-(39) requires ,p K  and several derivatives /v v
K  , /K  , 289 

 / /K     , and  / /K ij    . The change of ,p K  at each solution step can be computed 290 

from Eq. (11) 291 
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 (40) 292 

Assuming that each pore group takes up a constant volume fraction of the total pore volume throughout 293 

deformation, we have /v v
K Kr    where Kr  is now constant. The derivatives of K  and  are 294 

obtained in Appendix B based on their definitions.   295 

4  SPECIALIZATION OF THE MODEL 296 

In order to validate the theory with experimental data, one must specify proper constitutive 297 

components according to the material of interest. Balzer et al. (2015) have conducted a series of 298 

experiments on microporous carbon specimens interacting with different gas species and reported the 299 

adsorption isotherms as well as the induced strains. This offers a comprehensive dataset for validating 300 

the theory. Here we specialize the current model for the microporous carbon used in their experiments. 301 

Poroelasticity model 302 

Since there is no information about the three-dimensional response of the microporous carbon 303 

specimens in Balzer et al. (2015), the isotropic linear poroelasticity model (Coussy, 2004) seems 304 

appropriate for a first-order description: 305 



    22 / 3ijkl ij kl ik jl il jkC K G b N G           , ij ijC bN   , and C N   (41) 306 

where K  and G  are the bulk and shear moduli of the specimen in absence of fluid, respectively; b  and 307 

N  are the Biot’s coefficient and Biot’s modulus, respectively. 308 

Microstructure: spherical pores 309 

The specimens are characterized by a network of pores presented in Fig. 4. While Balzer et al. 310 

(2015) have obtained the pore size distribution using analysis based on slit pores for the micropores and 311 

cylindrical pores for the mesopores, their analysis of SEM imaging suggests spherical pores. Here, for 312 

simplicity, the same PSD data is assumed for a network of approximately spherical pores of different 313 

sizes. Assuming the pores undergo isotropic change in size and thus shrinking or expanding only in 314 

radius, the volume-specific surface area of a spherical pore group can be derived as (Zhang, 2018) 315 
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where 0,KR  is the initial radius of spheres of type K . Based on the definition of v
K , K Kr   and 317 

having already assumed that the volume fractions remain constant, we have K Kr   and ,0 0K Kr  . 318 

Thus Eq. (42) becomes 319 
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 321 



Fig. 4. Pore size distribution of the activated charcoal specimen studied by Balzer et al. (2015). The sub-figure is an SEM 322 
image of the sample. Based on the image, it seems that a network of interconnected spheres may be suitable to represent the 323 

specimen pore network. 324 

 325 

Eq. (43) implies , / 0s K ijA     which significantly simplifies Eqs. (29), (31), and (32). 326 

Another geometrical function needs to be defined is ( , )K Kh h  ε . To map the adsorption behavior 327 

of a spherical pore to its equivalent slit pore, the pore radius and its equivalent slit opening are proposed 328 

to be related by ( )K K K Kh R R . It is further assumed that the changes in pore size and shape are 329 

sufficiently small such that they have an overall negligible effect on the adsorption characteristics, 330 

giving a first order approximation of the geometry ,0K Kh R . An intuitive way to derive the mapping 331 

factor   is to set the volume of the spherical pore, 3
,0 ,0 ,0 ,04 / 3 / 3v

K K K KR R   , equal to the 332 

equivalent slit pore volume, ,0 / 2K Kh , giving 2 / 3  : 333 

 ,0
2
3K Kh R  (44) 334 

The mathematical consequence of Eq. (44) is that the equivalent slit-pore width of each pore type 335 

become frozen (i.e., / / 0K ij Kh h       ). This implies that the adsorption isotherm is independent 336 

of the material deformation and thus focuses the current study on the adsorption-induced deformation 337 

rather than the two-way coupling. This is consistent with our earlier assumption that the adsorption 338 

isotherm is independent of surface stretch for the relatively stiff materials interested here. These 339 

treatments allow for tangible numerical integration of the model without losing the generality of the 340 

theory for tackling the two-way coupled mechanosorptive behaviors in future extensions. In particular, 341 

the frozen Kh  assumption breaks down for highly deformable materials where the pore sizes can change 342 

drastically, for example in breathable Metal Organic Frameworks (MOFs) (Coudert et al., 2013) and 343 

polymers (Chen et al., 2020). Further enrichments of the model using constitutive functions like 344 

( )K K K Kh R R  and ( , , )K K Ap h   (where A  is the surface strain) are required if the theory is applied 345 

to highly deformable adsorptive materials. 346 

Using Eqs. (43) and (44), the incremental constitutive relation Eqs. (26)-(39) are now simplified to: 347 

 ij ijkl kl ijd C d C d      (45) 348 
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Adsorption model 355 

For meso/macro porous materials, adsorption can be considered to occur on free solid surfaces and 356 

thus modelled by either Langmuir (Langmuir, 1918) or the BET (Brunauer et al., 1938) isotherms. 357 

However, the specimen studied by Balzer et al. (2015) contains more than twenty percent volume of 358 

micropores (< 2 nm) (Fig. 4), thus a significant amount of adsorbed gas molecules are constrained by the 359 

surrounding pore walls (Fig. 1b), making the adsorption isotherm a function of both fluid pressure and 360 

pore size. This aspect has been studied by Brunauer et al. (1940), who applied the same stochastic 361 

procedure used to derive the BET model on a slit-pore geometry. Their derived adsorption model, here 362 

referred to as the BDDT isotherm, can be written as 363 
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 (51) 364 

where 0  is some reference moles per unit area; 0/x p p  is the ratio of gas pressure over the 365 

saturation pressure. The maximum number of adsorbed layers that can fit between the two surfaces are 366 



2 1n  (Brunauer et al., 1940). Here we assume n  is proportional to the height of the slit pore by 367 

hn C h , where hC  is a proportionality factor, for simplicity and to be consistent with the previous 368 

study (Eskandari-Ghadi and Zhang, 2021). Parameters c  and g  are related to characteristics energies 369 

exp( / ( ))c E RT   and exp( / ( ))g Q RT  (Brunauer et al., 1940; Brunauer et al., 1938); R is the ideal 370 

gas constant; E  is the difference between the energy to bond a fluid layer to a solid surface and the 371 

energy to bond a fluid layer to a fluid layer; Q  is the additional heat necessary to “push” the last layer of 372 

molecules between the two adsorbed surfaces. Hereafter E  and Q  will be referred to as the adsorption 373 

energy and the additional adsorption heat, respectively. The surface forces, p  and  , predicted by the 374 

BDDT model combined with Eq. (11) are discussed in detail in Eskandari-Ghadi and Zhang (2021). The 375 

variation of normalized surface forces 0/ 2p p RT      and 0/ 2 hRT C     with respect to 376 

fluid pressure and pore width are presented in Fig. 5a and Fig. 5b, along with the resultant normalized 377 

adsorption pressure ap  in Fig. 5c. It is observed that surface tension reduces for all pore sizes and 378 

pressures as expected. At small pore size and low pressures, the attractive disjoining pressure wins over 379 

the relaxation of surface tension and creates a positive adsorption pressure which leads to material 380 

contraction. Outside of this region, the reduction of surface tension dominates and produces a negative 381 

adsorption pressure to cause swelling. 382 

It is worth to note that the disjoining pressure derived from BDDT model is a lumped and smooth 383 

representation of the surface interactions between two solid surfaces in the given fluid environment. 384 

Molecular-scale simulations (Balbuena et al., 1993; Grégoire et al., 2018) and direct surface force 385 

measurements (Israelachvili, 2011) showed that the disjoining pressure is highly oscillatory when it 386 

comes down to nanometer separations. For the macroscopic modeling of porous materials, however, we 387 

argue that such oscillatory feature of disjoining pressure is secondary and can be neglected. Specifically, 388 

consider two nanopores with similar size h  but have tiny size variations. Their true disjoining pressures 389 

might be drastically different in magnitude and sign because of the oscillation. However, there are 390 

thousands of such pores in a porous REV, and the overall disjoining pressure in pores with similar size 391 

h  must be the averaged value around that size. For this reason, a smooth representation of   is 392 

preferred for the later continuum modeling of microporous materials. 393 



 394 

Fig. 5. Contours of the dimensionless equivalent surface tension (a), disjoining pressure (b), and resultant dimensionless 395 
adsorption pressure ( 0/ 2a a hp p RT C    ) (c) produced from the BDDT theory (Eq. (51)) and Eq. (11). The input 396 

parameters to the BDDT model are 1940cal/molE   and 440cal/molQ  . 397 



5  MODEL PERFORMANCE 398 

With definitions of the stiffness coefficients in Eq. (41), the microstructure model in Eqs. (43) and 399 

(44), and the adsorption model in Eq. (51), we have introduced eight model parameters including K ,  , 400 

b , N , E , Q , 0 , and hC , all of which are physically meaningful and can be measured through 401 

routine experiments. The inputs of the model include: the adsorbate’s saturation pressure 0p  and molar 402 

volume mV , the adsorbent’s specific gravity sG  and initial porosity 0 , the system’s temperature T , the 403 

sphere-slit mapping factor  , and the PSD information Kr  and ,0KR . In what follows, we assign the 404 

experimentally obtained PSD and calibrate the material parameters for microporous carbon to validate 405 

the theory against the dataset of Balzer et al. (2015). 406 

PSD discretization 407 

For PSD input, the discrete differential PSD data provided by Balzer et al. (2015) is first represented 408 

by several continuous basis functions in the normal distribution form (Fig. 6a) 409 
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where 0( / )P D D  is the differential pore volume percentage; D  the pore diameter for spherical pores; 411 

0D  = 1 nm is a normalization parameter to keep parameters m  and w  unitless; 0D m  is the peak pore 412 

width; w  controls the “width” of the distribution. The number of basis functions is chosen to coincide 413 

with the number of peaks in the PSD data. A weighted sum of the seven bases is used to capture PSD as 414 

well as to ensure the total area underneath equals to 1. The theoretical PSD (in percentage) is then 415 

multiplied by the total pore volume per grams of material 30.86 cm /g  to compare with the experimental 416 

data (in volume per gram of the solid). The cumulative PSD can be obtained by integrating the 417 

differential PSD. The results are illustrated in Fig. 6b and c with the parameters summarized in Table 1. 418 

Based on the fitted PSD curve in Fig. 6, the pore volume fractions (PVF) corresponding to individual 419 

pore sizes can be deduced. The pore widths are discretized into 107 bins (class intervals). These bins are 420 

refined (0.02 nm in width) in the microporous range and coarser (0.2 nm in width) in the mesoporous 421 

range. We have verified that further decrease of the bin sizes does not make significant difference in the 422 



predicted material response. The final PSD discretization is presented in Fig. 7. Of course, the volume 423 

fractions of all bins sum to unity. 424 

 425 
Fig. 6. Continuous representation of the PSD data: (a) basis functions, (b) summation of weighted basis functions to match 426 

the differential PSD, and (c) cumulative PSD match. 427 
Table 1. Basis function parameters used in matching PSD in Fig. 6 428 

Basis 

# 

Peak, 

 

w  Weight 
1 0.57 0.07 0.2397 
2 5.50 0.20 0.0025 
3 7.20 0.40 0.0102 
4 9.00 0.50 0.0280 
5 10.90 0.60 0.0362 
6 15.00 1.90 0.2754 
7 18.00 1.00 0.4080 

 429 

 430 
Fig. 7. Volume fractions of pore size bins corresponding to the porous carbon in Balzer et al. (2015). 431 
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Parameter calibration and model predictions 432 

From the total pore volume per grams of sample ( 30.86cm /g ) and the mass density of the sample 433 

( 30.741g/cm ) the initial porosity of the sample 0 0.637   is deduced. The specific gravity of the solid434 

1.45sG   can be deduced from the particle density 31.45 g/cms  . A microporous carbon rod sample 435 

with similar porosity has been reported by Balzer et al. (2011) with Young’s modulus of about 436 

7.24 GPa . Assuming 0.1  , the bulk and shear moduli are calculated as 3 GPaK   and 437 

3.27 GPaG  . The Biot’s parameters are chosen as 0.9b   and 10 GPaN   which are within the 438 

common ranges for porous carbon (Pijaudier-Cabot et al., 2011; Vandamme et al., 2010). The molar 439 

volume of nitrogen is 334 cm /molmV  . At 77 KT  , its additional adsorption heat is 440  calQ   440 

(Brunauer et al., 1940) and its saturation pressure is 0 97.2 kPap   (Lemmon, 1998). In addition to this 441 

general many-pore model, a mono-pore and a dual-pore model are also implemented to represent the 442 

PSD with one single pore size and two pore sizes, respectively. This is to examine whether the simplistic 443 

representation of the pore network as commonly done in the past (Eskandari-Ghadi and Zhang, 2021; 444 

Vandamme et al., 2010; Zhang, 2018) can yield similar result compared to the full PSD representation. 445 

The pore radii in the dual-pore model are chosen to represent the micropore (0.288 nm) and mesopore (9 446 

nm) networks, respectively. The pore radius in the mono-pore model (1.13 nm) is chosen to give the 447 

same pore surface as the dual-pore model with the same porosity. Knowing that 2 / 3   for spherical 448 

pores and K ,  , b , N , Q , mV , 0p , T , and 0  are now constrained, parameters E , hC , and 0  are 449 

adjusted for each PSD presentation to match the strain isotherm from Balzer et al. (2015). The full 450 

parameters are summarized in Table 2.  451 

Predictions from the simplified mono-pore, the dual-pore, and the full PSD models are shown in Fig. 452 

8. It is observed that the adsorption-induced deformation including the initial contraction can be 453 

accurately captured by either model. This is not surprising as the parameters are calibrated for the strain 454 

isotherm. Upgrading from single-pore to dual-pore representation shows significant enhancement in the 455 

predicted adsorption isotherm. Specifically, the addition of mesopores (9 nm) in the dual-pore model 456 

permits more space for adsorption to continue (Fig. 8b) after the micropore capacity quickly exhausted 457 

at low pressures (Fig. 8a). Comparing Figs. 8b and 8c shows drastic improvement of the predicted shape 458 

of the adsorption isotherm across low- and high- pressure regimes after incorporation of the full PSD. It 459 

is worth to note that the progressive enhancement of the agreement in the three figures is achieved by 460 



using the same poroelasticity parameters with only slight adjustments on a few adsorption parameters 461 

(underlined in Table 2). All parameters are still within their realistic ranges. The fact that the same 462 

model yields better accuracy as the PSD input gains accuracy suggests that the underlying physics of 463 

adsorption straining is successfully captured by our theory. This permits one to investigate the 464 

sensitivity of the adsorption-deformation responses to the PSD of the porous material. 465 

 466 
Fig. 8. Performance of the (a) mono-pore, (b) dual-pore, and (c) many-pore (using the exact PSD in Fig. 7) models and the 467 

progressive improvement as PSD input gains resolution. 468 

 469 

 470 

 471 
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Table 2. Parameters for the mono, dual, and many-pore models for the carbon – N2 system of Balzer et al. (2015) 472 

Parameter Unit  Values  
Mono-pore Dual-pore Many-pore 

Poroelasticity    
K  [GPa] 3.0 3.0 3.0 
G  [GPa] 3.27 3.27 3.27 
b  [-] 0.9 0.9 0.9 
N  [GPa] 10 10 10 

Adsorption    
E  [cal] 2090 2090 1940 

Q  [cal] 440 440 440 
hC  [1/nm] 1.656 6.452 7.143 

0  [μmol/m2] 1.905 1.905 1.950 
Microstructure    

0  [-] 0.64 0.64 0.64 
  [-] 0.667 0.667 0.667 

R1,0 [nm] 1.13 0.288 

PVD in Fig. 7 R2,0 [nm] - 9 
r1 [-] 1.00 0.23 
r2 [-] - 0.77 

 473 

6  EFFECTS OF PSD ON THE SORPTIVE BEHAVIOR OF POROUS MATERIALS 474 

All studies in this section take the same material properties from the previous section (many-pore 475 

model in Table 2) with merely the PSD input altered. 476 

Effect of peak pore size 477 

The first study examines the effect of shifting peak from smaller micropores towards larger 478 

micropores with the same shape of the PSD. Using Eq. (52), four differential PSDs with width 0.1w  479 

and peak radii of 0.285 nm, 0.300 nm, 0.315 nm, and 0.330 nm are generated. They are presented in Fig. 480 

9a and their corresponding adsorption and strain isotherms are presented in Fig. 9b. It is observed that a 481 

slight shift in PSD towards mesopores can drastically diminish the initial contraction. This is consistent 482 

with the observation in Fig. 5b that large attractive disjoining pressure only presents for small pores at 483 

low pressure level. The adsorption isotherm on the other hand is hardly affected by such small change in 484 

the PSD. It is also noted that the PSD shifting does not affect much the swelling responses, i.e., a 16% 485 



increase in microporous peak pore size (from 0.285nm to 0.330nm) only cause the maximum swelling 486 

strain decreases less than 8%.  487 

 488 
Fig. 9. Prediction of microporous carbon response to nitrogen adsorption with: (a) shifts of pore size distribution in 489 

microporous range; (b) amounts adsorbed and axial deformation. 490 

Now, the same PSDs are shifted to the mesoporous range (Fig. 10a) with the predicted responses 491 

presented in Fig. 10b. Pure Bangham’s expansion with no initial contraction (i.e., type-II strain 492 

isotherm) is predicted for this range of pore sizes. This is expected because of the diminished disjoining 493 

pressure for mesopores (Fig. 5b).  The overall swelling of mesoporous material is predicted to be one 494 

order of magnitude less than that of microporous materials. This is because, for the same porosity, larger 495 

pores provide less surface area available to adsorption, thus weakening the swelling effects associated 496 

with the reduction of surface tension. It is worth to note that the commonly observed contraction at 497 
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intermediate pressures (Chen, 2019) is not captured by the model. This is because the underlying 498 

physics namely the formation of concave menisci through capillary condensation has not been 499 

implemented in our pore-scale model yet. This non-trivial task shall be pursued in follow-up studies.  500 

 501 
Fig. 10. Prediction of mesoporous carbon response to nitrogen adsorption with: (a) shifts of pore size distribution in 502 

mesoporous range; (b) amounts adsorbed and axial deformation. 503 

As expected, the total amount of adsorption continues to decrease for distributions with larger pore 504 

sizes. For both microporous and mesoporous material, the model predicts that adsorption develops at a 505 

rapid rate initially, presumably as the first layer of adsorbates are attracted to the pore walls. Such rapid 506 

rate consistently diminishes at partial pressure of 510x  , implying that the rate at which the first layer 507 

is filled is not affected by the pore size, in a manner similar to free-surface adsorption. At increased 508 

pressures, the very first few layers of adsorbates rapidly fill up the micropores, thus the system’s 509 

0.0 0.2 0.4 0.6 0.8 1.0
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

0.0 0.2 0.4 0.6 0.8 1.0
0.00

0.05

0.10

0.15

0.20

0.25

0 2E-5 4E-5
0.00
0.01
0.02

2.5 3.0 4.5 5.0 6.5 7.0 8.5 9.0 9.5

0.00
0.02
0.04
0.06
0.08

0.00
0.02
0.04
0.06
0.08

0.00
0.02
0.04
0.06
0.08

2.5 3.0 4.5 5.0 6.5 7.0 8.5 9.0 9.5
0.00
0.02
0.04
0.06
0.08

A
m

ou
nt

 a
ds

or
be

d 
(c

m
3 /g

)

x

 m=6.0,w=0.1
 m=10.0,w=0.1
 m=14.0,w=0.1
 m=18.0,w=0.1

 1
1(%

)

x

(a)

(b)(b)

  m=6.0,w=0.1

  m=10.0,w=0.1

 V
ol

um
e 

fr
ac

tio
ns

 m=14.0,w=0.1

 

Pore radii [nm]

 m=18.0,w=0.1



maximum adsorption capacity is quickly reached. On the other hand, mesopores can accommodate 510 

many layers of adsorbate, therefore the amount of adsorption keep increase at a slower rate after the 511 

initial filling of the first layer. The adsorption speeds up upon complete filling of all mesopores near the 512 

saturation pressure. 513 

To summarize, under fixed total porosity and width of the PSD, smaller pores provide more surface 514 

area for adsorption and narrower wall separation. This has three effects: (1) rapid filling of the pore at 515 

the beginning of adsorption; (2) amplified swelling strain at high-pressure regime due to the Bangham’s 516 

effect; (3) possible contraction strain at low-pressure regime due to the attractive disjoining pressure in 517 

micropores.  518 

Effect of pore size dispersity 519 

This section studies the effect of the PSD width on the adsorption-deformation characteristics. In the 520 

first set, a series of PSDs in the microporous range are gradually skewed towards the mesoporous range, 521 

using the logarithmic-normal distribution: 522 
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 (53) 523 

Similar to Eq. (52), 0D = 1 nm is a normalization parameter and w  controls both the width and 524 

skewness of the distribution. Unlike the normal distribution, the peak pore width is no longer 0D m  but 525 

instead given by 2
0 exp( )D m w  . The mean of the log-normal distribution is given by 526 

2
0 exp( / 2)D m w . Here we start with a narrow PSD with peak pore radius of / 2 0.25nmpeakR    527 

and 0.2w , then generated other PSDs by dispersing it towards the mesoporous range (increasing w ) 528 

while maintaining constant peakR .  529 

The input PSDs and the predicted material responses are presented in Fig. 11. The first observation is 530 

that both the adsorption and the strain isotherms vary drastically, despite that the peak pore sizes are the 531 

same for all four simulations. This is true even for the first two PSDs ( 0.1w  and 0.3w ) where all 532 

pores are within the microporous range (<2 nm in width). Fig. 11b suggest that contraction diminishes 533 

as the material incorporates more mesopores and less micropores. This is in agreement with recent 534 

studies (Chen, 2019) that adsorption behavior of type I is observed for microporous material which 535 



transforms into adsorption behavior of type III as meso/macro pores are added to the system. However, 536 

even with 67.3% of total pore volume in the mesoporous range and only 32.7% in the microporous 537 

range, slight initial contraction can still be observed. 538 

 539 
Fig. 11. Prediction of microporous carbon response to nitrogen adsorption with: (a) dispersion of micro pore sizes towards 540 

meso por sizes with same peak pore size; (b) amounts adsorbed and axial deformation. 541 

This suggests that the material’s IUPAC classification (i.e., micro/meso porous) cannot fully disclose 542 

whether it will exhibit initial contraction upon adsorption. Based on the proposed theory, how the 543 

material behaves is closely related to whether the adsorbed surfaces overlap or not (Fig. 2b), which 544 

strongly depends on the type of adsorbent-adsorbate interactions and the size of the adsorbate molecules. 545 

Several features observed earlier are again highlighted in Fig. 11b: adsorption quickly reaches maximum 546 

capacity at low pressures for microporous material while it becomes more gradual after the initial filling 547 

0.0 0.2 0.4 0.6 0.8 1.0
0.0
0.2
0.4
0.6
0.8
1.0
1.2

0.0 0.2 0.4 0.6 0.8 1.0
0.0
0.5
1.0
1.5
2.0
2.5

0 2E-5 4E-5
-0.10
-0.05
0.00
0.05
0.10

0.0 0.5 1.0 1.5 2.0

0.00
0.05
0.10
0.15

0.00
0.05
0.10
0.15

0.00
0.05
0.10
0.15

0.0 0.5 1.0 1.5 2.0
0.00
0.05
0.10
0.15

0 1 2 3 4
0.000
0.005
0.010

A
m

ou
nt

 a
ds

or
be

d 
(c

m
3 /g

)

x

 Rpeak=0.25nm,w=0.1
 Rpeak=0.25nm,w=0.3
 Rpeak=0.25nm,w=0.6
 Rpeak=0.25nm,w=1.0

 1
1(%

)

x
(b)

  Rpeak=0.25nm,w=0.1

(a)

100% of pore volume
is  <2nm  in   width.

100% of pore volume
is  <2nm  in   width.

 

V
ol

um
e 

fr
ac

tio
ns

 Rpeak=0.25nm,w=0.3

92.1% of pore volume
is  <2nm  in   width.

  Rpeak=0.25nm,w=0.6

58.7% of pore volume
is  <2nm  in   width.

 

Pore radii [nm]

 Rpeak=0.25nm,w=1.0 



for mesoporous solids. More mesopores reduces the surfaces available for adsorption, thus reducing the 548 

total adsorption capacity and the induced swelling.  549 

In the second set, four PSDs in the mesopore range are generated using the normal distributions (Eq. 550 

(52)) with fixed peak pore radius of 4nm  and different widths using 0.2 ~ 3.125w . The PSDs are 551 

presented in Fig. 12a and the model predictions are presented in Fig. 12b. The intriguingly simple results 552 

suggest that for PSDs in the mesoporous range, the narrowness of the PSD has little effect on the 553 

material response. 554 

 555 
Fig. 12. Prediction of mesoporous carbon response to nitrogen adsorption with: (a) diffusion of pore size distribution in 556 

mesoporous range; (b) amounts adsorbed and axial deformation. 557 

This is a quite convenient conclusion as the information of peak pore size is sufficient in determining the 558 

adsorption-deformation response of pure mesoporous materials. It is thus reassuring that poromechanical 559 
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theories that rely on single pore size descriptors such as in Zhang (2018) can be still accurate in 560 

describing mesoporous solids. Combining the results in Fig. 11 and Fig. 12, one may deduce that as the 561 

pore size becomes larger, the actual distribution of pore sizes loses significance and information of the 562 

peak pore size becomes sufficient. 563 

To summarize,  the results presented in Figures 9 to 12 indicate that: (1) micropores are main cause 564 

of initial contraction; and (2) a fine resolution of the PSD in the microporous range is necessary for 565 

accurate prediction of the material response, while a coarse resolution and even a single peak pore size 566 

may be sufficient for modeling mesoporous materials.  567 

Relation between PSD and initial contraction 568 

The above analyses show that the initial contraction is affected by both the peak pore size and the 569 

width of the PSD. It is possible to quantify such dependency by plotting the maximum contraction strain 570 

with respect to peak pore radius peakR  at different w  values, as shown in Fig. 13. All simulations use the 571 

same parameters as in Table 2 for the many-pore model. Fig. 13a shows that all curves share the same 572 

trend that contraction first intensifies and then gradually reduces to zero as the peak pore size increases. 573 

It is also observed that as the PSD becomes narrower, e.g., the case of 0.05w , the increase in initial 574 

contraction with increasing peakR  becomes sharper and the maximum contraction becomes stronger. The 575 

curves for wider PSDs in Fig. 13a are more dispersed simply because not all pores enter and exit the 576 

contractive range simultaneously.  577 

A closer inspection of Fig. 13a suggests that even when the pore width is smaller than the size of one 578 

adsorbate molecule (i.e., R < R0 = 0.21 nm for the selected parameters in Table 2), some amount of 579 

adsorption and strain are still predicted by the model. This is because the BDDT model Eq. (51) is 580 

continuous and gives non-zero adsorption even when the number of adsorbed layers ( hn C h ) is less 581 

than 1. To enforce a physical lower bound below which the pores are inaccessible to adsorbates, a crude 582 

way is to implement a hard cutoff on the BDDT isotherm such that 0   when n < 1. The predicted 583 

contraction strains after enforcing such cutoff are presented in Fig. 13b. It is observed that narrower the 584 

PSD results in more abrupt maximum contraction curve around the cut-off size R0 = 0.21 nm. Below this 585 

value, no adsorption is possible and thus adsorption-induced strain is nearly zero. Comparing Fig. 13a 586 

and b indicates that the upper bound of the contraction range is not affected by such cut-off, and the 587 

overall size of contraction regime is reduced. This implies that some microporous network may not 588 



exhibit initial contraction at all when interacting with large adsorbate molecules. Finally, it is interesting 589 

to note that the adsorbate radius R0 = 0.21 nm or diameter 0.42 nm deduced from model calibration is 590 

very close to the kinetic diameter of the nitrogen molecule, 0.364 nm (Ismail et al., 2015). 591 

 592 
Fig. 13. Maximum initial contraction in variation with peak pore radius for different PSD skewness for (a) the current theory, 593 
and (b) the current theory with BDDT adsorption model cut off for 1n  . Each point along each curve corresponds to a PSD 594 
generated by Eq. (53) using 0 1nmD  , 0.1nmpeakR  , and the corresponding w . Then the PSD is shifted along the pore size 595 

axis to obtain PSDs of the same shape with different peak pore radii. The remaining model input parameters are taken the 596 
same as the many-pore model in Table 2. 597 

7  CONCLUSION 598 

We developed a framework to incorporate the surface tension and disjoining pressure effects for 599 

adsorptive porous materials with generic pore size distributions. Specifically, we constructed the total 600 

surface free energy of a general pore network by statistically homogenizing the free energy of many 601 

equivalent slit pores. Then the decomposition of the total material dissipation into the solid, fluid, and 602 

surface contributions leads to the free energy balance equations of the three phases of the REV. The 603 

incremental form of a general poroelastic relation is then derived from the solid free energy balance to 604 

gain versatility in both implementation and modification of the framework. To validate the proposed 605 

theory, a constitutive model is constructed by specifying isotropic linear poroelasticity, the BDDT 606 

adsorption model, spherical pore structure, and a linear mapping of pore radii to slit-pore width. By 607 

choosing physical values for the material parameters and inputting the measured pore size distribution 608 

(PSD), the model performance is validated against the experimental data on nitrogen adsorption on 609 

porous carbons (Balzer et al., 2015). The model that takes the information of the full PSD shows 610 

significantly better agreements with experimental data in comparison to the single-pore and dual-pore 611 

representations of the same PSD. Using the same set of parameters, the effect of PSD on the predicted 612 



adsorption and strain isotherms are investigated through a systematic parametric study, the main 613 

conclusions of which are highlighted below: 614 

1. Inclusion of surface tension and disjoining pressure in the poromechanical theory can explain the 615 

transition from initial contraction to overall swelling of microporous materials upon adsorption. 616 

Specifically, in absence of stretch-dependent surface stress, the initial contraction is caused by 617 

the presence of attractive disjoining pressure which is most prominent when the pore sizes gather 618 

closely around the size of only a few adsorbate molecules. For meso/macro porous materials 619 

where disjoining pressure vanishes, sorption-induced deformation is governed by the reduction 620 

of surface tension which indicates swelling. 621 

2. In terms of adsorption isotherms, microporous material shows rapid filling of pore spaces at very 622 

low pressures. The inclusion of mesopores permits more space for adsorption to continue at 623 

higher pressure levels.  624 

3. PSD is important for microporous materials because slight shifting in peak pore size and 625 

dispersity affects the predicted strain isotherms. For mesoporous materials, the full information 626 

of PSD loses significance and only the peak pore size matters in predicting their adsorption-627 

deformation responses. This is convenient in that poromechanical theories that rely on single 628 

pore size descriptors can be still quite accurate for mesoporous solids.  629 

Within the presented framework, further improvements can be contemplated by (1) introducing 630 

capillary condensation in pore-scale models to capture the contraction of porous materials at 631 

intermediate pressure levels; (2) introducing the two-way adsorption-deformation coupling by making 632 

both PSD and surface tension dependent on skeleton deformation; (3) incorporating finite-strain 633 

poroelastic models. Some fundamental aspects need to be further studied, including the mechanics 634 

behind the sorption-deformation hysteresis and the surface forces in pores of different shapes. 635 
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APPENDIX A. INCREMENTAL CONSTITUTIVE RELATIONS IN EXPLICIT FORM 

The first step towards the explicit form of Eq. (25) is to expand d ,  /p s ijd A   , and 

 /p sd A    considering the definition of smeared surface forces Eqs. (13): 

 kl
kl

d dp d d
p

 
 

  
   

  
 (54) 

 
,

2 2

p p ps s s sK
p K kl

ij ij ij ij kl

s s
p p kl

ij kl ij

A A A Ad dp d d
p

A Ad d

  
  

     

   
   

       
            

 
 
   


 (55) 

 
2 2

2

p p ps s s s
p kl

kl

s s
p p kl

kl

A A A Ad dp d d
p

A Ad d

  
  

     

   
  

       
   

       

 
 
  

 (56) 

Substituting Eqs. (54)-(56) into Eq. (25) and reorganizing gives 
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Substitution of Eq. (58) into Eq. (57) yields 
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Eqs. (59) and (58) are then simplified into Eqs. (26) and (27), respectively. The terms involving 

smeared quantities can be written as Eqs. (33)-(39) by invoking Eq. (13), the definitions ( , )K Kh h  ε  

and ( , )K K  ε , and the assumption that /v v
K Kr    is constant. 

APPENDIX B. DERIVATIVES OF SURFACE AREAS 

The derivatives /K  ,  / /K     , and  / /K ij     can be derived by considering

( , ) ε  and K :  
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Eqs. (60)-(62) can be further simplified using , 0K s KA   and 0K sA   , knowing that ,s KA  

is generally a function of the kinematics, ε  and  : 
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