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ABSTRACT

Bundle recommendation is an emerging research direction in the
recommender system with the focus on recommending customized
bundles of items for users. AlthoughGraphNeural Networks (GNNs)
have been applied to this problem and achieved superior perfor-
mance, existing methods underexplore the graph-level GNN meth-
ods, which exhibit great potential in traditional recommender sys-
tem. Furthermore, they usually lack the transferability from one
domain with sufficient supervision to another domain which might
suffer from the label scarcity issue. In this work, we propose a
subgraph-based Graph Neural Network model, SuGeR, for bun-
dle recommendation to handle these limitations. SuGeR gener-
ates heterogeneous subgraphs around the user-bundle pairs and
then maps those subgraphs to the users’ preference predictions via
neural relational graph propagation. Experimental results show
that SuGeR significantly outperforms the state-of-the-art base-
lines in the basic and the transfer bundle recommendation tasks
by up to 77.17% by NDCG@40. The source code is available at:
https://github.com/Zhang-Zhenning/SUGER.

CCS CONCEPTS

• Information systems → Data mining; • Recommender sys-

tems → Bundle Recommendation.
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1 INTRODUCTION

Bundle recommendation is a newly emerging research direction
in the recommender system. Generally, bundle recommendation
aims at recommending a bundle of items which collectively might
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be more appealing to users, compared with recommending single
items. For example, large online game and music distributors such
as Steam, Tencent, Netease, and large e-commerce platforms such as
Amazon and Taobao have already begun to sell products in bundles
[1, 4, 5]. This recommendation strategy would benefit both sellers
and customers mutually.

However, despite its importance, less effort has been devoted
to this direction. Existing approaches for traditional recommender
systems tend to fall short of the bundle recommendation for two
main reasons. First, the bundle recommendation problem contains
three types of interactions: user-item preference, user-bundle pref-
erence, and bundle-itemmembership. It is non-trivial for traditional
user-item recommendation methods to incorporate various types of
interactions. Second, the label scarcity problem and the cold-start
problem for certain domains are crucial in a newly rising direction.
One possible solution is to learn and transfer knowledge from other
domains with sufficient supervision. However, most traditional
methods do not have transferability between various domains.

Recently, GNNs demonstrate the potential strength on a vari-
ety of applications including recommender system [2, 3, 6, 7, 14].
However, leveraging the graph-level GNN in the bundle recom-
mendation scenario is still an open question. Futhermore, the label
leakage issue for bundle recommendation is often neglected. But it
has a significant impact in terms of overfitting and performance. In
addition, most current methods could not be effectively generalized
to unseen data or even transferred from one domain to another.

In this paper, we propose a Subgraph-based Graph Convolu-
tional Network model (SuGeR), to tackle all of the aforementioned
limitations. The key high-level idea is to construct a heterogeneous
subgraph for each user-bundle pair and map it to predict the user’s
preference via graph-level GNNs. Our method can handle both
the basic bundle recommendation problem and the transfer bundle
recommendation problem, in which the goal is to apply the model
learned in one domain to another.
Related works. The classic recommendation model such as [16]
could not be applied to the bundle task. Recently, many research
works begin to introduce novel techniques for recommender sys-
tem, such as GNN [11] and co-clustering [10]. Some GNN-based
recommendation models such as NGCF [12] focuses on homoge-
neous graph and have a inferior performance under bundle context.
Representative bundle-oriented models are DAM [4] and BGCN
[2] where the latter is the state-of-the-art. The GNN-based matrix
completion methods like IGMC [18] provide new inspiration. The
key of IGMC is to extract enclosing graph of the user-item pairs,
and adopt the graph-level GNN to map the user-item pair to predic-
tion scores. However, IGMC is not particularly designed for bundle
scenarios. The distinctive difference between SuGeR and IGMC

https://github.com/Zhang-Zhenning/SUGER
https://doi.org/10.1145/3511808.3557707
https://doi.org/10.1145/3511808.3557707


CIKM ’22, October 17-21, 2022, Atlanta, GA, USA. Zhenning Zhang, Boxin Du, and Hanghang Tong

includes the generation of the k-hop heterogeneous subgraph, layer
structure design, and handling label leakage issue.

2 PROBLEM DEFINITION

We useU,I,B to denote user set, item set and bundle set for train-
ing and testing. Then, we use |U|, |I |, |B| to denote the number
of users, items and bundles. We define X,Y,Z as user-bundle, user-
item, and bundle-item interaction matrices respectively (the left
side of Figure 1). X and Y represent users’ bundle and item prefer-
ence, and Z represents bundle-item membership. Taking X as an
example. X(𝑢,𝑏) = 1 if there exists observed interactions between
user 𝑢 and bundle 𝑏 where 𝑢 ∈ U, 𝑏 ∈ B. Y and Z follow similar
definitions. These three matrices then be split into training and
test sets. Based on these fundamental symbol definitions, the basic
bundle recommendation problem is defined as follows:

Problem 1. Basic Bundle Recommendation:
Given: The user set U, item set I and bundle set B with their

corresponding observed user-bundle, user-item, and bundle-item in-

teraction matrices X,Y,Z for training.

Output: The predicted user-bundle preference score matrix R ∈
R |U |× |B |

for all unobserved user-bundle pairs. R(𝑢,𝑏) is a real num-

ber in (0, 1) indicating the probability of user 𝑢 favors bundle 𝑏.

Furthermore, we also study the problem of transfer bundle rec-
ommendation, where the goal is to learn a user-bundle encoder
on the source domain and then apply the learned encoder on the
target domain. The transfer bundle recommendation problem is
formally defined as follows.

Problem 2. Transfer Bundle Recommendation:
Given: The user setU𝑠 , item set I𝑠 and bundle set B𝑠 with their

corresponding observed user-bundle, user-item, and bundle-item in-

teraction matrices X𝑠 ,Y𝑠 ,Z𝑠 for training from the source domain. The

user setU𝑡 , item set I𝑡 and bundle set B𝑡 with their corresponding

observed user-bundle, user-item, and bundle-item interaction matrices

X𝑡 ,Y𝑡 ,Z𝑡 for test from the target domain.

Output: The predicted user-bundle preference score matrix R ∈
R |U𝑡 |× |B𝑡 |

for all of the unobserved user-bundle pairs in the target

domain {U𝑡 ,I𝑡 ,B𝑡 }. R(𝑢,𝑏) ∈ (0, 1) indicating the probability of

user 𝑢 ∈ U𝑡 favors bundle 𝑏 ∈ B𝑡 .

Note that the observed user-bundle pairs in the target domain are
divided into training and testing splits where there is no overlap.

3 THE PROPOSED MODEL

The overall model pipeline is shown in Figure 1. There are four main
stages: (S1) heterogeneous subgraph generation and feature initial-
ization; (S2) relational graph neural propagation; (S3) information
aggregation, and (S4) prediction.

3.1 Subgraph generation and Relational graph

neural propagation

In this subsection, we introduce the subgraph generation process
and the model structure. We use heterogeneous graph for the sub-
graph construction for user-bundle pairs. Compared to homoge-
neous graph, heterogeneous graph models different levels of infor-
mation propagations between categories of nodes and edges.

The heterogeneous subgraph we construct is an directed graph
G𝑠 = {V , E}. For each user-bundle pair, we generate one 𝑘-hop sub-
graph. We divide nodes v ∈ V into several types. For the centered
user-bundle pair, we mark the centered user as 0 and the centered
bundle as 1. Then, we assign types to other users, bundles, and
items. For bundle, user and item in hop 𝑘𝑖 , we assign categorical
attributes 3𝑘𝑖 − 1, 3𝑘𝑖 , 3𝑘𝑖 + 1 to them. The reason for categorizing
in this way is for different hops the nodes have different impacts
on the central pair. When 𝑘 = 1, there are five types of nodes.

For edges, wemodel edges e ∈ E into six categories: user→bundle
and bundle→user (if X(𝑢,𝑏) = 1) , user→item and item→user (if
Y(𝑢, 𝑖) = 1), bundle→item and item→bundle (if Z(𝑏, 𝑖) = 1).

Based on the above subgraph construction, a given user, bundle,
or item may have different embeddings after training if they appear
in different heterogeneous subgraphs. In other words, different
subgraphs may have different embeddings for the same node, which
is different from previous works. For notation simplicity, we denote
the embeddings of the targeted bundle, user, and item as 𝑒𝑏 , 𝑒𝑢 , and
𝑒𝑖 respectively in the following description. The dimension of 𝑒𝑏 , 𝑒𝑢 ,
and 𝑒𝑖 is 𝑑 .

We fuse type and feature to generate initial embeddings. We
use one-hot encoding for node types to obtain the first part. We
generate a Gaussian distribution vector for another part. The rea-
son for using Gaussian distribution is similar to the idea of free
embeddings from [13], which could serve as a regularization for
the embedding learning. Then we concatenate two parts to form
the initial embeddings.

Nowwe introduce the model structure and details of information
propagation. Firstly, let us discuss information propagation from
the bundle’s perspective. Intuitively, items in a bundle have certain
connections with each other. Furthermore, the customers who buy
bundles could influence bundles’ semantics. SuGeR captures this
internal relationship between user and bundle. For bundles, there
are two levels of propagation (𝑖 → 𝑏, 𝑢 → 𝑏) as follows:

e(ℓ+1)
𝑏,1 =

1��N𝑖,𝑏

��𝜎 (
W(ℓ )

1

(
e(ℓ )
𝑏

+ 𝜏
(
{e(ℓ )

𝑖
| 𝑖 ∈ N𝑖,𝑏 }

))
+ c(ℓ )1

)
e(ℓ+1)
𝑏,2 =

1��N𝑢,𝑏

��𝜎 (
W(ℓ )

2

(
e(ℓ )𝑢 + 𝜏

(
{e(ℓ )𝑢 | 𝑢 ∈ N𝑢,𝑏 }

))
+ c(ℓ )2

)
Here, e(ℓ+1)

𝑏,1 and e(ℓ+1)
𝑏,2 are the two parts of bundle embeddings

in the (ℓ + 1)th layer, and𝑊 (ℓ )
1 ,𝑊

(ℓ )
2 , are the two updating weight

matrices based on edge type in heterogeneous graph. The reason
why there are two parts is we gather information from user and
item nodes to refine embeddings. 𝜏 (·) is the aggregation function,
here we simply choose sum and 𝜎 (·) is LeakyRelu.

Secondly, we consider the user’s perspective. The bundle can be
regarded as several organized items, so the user’s preference for one
bundle is affected by items. For centered and non-centered bundle
nodes, the information will be aggregated from the connected user
and item. The user’s decision on a bundle will not only be affected
by the item itself but also by the extra information when items
appear as a set. Another trick is that we can get bundle similarity
by comparing the items of two bundles. The propagation layer
generates similar embeddings of two similar bundles to recommend.
To let SuGeR learn the semantic of item combination and similarity
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Figure 1: The overall pipeline of SuGeRmodel. Here we use the centered user-bundle pair (𝑢1, 𝑏1) as an example, and we only

show 1-hop heterogeneous subgraph. More details are presented in Section 3.

between bundles, we have the following two equations:
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Here e(ℓ+1)

𝑢,1 and e(ℓ+1)
𝑢,2 are two parts of user embedding in the

(ℓ + 1)-th layer, andW(ℓ )
3 ,W(ℓ )

4 are the two updating weight matri-
ces for item→user and bundle→user edges. 𝜏 (·) is the aggregation
function, and here we choose summation. 𝜎 (·) is LeakyRelu.

3.2 Information Aggregation and Prediction

After obtaining e(ℓ+1)
𝑢,1 , e(ℓ+1)

𝑢,2 , e(ℓ+1)
𝑏,1 and e(ℓ+1)

𝑏,2 , we average them

to obtain e(ℓ+1)𝑢 and e(ℓ+1)
𝑏

. To utilize all the information, we con-
catenate all e𝑖𝑢 and e𝑖

𝑏
from different layer to form e𝑢 and e𝑏 . Then

we concatenate these two vectors to get e𝑠𝑢𝑏 , the graph-level em-
bedding indicating the preference of user u on bundle b. We use
Sigmoid function to get the final prediction, as shown in Figure 1.

3.3 Discussion

A - Label Leakage Issue. As proposed by [17] and [5], label leak-
age is a common but implicit issue on GNN models. Label leakage
issue happens when predicting links by aggregating information
from nearby nodes and the target link is also included in the ag-
gregating function. In this case, the mapping learned by the model
will have a self-mapping problem. Specifically, if we try to predict
an edge q between target bundle b and target user u, then in every
iteration bundle b aggregates information from u and user u also
aggregates information from b. Therefore, the model tends to learn
a self mapping 𝑓𝜃 (q, ...) = q [5]. This is not an ideal mapping func-
tion, since the information of target bundle b and target user u are
lost as their embeddings are smoothed by each other, and the model
tends to become overfitting. In our SuGeR model, this problem is
even more critical since the core of SuGeR is to use user-bundle-
centered subgraph to predict the center edge. Although we apply
different weight matrices for user → bundle and bundle → user,
this could not solve the problem thoroughly.

The key solution to this issue is to ensure that the edge to be pre-
dicted will not be involved in the information propagation process.

To achieve this, we delete edges between centered user and bundle
when training the model to cut off such self-mapping loops and to
ensure the information is not propagated between centered bundle
b and centered user u when the model learns how to predict the
edge q = (b, u) itself.
B - Transfer Bundle Recommendation. One important contribu-
tion of this paper is that the proposed model enables transfer bundle
recommendation. SuGeR generates k-hop subgraphs to learn the
local graph pattern of a pair of bundle and user. In the graph context,
all such locally centered subgraphs will have one edge with high
probability and other edges with relatively low probability during
prediction. By using heterogeneous subgraph, SuGeR tries to learn
a subgraph encoder to map subgraphs into embedding space. Some
similar graph structures might be shared by the data from different
domains, which will be captured by the encoder. Furthermore, our
encoder focuses on the local pattern near a centered user-bundle
pair, while existing methods (e.g., BGCN [3]) focus on learning a
global embedding of users/bundles when predicting a particular
user-bundle. Under the transfer context, it might not be reasonable
for the encoder to learn the whole graph pattern which is dependent
on the dataset. No side information such as ages and genders is used
in our model. We try to use only domain-independent information.
We regard this as an important contribution of this work because
it has significant impact on the practical application.

4 EXPERIMENTS

In this section, we conduct experiments to verify the effectiveness
and transferability of SuGeR model.

4.1 Experimental Setting and Dataset Statistics

Dataset Statistics. The datasets we use in this paper are Netease
and Youshu, and the statistics can be found in [4].
Baselines.We use four baselines for the overall performance ex-
periment, they are GCN-BG [11], NGCF-BG [12], DAM [4] and
BGCN [2]. ForGCN [11] andNGCF [12], both have two implemen-
tations ((Bipar-Graph and Tripar-Graph )) and we use user-bundle
bipartite graph to train and test the performance. For these four
baselines, GCN-BG [11] and NGCF-BG [12] are GNN models for
traditional recommendation, and are not designed specifically for
bundle recommendation. DAM [4] and BGCN [2] are newly pub-
lished bundle-oriented GNN models.
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Table 1: Performance comparison with four baselines and two model variants for ablation study.

Model

Youshu Netease

Recall@20 Recall@40 Recall@80 NDCG@20 NDCG@40 NDCG@80 Recall@20 Recall@40 Recall@80 NDCG@20 NDCG@40 NDCG@80

NGCF-BG 0.1343 0.2076 0.2447 0.0618 0.0925 0.1420 0.0551 0.0927 0.1356 0.0265 0.0464 0.0768
GCN-BG 0.1431 0.2191 0.2432 0.0739 0.1137 0.1652 0.0567 0.0982 0.1439 0.0292 0.0501 0.0799
DAM 0.1670 0.2086 0.2918 0.0757 0.0939 0.1532 0.0747 0.1290 0.1695 0.0351 0.0593 0.0840
BGCN 0.2531 0.3674 0.4755 0.1623 0.1858 0.2432 0.1494 0.1825 0.2421 0.0786 0.1069 0.1428

SuGeR No subgraph 0.0301 0.0353 0.0469 0.0141 0.0176 0.0218 0.0315 0.0349 0.0392 0.0157 0.0173 0.0195
SuGeR Leakage 0.1301 0.2041 0.2886 0.0637 0.0912 0.1475 0.0692 0.1345 0.1688 0.0349 0.0621 0.0837

SuGeR 0.3529 0.5438 0.6682 0.2041 0.2961 0.3960 0.2835 0.3539 0.4301 0.1361 0.1894 0.2359

%Improv. 39.43% 48.01% 40.53% 25.75 % 59.36 % 62.83 % 89.76% 93.92 % 77.65% 73.16% 77.17% 65.20 %

Table 2: Transfer bundle recommendation experimental results.

Model

Youshu Netease

Recall@20 Recall@40 Recall@80 NDCG@20 NDCG@40 NDCG@80 Recall@20 Recall@40 Recall@80 NDCG@20 NDCG@40 NDCG@80

GCN-BG 0.0611 0.0925 0.1233 0.0305 0.0474 0.0735 0.0244 0.0415 0.0639 0.0121 0.0207 0.0348
BGCN 0.1801 0.2809 0.3476 0.1354 0.1419 0.1876 0.1061 0.1496 0.1819 0.0559 0.0848 0.1014
SuGeR 0.3107 0.3926 0.4255 0.1537 0.1725 0.1801 0.0955 0.1706 0.2302 0.0408 0.0850 0.1374

Metric.Weuse twowidely usedmetrics Recall@K [12] andNDCG@K

[8] to test the performance. Recall@K measures the ratio of real
positive ones in top-𝐾 bundles. NDCG@K considers the rank posi-
tion and gives higher scores to the real positive bundle at a higher
rank. NDCG@K is a more rigorous metric.
Experimental Setting. For all experiments, we split two datasets
into training and test sets. We split the positive user-bundle inter-
actions into two parts, so during training, the model cannot use the
positive u-b pair from the test split. 60% of the user-bundle interac-
tions are in the training set. We use random negative sampling for
training to ensure the number of negative triplets is the same as
the number of positive samples in the training set.

4.2 Overall Performance Comparison

We conduct experiments on two benchmark datasets with four
baselines and two metrics as listed above. The metric is the same
as [2]. The overall performance is shown in Table 1.

From the result, we can see that SuGeR model outperforms all
the baselines with a significant improvement when using Recall@K

and NDCG@K as the metrics. SuGeR could achieve an average of
45% improvement on Youshu and an average of 79% improvement
on Netease when compared to the state-of-the-art model BGCN [2].
That proves the effectiveness of our user-bundle-centered subgraph-
based GNN model.

We conduct an ablation study on the usage of the heterogeneous
subgraph and the prevention method of label leakage as shown
in the last 2 rows in Table 1. No subgraph denotes that we do not
generate subgraphs and only initialize embeddings. Leakage means
we do not delete target edges during training. As listed in the table,
the performance becomes worse in these two cases, which shows
the effectiveness of both using heterogeneous subgraphs and label
leakage prevention.

4.3 Transfer Bundle Recommendation

Experiments

Wefirst train twomodels on the training sets of Youshu and Netease,
then conduct test experiment on the test sets of Youshu using
model trained on Netease, and test on the test set of Netease using

model trained on Youshu. We adopt the same setting on BGCN[2]
and NGCF[12]. The result is shown in Table 2. We can observe
that SuGeR has the best transfer performance compared to the
two baselines. Another observation is that the performance of the
transfer setting still decreases compared with the performance in
Table 1. These experimental results follow our intuition that the
subgraph-based bundle recommendation model we propose has
strong transferability, which is elaborated in Section 3.1. The result
shows that the model is able to learn the internal purchasing logic,
which is not platform-dependent. As a result, the heterogeneous
subgraph we generate could contain some platform-independent
patterns.

5 CONCLUSION

In this paper, we propose a subgraph-based GNN model to handle
both the basic bundle recommendation and transfer bundle rec-
ommendation problem. The model uses three interaction matrices
as input to generate k-hop heterogeneous user-bundle centered
subgraph to learn the embeddings for target bundles and users. The
model has strong transferability when facing unseen domains. We
also propose a solution for the implicit label leakage issue in our
model to avoid the self-mapping problem. Extensive experiments
demonstrate the significant improvement of the effectiveness and
transferability of our model over all the baseline models. Future
directions include further studying the knowledge transfer in rec-
ommender system, and applying our approach to cross-domain
bundle recommendation scenario [9, 15].
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