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Abstract

The crop wild relative Fragaria nilgerrensis is adapted to a variety of diverse habitats across its native range in China. Thus, discoveries
made in this species could serve as a useful guide in the development of new superior strawberry cultivars that are resilient to new or
variable environments. However, the genetic diversity and genetic architecture of traits in this species underlying important adaptive
traits remain poorly understood. Here, we used whole-genome resequencing data from 193 F. nilgerrensis individuals spanning the
distribution range in China to investigate the genetic diversity, population structure and genomic basis of local adaptation. We
identified four genetic groups, with the western group located in Hengduan Mountains exhibiting the highest genetic diversity.
Redundancy analysis suggested that both environment and geographic variables shaped a significant proportion of the genomic
variation. Our analyses revealed that the environmental difference explains more of the observed genetic variation than geographic
distance. This suggests that adaptation to distinct habitats, which present a unique combination of abiotic factors, likely drove
genetic differentiation. Lastly, by implementing selective sweep scans and genome–environment association analysis throughout
the genome, we identified the genetic variation associated with local adaptation and investigated the functions of putative candidate
genes in F. nilgerrensis.

Introduction

Crop wild relatives (CWRs), commonly defined as the
progenitors and other close relatives of agricultural and
horticultural crops, contain a reservoir of beneficial traits
for crop improvement and food security [1–3]. The mar-
ket demand for high productivity and uniformity have
exacerbated the reduction of genetic diversity during
crop domestication [3]; on the contrary, CWRs have not
passed through the bottlenecks of domestication and
have the ability to adapt to diverse environment condi-
tions [4]. Over the past decades, a series of important
traits, such as pest or disease resistance, abiotic stress
tolerance, increased nutritional value, higher yield, or
production stability, have been successfully introduced
from CWRs into crops [1, 5]. However, due to climate
change and increasing human activities, a significant
proportion of CWR species are currently threatened with
genetic erosion or extinction to varying degrees [6, 7].
Given the vital status of these species in broadening the
genetic base of crops, it is critical to understand their
genetic diversity and adaptability to their habitats.

The cultivated garden strawberry (Fragaria × ananassa)
is one of the most economically and commercially impor-
tant fruits throughout the world. The Fruits are rich
in a variety of nutritive compounds, including vitamin
C, folate, minerals, and dietary fibers, and are a valu-
able source of phenolic compounds, which are known to
have antioxidant and anti-inflammatory properties [8].
Therefore, the potential positive impact of strawberry
consumption on human health and disease prevention
remains an active research area [9]. However, cultivated
strawberries have a short shelf life and limited hardi-
ness resistance, and occupy a prominent position on
the list of foods with the highest pesticide residues [10].
In addition, modern strawberry breeding has problems
such as a narrow parental genetic background and a
lack of phenotypic diversity present in most breeding
programs. The genus Fragaria contains 16 priority CWRs
for improving cultivated strawberry with the potential to
improve fruit quality traits, abiotic stress tolerance, and
biotic resistance [2, 11]. These wild relatives are naturally
distributed across the northern hemisphere, with China
being the crucial center of diversity [12, 13]. Among
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Figure 1. a Population structure of F. nilgerrensis identified with STRUCTURE based on genome-wide SNPs. K = 2 shows the highest �K, and K = 4
represents the fine-scale structure within F. nilgerrensis. b PCA for all populations based on the same SNP data set as STRUCTURE. (c) Neighbor-joining
phylogenetic tree of all samples.

Figure 2. Historical changes in effective population size of the four F. nilgerrensis groups. a Inferred using MSMC based on sets of four haplotypes, with
solid lines representing medians and shading representing ± standard deviation calculated across pairs of haplotypes. The dark gray bar indicates the
period of the LGM. b Inferred using SMC++ based on individuals in each group

Table 2. Pairwise genetic differentiation (FST) values between the four groups of F. nilgerrensis based on the
sequence data.

Group Western Central Southern

Central 0.29295 ± 0.00091
Southern 0.30212 ± 0.00094 0.48538 ± 0.00161
Eastern 0.39402 ± 0.00104 0.54958 ± 0.00166 0.25091 ± 0.00144

the CWRs of strawberry, Fragaria nilgerrensis is a self-
compatible diploid species widely distributed in central
and southwest China. The mature fruits of F. nilgerrensis

are white to cream, with a somewhat banana-like taste
and a fruity aroma [14, 15]. In addition, F. nilgerrensis pos-
sesses some desirable characteristics that can be used
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Figure 3. IBD, IBE, and RDA. a Genetic pairwise differentiation plotted against geographic distances. b Environmental distances between populations. c
RDA testing the effect of geographic and environmental variables on the degree of genetic differentiation. The first two canonical axes (RDA1 and
RDA2) are shown.

for cultivated strawberry breeding, such as leaf disease
resistance and waterlogging resistance [15, 16]. For exam-
ple, Noguchi [17] used F. nilgerrensis and F. × ananassa to
obtain an interspecific decaploid hybrid, ‘Tokun’, with a
unique blend of peach and coconut aromas. However,
little is known about the patterns of genetic structure in
F. nilgerrensis and the genetic basis of adaptive differences
among populations within this species.

With the advent of cost-effective next-generation
sequencing technologies, a growing quantity of genome-
wide data is becoming available, especially for non-
model organisms. Such methodological progress has
allowed the improved characterization of genetic vari-
ation and population structure at a genome-wide
level [18, 19]. Whole-genome resequencing approaches
are increasingly applied to investigate the genome
variation and population structure of various plant
species, including Populus davidiana [20], cushion willow
[21], and ginkgo trees [22]. Furthermore, it is now
possible to study a vast number of loci providing
unprecedented insights into the genome-wide effects
of accumulating genetic divergence and the molecular
basis of adaptation [23–27]. Previous studies have shown
that adaptation to local environments has contributed

to the observed phenotypic variation within species,
which are distributed over heterogeneous environments
across their geographic range [28, 29]. Nevertheless,
the mechanisms through which organisms adapt to
heterogeneous natural environments remain poorly
understood [30]. The reliability and power of whole-
genome single-nucleotide polymorphism (SNP) data for
investigating natural populations are well established,
and SNP identification and genotyping have become
a routine [31, 32]. Whole-genome resequencing data
have been increasingly used to infer the genetic basis
of adaptively important traits [33, 34] or to detect
potential local adaptive genetic variants associated
with environmental variables [35, 36]. However, the
application of whole-genome sequencing analysis in
CWR species is still limited. The recent release of the
high-quality genome of F. nilgerrensis [37] provides a novel
opportunity to investigate genomic variation and local
adaptation of this species.

In this study, we focus on investigating the population
structure and the genetic basis of local adaptation in F.
nilgerrensis with whole-genome resequencing data gen-
erated from 193 samples from 28 populations spanning
the distribution range of F. nilgerrensis in China. First, we
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Figure 4. Manhattan plots for the results of GEA. a Empirical Bayesian P-value (eBPmc) for an association with the first environment principal
component (top panel) and the second environment principal component (bottom panel). The dotted black line establishes the eBPmc significance
threshold at 3. b SNP loadings on the first RDA axis (top panel) and the second RDA axis (bottom panel) accounting for spatial structure among
populations. The black dots represent SNPs with significant associations along the RDA axes (at least three standard deviations away from the mean
squared loadings). We only show the first two RDA axes here.

characterized the genetic population structure and
historical demographic process. Second, we aimed to
identify the likely drivers of genetic divergence across
its native range and evaluate the relative contribution
of environmental and geographical factors to genetic
variation. Finally, after implementing selective sweep
scans and genome-environment association analysis, we
identified regions across the genome containing putative
candidate genes associated with local adaptation to
certain ecological niches.

Results
Genome sequencing and SNP calling
We obtained whole-genome resequencing data for 193
samples from 28 populations of F. nilgerrensis, with
average sequencing depth of ∼43× per individual
covering >96.87% of the reference genome (Table 1;
Supplementary Table S1). After variant calling and
subsequent stringent filtering, we obtained a total of
9 499 952 high-quality SNPs.

Population structure and genetic diversity
We first performed clustering analysis using STRUCTURE
to assess the population structure of F. nilgerrensis. Using

the �K method, the highest �K value identified was K = 2
(Fig. 1a) and the second highest value was K = 4 (Supple-
mentary Fig. S1), which exhibited a fine-scale structure
within F. nilgerrensis. Given the high FST among popula-
tions (Supplementary Table S2) and the potential bias
of the �K method [38], we focused our analysis on the
four genetic groups that are defined herein as western,
central, southern, and eastern groups (Fig. 1a). Because
two populations (populations 9 and 12) showed a high
degree of admixture (Table 1), we excluded them from
the subsequent group-level local adaptation analysis.
Principal component analysis (PCA) as well as a neighbor-
joining (NJ) tree analysis further supported the four
genetic groups (Fig. 1b and c) mirroring the geographical
distribution pattern. The western group was distributed
in the Hengduan Mountains, specifically in the north of
Yunnan Province and the south of Sichuan Province. The
central group was distributed to the east of the Hengduan
Mountains, mainly in the northeast of Yunnan Province.
The southern group was distributed in Yunnan Province,
and the eastern group was relatively widely distributed,
involving the four provinces of Guizhou, Chongqing,
Hunan, and Hubei. All pairs of groups were substantially
differentiated from one another, with pairwise FST values
ranging from 0.25091 to 0.54958 (Table 2).
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Within each genetic group, the western group exhib-
ited the highest nucleotide diversity (π = 0.00567), whereas
the eastern group had the lowest (π = 0.00205) despite
the large geographic area covered by this group. Average
Tajima’s D value was slightly negative in the western
group (Tajima’s D = −0.1199), suggesting slight expansion
or weak selection in this group. The remaining three
groups had relatively strong negative Tajima’s D values
(Table 1), which may imply that stronger selection or
population expansion occurred.

Demographic history
We evaluated the effective population size (Ne) over his-
torical time for the four groups. We first used a multiple
sequentially Markovian coalescent method (MSMC) to
infer the demographic history based on sets of four hap-
loid genomes for each group. The results showed that all
groups experienced a period of population decline since
the inferred origin of each group (Fig. 2a). The western
group experienced a population expansion since the last
ice age (110 Kya), and the southern group experienced
a population expansion after the last glacial maximum
(LGM, 23–18 Kya), whereas the other two groups, central
and eastern, continued to show clear signs of notable
population contraction. These four groups showed
a general pattern of population decline during the
entire period but expanded recently (Fig. 2a). We then
used the sequentially Markovian coalescent method in
SMC++, which can provide more accurate estimates
for relatively more recent historical events. Overall, the
trends presented in the SMC++ results were consistent
with the MSMC analysis (Fig. 2b). However, interpretation
of the exact estimated value of Ne should be cautious,
and the historical trend of the population should be
considered instead of the exact value of each curve.

Effects of geographic and climatic factors on
genomic variation
To evaluate the effect of geographic and climatic fac-
tors on shaping genomic variation among populations,
we tested isolation by distance (IBD) and isolation by
environment (IBE). We identified a significant correlation
between pairwise FST and geographic distance (r = .5039,
P = .0001; Fig. 3a), which indicates a significant pattern
of IBD. A significant pattern of IBE was also detected
(r = 0.3632, P = .0001; Fig. 3b). Considering the strong auto-
correlation between environmental and geographic dis-
tances (r = .7098, P = .0001; Supplementary Fig. S2), we fur-
ther performed redundancy analysis (RDA) to assess the
relative contributions of geographic and climatic factors
driving genetic variation patterns (Fig. 3c).

After filtering and forward selection, we identified
eight climate variables as significantly predictive of the
standing genetic variation observed among populations.
These climate variables included BIO2 (mean diurnal
range), BIO4 (temperature seasonality), BIO6 (minimum
temperature of coldest month), BIO8 (mean temperature
of wettest quarter), BIO9 (mean temperature of driest

quarter), BIO12 (annual precipitation), BIO14 (precipita-
tion of driest month), and BIO15 (precipitation season-
ality). Forward selection of the distance-based Moran’s
eigenvector map (dbMEM) variables identified six axes as
significant to explain geographical structure among pop-
ulations. Retained dbMEM variables included dbMEM1,
2, 3, 4, 5, and 6, among which dbMEM1 contributed most
of the variation (2.39%) (Supplementary Table S3) and
represented a broad-scaled structure (Supplementary
Fig. S3). The redundancy analysis revealed that the
abiotic environment and geographic variables explained
52.12% of the genetic variation among populations
(Supplementary Table S3), with 28.29% associated with
the collinear portion of environment and geography. The
variance partitioning test showed that the contribution
of environmental variables to genetic variation was
slightly higher than that of geographic variables (12.25
and 11.58% respectively; Supplementary Table S3).

Selective sweeps
To search for genomic regions that have undergone
recent positive selection, containing key adaptive genes,
we performed genome scans using a composite evalua-
tion method (RAiSD) and a haplotype-based method (XP-
nSL) for each group separately. The overlapped regions
between these two methods were considered as the
candidate regions for subsequent analyses. We revealed a
total of 344 genomic regions for all four groups (63, 81, 76,
and 124 regions for the western, central, southern, and
eastern groups, respectively; Supplementary Table S4).
Using gene annotations from F. nilgerrensis, we identified
a total of 959 genes that were located within selective
sweeps, including 159, 245, 165, and 390 genes for the
western, central, southern, and eastern groups, respec-
tively. Of the 959 genes, a total of 859 (89.57%) were identi-
fied as under selection in single groups, while the remain-
ing 100 genes were identified as shared by two groups,
and no genes were shared by three or more groups (Sup-
plementary Fig. S4). This suggests that unique adaptive
patterns exist for each group, and that these gene differ-
ences arose to permit adaptation to unique climates.

To further investigate these candidate genes, we per-
formed a gene ontology (GO) enrichment analysis using
our F. nilgerrensis annotation. We found that genes related
to response to external stimuli, wounding, and stresses
were overrepresented in the western group. (Supplemen-
tary Table S5), suggesting the importance of these stress-
related genes to adapt to highly heterogeneous alpine
environments in the Hengduan Mountains. Several other
GO terms related to cation/ion transmembrane trans-
port, ion transport, and dephosphorylation were also
notable as potentially resistance-related (Supplementary
Table S5). In the central group, genes found in selec-
tive regions were particularly enriched for regulatory
functions, such as positive regulation of RNA metabolic
process, positive regulation of RNA biosynthetic process,
and positive regulation of gene expression (Supplemen-
tary Table S5), which might be related to environmental
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adaption to the transitional areas between high and low
altitudes. In the southern group, highly enriched GO cat-
egories were tryptophan metabolic/biosynthetic process,
indole-containing compound metabolic/biosynthetic
process, and actin filament bundle assembly/organiza-
tion (Supplementary Table S5), which might be linked
to regulating plant development and growth, pathogen
defense responses, and plant–insect interactions. In the
eastern group, GO terms related to arginine metabol-
ic/biosynthetic process and cellular polysaccharide
metabolic/biosynthetic process were highly enriched
(Supplementary Table S5). These GO terms might be
connected to growth, stress protection, and signal
transduction. The enrichment of GO terms related to
plant development and bacterial defense response in the
southern and eastern groups might be associated with
adaptation to the relatively low-altitude environment.

Identification of genome–environment
associations
To elucidate the pattern of adaptation, we further per-
formed genome–environment association (GEA) analysis
to narrow down the genomic regions containing selec-
tive sweeps. Specifically, we considered only overlaps
between selective sweeps and those showing significant
environmental associations. We identified SNPs associ-
ated with climatic variables using two GEA methods:
the BayPass standard covariate model and partial RDA.
BayPass uses a matrix of covariances of allele counts to
account for underlying population structure. The 19 cli-
matic variables showed a high degree of correlation (Sup-
plementary Fig. S5a). After performing PCA on climatic
variables, we retained the first two principal compo-
nents for climatic association analysis (Supplementary
Fig. S5b). The first environmental principal component
explained 55.9% of the total variance (Supplementary Fig.
S5b and c), and had the strongest loadings for the mean
temperature of warmest quarter, followed by the precip-
itation of driest month, the maximum temperature of
warmest month, the precipitation of driest quarter, and
the annual precipitation (Supplementary Figs S5d and
S6a). The second environmental principal component
explained 28.8% of the total variance (Supplementary
Fig. S5b and S6c), with the mean temperature of coldest
quarter contributing the most, followed by the mean
temperature of driest quarter (Supplementary Figs S5d
and S6b). The BayPass STD model identified a total of
21 796 SNPs having significant correlations with the cli-
matic variables (Fig. 4a). For our partial RDA with eight
climatic variables, the conditional variance explained
43.61%, the constrained variance explained 14.45%, and
the unconstrained variance explained 41.95% of the total
variance. We identified candidate loci associated with
local adaptation by inspecting SNPs displaying loadings
along the first four RDA axes ± 3 SD from the mean, and
a total of 23 263 SNPs were identified displaying strong
associations with climatic variables (Fig. 4b; Supplemen-
tary Fig. S7).

In order to obtain a conservative list of genes under
selection potentially related to adaptation to different
climatic environments, we further focused on the genes
that were found in the regions of selective sweeps and
also showed significant climatic associations. The outlier
SNPs detected by the BayPass STD model involved 3677
genes, and the outlier SNPs detected by partial RDA
involved 3977 genes. From this analysis 186 genes were
found that were both significantly associated with cli-
matic conditions and also identified in selective sweeps,
of which 28, 95, 22, and 85 genes were detected in the
western, central, southern, and eastern groups, respec-
tively (Supplementary Table S6). A subset of these genes
may underlie the mechanism of adaptation to diverse
abiotic factors in F. nilgerrensis.

The enrichment analysis was performed to identify
previously characterized genes or biological pathways
known to be involved in adaptation to distinct envi-
ronments. For the western group, we found that genes
related to response to stimulus, salt stress, and osmotic
stress were highly overrepresented. Specifically, the
Ultraviolet-B receptor UVR8 (UVR8; evm.model.ctg32.
2005) gene and the Aspartic proteinase A1 (APA1;
evm.model.ctg28.472) gene were identified to be under
strong selection. The UVR8 gene in Arabidopsis is involved
in plant acclimation and thus promotes survival in
sunlight [39], and the APA1 gene is known to be involved
in drought tolerance in Arabidopsis [40]. These might be
linked to adaptation to the high-altitude environment
in the Hengduan Mountains. For the central group, we
found genes implicated in the regulation of flowering
time (HAC1) [41, 42], blue light responses (CRY1 and
CRY2) [43], toxic heavy metal ion responses (CNGC1
and CNGC10) [44], response to changes in humidity
(SAGL1) [45], and so on. For the southern group, we found
genes related to plant development (At5g45160) [46],
fruit development (GRDP1) [47], and chemical-induced
genotoxic and oxidative stress (NPC1) [48]. For the eastern
group, we discovered several genes involved in regulating
plant growth (CGR2, ERG28, TOR) [49–51].

Discussion
The population genomic approach provides a novel
perspective for deciphering patterns of genetic variation
and structure, and demographic history. Furthermore,
recent progress in genomic tools enables the identifi-
cation of the adaptive genomic footprints shaped by
heterogeneous environments, contributing to under-
standing how climate has shaped and will continue
to shape the genome of this species. In this study,
we sequenced 193 individuals from 28 geographical
populations to obtain genome-wide SNPs of F. nilgerrensis.
Based on genetic structure analysis, we found that F.
nilgerrensis was roughly divided into two main clades
using the �K method, which separated the populations
in the Hengduan Mountains from other populations.
However, a previous study pointed out that the �K
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method frequently identifies K = 2 as the top level of
hierarchical structure, even when more subpopulations
are present [38]. Both our PCA and phylogenetic analysis
indicated fine-scale structure within F. nilgerrensis. Thus
we considered four groups according to their genetic
composition and geographic distribution. We found that
the western group located in the Hengduan Mountains
exhibits the highest level of genetic diversity (Table 1),
followed by the central group, which is located to the
east of the Hengduan Mountains. This has been observed
previously in other plant species, such as Quercus
aquifolioides [52], Taxus wallichiana [53], and Circaeaster
agrestis [54]. The western group also had the greatest
Tajima’s D value, indicating that intermediate-frequency
alleles appeared more frequently than other groups [55].
Our results suggested that the Hengduan Mountains
were the center of genomic diversity of F. nilgerrensis. This
result supports the hypothesis that the Qinghai-Tibet
Plateau and the adjacent area were the glacial refuges of
Fragaria, which could explain why southwest China was
the center of species diversity for this genus [56].

Environmental factors have been widely reported
to drive differential selective pressures leading to
genetic divergence during adaptation to heterogeneous
environments [57, 58]. We identified a high level of
genetic differentiation among F. nilgerrensis groups. The
analyses of IBD and IBE suggest that both geographic
and environmental factors have contributed to the
genetic differentiation observed within this species. The
geographic distance explained 11.58% of the observed
variance, and a strong pattern of isolation by distance
(0.5039) was observed between populations, suggesting
the considerable contribution of geographic isolation to
genetic variation. The complex topography and natural
barriers such as the north–south mountain series of the
Hengduan Mountains might limit the dispersal between
the three genetic groups in the southwest to a certain
extent. However, the substantial collinearity observed
between geographic and environmental distances made
it difficult to disentangle the relative contributions of
geographic and environmental factors in shaping the
genomic variation. Thus, we further performed RDA
to quantify the relationship of genomic variation with
climate and geography. RDA analysis identified that both
climatic factors and geographic distance shaped a signif-
icant proportion of genomic variation: 12.25 and 11.58%
respectively. Despite the large proportion of collinearity
(28.29%) between environment and space, our analysis
identified that specific environmental factors such as
temperature seasonality and precipitation seasonality
explained a substantial portion of SNP variation among
populations when the effects of spatial structure were
also considered. Our study supplements and reinforces
some previous findings [59, 60] in showing that tem-
perature and precipitation might be important factors
driving ecological adaptation in Fragaria species. Johnson
et al. [59] found that the most easily altered niches of
Fragaria were the coefficient of variation of precipitation

seasonality, annual mean temperature, temperature
seasonality, and mean altitude. Similarly, Yang et al. [60]
found that altitude, temperature, and precipitation were
the dominant environmental variables that affect the
potential spatiotemporal dynamics patterns of six wild
strawberry species, including F. nilgerrensis.

We investigated the long-term changes in effective
population size of the four different groups and uncov-
ered evidence for changes in effective population sizes
post-Pleistocene. The geological epoch following the
most recent glaciation event (LGM) is associated with
dynamic shifts in climates worldwide. During and/or
following the LGM, four groups experienced population
declines followed by subsequent population expansions.
These patterns highlight that F. nilgerrensis, like most
plant species, is sensitive to temperature changes. Our
findings revealed that temperature seasonality was the
strongest climate predictor of the degree of genetic
differentiation among the four groups. Interestingly, the
southern group located in Yunnan slightly expanded
during the LGM. This scenario had been previously
reported for several other organisms, such as Primula
obconica [61] and Microvelia douglasi [62].

Identifying the genomic regions that evolved in
response to various abiotic factors in strawberry species
could contribute to furthering our understanding of the
ability of populations to sustain or respond to rapid
changes in the environment [35, 63, 64]. The PCA of
19 climatic variables suggested that the four genetic
groups we identified within F. nilgerrensis were, in general,
significantly diverged from each other based on their
native environments (Supplementary Fig. S5c). Despite
the relatively large number of SNPs associated with
environmental variables, it is difficult to test whether
these SNPs are explained by selection [35]. Thus, we
retained the genes identified by the GEA analysis that
overlapped with the selective region to reduce the
potential false-positive rate and identify loci that encode
adaptations in response to changes in the environment
with higher confidence. We detected only a few shared
genes associated with climatic variables between any
two groups, which further supports group-specific
adaptation to different climates in F. nilgerrensis on the
genomic level. For example, the western group located
in the Hengduan Mountains has an average elevation
of 2902 m and is exposed to lower temperatures,
reduced levels of oxygen, and higher ultraviolet radiation
compared with the rest of the range of the species. The
gene UVR8 we detected in the western group encodes
an ultraviolet-B (UV-B) light receptor previously shown
to be involved in UV-B sensing and tolerance in other
species [65]. Plants recognize exposure to UV-B using
this photoreceptor and activate downstream signal
transduction pathways to initiate acclimation to UV-B
rays [65]. The gene HAC1 detected in the central
group played an important role in vegetative and
reproductive development; a previous study suggested
that it is essential for regulating flowering time, and
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lesions in HAC1 can cause a late-flowering phenotype
in Arabidopsis [41]. The central group is located to
the east of the Hengduan Mountains, a transitional
zone between high- and low-altitude areas. Its special
environment may cause some traits to be selected. In
the other two groups, with relatively low altitudes, we
found some genes related to vegetative growth, e.g. the
At5g45160 gene found in the southern group and the
CGR2, ERG28, and TOR genes found in the eastern group.
Selection on genes involved in vegetative growth has
previously been reported in populations from relatively
low altitudes in Arabidopsis lyrata [66]. Previous studies
on Arabidopsis thaliana [67] also showed that low-altitude
populations have higher leaf count and larger siliques
than high- and middle-altitude populations. Overall, our
analyses in F. nilgerrensis provide new information about
the loci related to the adaptive responses to diverse
abiotic stresses, and provide prime candidates for future
functional research and potential molecular markers to
guide breeding efforts in strawberry.

In summary, we report new genomic resources for F.
nilgerrensis and provide novel insights into the population
structure and demographic history of this CWR. We
explicitly measured the relative impact of geographic
and environmental variables on population divergence
to dissect these two features in shaping patterns of
observed genomic variation. Our analysis identified that
climatic variables explained more genomic variation
than geographic distance, with temperature seasonality
explaining the most SNP variation when conditioned on
spatial structure, which suggests that local adaptation
greatly promotes population genetic differentiation.
By combining selective sweep analysis and GEA, we
identified several candidate genes possibly related to
adaptation to heterogeneous climate environments. Our
results provide many avenues for conservation and
utilization of F. nilgerrensis germplasm and the breeding
of cultivated strawberries that can grow in environments
affected by climate change.

Materials and methods
Sample collection, DNA extraction, and
sequencing
We collected 193 samples from 28 populations (3–10
specimens per population) across the distribution range
of F. nilgerrensis in China (Supplementary Table S1). We
extracted the genomic DNA from leaves using the DNA
Plant Kit (AU31111-16, Bioteke, Beijing). DNA libraries
were prepared for each sample and sequenced by Novo-
gene Bioinformatics Institute (Beijing, China) using the
Illumina Novaseq 6000 platform (San Diego, CA) with
paired-end 150-bp reads.

Data processing, mapping, and variant calling
For raw sequencing reads, we (i) removed reads with
>10 nucleotides aligned to the adapter, allowing ≤10%
mismatches, and (ii) filtered out low-quality read pairs

including reads with >10% unidentified nucleotides (N)
and with >50% of base quality ≤5 in either of the paired
reads. All clean reads were then mapped to the reference
genome of F. nilgerrensis [37] (272 Mb) using the BWA-
MEM aligner with default parameters using bwa-0.7.17
[68]. The resulting bam files were sorted using SAMtools
[69], and duplicated reads due to DNA amplification by
PCR were removed using the Picard v2.20.2 MarkDupli-
cates tool (http://broadinstitute.github.io/picard/). After
that, SNP calling in each individual was performed using
HaplotypeCaller of GATK v4.1.4.0 [70] to generate inter-
mediate genome Variant Call Formats (gVCFs), and then
all individuals were jointly genotyped using GATK Geno-
typeGVCFs. Only sites with base quality ≥30 were used in
HaplotypeCaller. To minimize the influence of mapping
bias, variant sites were filtered using GATK VariantFiltra-
tion with filter expression QD < 2.0 || FS > 60.0 || MQ <

40.0 || MQRankSum < −12.5 || ReadPosRankSum < −8.0.
Sites showing an extremely low (<8×) or high (>200×)
average coverage were also filtered out. Finally, a total
of 9 231 119 sites with missing rate <20% were left for
further analysis, ∼33 938 SNPs per megabase. Remaining
filtration was done according to the requirement of each
analysis performed below.

Population structure and genetic diversity
We used a Bayesian clustering approach implemented
in the software STRUCTURE [71] to delineate the cluster
of each sample. We ran 10 independent runs for each K
value from 2 to 10, where the length of the burn-in period
and number of MCMC replications after burn-in were set
to 50 000 and 100 000, respectively. We used STRUCTURE
HARVESTER [72] to detect the most probable number of
K groups through the Evanno method [73]. The cluster
assignment across replicate runs was averaged using
CLUMPP [74] and the output was plotted using DISTRUCT
[75]. We also used PCA implemented in GCTA [76] to
assess population structure. In addition, we constructed
a neighbor-joining tree based on the p-distance model
using MEGA X [77] with 1000 bootstrap replicates. For
these analyses, we filtered out sites with minor allele
frequency <5% and performed a linkage disequilibrium
(LD)-based SNP pruning process in PLINK v1.90 (option
—indep-pairwise 50 5 0.2) to exclude strong linked SNPs.
Specifically, this procedure calculates LD (r2) between
each pair of SNPs within a sliding window of 50 SNPs
with a step of 5 SNPs and removes one of a pair of SNPs
if r2 > .2.

After clarifying the population structure of F. nilgerren-
sis based on genetic clustering and phylogenetic analysis,
we used VCFtools [78] to calculate population genetic
statistics including nucleotide diversity (π ), Tajima’s D for
each group, and population- and group-level pairwise FST.
Specifically, we computed π per site using the parameter
-site—pi on all SNPs of individuals from each group. The
total nucleotide diversity for each group was computed
by summing the π values of all SNPs and dividing by the
total number of callable sites. Tajima’s D and pairwise
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FST were calculated in a non-overlapping 20-kb sliding
window.

Population demography
We used MSMC v2 [79] to reconstruct the history of
changes in Ne through time. Prior to performing the anal-
ysis, all segregating sites within each group were phased
and imputed using Beagle v4.0 [80]. We then inferred the
historical changes in Ne of the four genetic groups based
on sets of two individuals (four haplotypes), respectively.
For each group, 50 rounds of random samplings were
run to determine the mean and standard deviation of
Ne changes. The input files for MSMC analysis were
generated according to MSMC Tools (https://github.com/
stschiff/msmc-tools). One-year generation times and a
mutation rate of 7 × 10−9 substitutions per site per year
were used to estimate times and population sizes.

We also used the sequential Markovian approach
implemented in SMC++ [81] to infer the historical
changes of Ne. SMC++ takes advantage of both infor-
mation contained in the site frequency spectrum and LD
to make demographic inferences. In addition, SMC++ is
phase-insensitive, limiting switch errors in phasing that
can bias Ne estimates for recent times. A polarization
error of 0.5 was used since the identity of the ancestral
allele could not be determined for many loci. The years
for a generation and the mutation rate were set as MSMC.

Genetic, geographic, and environmental
correlations
To illustrate the effects of geographic and environmental
variables on shaping genetic structure, we conducted
IBD and IBE analyses to assess associations between
pairwise FST and geographic distance and environmental
distance by the Mantel test with 10 000 permutations
implemented in the R package vegan v2.5.4 [82]. We
calculated pairwise geographic distances among 28 pop-
ulations using the distHaversine function in the R pack-
age geosphere v1.5–10 [83]. The 19 bioclimatic variables
downloaded from WorldClim 2 [84] were used at 30 arc-
seconds resolution (Supplementary Tables S7 and S8).
We first performed a PCA on these climatic variables
using JMP 13.0.0 (SAS, Cary, NC), then used the first two
principal components as points in two dimensions to
calculate a pairwise environmental distance matrix for
all populations.

We further performed RDA to estimate the degree to
which genome-wide SNP variation among populations is
explained by geographic or environmental variables. To
avoid the influence of multicollinearity, we eliminated
one of the variables in each pair with a correlation value
>0.9 through Pearson correlation analysis and retained
the remaining nine variables. These nine climate vari-
ables were further tested using the forward.sel function
in the R package adespatial [85] to identify predictive
and non-redundant environmental variables for variance
partitioning. Prior to running the RDA, we estimated the
spatial genetic structure from geographic coordinates

based on dbMEMs [86]. dbMEMs are orthogonal spatially
explicit eigenvectors that are able to model any type of
spatial structure, including broad-, medium-, and fine-
scale patterns [87]. We used the dbMEM function in
the adespatial package to calculate dbMEMs. Forward
selection was implemented using the forward.sel func-
tion in the adespatial package to reduce the number
of variables in the model, with a significance level for
each tested variable set at 0.01 and a maximum limit
for adjR2thresh equal to the adjusted R2 of the RDA
model including all initial variables. The RDA analysis
was performed using the rda function in vegan. The over-
all significance and the significance of each variable were
assessed using the anova.cca function in vegan with 999
permutations.

Detection of selective sweeps
We performed scans on each group separately by using
two approaches: (i) a method relying on multiple signa-
tures of a selective sweep via the enumeration of SNP
vectors (Raised Accuracy in Sweep Detection, RAiSD) [88]
and (ii) a haplotype-based statistics method (XP-nSL) [89],
which was implemented in Selscan v1.3.0 [90]. RAiSD
collectively utilizes three distinct signatures to detect
selective sweeps: local reduction of the polymorphism,
the shift in the site frequency spectrum toward low-
and high-frequency-derived variants, and the localized
pattern of LD [88]. RAiSD calculates the μ statistic across
the genome from SNP-driven, overlapping windows. We
calculated μ using default settings in four groups sep-
arately. Finally, the μ statistics were averaged across
non-overlapping 20-kb windows on each chromosome.
Windows with <10% of covered sites left from previous
quality-filtering steps were excluded. Only the top 10%
of windows for each group were retained for downstream
analysis.

XP-nSL summarizes haplotype diversity by calculat-
ing the average number of variant sites in a genomic
region that are identical across all haplotypes, and then
compares haplotype pools between two different popula-
tions, which makes it possible to detect differential local
adaptation [89]. XP-nSL was calculated on all nine com-
parisons of the four groups (for each comparison, using
each group once as the objective and once as the refer-
ence). We first calculated the raw XP-nSL scores with the
default parameters, then normalized them across non-
overlapping 20-kb windows based on the genome-wide
empirical background using norm v1.3.0 (https://www.
github.com/szpiech/selscan). Using either of the other
groups as the reference, for each group, windows’ with
the highest fraction of extreme scores higher than the
99th percentile of its distribution were identified as can-
didate regions.

The overlaps of the results from the two methods were
identified and regarded as the high-confidence selective
sweep regions. We then identified genes that localized
within or were closer than 5000 bp to the selective sweep
regions to exclude the border effect [91].
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Genome–environment association analysis
To detect genome-wide signatures of local adaptation,
we applied two GEA tests that can infer SNPs that have
significant associations with specific environmental fac-
tors. First, we tested for the correlation of environmental
covariates with SNPs using the standard covariate model
in BayPass [92]. For a comprehensive consideration of
the environmental effect, the first two environmental
principal components, which explained 84.7% of the total
variance (Supplementary Fig. S5b and c), were kept to
represent the environmental covariates for further anal-
ysis. The output (population covariance matrix) from this
method was directly estimated with the core model. To
do this, we generated a set of 10 000 putatively neutral
and independent SNPs by thinning the intergenic and 4-
fold degenerate sites, and then used them to estimate
the population covariance matrix Ω, which indicates the
degree of relatedness between populations. We repeated
this step three times based on different SNP subsets
generated randomly, and each subset was run with three
different seeds. We used paired Forstner and Moonen
Distance (FMD) [94] to compare the resulting covariance
matrices in pairs. The paired FMD between different
seeds in the same subset are between 0.95 and 1.26, and
the paired FMD distances between different subsets are
between 1.52 and 2.02. We took the average of the results
of the nine matrices to get the final covariance matrix
Ω. By introducing the population covariance matrix Ω

estimated with the core model and the correlation coef-
ficients, which had a uniform prior distribution between
−.3 and .3, we ran the standard covariate model five
times with different seeds. Finally, we used the median
computed over five different independent runs as an
estimate. According to Gautier [92], covariates with an
empirical Bayesian P-value (eBPmc) >3 were considered
significantly associated.

We then performed RDA, a multivariate constrained
ordination method, to identify SNPs associated with envi-
ronment factors. RDA has been found to show a better
trade-off between false-positive and true-positive rates
across weak, moderate, and strong multilocus selection,
and can detect processes that result in weak, multilocus
molecular signatures [95]. Partial RDA enables the use
of geographic location to condition all linear regressions
to spatial structure. We used the anova.cca function and
999 permutations in vegan to assess significance for the
full model and each constrained axis to be evaluated
for candidate loci. The constraint axes with P-value <.05
were considered significant and were used to evaluate
candidate SNPs. Candidate SNP for the first four RDA
axes were identified as being +/− three standard devi-
ations from the average RDA loading, creating a cutoff
of two-tailed P-value of .0027 (Supplementary Figs S8 and
S9).

GO term enrichment
To determine if any functional classes of candidate genes
were over-represented, we performed GO analysis using

the R package topGO v2.38.1 [96]. Fisher’s exact test was
used to calculate the statistical significance of enrich-
ment, and GO terms with P-values <.05 were considered
as interesting biological processes. As described in the
topGO manual, the False Discovery Rate/Family-Wise
Error Rate adjustment process can produce a very con-
servative P-value, resulting in some interesting GO terms
being lost.
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