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Singularity identification for the characterization of

topology, geometry, and motion of nematic disclination

lines

Cody D. Schimming∗ and Jorge Viñals

We introduce a characterization of disclination lines in three dimensional nematic liquid crystals as

a tensor quantity related to the so called rotation vector around the line. This quantity is expressed

in terms of the nematic tensor order parameter Q, and shown to decompose as a dyad involving

the tangent vector to the disclination line and the rotation vector. Further, we derive a kinematic

law for the velocity of disclination lines by connecting this tensor to a topological charge density as

in the Halperin-Mazenko description of defects in vector models. Using this framework, analytical

predictions for the velocity of interacting line disclinations and of self-annihilating disclination loops

are given and confirmed through numerical computation.

1 Introduction

Topological defects play an important role in many physical sys-

tems in which a continuous symmetry has been broken. They

range from dislocations in crystals, vortices in superconductors,

and even cosmic strings in the universe.1–3 Disclinations in ne-

matic liquid crystals are no exception. Indeed, the observation of

disclination lines resulted in the discovery of the nematic phase

altogether.4,5 In classical (“passive") nematics, disclinations are

created when domains of mismatching orientation coalesce, or

when the boundary conditions—either on the sample itself, or

on particles immersed within—disrupt the overall topology of the

sample.5–7 An interesting example arises in the “Saturn ring" con-

figuration, in which a disclination loop surrounds a particle with

homeotropic (i.e. perpendicular) anchoring.8–10 Another exam-

ple concerns patterned defects in liquid crystal elastomers which

have proven to be a useful means of actuating surfaces.11,12

More recently, disclinations in nematics have gained attention

in the field of active nematics. In active nematics, the underlying

activity causes defects to spontaneously nucleate, and even pro-

pels them depending on their geometric character.13–15 In two-

dimensions, topological defects have been observed as points of

interest in microtubule systems, bacterial suspensions, soil bacte-

ria, and epithelial tissue.16–20 In three-dimensions, recent exper-

imental and computational work on microtubule systems shows

the nucleation, active flow, and eventual annihilation or recombi-

nation of lines and loops.21 Theoretical and computational work

has aided in understanding how the various geometric features of

disclination loops result in differing flow patterns.22,23

There have also been recent efforts to characterize disclination

lines. Long et al.24 have shown that the geometric properties

of disclination lines can be expressed through a series of tensors

from ranks 1–3. These properties determine the force of one line

on another, as well as their active flow. Additionally, other inves-

tigations25,26 have characterized disclinations in two-dimensions
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as particles, and connected their velocity to a conserved topo-

logical current density. These characterizations have important

implications for identifying defect positions and velocities in both

experimental systems and numerical computations. Further, they

shift the perspective of predicting liquid crystal behavior to de-

fects, which in some cases allows analytic calculation.

To discuss the topological character of defects in nematic liquid

crystals, one starts with the order parameter symmetry—or, more

precisely, the ground state manifold—namely the real projective

space, RPn−1. More generally, systems which break SO(n) (rota-

tional) symmetry can be represented by an n-dimensional vector

which goes to zero at defect locations, and d − n, where d is the

spatial dimension, determines the dimension of the topological

charge density.27,28 For example, in two-dimensional nematics

the topological charge density is a scalar because the ground state

manifold is RP
1 ∼= SO(2) and the order parameter can be repre-

sented by a complex number.26 The situation in three-dimensions

is more complex. Although the order parameter breaks three di-

mensional rotational symmetry (SO(3)), the extra cylindrical and

apolar symmetries determine the ground state manifold to be RP
2

which allows both line defects and point defects.7 Thus, two types

of topological charge densities exist: a scalar for point defects

and a vector for line defects (see Eq. (7)). Further complexities

arise because there is only one topological equivalency class of

line defects (as opposed to infinite half-integral charges in two-

dimensions). Geometrically this appears as a “rotation vector,”

Ω̂ΩΩ.4,21 This rotation vector defines the plane the nematogens lie

in as they encircle the disclination. Fig. 1 shows a general ex-

ample of a disclination with rotation vector Ω̂ΩΩ, and unit tangent

vector T̂. The cylinders outside the disclination represent the ori-

entation of nematogens.

In this work, we extend these recent efforts to characterize

disclination lines by defining a disclination density tensor, valid

in three-dimensions. Our primary result is the definition of this

tensor as a function of first derivatives of the nematic tensor or-

der parameter, Q, which is typically the preferred representation

of the nematic near defects.29 We further show that this discli-
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Fig. 1 Schematic example of a disclination line showing its geometric

features. T̂ is the unit tangent vector and {n̂0, n̂1, Ω̂ΩΩ} describes the ori-

entation of the nematogens (depicted as cylinders) as they encircle the

disclination core.

nation density tensor has a simple decomposition in terms of the

rotation vector Ω̂ΩΩ and the unit tangent vector T̂, and can be used

to identify and classify disclination lines. This disclination density

tensor is then used as a starting point to discuss the dynamics of

disclination lines.

In Section 2, we define the disclination density tensor and ex-

amine its relationship to the geometric properties of a disclina-

tion. We also present several numerical realizations, demonstrat-

ing the utility of this characterization. In Section 3 we derive a

kinematic law for the velocity of disclination lines by connecting

the disclination density tensor to the topological charge density of

disclinations, and invoke the Halperin-Mazenko singularity track-

ing method27,30 to derive continuity equations for the topological

charge density in terms of Q. We show that the velocity of discli-

nation lines is dependent on derivatives of Q at the defect core.

These are kinematic results that hold regardless of any assump-

tion on the dynamic law governing the time evolution of Q, and

so they hold for both passive and active nematics with mass trans-

port. In Section 4 we use this framework and a linear approxima-

tion of Q to analytically predict the velocity for interacting discli-

nation lines, and self-annihilating passive loops as a function of

their radii. We confirm the predictions with three-dimensional

numerical solutions for the evolution of Q, and show that the re-

sult for interacting disclination lines is equivalent to that of Long

et al.24 for the Peach-Koehler force between two disclinations.

2 Disclination density tensor

2.1 Definitions

In two dimensional nematics, topological defects are point-like

singularities that can be described by a closed curve C encircling

the singularity. In particular, the charge, m, of the defect is defined

by

2πm =
∮

C
εµν n̂µ ∂kn̂ν dℓk (1)

where n̂ is the representative vector of local order, called the

director. We denote by ∂k the derivative ∂/∂xk, and summa-

tion over repeated indices is assumed. It is simple to verify that

the integrand εµν n̂µ ∂kn̂ν = ∂kθ where θ is the angle the director

makes with some reference axis. Because of the apolar symme-

try in nematic liquid crystals, half-integer defects are allowed and

m = ±1/2 are the lowest energy configurations containing a de-

fect.5 Upon combining, these defects add their charges as rational

numbers.

In three-dimensions, topological defects in nematics manifest

as both lines and points. The first objective of this paper is to

classify the lines in a way that can be computed directly from the

order parameter. This has been previously done for point defects,

up to a sign ambiguity.7 However, to our knowledge, there is not

a generalization of Eq. (1) for line disclinations. This is because

the topology of lines in three-dimensional nematics is different.

All line disclinations in nematics have a charge of +1/2, but upon

combining they add as elements of the group Z2. That is, any two

line defects that combine will annihilate each other, even if they

energetically repel.

The first step to generalizing Eq. (1) for line disclinations is

to map its director field to an equivalent two-dimensional vec-

tor field. This is required because in order to have line defects

in a material with rotational symmetry breaking, the dimension

of the order parameter must be one dimension lower than that

of the ambient space.28 In Fig. 1, the director field around the

disclination in its normal plane is given by

n̂ = n̂0 cos
1

2
ϕ + n̂1 sin

1

2
ϕ (2)

where {n̂0, n̂1,Ω̂ΩΩ} is an orthonormal triad of vectors, and ϕ rep-

resents the azimuthal angle around the disclination in its normal

plane with respect to some reference axis. This parametrization

serves as an intuitive geometric definition for Ω̂ΩΩ: Ω̂ΩΩ · n̂ = 0 as n̂

circles the disclination. However, finding this vector at a point on

the disclination from a measuring circuit C is more difficult.

To exemplify this difficulty we show in Fig. 2 a disclination line

with Ω̂ΩΩ changing along the line. Two curves, C1 and C2 are used

to measure the defect charge. C1 remains in the normal plane

of the disclination and as such the corresponding curve in order

parameter space, shown in Fig. 2b, is planar. On the other hand,

C2 is out of the normal plane and so its order parameter equiv-

alent is also out of the plane. Naively integrating dn̂ along this

curve will not yield the same result, i.e. the integral is path de-

pendent. Of course, topologically, these two curves differ only by

a continuous transformation and are equivalent; however, Ω̂ΩΩ is

not well-defined along the second curve. The resolution to this

paradox is that the charge of a disclination line is a scalar, and

Ω̂ΩΩ is not a topological invariant of the disclination line. Instead,

we can measure the charge by defining a local vector away from

the defect core. Since n̂ is a unit vector, its derivative in some

direction will be orthogonal to itself. Therefore, for a measuring

circuit C, we can define the vector Ξ̂ΞΞ locally as the vector that is

orthogonal to both n̂ and its derivative along the curve, which we

will denote dn̂. Then Ξ̂ΞΞ ≡ n̂× dn̂/|n̂× dn̂| at each point along a

chosen measuring curve. To integrate along the curves in order

parameter space, we must locally project into this orthogonal di-

rection. This has the effect of mapping a curve in order parameter

2 | 1–11
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Fig. 2 The charge of a disclination with Ω̂ΩΩ varying along the line is

measured with two curves, C1 and C2. (a) C1 remains in the normal

plane of the disclination where Ω̂ΩΩ is well-defined, while C2 is out of the

normal plane. (b) Curves C1 and C2 in order parameter space. Ξ̂ΞΞ is

defined as the vector orthogonal to both n̂ and its derivative along the

curve. Direct integration over the paths in order parameter space yield

different results. However integrating the projected Ξ̂ΞΞ · n̂× dn̂ yields the

correct charge for both curves since the projection collapses both curves

onto the half circle with ends identified.

space to the half circle with end points identified, as seen in Fig.

2b. Thus, after taking the result modulo 2π we can compute the

disclination charge through the following relation:

π p =
∮

C
Ξ̂γ εγµν n̂µ ∂kn̂ν dℓk (3)

where p ∈ {0, 1} is computed modulo 2 indicating the charge

m = p/2, and Ξ̂ΞΞ is not necessarily a constant vector but is defined

by n̂ and its derivative locally. The integrand of Eq. (3) mea-

sures the rate of rotation of n̂ along the curve, though we keep

this explicit form of projecting into the vector Ξ̂ΞΞ since it is useful

in both conceptualization and mathematical brevity in what fol-

lows. As the measuring circuit is taken to be smaller and smaller,

Ξ̂ΞΞ → Ω̂ΩΩ, thus it is useful to identify Ω̂ΩΩ as a property of the defect

core since the director nearby can be approximated by Eq. (2).

However, this approximation may break down far from the defect

due to curvature of the defect, other defects, and boundary ef-

fects. Therefore, for arbitrary measuring circuits, it is important

to define Ξ̂ΞΞ along the curve chosen as in Eq. (3).

Equation (3) is the three-dimensional generalization of Eq. (1),

however, it assumes knowledge of Ξ̂ΞΞ everywhere and so is not

practically very useful. We use this relation as a starting point

to derive our first primary result. First, though, we briefly note

that the integrands in Eqs. (1) and (3) are similar to the effective

strain used by Long et al. to define the effective Peach-Koehler

force on disclination lines24. This is no accident: taking n̂ as in

Eq. (2) we find Ω̂γ εγµν n̂µ ∂kn̂ν = (1/2)∂kϕ. For a two-dimensional

nematic, the effective disclination strain is m∇ϕ where m is the

disclination charge. Hence the similarity in the expressions.

In the presence of disclinations, it is typically advantageous to

represent the nematic with a tensor order parameter, Q, as op-

posed to a singular vector. Q regularizes the singularity at the

center of the defect, and remains continuous for half integer de-

fects (note Eq. (2) reverses sign for ϕ = 2π). We parametrize

Q by Q = S [n̂⊗ n̂− (1/3)I]+P
[

m̂⊗ m̂− ℓ̂ℓℓ⊗ ℓ̂ℓℓ
]

where {n̂,m̂, ℓ̂ℓℓ} are

an orthonormal triad, and n̂ is the director. S and P parametrize

the eigenvalues of Q, and represent the degree of ordering of the

nematogens. Specifically, S represents uniaxial order and P rep-

resents biaxial order. Although we focus here on uniaxial liquid

crystals, it is known that the distribution of nematogens near the

core of disclinations becomes biaxial.31 However, at the center of

a disclination, two of the eigenvalues of Q cross and S−P = 0.

We now extend Eq. (3) in terms of the tensor order parameter.

To accomplish this we first assume we are working far enough

from the defect so that the distribution of nematogens is uniaxial,

that is P = 0. We restrict our measuring curve, C, to only pass

through points of constant S = S0 and we will denote this curve

as C0. Then, derivatives of Q are equivalent to derivatives of n̂

and it can be shown that the charge integral in terms of Q is

S2
0π p =

∮

C0

Ξ̂γ εγµν Qµα ∂kQνα dℓk. (4)

This generalizes Eq. (3). However, because we must work away

from defects where S is constant it is not practically useful. To

construct a more useful quantity, we apply Stoke’s theorem to Eq.

(4). This yields the first main result of this paper:

S2
0π p =

∫

Γ0

Ξ̂γ εγµν εiℓk∂ℓQµα ∂kQνα dai ≡
∫

Γ0

Ξ̂γ Dγ i dai (5)

where Γ0 is a surface bounded by curve C0 and dai is an ele-

ment of area on the surface. Note that in taking the curl of the

integrand of Eq. (4) there should be three terms since we are as-

suming Ξ̂ΞΞ is spatially varying as well. However, since Ξ̂ΞΞ is a unit

vector, its derivative will be orthogonal to itself and thus we can

move Ξ̂ΞΞ out of the derivative. The third term is also zero since it

is the curl of the gradient of Q which is not a singular quantity.

Equation (5) serves as a definition of the tensor D which we call

the “disclination density tensor.” As a check, for two-dimensional

systems the appropriate quantity is D33 = ε3µν ε3ℓk∂ℓQµα ∂kQνα .

This quantity has been used in other investigations to track and

identify defects in two-dimensional (and quasi two-dimensional)

systems.32,33 Therefore the generalized tensor, D, goes to the ap-

propriate scalar in the two dimensional limit.

2.2 Properties of D

We now delineate some useful properties of D. First, D is a

smooth tensor field, owing to the regularization that Q provides.

Further, D = 0 where S is constant which can be seen by substi-
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Fig. 3 Various defect configurations (left) with the computed decomposition of the disclination density tensor D, Eq. (6) (right). Nematic

configurations are computed using a finite element gradient flow algorithm with a Maier-Saupe bulk free energy and a one-constant elastic free energy.

In all figures, green cylinders represent nematogen orientations; black contours represent the defect core where the scalar order parameter S = 0.3S0;

black to red color map shows ω(r) with red contours showing where ω = 0.7ωmax; blue arrows show Ω̂ΩΩ; and red arrows show T̂. (a) A line defect with

varying rotation vector Ω̂ΩΩ. (b) Non-interacting disclination lines with orthogonal rotation vectors. (c) A wedge-twist disclination loop with constant

rotation vector but varying tangent vector. (d) A Saturn-ring configuration with rotation vector anti-parallel to the tangent vector at all points.
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tuting our parametrization of Q into the definition of D, Eq. (5).

Therefore the points where D 6= 0 mark disclinations.

For disclination lines, D decomposes nicely as

D(r) = ω(r)
(

Ω̂ΩΩ⊗ T̂
)

(6)

where ω(r) is a non-negative scalar field which is at its maxi-

mum at the disclination core, and T̂ is the disclination line tan-

gent vector. This decomposition can be seen immediately if we

take ω(r) = δ (r−R) where R is the location of the defect line

and substitute Eq. (6) into Eq. (5). The delta-function expression

for ω is valid for a singular field such as n̂, though ω smooths

out to the size of the core for a regularized field like Q. We also

find that ω goes to zero at the core of integer line defects where,

in three dimensions, the escape to the third dimension5 destroys

the linear character of the defect.

Another useful property of D is that it inherently fixes the sign

of Ω̂ΩΩ · T̂. A common issue with determining the character of a

disclination line is that the independent vectors Ω̂ΩΩ and T̂ are de-

fined only up to a sign and it is the sign of their scalar product

that determines the winding character of the disclination. For D,

this scalar product is proportional to its trace and, hence, once

a direction for T̂ (or Ω̂ΩΩ) is chosen the sign of the other vector is

fixed by definition. Thus, if one is only interested in the winding

character of a disclination line, one needs only to compute the

trace of D.

To demonstrate the practical usefulness of the decomposition,

Eq. (6), we show in Fig. 3 several examples of disclination lines

and loops, alongside their respective ω, Ω̂ΩΩ, and T̂ fields. To com-

pute these, one must have access to the first derivatives (or nu-

merical equivalents) of the order parameter, Q. Then, using Eq.

(5), one can compute D. ω is computed as the Frobenius norm of

D while Ω̂ΩΩ (T̂) is the non-degenerate eigenvector of DDT (DT D).

The final step is to ensure that both T̂ and Ω̂ΩΩ are continuous along

the disclination line, which can be done by fixing the direction of

the tangent line and then fixing Ω̂ΩΩ by sgn
(

Ω̂ΩΩ · T̂
)

= sgn(TrD). The

examples were numerically computed using a Maier-Saupe bulk

free energy with a “one-constant” Landau-de Gennes elastic free

energy (more details on the computations are given below in Sec-

tion 4).

In Fig. 3a we show the “counter-example” for the normal plane

measuring circuit also shown in Fig. 2. As evidenced by the fig-

ure, the decomposition of D picks out the value of Ω̂ΩΩ that changes

along the line. Fig. 3b shows two disclination lines with orthog-

onal rotation vectors, which were shown by Long et al.24 to be

non-interacting. Fig. 3c shows a snapshot of a self-annihilating

wedge-twist loop disclination,21 showing that the decomposition

is just as useful for curved disclinations. Finally, Fig. 3d shows a

Saturn ring8,10 configuration where homeotropic anchoring on a

colloidal particle topologically requires the existence of a disclina-

tion loop with rotation vector anti-parallel to the tangent vector.

Because we only need to compute the first derivative of the

tensor order parameter, this method of identifying defects and

obtaining geometric information is powerful, and should prove

useful, particularly in studies of active nematic systems in three-

dimensions in which defect lines and loops are spontaneously nu-

T

T

Ω

Ω

^

^

^

^

t��t = 35

t/�t = 47

Fig. 4 Defect geometry near the recombination of disclination lines with

skewed initial tangent and rotation vectors. The configurations at two

separate iteration numbers are shown, t/∆t = 35, 47. The green cylinders

represent the nematogen orientation, the black contours represent the

defect core where the scalar order parameter S0 = 0.2S, the blue arrows

show Ω̂ΩΩ, and the red arrows show T̂. As the lines recombine at the closest

point between them, the tangent vectors rotate to be nearly parallel,

however the rotation vectors show little change.

cleated and annihilated.21,22 To exemplify this we show in Fig.

4 the disclination line geometry computed from D as two discli-

nation lines with skewed tangent vectors and rotation vectors are

close to annihilating. This example is more complex than those

shown in Fig. 3 since the annihilation of the disclination lines

causes changes in the curvature of the defects and rotation of the

tangent vectors (see Fig. 6 as well). The tangent vector rotation

can be seen from comparing the two plots in Fig. 4. Additionally,

we find that the rotation vectors, Ω̂ΩΩ, rotate little in the annihila-

tion process.

While we have shown both simple and complex examples of

computation of the disclination density tensor for weakly curved

defects, we do not expect this construction to hold for strongly

curved defects such as in the transient stages of defect nucleation.

By strongly curved, we mean that κa ∼ 1 where κ is the defect

curvature and a is the radius of the defect core. For curvatures

this large, the continuum description of the disclination breaks

down and the construction of D is no longer valid.

To conclude this section we comment on the methods for de-

termining Ω̂ΩΩ laid out in the supplementary information of Ref.21

and how they compare to our methods presented above. First,

the local formula, Ω̃ΩΩ = n̂× (n̂ ·∇) n̂ is similar to the definition of

Ξ̂ΞΞ, except that there is no reference to a measuring curve and the

directional derivative is in the direction of n̂ rather than in the

direction of the curve. Thus Ω̃ΩΩ is proportional to Ω̂ΩΩ at the discli-

nation core since Ξ̂ΞΞ → Ω̂ΩΩ but goes to zero for pure twist disclina-

tions. The other method is a non-local construction of the curve

in order parameter space where n̂ near the disclination core is

extracted along a curve in the normal plane to the disclination

and Ω̂ΩΩ is the normal vector to the curve in order parameter space.

1–11 | 5



This gives the correct Ω̂ΩΩ as long as n̂ is as in Eq. (2) (see the curve

C1 in Fig. 2). However, a local formula is more desirable since n̂

may deviate from Eq. (2) due to external constraints. Hence, the

disclination density tensor represents a local construction that can

robustly determine the character of a disclination line and should

prove useful for future investigations.

3 Kinematic equations for disclination lines

We now derive a kinematic equation for the velocity of discli-

nation lines which holds regardless of details of the dynamical

model chosen for Q. We first connect the tensor D to the Jaco-

bian appearing in the Halperin-Mazenko formalism of topological

defects in systems with SO(n) symmetry.27,28,34 The appropriate

density for disclination lines is27

ρρρ(r) =
1

2
∑

j

∫

dR j

ds
δ [r−R j(s)]ds (7)

where R j(s) is the jth disclination line’s position at point s along

the curve. In the Halperin-Mazenko formalism, one connects this

line defect density to order parameter space through a “zero-

finding” delta function of a complex order parameter (i.e. one

whose amplitude goes to zero at defect locations).

In two dimensions, one searches for zeros of Q and

the defect density is related to δ [Q] via the Jacobian26

(1/2)εµν εℓk∂ℓQµα ∂kQνα . In three dimensions, however, Q 6= 0 at

the location of defects. Instead, two of its three eigenvalues cross,

and S−P = 0 at the core. Additionally, since n is orthogonal to Ω̂ΩΩ

near the core, there is only one degree of freedom describing its

orientation. Hence, instead of looking for zeros of Q, we search

for zeros in a two dimensional subspace of the full five dimen-

sional order parameter space. This subspace is defined by S−P

and the orientation of the nematogen. We denote the correspond-

ing delta function symbolically as δ [Q⊥(r)].

Now it remains to calculate the Jacobian. Since the space we

are working with is two dimensional, we may work in polar coor-

dinates in order parameter space. We take our radial component

to be (S−P)2 while the azimuthal component is θ , representing

the orientation of the nematogens. Note that near the core, the

integrand of Eq. (4) can be written in terms of (S−P)2 and θ :

Ω̂γ εγµν Qµα ∂kQνα = (S−P)2∂kθ . (8)

In the typical polar coordinate representation, the Jacobian can

be computed as (1/2)∇× (r∇ϕ). Hence, identifying (S−P)2 ≡ r,

the Jacobian of our subspace is the curl of Eq. (8). Comparing

with Eq. (5), and noting that we are working near the core so we

can substitute Ξ̂ΞΞ with Ω̂ΩΩ, the Jacobian is (1/2)Ω̂ΩΩ ·D. We note that

this expression reduces to the correct Jacobian in two dimensions.

With this expression for the Jacobian, the disclination density

can be written in terms of the order parameter,28

ρi(r) =
1

2
δ [Q⊥(r)]Ω̂γ Dγ i. (9)

Note that, from the decomposition of D, Eq. (6), ρρρ is parallel to

the tangent line of the disclination. This is also the case for Eq.

(7) since dR/ds is directed along the tangent line. If Q is time

dependent, then ρρρ and D are as well and D satisfies a continuity

equation (1/2)∂t Dγ i = ∂kJγ ik with

Jγ ik = εikℓεγµν ∂tQµα ∂ℓQνα . (10)

Similar to Mazenko,28,34 we write Jγ ik = εikℓgγℓ which will prove

useful for analytic computations in the next section.

To derive a continuity equation for ρρρ, we first note that mul-

tiplying the continuity equation for D by a delta function gives

(1/2)Dγ i∂tδ [Q⊥] = Jγ ik∂kδ [Q⊥] which follows from properties of

delta functions. With this result in hand, taking a time derivative

of Eq. (9) yields

∂tρi = ∂k

(

δ [Q⊥]Ω̂γ Jγ ik

)

. (11)

Note that, as was the case in Section 2, even if Ω̂ΩΩ is time depen-

dent, the term proportional to ∂tΩ̂ΩΩ is zero since Ω̂ΩΩ is a unit vector

so its time derivative is orthogonal to itself, thus ∂tΩ̂ΩΩ ·D = 0. Eq.

(11) is the standard result for topological continuity equations

and the interpretation is that the disclination current is the topo-

logical density current restricted to the element of defect line.

This result is important because we can write Jγ ik in terms of the

nematic order parameter. Additionally, connecting Eq. (11) with

the time derivative of Eq. (7) allows us to connect the velocity of

the defect along the line, v(s), with the topological density cur-

rent. We find ∂tρi = ∂k (viρk −vkρi) so that

Ω̂τ Jτ ik =
1

2
Ω̂γ

(

viDγk −vkDγ i

)

. (12)

This leads to vi = 2Ω̂γ DγkΩ̂τ Jτ ik/|D|2 or, substituting Eq. (6),

v(s) = 2

T̂×
(

Ω̂ΩΩ ·g
)

ω

∣

∣

∣

∣

∣

∣

r=R(s)

(13)

with

gγk = εγµν ∂tQµα ∂kQνα . (14)

Eq. (13) is the second key result of this paper. Note that the

velocity as written is explicitly orthogonal to the tangent vector

of the disclination. Also of note is that g depends on the time

evolution of Q, but does not explicitly reference the source of the

time evolution. That is, this expression is equally valid for ne-

matics undergoing relaxational dynamics or active nematics with

mass transport. To use this equation, one needs only to supply

the appropriate time derivative of Q. In the next section we use

this result to predict the velocities analytically for a few examples

of passive disclination lines and loops.

4 Disclination velocity calculations for pas-

sive nematics

Here we apply the formula for the velocity of a disclination, Eq.

(13), to a few examples in passive nematics. To do this, we first

make some simplifying assumptions. To compute g, Eq. (14), we

must know Q and its spatial and time derivatives. We assume its

time evolution is simply relaxational, ∂tQ = −ΓδF/δQ, where Γ

is a rotational diffusion constant. We also assume that the free

energy, F , has a functional derivative whose bulk term is analytic
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in Q at the core (such as the Landau-de Gennes free energy29),

and has a one-constant elastic free energy. The former condition

ensures that the only terms that survive in the calculation of g

are those associated with the elastic energy, since it can be shown

that εγµν (Q
n)µα ∂kQνα = 0 at the core of a defect for any power n.

Thus we can write ∂tQ = ΓL∇2Q where L is the elastic constant.

We begin with a calculation for interacting defect lines. Specif-

ically, we calculate the velocity of the closest point between two

disclinations. We assume the lines are straight and have con-

stant rotation vectors which are otherwise arbitrary, and choose

our axes so that the first disclination has tangent vector T̂(1) = ẑ,

while the tangent vector for the second disclination is left arbi-

trary. This set up is sketched in Fig. 5 where the line segment

connects the closest points of the disclinations.

Ω(��^

Ω	
�^φ

φ~

Ω�
�

Ω���

^

^φ

φ�

Fig. 5 Interacting disclination lines at the closest point between the

disclinations, represented by the line between them. ϕ represents the

azimuthal angle in the normal plane of the first disclination, while ϕ̃

represents the same for the second. Ω̂ΩΩ
(1)

and Ω̂ΩΩ
(2)

are assumed to be

arbitrary for the calculation.

We first present an approximate, analytic calculation for the

line velocity. For both lines, the director field near the disclination

core is given by Eq. (2) with a small perturbation occurring from

the director field of the other. We define the two azimuthal angles

to be zero along the line segment orthogonally connecting the

lines. We denote the azimuth of the second disclination as ϕ̃ so

that the perturbation of n̂ near the first disclination is expanded

around ϕ̃ = 0:

n̂ ≈

(

n̂0 +
1

2
ϕ̃p̂0

)

cos
1

2
ϕ +

(

n̂1 +
1

2
ϕ̃p̂1

)

sin
1

2
ϕ (15)

where we define p̂j ≡ Ω̂ΩΩ
(2)

× n̂j and Ω̂ΩΩ
(2)

is the rotation vector of

the second disclination. The effect of the perturbation is to rotate

the director slightly around Ω̂ΩΩ
(2)

near the first disclination. Eq.

(15) is then used with a linear core approximation24 to yield an

effective Q near the disclination,

Q ≈ S0

[

1

6
I−

1

2
Ω̂ΩΩ

(1)
⊗ Ω̂ΩΩ

(1)
+

1

2

x

a
(ñ0 ⊗ ñ0 − ñ1 ⊗ ñ1)

+
1

2

y

a
(ñ0 ⊗ ñ1 + ñ1 ⊗ ñ0)

]

(16)

where a is the core radius and ñj ≡ n̂j +(1/2)ϕ̃ p̂j.

Equation (16) is particularly useful because the vectors n̂j and

p̂j are constant. We compute g, keeping in mind the fact that

{n̂0, n̂1,Ω̂ΩΩ
(1)

} form an orthogonal triad so that Ω̂ΩΩ
(2)

can be written

as a linear combination of the three. The result is

εγµν (ΓL∇2Qµα )∂kQνα

∣

∣

∣

r=0
=−

ΓLS2
0

a2
Ω̂
(2)
γ ∂kϕ̃ + n̂0γ Ak + n̂1γ Bk

(17)

where A and B are vectors containing derivatives of ϕ̃ but are

inconsequential to the result since n̂0 and n̂1 are orthogonal to

Ω̂ΩΩ
(1)

. Using ∇ϕ̃ = (T̂(2)×R)/|R|2 where R is the vector between

the two disclinations, (i.e. R= r(1)−r(2)) we find that the velocity

of the closest point between disclinations is

v = 2ΓLS2
0

(

Ω̂ΩΩ
(1)

· Ω̂ΩΩ
(2)

)(

T̂(1) · T̂(2)
) R

|R|2
. (18)

Equation (18) indicates that if either the rotation vectors, or the

tangent vectors of the two disclinations, are mutually orthogonal,

the velocity vanishes. This qualitative result was also obtained

by Long et al.24 in which the effective Peach-Koehler force was

applied to a similar configuration. In fact, Eq. (18) is identical

to their result of the force between the two disclinations at their

closest point up to coefficients. This suggests that Eq. (13) for the

velocity may be used to generalize the expression for the Peach-

Koehler force to configurations with anisotropic elasticity or non-

optimal orientation. We note that here we have assumed the ori-

entation to be optimal in approximating Q near the disclination

core. By optimal, we mean that there is no relative difference be-

tween the extra degree of freedom of polarity of the defects (see

Refs.35,36). However, Eq. (13) holds regardless of this difference

and the challenge of predicting the motion of defects in this case

is in finding an accurate description of Q at the core.

To check this calculation, we perform three-dimensional nu-

merical calculations of recombination of disclination lines. We

assume relaxational dynamics with a Maier-Saupe bulk poten-

tial37–39 and a one-constant elastic free energy. The calculations

are performed by using the finite element Matlab/C++ pack-

age FELICITY40 with a time dependent gradient flow algorithm41

and an algebraic multi-grid linear equations solver.42–45 We cast

the system in dimensionless units by defining the length scale

ξ = kBT/L and time scale τ = 1/ΓkBT and work in dimension-

less position and time. We set the temperature so the liquid crys-

tal is in the nematic phase (S0 = 0.6751) and set the time-step

∆t = 0.1. A standard tetrahedral mesh with 41×41×41 vertices is

used with Neumann conditions at the boundary for all numerical

calculations. The closest point between disclinations is initial-

ized to be |R| = 5. We perform computations varying the initial

1–11 | 7
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Fig. 6 Analysis of recombining disclination lines. (a) Snapshots of the recombination of disclination lines with initial T̂(1) ·T̂(2) = 0.3 and Ω̂ΩΩ
(1)

·Ω̂ΩΩ
(2)

=−1

at iteration numbers t/∆t = 20, 40, and 50. Contours represent surfaces of S = 0.3S0. Early in the computation, bends in the defects form near the

closest points while late in the calculation, after the closest points annihilate, horseshoe shaped domains continue to recombine. (b) Distance of

closest points, |R| versus iteration number for initial T̂(1) · T̂(2) varying from 0–1. The inset shows |R|2 versus iteration number, indicating a scaling

|R| ∼ t1/2 as predicted by Eq. (18). (c) Instantaneous v ·R versus instantaneous T̂(1) · T̂(2) with Ω̂ΩΩ
(1)

·Ω̂ΩΩ
(2)

=−1 (left) and instantaneous Ω̂ΩΩ
(1)

·Ω̂ΩΩ
(2)

with

T̂(1) · T̂(2) = 1 (right) for calculations with various initial T̂(1) · T̂(2) and Ω̂ΩΩ
(1)

· Ω̂ΩΩ
(2)

. Eq. (18) predicts a linear scaling between these quantities which

is confirmed by the numerical analysis. Note that the left plot only considers points where the line defects have no curvature since this is the valid

regime for Eq. (18).

T̂(1) · T̂(2) from 0–1 with Ω̂ΩΩ
(1)

· Ω̂ΩΩ
(2)

= −1 as well as varying the

initial Ω̂ΩΩ
(1)

· Ω̂ΩΩ
(2)

from 0–1 with T̂(1) · T̂(2) = 1. This allows us to

independently analyze the effects of T̂(1) · T̂(2) and Ω̂ΩΩ
(1)

· Ω̂ΩΩ
(2)

on

the velocity of the lines.

Fig. 6a shows several snapshots of the recombination process

of two disclination lines. The contours represent surfaces of con-

stant S = 0.3S0. Before the closest points annihilate, the discli-

nation bends towards this point since the velocity is greatest be-

tween the two defects here. After the closest point annihilates, the

remainder of the lines form two horseshoe shaped domains that

continue to recombine until the texture disappears. Fig. 6b shows

|R| as a function of iteration number, t/∆t, for varying initial rela-

tive orientations of disclinations. The inset plots |R|2 vs iteration

number which is linear for all events, indicating that |R| ∼ t1/2,

as expected from Eq. (18). Note that the fastest recombination is

when the disclinations are parallel, while recombination never oc-

curs when disclinations are perpendicular. We find similar results

in calculations with varying initial Ω̂ΩΩ
(1)

· Ω̂ΩΩ
(2)

. In Fig. 6c we show

the instantaneous v ·R as a function of instantaneous T̂(1) · T̂(2)

and Ω̂ΩΩ
(1)

· Ω̂ΩΩ
(2)

. As predicted by Eq. (18), we see a linear relation-

ship between the two. We note that since Eq. (18) only applies to

straight defect lines and since the defect lines develop curvature

relatively early into their evolution, the left plot of Fig. 6c only

shows points for the early evolution of the defects. As the de-

fects develop curvature, the annihilation slows even though the

tangent vectors are becoming more parallel due to an aligning

torque. We also note that when numerically computing the ve-

locity using Eq. (13) at other points besides the closest points

between defects we find velocities that qualitatively reflect the

motion in the numerical calculations. A quantitative comparison

would necessitate a finer mesh to more accurately compute the

derivatives of the order parameter.

We now calculate the velocity for a disclination loop. We will

first focus on a loop with zero point charge, by which we mean

that upon covering the loop with a measuring surface there is not

an overall covering of the order parameter space. Such loops

have recently been the focus of three-dimensional active nematics

since they are the fundamental excitations.21,22 For these loops

the rotation vector is typically treated as being constant along the

loop. In a passive nematic, there are two “forces” acting on a

zero charge disclination loop. The first is the usual interaction

between oppositely charged defects since at opposite ends of the

loop Ω̂ΩΩ · T̂ changes sign (or handedness for the case of the twist

deformation when Ω̂ΩΩ · T̂ = 0). The second force seeks to make

the defect as small as possible due to the self energy of the defect

core. Hence, for a zero charge disclination loop, both forces act

to annihilate the defect.

Here, we will only compute the velocity due to the self en-
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ergy as a careful consideration of the interaction induced by other

parts of the defect is beyond the scope of this work. To compute

this, we take n̂ as in Eq. (2) and work in cylindrical coordinates,

assuming the loop lies in the xy-plane. Taking a linear core ap-

proximation, Q near the core is given by

Q = S0

[

1

6
I−

1

2
Ω̂ΩΩ⊗ Ω̂ΩΩ+

1

2

ρ −R

a
(n̂0 ⊗ n̂0 − n̂1 ⊗ n̂1)

+
1

2

z

a
(n̂0 ⊗ n̂1 + n̂1 ⊗ n̂0)

]

. (19)

where R is the disclination radius. We assume the triad

{n̂0, n̂1, Ω̂ΩΩ} is constant throughout the loop and so we find

v =−
ΓLS2

0

R
ρ̂ρρ, (20)

indicating that the loop is shrinking at a rate inversely propor-

tional to R. Note that the interaction with the rest of loop should

scale similarly since the interaction is Coulomb-like.5 This means

the effect of the interaction only changes the coefficient in front

of Eq. (20) and the qualitative results hold. Thus we expect the

time dependence of the radius to be R(t) ∼ t1/2, the same time

dependence as the distance between two annihilating defects in

two dimensions.46 Because this loop has zero point charge, it can

self-annihilate and the configuration will eventually become uni-

form.

Fig. 7 shows results of a numerical calculation for a zero charge

loop. Specifically, we simulate a pure-twist loop where Ω̂ΩΩ · T̂ = 0

everywhere along the loop. The details of the numerics are simi-

lar to those outlined above except here we use a tetrahedral mesh

with 81×81×81 vertices. Fig. 7b shows the time dependence of

the radius, R(t), while the inset shows R2(t). The time depen-

dence demonstrates that the radius scales as R(t)∼ t1/2 which is

expected from Eq. (20). We note that, for a one-constant elastic

energy, the value Ω̂ΩΩ does not change the dynamics of the loop. We

also note that the loop shrinks much faster than the pair of discli-

nations studied in Fig. 6. The initial diameter of the loop is the

same as the initial distance between disclination lines, yet upon

comparing the recombination time we see the disclination loop

annihilates at time-step 12 while the parallel disclination lines an-

nihilate at time-step 20. This behavior is inconsistent with the cal-

culated coefficients in Eqs. (18) and (20); however, this is likely

due to the fact that there are two forces acting on the disclination

loop as opposed to one on the disclination lines and the compu-

tation above only reflects one such force as discussed. We further

note that both the t1/2 scaling for lines and loops, and the qual-

itative features, such as the bends in the disclination lines and

the remaining horseshoe structures have been recently observed

experimentally by Zushi and Takeuchi.47

We conclude this section with a qualitative prediction for

the velocity of a nonzero point charge loop defect. Loops of

this nature are typically associated with colloidal particles with

homeotropic boundary conditions.8–10,48 Here, we assume there

is no particle and there is only a loop with Ω̂ΩΩ · T̂ = 1, which, in

the far field, appears as a radial hedgehog point defect. As above,

0 2 4 6 8 10 12
0

0.5

1

1.5

2

2.5

0

5

(a)

(b)

R

t/�t

R
2

Fig. 7 Self-annihilating pure twist loop. (a) Snapshot at t/∆t = 5 of

a pure twist disclination loop with Ω̂ΩΩ = ẑ along the loop. The contour

represents a surface of constant S = 0.3S0. (b) Loop radius R plotted

against iteration number. The inset shows R2 versus iteration number,

demonstrating the scaling R ∼ t1/2.

we will only compute the contribution from the self energy. Here,

one must be careful since the triad {n̂0, n̂1, Ω̂ΩΩ} changes along the

loop. To do the calculation we assume n̂0 = ρ̂ρρ and Ω̂ΩΩ = T̂ =−φ̂φφ so

that ∂ n̂0/∂φ =−Ω̂ΩΩ and ∂ Ω̂ΩΩ/∂φ = n̂0. By using these relations we

arrive at

v = ΓLS2
0

(

−
1

R
+

a

R2

)

ρ̂ρρ. (21)

Because there is an overall point charge one might assume that

the defect loop would shrink and become a typical hedgehog de-

fect. However, this result shows that there is a stable size for the

loop instead. If the loop is much larger than this size, the nonzero

charge loop behaves similarly to the zero charge loop. However,

if the loop is smaller than this size, it grows rapidly. Since we are

only considering the self energy of the defect, the physical inter-

pretation is that a small loop has a smaller energy than a point

defect core. This stability of a loop defect over a point defect has

been seen in previous numerical and analytic studies of hedge-

hog defect cores.9,48 This is similar to the case in two-dimensions

where a single ±1 defect splits into two ±1/2 defects to lower the

energy. However, in that case, the defects repel each other and

are only stabilized by other defects or boundary conditions.6,35

Of course, if the interaction with other parts of the loop are taken

into account, we expect that the coefficient on the 1/R term would

change. Thus, one would need to perform a more detailed calcu-
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lation for a quantitative prediction of the size of the stable loop.

5 Conclusion

In this work we have extended recent efforts to fundamentally

understand the nature of defect lines and loops in nematics. We

have introduced a disclination density tensor, D, that can be com-

puted from first derivatives of the tensor order parameter and is

nonzero at defect locations. This tensor decomposes as a dyadic

combination of unit vectors that geometricly define the disclina-

tion. We have derived a continuity equation for the topological

charge, and explicitly written a velocity for the defect line. Fur-

ther, we have demonstrated with several examples the practicality

of the velocity equation, Eq. (13), by analytically deriving results

for different disclination configurations.

There is still more work to be done in understanding discli-

nation dynamics. As demonstrated by Eq. (13), the velocity of

a line disclination depends on its instantaneous rotation vector,

Ω̂ΩΩ. The issue of understanding how the rotation vector evolves

in time remains a challenge. Recent theory and experiment23,47

have begun to explore this issue. Moreover, it will be interest-

ing to see how Eq. (13) can be applied to systems with a more

complex time dependence, either for active systems, systems with

anisotropic elasticity or both.
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