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ABSTRACT

Physical systems are extending their monitoring capacities to edge
areas with low-cost, low-power sensors and advanced data mining
and machine learning techniques. However, new systems often have
limited data for training the model, calling for effective knowledge
transfer from other relevant grids. Specifically, Domain Adaptation
(DA) seeks domain-invariant features to boost the model perfor-
mance in the target domain. Nonetheless, existing DA techniques
face significant challenges due to the unique characteristics of phys-
ical datasets: (1) complex spatial-temporal correlations, (2) diverse
data sources including node/edge measurements and labels, and
(3) large-scale data sizes. In this paper, we propose a novel cross-
graph DA based on two core designs of graph kernels and graph
coarsening. The former design handles spatial-temporal correla-
tions and can incorporate networked measurements and labels
conveniently. The spatial structures, temporal trends, measurement
similarity, and label information together determine the similarity
of two graphs, guiding the DA to find domain-invariant features.
Mathematically, we construct a Graph kerNel-based distribution
Adaptation (GNA) with a specifically-designed graph kernel. Then,
we prove the proposed kernel is positive definite and universal,
which strictly guarantees the feasibility of the used DA measure.
However, the computation cost of the kernel is prohibitive for large
systems. In response, we propose a novel coarsening process to
obtain much smaller graphs for GNA. Finally, we report the supe-
riority of GNA in diversified systems, including power systems,
mass-damper systems, and human-activity sensing systems.
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1 INTRODUCTION

Modern physical systems are experiencing tremendous changes.
First, the system territory is expanding to better serve society. Sec-
ond, to increase the efficiency and decrease the cost of the system,
new components are continuously introduced [20]. Some of them
bring a lot of uncertainties due to intrinsic uncertain sources, imper-
fect component monitoring ability, etc. While conventional system
analysis may fail for large-scale edge areas with high uncertain-
ties, Data Mining (DM) and Machine Learning (ML) methods could
play a game-changing role with accurate and cost-efficient imple-
mentations for new technologies of system monitoring, control,
and protection. Especially, DM/ML models have been developed
for physical system state estimation, cyber-attack detection, and
event identification [21, 22], etc. Such wide applications are due
to DM/ML’s flexible modeling capability, robust performance, and
high inference speed.

However, most of the existing DM/ML models on physical sys-
tems require a certain amount of training data. If the data are limited,
the model training is likely to fail due to the curse of dimensionality.
Unfortunately, data-limited scenarios often occur for a completely
new grid or an old grid with increased metering, not to mention the
common upgrading process with new nodes/lines. Thus, it is urgent
to employ new methods to transfer knowledge from the source grid
with rich data to the target grid with limited data [19, 23].

For this goal, Transfer Learning (TL) is defined conceptually
as an efficient procedure to extract common knowledge from two
different domains and boost the performance of the data-limited
domain. Specifically, an efficient approach is Domain Adaptation
(DA) [24-26, 30, 35, 37, 42] which minimizes the data distribution
discrepancy of two domains, usually in a low-dimensional space for
domain invariant features. Therefore, DA promises that joint train-
ing using common knowledge can significantly boost the learning
process. While many efficient DA models have been applied to com-
puter vision [12, 25] and natural language process [39], relatively
few work has been done for graph data [31].

For physical systems, the widely placed sensors bring numerous
networked measurements for nodes and edges with complex spatial-
temporal correlations. Can we fully explore the correlations to
improve DA methods? Further, nodes or edges can have different
physical characteristics, i.e., different labels. Is the label information
beneficial to the distribution adaptation? Intuitively, the answer
shall be yes for both questions as the above information represents
different levels of graph similarity that further guides the extraction
of common knowledge in DA.

To elaborate more on the above statements, we present the fol-
lowing observations. Spatially, neighborhoods of nodes usually
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have similar measurement patterns. For example, one residential
area often reflects similar energy consumption patterns for local
households. Further, the connectivity provides the separation of
physical flow (e.g., water or gas) patterns. Temporally, an interval of
temporal measurements represents a continuous change of system
states, containing the invariant knowledge of cross-system dynam-
ics. Finally, the node/edge labels help to further divide the spatial
groups with commonality. For instance, in a power system, nodes
for household electricity consumption may be close to nodes with
solar panels that can generate electricity. However, they have com-
pletely different patterns: the former is based on human behaviors,
while the latter is based on the strength of the sunlight.

Thus, it is critical to integrate the structures, temporal changes,
and label information to identify graph similarity. In this paper,
we show the integration can be conveniently implemented via a
specially-designed graph kernel. Further, the proposed kernel can
be embedded into a DA model [25] with theoretical guarantees.
Then, the common knowledge is represented in a low-dimensional
feature space converted from graph kernel features. We denote the
final model as Graph kerNel-based distribution Adaptation (GNA).
Nevertheless, the computational cost for GNA is high for large
systems. Thus, we develop a pre-processing approach of graph
coarsening to aggregate original graphs into coarser graphs based
on structural and label information. On the other hand, the knowl-
edge related to the graph similarity is preserved. Then, the proposed
DA model can be easily and quickly implemented on the coarser
graphs. Finally, we summarize our contributions as follows.

o We develop novel graph coarsening and graph kernel tech-
niques to construct our GNA model.

e We theoretically analyze the model validity and efficiency.

e We conduct experiments to demonstrate the superiority of
our proposed methods on diverse physical systems.

2 RELATED WORK

2.1 Domain Adaptation

2.1.1 General Categorization. DA methods try to match the con-
ditional and/or marginal distributions of the source and the tar-
get domains by minimizing the distribution discrepancy measure
like Maximum Mean Discrepancy (MMD) [14], Jensen-Shannon
Divergence [32], and Wasserstein distance [41], etc. Traditional
models usually employ linear or kernalized non-linear transforma-
tion matrices to extract common features with a minimal distri-
bution difference [25, 30]. Recently, with the ability of high-level
feature extractions, deep learning models are introduced to DA to
obtain more transferable features [13, 24, 26, 35-37, 42]. Specifically,
[24, 26, 35, 37] introduce the domain shift measure as another loss
to Convolutional Neural Networks (CNNs) to simultaneously train
the classifier and match domains. [13, 36, 42] employ adversarial
learning with domain discriminator(s) to ensure the minimization
of the domain discrepancy.

2.1.2 DA with Data Structural Information. Under the above tax-
onomy, studies of DA to accommodate data structures are heavily
investigated. They typically utilize graphs as containers for the
input data or features. Thus, ML technologies for graphs can be con-
veniently utilized. In general, we categorize them by the different
types of graphs. (1) Instance graph. The instance graph treats each
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node as a sample from either source or target domains [1, 5, 7, 16, 29].
Then, the graph similarity can indicate the distribution difference
and provide graph-based domain alignment. Specifically, [5, 7] build
an optimization model to minimize MMD measure, which considers
the connections among samples to construct a better distribution
difference measure. [1, 16, 29] employ deep learning models, e.g.,
CNNs and Graph Neural Networks (GNNs), for high-level feature
extractions. They all utilize the adversarial learning scheme to learn
domain invariant features. These methods, however, focus on the
relationship between instances but not the spatial-temporal corre-
lations within one instance in networked data.

Thus, other work investigates (2) networked data graph that
treats one or several data features as a node for the networked
dataset [6, 10, 11, 18, 31]. Specifically, [10] projects networked data
into a latent space that captures the common sub-structure. How-
ever, finding common sub-structures will cause the non-ignorable
loss by removing non-common parts. [11] can measure the simi-
larity of different graphs with an index based on the node degree
similarity. However, the index is not sufficient to tackle physical
systems with measurements and labels for nodes and edges. In this
paper, we propose a graph kernel to make use of all data to mea-
sure the graph similarity for two different graphs. [6, 18, 31] build
CNNs and GNNss to process networked data to learn transferable
features. However, their projected feature space, though containing
network information, is restricted with the same dimensionality
and causes information losses for systems of different sizes. Fur-
ther, they generally suffer high computational costs for large-scale
physical systems and lack theoretical guarantees. We tackle these
issues by proposing an efficient optimization using graph kernels
and MMD measures with rigorous proofs.

2.2 Graph Kernel

Graph kernel is a measure of similarity between graphs [38]. There
are many types of graph kernels with different formulations under
different kinds of data. The R-convolution kernel calculates kernels
as the product of R-convolutions between components of graphs.
Specifically, one decomposes graphs into substructures (e.g., sub-
graphs) and evaluates a kernel between them [17]. Usually, nodal
labels are used for evaluation. However, the computational cost
is extremely high as there are various divisions for the substruc-
tures. The Optimal Assignment (OA) kernel uses a base kernel to
compare nodal labels and forms a similarity measure for a pair of
graphs. Further, OA searches for the optimal mapping between
nodes to save computational costs. However, [38] shows that OA
is usually not positive semi-definite, which is not suitable for the
MMD measure of DA.

A more efficient and popular measure is the so-called random
walk graph kernel that implements random walks on two graphs
and counts the matched walks [38, 44]. Traditional random walk ker-
nel usually utilizes edge labels to calculate the kernel. [2] proposes
a modified version that can incorporate both labels and measure-
ments for nodes and edges. However, this modification is still not
suitable for our spatial-temporal graphs. Especially, the temporal
correlations are not considered but are essential for the following
domain adaptation and feature learning. To capture the temporal
correlations, we propose a new graph kernel and prove that it is
suitable to construct kernel-based MMD measures.
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2.3 Graph Coarsening

For large-scale graphs, the computation of graph kernels is still
inefficient. Thus, an effective way is to pre-process graphs and
obtain coarser graphs that preserve the main information of origi-
nal graphs. For example, [27, 28] keep the spectral similarity. [3]
preserves the structure of the inverse Laplacian. [4] maintains the
classification accuracy of GNNs. These goals, however, do not match
the purpose of distribution adaptation. Thus, we propose a simple
but efficient coarsening scheme that captures the local similarity
using local structures and labels.

3 PROPOSED METHOD
3.1 Notation and Problem Definition

Physical systems can be modeled as spatial-temporal graphs [40].
Specifically, we denote {G" = {V, E, D”}}fl\lz 1 as the source graph,
where V and E are the node and edge sets, respectively. D" is
the corresponding data at the time slot n and N is the number of
time slots for the graphs. Similarly, the target graph is denoted as
{G" = {V,E, 5”}}»,11\]:l In the following derivations, if there are no
special notices, quantities with tilde are by default linked to the
target graph.

The physical graph contains data of different modality, which
together can boosts the knowledge transfer and feature extraction
for the final machine learning model. In this paper, we assume the
source graph contains node measurements X € RIVIXN node la-
bels L € ZIVIXN, edge measurements Y € RIEXN and edge labels
M € ZIEXN where | - | for a set represents the operation to obtain
the set cardinality. Secondly, we focus on the graph-level classi-
fication and assume the task label vector is h € ZN. Thirdly, we
assume the node/edge/task label lies in the range of {0, 1,--- ,Kj},
{0,1,---,K3}, and {0,1,---, K3}, respectively. Finally, the adja-
cency matrix A € RIVIXIVI is assumed to be known. Similarly,
we denote the corresponding quantities for the target graph as
X eRIVIN T e 7IVIXN ¥ ¢ RIEXN p e 7IEXN ¢ 7N and
AcRIVIXIVI

Then, we can find that {D”}nN:1 ={X,LY,M,h}and {5”}nNz1 =
{X f? A7I 7;} For some realistic scenarios when there is no la-
bel information, one can utilize matrices with all ones to indicate
that nodes (edges) share the same label. Further, our model can be
easily generalized to the case when there exist multiple measure-
ments/labels for one node/edge at each time slot.

In the transfer learning setting, we address the problem when dis-
tributions of {D"}ff: , and {5"}2[: ; have a certain distance, which
causes troubles for utilizing knowledge from both graphs for ML
model training. Secondly, we assume there are much more data
in the source graph, i.e., N > N. Therefore, it is essential to con-
vert data or features from the source graph to the target graph to
enhance the ML models.

3.2 Graph Coarsening to Improve Efficiency

In this section, we propose a pre-processing method to obtain
coarser graphs which are much smaller than source and target
graphs, thus improving the model efficiency for the following com-
putations. Mathematically, we aim to find spatial-temporal coarser

graphs {GI = {Vc, Ec, DR}, and {G = {Vc, Ec, DE}IN. | such
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that |[Ve| < |V] and |VC| < |§|. To obtain coarser graphs, we have
the following objectives.

e Propose surjective maps 7 : V — Ve and 7 : V — Ve to ag-
gregate nodes. Then, design the corresponding maps that can
project nodal measurements/labels from the source/target
graphs to the coarser graphs. Namely, we need to find 7 :
RIVI 5 RIVel 7L . 7IVI 5 7IVel 7M . RIVI , RIVEl and
7l.zlVl - zlvel,

e Figure out the connections Ec and Ec with the correspond-
ing maps @ : E — Ec and @ : E — Ec. Then, find the
maps of the edge measurements/labels from source/target
graphs to the coarser graphs. Namely, we need to find o™ :
RIEI - RIEC] oL . ZIEl - 7IEcl GM . RIEI _, RIEC] and
ol zIEl - 71kl

3.2.1  Structural Node Aggregation with Label Information. The
neighborhood of nodes for a physical system usually indicates
a group with similar physical behaviors. Thus, we can utilize one
node to represent them in the coarser graph. Secondly, the label
information of nodes can further improve the node grouping for
the local areas. Thus, node maps 7 and 7 should take in both fac-
tors for a reasonable coarsening process. For the convenience of
derivations, we only consider the coarsening of the source graph.
Subsequently, we first initialize a set of neighborhoods based on the
connectivity. Each neighborhood contains a center i € V and the
neighbouring nodes Neigh(i) such that j € Neigh(i) if and only
if d(i, j) < dmax, where d(i, j) represent the pre-defined distance
between node i and j, and dpax represents the maximum threshold.
For example, we can define d(i, j) to be the number of edges along
the shortest path between i and j. As shown in Fig. 1, we consider
dmax = 1 to aggregate nodes that are 1-hop away from the center
nodes marked with a red star. Further, if there is no path between i
and j, we define d(i, j) = co.

Subsequently, based on the previous discussion, the grouping of
nodes in a neighborhood is too coarse and needs to be divided by
the node labels. Thus, we divide Neigh(i) = {Neighk(i)}f1 such
that Vji, jo € Neighy (i), L(j1,n) = L(j2,n) = k (recall that n is
the index for the time slot for the discussed graph and data). For
example, in Fig. 1, the blue and purple nodes have different labels.
Thus, even though they share one neighborhood, they should be
divided into two groups. Then, we have

n(Neighy (i) =h € Vc. (1)

Based on the above node aggregation rules, since nodes in Neighy (i)
share one label k, the projected node h € V¢ also has a label k.
Namely,

nL(L(Neighk(i), n)) - k. @)

For the measurements, as we assume there is no prior on the
importance of nodes, we directly average the measurements in the
related nodes. Specifically, we have

[Neighy (i) ]

M (X(Neighk(i), n)) = m X(j,m). (3)
=
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Copy Process to Avoid
Multi-label edges

Edge Identification by:
* Outer-Area Connections
*  Edge Labels = Copy

Figure 1: The procedure of graph coarsening. Different colors of nodes represent different labels. Different shape of lines

represent different labels.

3.2.2  Edge Identification with Label Information. After obtaining
Ve, we identify Ec with a simple and popular V-induced approach
[4]. Namely, (hi, h) € Ec if and only if there is an edge (i1, iz) € E
and labels 1 < ki,ks < Kj such that JT(Neighk1 (il)) = hy; and
7 (Neighy, (i2)) = ha. In other words, the connection between two
neighborhoods in the original graph implies a connection in the
coarser graph.

However, the identified edge may have multiple labels as in the
original graph, there may be many connections with multiple labels
between two neighborhoods. This causes issues when formalizing
edge measurement and label maps. For example, in the left and
middle part of Fig. 1, the connections between yellow and pink
nodes have multiple labels (i.e., different shapes of lines). To tackle
this problem, for nodes in the coarser graph with multi-labeled
edges, we propose to copy them according to the number of labels
and assign each copied pair a uni-labeled edge. In the meantime, the
outer connections to other nodes remain unchanged for each copied
pair, shown in the right part of Fig. 1. Finally, our coarser graph
only contains uni-labeled edges. For simplicity of later derivations,
we denote Conney (h1, hz) C E to be the set of edges in the original
graph that has alabel k (1 < k < K3) and connects nodes in 771 (hy)
and 77! (hy), where 771 represents the inverse map of 7. Then, the
edge map is

©(Conney (h1,hy)) = h € Ec. (4)

Further, the edge label map can be defined as
ot (M(Connek(hl, hy), n)) ~k. )

Similarly, we can average the edge measurements in Conney. (hy, hz)
to obtain the edge measurement in the coarser graph:

|Conney (h1,hs) |
Y(j,n).

(6)

Finally, we can follow the above procedures and generate the
coarser graph for the target grid. For the two coarser graphs, the
number of nodes can vary due to different numbers of neighbor-
hoods and the node copy process in this subsection. Further, the
connectivity can be different due to the varying topology of the
two original graphs. Thus, our obtained spatial-temporal coarser

M _ 1
) (Y(Connek(hl, hy), n)) "~ |Conneg (hy, ha)| =

graphs {Gg}fl\]: ; and {é?}}f?: ; are usually different.
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3.3 GNA to Learn Common Graph Features

The two coarser graphs bring two sets {Dg}f;jzl and {52,}2]:1 of
samples (measurements and labels) converted from source and
target physical systems, which are generated via Equations (2),
(3), (5), and (6). With the data, we develop Graph kerNel-based
distribution Adaptation (GNA).

3.3.1 Distribution Adaptation for Two Sample Sets. A prevalent
measure for the distribution difference with two sample sets is
the so-called Maximum Mean Discrepancy (MMD) [14, 25, 30].
MMD can compare distributions based on reproducing Hilbert
Space (RKHS). Specifically, the Joint Domain Adaptation (JDA) in
[25] tries to minimize:

min
WTKHK"W=
K (7)
= Z tr(WT KN K W) + A|W|[2,
k=0
where H=1 - ﬁl, I is the identity matrix, 1 € R(N+N)X(N+N)
is a matrix of ones, and W € RIN*N)Xno (0 < N + N) is the
learnable linear transformation to project kernel features to a low-
dimensional space. K is the kernel matrix obtained from samples in

IMMD({D;;}QLI, {DRIY,)

sets {DZ.}Jr:I:1 and {52.}2]:1. A is a positive penalty term and || - ||
is the Frobenius norm. N is a weight matrix. When k = 0, we
have:

w5 f1<ij<N,
No(i,j) = $ ifN+1<ij<N+N, ®)
_—1~, otherwise,

When k > 1, we have:

NLE’ if1<ij<Nandh(i) =h(j) =k,

1\7%3’ ifN+1<ij<N+Nandh(i)=h(j) =k,
Nk ) ==L, if1<i<NN+1<j<N+Nh()=h() =k

kiNk = A

L if1<j<NN+1<i<N+N,h(j)=h(i)=k

Ny Ni

0, otherwise,

©)
where Ni and Ny represent the samples with task label k for the
source and the target coarser graph, respectively. To calculate the
kernel matrix, traditional kernels like the polynomial kernel (ko1,)
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or the Radial Basis Function (RBF) kernel (k) are largely used.
However, they are not suitable for datasets from physical systems.

3.3.2  Spatial-Temporal Graph Kernel with Measurements and Labels.
In this subsection, we propose a graph kernel design for {Gg}ﬁiz 1

and {Eg}ﬁlz , to formalize Equation (7). The designed kernel is a
modified version of the random walk kernel [2, 38] to process both
the measurements and labels from nodes and edges. Random walk
kernels [38] perform random walks on two graphs and calculate
the number of matching walks to describe the graph similarity.
Specifically, we consider two graphs GZI and 622 For simplifi-
cation, we eliminate the unnecessary time slot index n; and ny in
the later derivations. Then, the direct product graph, denoted as
Ge % Ge, contains the node, edge set, and the adjacency matrix:

Vi = {(i.)) : i € Ve, j € Veb Ex = {((ir j1), (iz, j2)) : (in, i) €
Ecn (1, j2) € EE}, and Ax = Ac® Xé where Ac and Xé are the
adjacency matrices of the G¢ and Ge, respectively. ® is the kro-
necker product. Then, the classical random walk kernel considers

the weighted sum of random walks on the direct product graph:

Vx| o

K(ninp) = Y > a(A0) (G )),

i,j=11=0

(10)

where « is a positive weight factor to guarantee convergence. To
better process nodal/edge measurement and label data, [2] proposes
to develop a modified random walk by replacing Ax in Equation
(10) with a new weighted adjacency matrix By such that:

By (i1 + Vel x (j1 = 1), iz + [Ve| X (j2 = 1))

kstep((i1, j1), (iz, j2)),  if (i1, j1), (iz, j2) € Ex, (1)

0, otherwise,

where Kszep ((il, J1)s (ig, jz)) is the step kernel to measure the simi-
larity between steps (i1, i2) € Ec and (j1, j2) € Ec.However, the de-
fined step kernel in [2] can hardly capture the temporal correlations.
Therefore, we denote Iy = [n1—08,, n1—0p+1,- -+ ,ny,n1+1,- -+ ,ni+
SplT and Iy = [n2 = oy =S+ 1,--- ,no,na+1,-++ ,ny + 8,7
to be index vectors for the neighbors of time slot n; and ny in the
temporal dimension, respectively. Then, we propose a new step
kernel definition:

kstep (i1, j1), (i, j2)) = K (i, 1), iz j2)) < KM (i, ), iz, ),

K (G, 1), (i, J2)) = 11(”L(L(”_l(il), 711)) = EL(Z(ﬁ_l(h), nz)))
X 11(71’1‘ (L(Il'_l(iz), n1)) =t (Z(ﬁ_l (J2)s nz)))

X 11(@1“ (M(w_l(il, iz), n1)) = 5L(1\~4(5_1(11,j2), "2))),

KM (i1, 1), (iz, J2)) = krbf(nM(X(n*(il),ll)),z?M(i(ﬁ—l(jl),lz)))

x k,hf(f[M(X(n_l (iz), 11)), ﬁM(i(fz—l (j2), 12)))

X krhf(wM(Y(w_l(ils ia), 11)), 5M(?(5_1(j1,j2), 12)))),
(12)
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where 1(-) is the indicator function that takes 1 if the condition
inside is true and 0 otherwise. One can replace the RBF kernel
kypr with other kernels to evaluate the measurement similarity.

Notably, to calculate the measurement kernel kM ((i1, 1), (iz, j2)),
we include the neighboring time slots in I1 and I3 to extract features
with temporal correlations. Then, we can use above equations to
calculate K. Specifically, [38] provides an equivalent equation to
convert Equations (10) to:

K(n1,np) = g (I — aBx) gy, (13)

1

i < Vel gy (i) = Vel

where V1 <
Vel, g (i) = ﬁ To calculate the inverse matrix in Equation (13),
C

[38] provides an efficient way by solving Sylvester equations. One
can refer to [38] for the procedure and Section 4.2 provides the time
complexity of the calculation. Notice that the kernel calculation
can be directly implemented on the source and the target graphs.
However, the large size in the original graphs causes inefficiency
for the computation, which prevents the realistic prediction for the
classifier trained with kernel features. Thus, graph coarsening in
Section 3.2 is essential to guarantee model efficiency.

Finally, after the calculation of K, we can construct the optimiza-
tion in Equation (7), which can be efficiently solved as a generalized
eigendecomposition problem [25, 30]. Then, we summarize the
complete learning algorithm in Algorithm 1.

and V|Vl +1 < i < |Vl +

Algorithm 1: Cross-Graph Domain Adaptation

Function Coarsening-GNA

Input: Spatial-temporal graphs {G"}fl\r: ; and {én}ln\]: %

Hyper-parameters: Distance threshold d,qx for node
aggregation, temporal interval &, for temporal
correlation integration, parameters of RBF kernel k¢
(or polynomial kernel k,,;,), and penalty term A for
the Frobenius norm in Equation (7);

Graph coarsening: Utilize Equations (1) to (6) to
conduct graph coarsening with dp,4x. Then, obtain the

N .

n=1’

Compute graph kernels: Utilize data of {Gg}nN: , and

coarser graphs {Gg}szl and {C?g}

{52}2’:1 to calculate weighted adjacency matrix By
under Equations (11) and (12). Then, solve Sylvester
equations to compute kernel matrix for Equation (13);

Solve GNA: Construct GNA model in Equation (7) and
solve the model as a generalized eigendecomposition
problem;

Train classifier: Train a classifier f based on the
obtained common features W' K in Equation (7) and
graph labels h and h;

Output: Kernel matrix K, linear transformation matrix
W, and classifier f;

end
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4 THEORETICAL ANALYSIS
4.1 Validity of the Proposed Graph Kernel

According to [14, 30], a universal kernel is required to guarantee
MMD to be a correct statistic to measure distribution distance.
Further, theorems in [30, 34] show that the positive definite kernel
matrix can guarantee the kernel is universal. Thus, we have the
following theorem.

THEOREM 4.1. The proposed random walk kernel from Equations
(10) to (12) is positive definite and universal.

Proor. First, we prove the matrix of step kernel ks, is positive
definite. Equation (12) shows that the step kernel is a multiplica-
tion of Dirac kernels and RBF kernels. Since the Dirac and RBF
kernels are positive definite [33], and the multiplication preserves
the positive definiteness, the step kernel matrix is positive definite.
Second, according to [2], the positive definiteness of step kernels
leads to the positive definiteness of the proposed random walk ker-
nel, which further implies that the proposed random walk kernel is
universal. O

4.2 Computational Cost of the Kernel Matrix

In this subsection, we evaluate the computational cost of the pro-
posed graph kernel. [38] obtain results of Equation (13) by solving
Sylvester equations. Due to the space limit, we eliminate the deriva-
tions, and one can refer to [38] for more details. Based on the
Sylvester equation methods, we propose the following theorem.

THEOREM 4.2. If|V|c ~ |VC| ~ M, the computational cgmplexity
to calculate the proposed graph kernel matrix K is O((N + N)2(M3 +
SnuM*)) for Sylvester equation-based method.

Proor. Equation (12) shows that the calculation of the step ker-
nel has a computational time complexity O(d,). Then, it takes
O(8,M*) to construct M? x M? weighted adjacency matrix Bx.
Further, [38] shows that it takes O(M?3) for the Sylvester equation-
based method to calculate one entry of K using the obtained matrix
By. Thus, for (N + N) x (N + N) kernel matrix K, the total time
complexity is O((N+IKIJ)Z(M3 +5nM4)). o

4.3 Computational Cost of GNA
For the complete training algorithm, we follow the idea in [25] to

report the time complexity.

THEOREM 4.3. If|V|c ~ |VC| ~ M, the cor@utational complexity
for Optimization (7) is O((no + K3 + 1)(N + N)z).

PRrOOF. One can refer to [25] for the computational complexity
evaluation of the training algorithm. O

We note that it is possible to further reduce this complexity, by
leveraging recent advances on scalable Sylvester equation solvers,
such as [8].

5 EXPERIMENT
5.1 Dataset

Power Systems. Power systems transmit electric power from gen-
eration sides to load sides. For system profiles, we employ data
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from Illinois 200-node system and South Carolina 500-node system
[9]. The profiles provide the label information for nodes and edges.
Specifically, nodes can be categorized into generators, loads, and
the slack bus. Edges can be divided into transformers and lines.
After simulation, we can obtain nodal measurements of voltage
magnitude, angle, and frequency and edge measurements of current
magnitude and angle. Finally, the system labels include line trip,
generator trip, single-phase fault, phase-to-phase fault, three-phase
fault, load shedding, and transformer failure. For simplification, we
denote the two systems as P200 and P500.
Mass-damper Systems. Mass damper systems study the mechani-
cal functions of a structure to reduce the dynamic responses. Using
MATLAB, we simulate the dynamic process of two mass-damper
systems with 5 nodes and 10 nodes for transfer learning. Then,
the force and the speed measurements of nodes are utilized for
DA. The labels of the system include edge trip and node trip. For
simplification, we denote the two systems as M5 and M10.
Human Activity Sensing Systems. They are action measuring
systems to measure the acceleration and the angular acceleration
when a person is conducting an action [43]. In general, the re-
searchers employ 14 subjects with 6 nodes for measuring. The node
measurements include 3-axis acceleration and 3-axis angular accel-
eration data measurements for each time slot, with a total of around
10s to 30s. The labels include acceleration and angular acceleration.
The system labels include 12 actions. We study the knowledge trans-
fer between sensing systems of two subjects. For simplification, we
denote the two systems as H; 6 and Hy6.

For power systems, graph coarsening is utilized to reduce the
system size and increase the model efficiency. For other systems,
we directly utilize the raw system data.

5.2 Benchmark Methods and Evaluations

Our GNA model can learn features in the kernelized feature space.
Then, we utilize a deep Residual network (Resnet) [15] to conduct
the classification task. Further, we use the following benchmark
methods for comparison.

e Resnet + Principal Component Analysis (PCA): we utilize
PCA to project data into a low-dimensional feature space
that has the same dimensionality as features of GNA. Then,
the features are input to Resnet without transfer learning
as a benchmark method. The same Resnet is used for the
classification.

e Transfer Component Analysis (TCA) [30] + Resnet: TCA
minimizes the MMD of marginal distributions. The same
Resnet is used for the classification.

e Joint Distribution Adaptation (JDA) [25] + Resnet: JDA jointly
minimizes the MMD of the marginal and conditional distri-
butions. The same Resnet is used for classification.

e Domain Adversarial Neural Network (DANN) [13]: DANN
employs adversarial training with Deep Neural Networks
(DNNGs) to learn domain-invariant features for classification.

o Cross-network Deep Network Embedding (CDNE) [31]: CDNE
utilizes DNNs to learn label-discriminative and network-
invariant representations. The network structure and net-
worked data are employed.
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Table 1: Average test accuracy (%) of cross-system DA for different methods.

P500 — P200 P200 — P500 M10 — M5 M5 — M10 Hi6 — H;6 H;6— Hi6 AVERAGE
GNA + RESNET 93.28 94.34 95.53 98.87 90.41 91.23 93.93
JDA + RESNET 86.71 86.19 91.15 90.24 84.82 81.03 86.69
TCA + RESNET 81.25 73.37 89.64 90.08 82.32 83.15 83.30
DANN 86.65 86.53 91.13 89.35 84.51 83.47 86.94
CDNE 88.25 87.93 90.34 91.02 84.33 82.25 87.35
GCAN 83.19 85.57 89.08 90.36 83.46 85.25 86.15
PCA + RESNET 78.75 75.21 87.85 88.96 78.79 77.56 81.19

e Graph Convolutional Adversarial Network (GCAN) [29]:
GCAN employs Data Structure Analyzer to project source
and target samples into instance graph, defined in Section
2.1.2. The graph captures the similarity between different
samples. Then, GNN-based adversarial training is employed
to learn invariant features over the graphs.

These methods are inclusive and representative according to the
major DA categorizations, covering distribution metric-based (TCA,
JDA, and CDNE) and adversarial learning-based (DANN, GCAN)
methods. Further, traditional optimizations (TCA and JDA) and
deep learning models (DANN, CDNE, and GCAN) are considered.
In addition, CDNE considers networked data with structure infor-
mation and GCAN considers graph structures between samples.

Note that for TCA, JDA, and DANN models, the dimensionality
of the source and the target datasets should be the same. Thus, we
copy some nodal measurements of the smaller system to align the
dimensionality. For model evaluations, we conduct 5-fold cross-
validation for the physical datasets and report the average test
accuracy as the final score for each method.

5.3 Results of Test Accuracy

In this subsection, we evaluate the average test accuracy for differ-
ent methods. We utilize the arrow to show the transferring process.
For example, P500 — P200 shows that 500-node power system is
the source grid and 200-node power system is the target grid. Then,
Table 1 demonstrates the results. In general, our proposed GNA
performs the best over other methods, with improvements of 7.24%,
10.63%, 6.99%, 6.58%, 7.78%, and 12.74% compared to JDA, TCA,
DANN, CDNE, GCAN, and Resnet without transfer learning. This
demonstrates that our design can obtain better common knowledge
over graphs to help train the classifier.

Second, by comparing GNA, JDA, and TCA, we find that the
graph label information can help improve DA. Specifically, TCA
does not include the graph label information, thus inducing over-
compressed features with different classes. On the other hand,
graph labels re-weight the feature space and encourage adapting
distributions within one class, leading to better performances of
GNA and JDA. Third, GNA has an even better improvement since
the node/edge labels enable a second layer of re-weighting using
graph kernels. Namely, GNA can encourage the minimization over
nodes/edges from two graphs with the same label.

Fourth, GNA also has a stable improvement compared to deep
learning models DANN, CDNE, and GCAN. Though the deep mod-
els have a high capacity for extracting domain-invariant features
with discriminability, they may not include the structural, temporal,

and node/edge label information properly. For example, DANN uses
a convolutional kernel to integrate spatial correlations, which can
not sufficiently process graph structures. Further, DANN can not
incorporate the label information. Thus, DANN lacks the graph
information as regularization, and the learned common feature
representation could suffer from overfitting. GCAN considers the
graph structure over instances. In our setting, it studies the tempo-
ral correlations between samples. However, the continuous change
of system states encourages us to consider an interval of samples
rather than the structures among samples. Thus, GCAN does not
perform well. CDNE projects networked data into a common fea-
ture space under network embedding, but the embedding vector
space is restricted to be the same for minimizing the distribution
discrepancy. Thus, there is an information loss for DA between
systems of different sizes. In contrast, we design graph kernels to
maximally preserve the original information and achieve better
performances.

5.4 Ablation Study

In Section 5.3, for power systems, we utilize GNA with graph coars-
ening to process datasets of node/edge measurements and labels.
In this subsection, we conduct an ablation study to understand
the effects of different factors. Specifically, we test our models by
independently removing the following factors as comparisons: (1)
graph coarsening, (2) node measurements, (3) node labels, (4) edge
measurements, and (5) edge labels.

100 * * GNA + coarsening
90 """\\ o - """\ ol WI/o coarsening
N e ', W/o node measurement
80 I W/o node label
W/o edge measurement,
—~ L W/o edge label
§ 70 e
)
« 60 - * Coarsening = few
3 impacts on the accuracy.
e 50
o * Node measurements—>
‘(S; 40 key factors for DA.
o
= 30 * Node labels - affect
20 both coarsening and DA.
10 * Edge labels = few
impacts on the accuracy.
0 !
P500-->P200 P200-->P500

Figure 2: The ablation study for GNA and coarsening.

The result is shown in Fig. 2. We have the following observations.
Firstly, if we compare the model with and without coarsening,

we find the accuracy does not have a significant change. This is

because our coarsening process can correctly concentrate graphs
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Figure 3: Results of the sensitivity analysis with respect to different hyper-parameters.

based on the local structures and the label information, largely
saving the graph properties. For the scenario of P200 — P500,
the coarsening even helps to refine the raw data and improves the
performance slightly. However, the running time of computing
the complete kernel matrix for the original graphs and the coarser
graphs is 19.98min and 0.23min, respectively. This implies that the
coarsening process significantly reduces the computational time.

Secondly, we find that the availability of node measurements
and labels is the key to superior performances. If we do not input
node measurements, the accuracy reduces by around 9.8%. This
implies the nodal measurements, i.e., the voltage magnitude, an-
gle, and frequency, contain important patterns to reflect the graph
labels. Further, even if we consider the node measurements but
without node labels, the performance reduces by around 8.7%. This
is because the node labels are essential to categorize the similar-
ity of node measurements. Specifically, the three types of nodes:
generators, loads, and the slack bus, have completely different data
distributions. Thus, the labels of nodes not only help to correctly
concentrate nodes in the coarsening process but also regularizes
the calculation of graph kernels. Namely, based on Equation (12),
the node measurements of different types will not be considered
together when calculating the step kernel. This demonstrates the
importance of importing node labels for power systems.

Thirdly, the non-existence of edge measurements and labels re-
duces the performance slightly. The edge measurements can be
approximately determined by the node measurements due to the
underlying physical equations, i.e., power flow equations. Thus, we
can still obtain good results with node measurements. Further, the
edge labels in power systems bring limited capacity to categorize
edge measurements since there is a limited difference between the
flow of electric transformers and lines. Thus, the edge labels do not
affect the performance too much. This phenomenon brings a po-
tential future direction of studying the roles of physical constraints
in the DA to improve the efficiency, shown in Section 6.
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5.5 Sensitivity Analysis

In this subsection, we study the model sensitivity with respect to
different hyper-parameters. In particular, we investigate the thresh-
old dmax € {1,2,3,4,5, 6} for spatial correlations, the interval range
On € {2,4,6,8,10,12} for temporal correlations, and the parameter
of the RBF kernel krbf in the range of {0.05,0.1,0.15, 0.2, 0.25, 0.3}
It is noteworthy that the polynomial kernel generally performs
worse than the RBF kernel. Thus, we only report the results of RBF
kernel to save space. Fig. 3 demonstrates the final results. Specifi-
cally, Fig. 3a shows that when dj,qx < 3, the accuracy has a small os-
cillation. Under this distance, nodes can be well grouped. Especially,
the node label information can effectively avoid over-grouping and
keep the node separate by similarity. When d;,qx > 4, the accu-
racy decreases as dmqx increases. This is because when dpqx is
too large, many non-similar and non-local nodes are aggregated
together, which deteriorates the coarsening process.

Fig. 3b shows that when 6 < §, < 10, the temporal correlations
are well-captured, and our model can achieves the best performance.
However, when 8,, < 6, the calculated RBF kernels can not con-
sider the correct system changes to identify system labels. Further,
they may be non-robust with respect to measurement noises or
anomalies. When §,, > 10, the incorporation of state change may
be too long and prevent the model from understanding system
dynamics. Thus, &, should be set in a proper range to obtain high
performances. Fig. 3¢ implies that GNA is robust to the change of
the RBF kernel parameter: a wide range of parameter values (e.g.,
0.1 ~ 0.25) can lead to a relatively good performance.

6 CONCLUSION AND FUTURE WORK

In this paper, we study the problem of Domain Adaptation (DA) for
two physical systems. We show that the spatial-temporal correla-
tions and the label information of nodes and edges jointly determine
the graph similarity between two spatial-temporal graphs. With
specifically-designed graph kernels, we can integrate all the above
information to quantify the similarity of two graphs, which facil-
itates the learning of common knowledge. We denote our model
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as Graph kerNel-based distribution Adaptation (GNA). However,
the computational cost of GNA is high for large systems. Thus, we
develop a graph coarsening procedure to yield coarser graphs with
much smaller sizes and preserved graph similarity. We also have
the following future work. Firstly, the edge-level and node-level
tasks need to be further investigated for DA between graphs. Sec-
ondly, we can embed the designed graph kernel into deep learning
methods like GNN, which can benefit from both the high capac-
ity of similarity measuring and the power of hierarchical feature
extractions.
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