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ABSTRACT
Physical systems are extending their monitoring capacities to edge

areas with low-cost, low-power sensors and advanced data mining

andmachine learning techniques. However, new systems often have

limited data for training the model, calling for effective knowledge

transfer from other relevant grids. Specifically, Domain Adaptation
(DA) seeks domain-invariant features to boost the model perfor-

mance in the target domain. Nonetheless, existing DA techniques

face significant challenges due to the unique characteristics of phys-

ical datasets: (1) complex spatial-temporal correlations, (2) diverse
data sources including node/edge measurements and labels, and

(3) large-scale data sizes. In this paper, we propose a novel cross-

graph DA based on two core designs of graph kernels and graph

coarsening. The former design handles spatial-temporal correla-

tions and can incorporate networked measurements and labels

conveniently. The spatial structures, temporal trends, measurement

similarity, and label information together determine the similarity

of two graphs, guiding the DA to find domain-invariant features.

Mathematically, we construct a Graph kerNel-based distribution

Adaptation (GNA) with a specifically-designed graph kernel. Then,

we prove the proposed kernel is positive definite and universal,

which strictly guarantees the feasibility of the used DA measure.

However, the computation cost of the kernel is prohibitive for large

systems. In response, we propose a novel coarsening process to

obtain much smaller graphs for GNA. Finally, we report the supe-

riority of GNA in diversified systems, including power systems,

mass-damper systems, and human-activity sensing systems.

CCS CONCEPTS
• Computing methodologies → Kernel methods.
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1 INTRODUCTION
Modern physical systems are experiencing tremendous changes.

First, the system territory is expanding to better serve society. Sec-

ond, to increase the efficiency and decrease the cost of the system,

new components are continuously introduced [20]. Some of them

bring a lot of uncertainties due to intrinsic uncertain sources, imper-

fect component monitoring ability, etc. While conventional system

analysis may fail for large-scale edge areas with high uncertain-

ties, Data Mining (DM) and Machine Learning (ML) methods could

play a game-changing role with accurate and cost-efficient imple-

mentations for new technologies of system monitoring, control,

and protection. Especially, DM/ML models have been developed

for physical system state estimation, cyber-attack detection, and

event identification [21, 22], etc. Such wide applications are due

to DM/ML’s flexible modeling capability, robust performance, and

high inference speed.

However, most of the existing DM/ML models on physical sys-

tems require a certain amount of training data. If the data are limited,

the model training is likely to fail due to the curse of dimensionality.

Unfortunately, data-limited scenarios often occur for a completely

new grid or an old grid with increased metering, not to mention the

common upgrading process with new nodes/lines. Thus, it is urgent

to employ new methods to transfer knowledge from the source grid

with rich data to the target grid with limited data [19, 23].

For this goal, Transfer Learning (TL) is defined conceptually

as an efficient procedure to extract common knowledge from two

different domains and boost the performance of the data-limited

domain. Specifically, an efficient approach is Domain Adaptation

(DA) [24–26, 30, 35, 37, 42] which minimizes the data distribution

discrepancy of two domains, usually in a low-dimensional space for

domain invariant features. Therefore, DA promises that joint train-

ing using common knowledge can significantly boost the learning

process. While many efficient DA models have been applied to com-

puter vision [12, 25] and natural language process [39], relatively

few work has been done for graph data [31].

For physical systems, the widely placed sensors bring numerous

networkedmeasurements for nodes and edges with complex spatial-

temporal correlations. Can we fully explore the correlations to

improve DA methods? Further, nodes or edges can have different

physical characteristics, i.e., different labels. Is the label information

beneficial to the distribution adaptation? Intuitively, the answer

shall be yes for both questions as the above information represents

different levels of graph similarity that further guides the extraction

of common knowledge in DA.

To elaborate more on the above statements, we present the fol-

lowing observations. Spatially, neighborhoods of nodes usually
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have similar measurement patterns. For example, one residential

area often reflects similar energy consumption patterns for local

households. Further, the connectivity provides the separation of

physical flow (e.g., water or gas) patterns. Temporally, an interval of

temporal measurements represents a continuous change of system

states, containing the invariant knowledge of cross-system dynam-

ics. Finally, the node/edge labels help to further divide the spatial

groups with commonality. For instance, in a power system, nodes

for household electricity consumption may be close to nodes with

solar panels that can generate electricity. However, they have com-

pletely different patterns: the former is based on human behaviors,

while the latter is based on the strength of the sunlight.

Thus, it is critical to integrate the structures, temporal changes,

and label information to identify graph similarity. In this paper,

we show the integration can be conveniently implemented via a

specially-designed graph kernel. Further, the proposed kernel can

be embedded into a DA model [25] with theoretical guarantees.

Then, the common knowledge is represented in a low-dimensional

feature space converted from graph kernel features. We denote the

final model as Graph kerNel-based distribution Adaptation (GNA).

Nevertheless, the computational cost for GNA is high for large

systems. Thus, we develop a pre-processing approach of graph

coarsening to aggregate original graphs into coarser graphs based

on structural and label information. On the other hand, the knowl-

edge related to the graph similarity is preserved. Then, the proposed

DA model can be easily and quickly implemented on the coarser

graphs. Finally, we summarize our contributions as follows.

• We develop novel graph coarsening and graph kernel tech-

niques to construct our GNA model.

• We theoretically analyze the model validity and efficiency.

• We conduct experiments to demonstrate the superiority of

our proposed methods on diverse physical systems.

2 RELATED WORK
2.1 Domain Adaptation
2.1.1 General Categorization. DA methods try to match the con-

ditional and/or marginal distributions of the source and the tar-

get domains by minimizing the distribution discrepancy measure

like Maximum Mean Discrepancy (MMD) [14], Jensen-Shannon

Divergence [32], and Wasserstein distance [41], etc. Traditional

models usually employ linear or kernalized non-linear transforma-

tion matrices to extract common features with a minimal distri-

bution difference [25, 30]. Recently, with the ability of high-level

feature extractions, deep learning models are introduced to DA to

obtain more transferable features [13, 24, 26, 35–37, 42]. Specifically,

[24, 26, 35, 37] introduce the domain shift measure as another loss

to Convolutional Neural Networks (CNNs) to simultaneously train

the classifier and match domains. [13, 36, 42] employ adversarial

learning with domain discriminator(s) to ensure the minimization

of the domain discrepancy.

2.1.2 DA with Data Structural Information. Under the above tax-
onomy, studies of DA to accommodate data structures are heavily

investigated. They typically utilize graphs as containers for the

input data or features. Thus, ML technologies for graphs can be con-

veniently utilized. In general, we categorize them by the different

types of graphs. (1) Instance graph. The instance graph treats each

node as a sample from either source or target domains [1, 5, 7, 16, 29].

Then, the graph similarity can indicate the distribution difference

and provide graph-based domain alignment. Specifically, [5, 7] build

an optimization model to minimize MMDmeasure, which considers

the connections among samples to construct a better distribution

difference measure. [1, 16, 29] employ deep learning models, e.g.,

CNNs and Graph Neural Networks (GNNs), for high-level feature

extractions. They all utilize the adversarial learning scheme to learn

domain invariant features. These methods, however, focus on the

relationship between instances but not the spatial-temporal corre-

lations within one instance in networked data.

Thus, other work investigates (2) networked data graph that

treats one or several data features as a node for the networked

dataset [6, 10, 11, 18, 31]. Specifically, [10] projects networked data

into a latent space that captures the common sub-structure. How-

ever, finding common sub-structures will cause the non-ignorable

loss by removing non-common parts. [11] can measure the simi-

larity of different graphs with an index based on the node degree

similarity. However, the index is not sufficient to tackle physical

systems with measurements and labels for nodes and edges. In this

paper, we propose a graph kernel to make use of all data to mea-

sure the graph similarity for two different graphs. [6, 18, 31] build

CNNs and GNNs to process networked data to learn transferable

features. However, their projected feature space, though containing

network information, is restricted with the same dimensionality

and causes information losses for systems of different sizes. Fur-

ther, they generally suffer high computational costs for large-scale

physical systems and lack theoretical guarantees. We tackle these

issues by proposing an efficient optimization using graph kernels

and MMD measures with rigorous proofs.

2.2 Graph Kernel
Graph kernel is a measure of similarity between graphs [38]. There

are many types of graph kernels with different formulations under

different kinds of data. The R-convolution kernel calculates kernels

as the product of R-convolutions between components of graphs.

Specifically, one decomposes graphs into substructures (e.g., sub-

graphs) and evaluates a kernel between them [17]. Usually, nodal

labels are used for evaluation. However, the computational cost

is extremely high as there are various divisions for the substruc-

tures. The Optimal Assignment (OA) kernel uses a base kernel to

compare nodal labels and forms a similarity measure for a pair of

graphs. Further, OA searches for the optimal mapping between

nodes to save computational costs. However, [38] shows that OA

is usually not positive semi-definite, which is not suitable for the

MMD measure of DA.

A more efficient and popular measure is the so-called random

walk graph kernel that implements random walks on two graphs

and counts thematchedwalks [38, 44]. Traditional randomwalk ker-

nel usually utilizes edge labels to calculate the kernel. [2] proposes

a modified version that can incorporate both labels and measure-

ments for nodes and edges. However, this modification is still not

suitable for our spatial-temporal graphs. Especially, the temporal

correlations are not considered but are essential for the following

domain adaptation and feature learning. To capture the temporal

correlations, we propose a new graph kernel and prove that it is

suitable to construct kernel-based MMD measures.
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2.3 Graph Coarsening
For large-scale graphs, the computation of graph kernels is still

inefficient. Thus, an effective way is to pre-process graphs and

obtain coarser graphs that preserve the main information of origi-

nal graphs. For example, [27, 28] keep the spectral similarity. [3]

preserves the structure of the inverse Laplacian. [4] maintains the

classification accuracy of GNNs. These goals, however, do notmatch

the purpose of distribution adaptation. Thus, we propose a simple

but efficient coarsening scheme that captures the local similarity

using local structures and labels.

3 PROPOSED METHOD
3.1 Notation and Problem Definition
Physical systems can be modeled as spatial-temporal graphs [40].

Specifically, we denote {𝐺𝑛 = {𝑉 , 𝐸, 𝐷𝑛}}𝑁
𝑛=1

as the source graph,

where 𝑉 and 𝐸 are the node and edge sets, respectively. 𝐷𝑛 is

the corresponding data at the time slot 𝑛 and 𝑁 is the number of

time slots for the graphs. Similarly, the target graph is denoted as

{𝐺𝑛 = {𝑉 , 𝐸, 𝐷𝑛}}𝑁
𝑛=1

. In the following derivations, if there are no

special notices, quantities with tilde are by default linked to the

target graph.

The physical graph contains data of different modality, which

together can boosts the knowledge transfer and feature extraction

for the final machine learning model. In this paper, we assume the

source graph contains node measurements 𝑿 ∈ R |𝑉 |×𝑁
, node la-

bels 𝑳 ∈ Z |𝑉 |×𝑁
, edge measurements 𝒀 ∈ R |𝐸 |×𝑁

, and edge labels

𝑴 ∈ Z |𝐸 |×𝑁
, where | · | for a set represents the operation to obtain

the set cardinality. Secondly, we focus on the graph-level classi-

fication and assume the task label vector is 𝒉 ∈ Z𝑁 . Thirdly, we
assume the node/edge/task label lies in the range of {0, 1, · · · , 𝐾1},
{0, 1, · · · , 𝐾2}, and {0, 1, · · · , 𝐾3}, respectively. Finally, the adja-

cency matrix 𝑨 ∈ R |𝑉 |× |𝑉 |
is assumed to be known. Similarly,

we denote the corresponding quantities for the target graph as

𝑿 ∈ R |𝑉 |×𝑁
, 𝑳̃ ∈ Z |𝑉 |×𝑁

, 𝒀̃ ∈ R |𝐸 |×𝑁
, 𝑴̃ ∈ Z |𝐸 |×𝑁

, 𝒉̃ ∈ Z𝑁 , and
𝑨̃ ∈ R |𝑉 |× |𝑉 |

.

Then, we can find that {𝐷𝑛}𝑁
𝑛=1

= {𝑿 , 𝑳, 𝒀 ,𝑴,𝒉} and {𝐷𝑛}𝑁
𝑛=1

=

{˜𝑿 ,˜𝑳,˜𝒀 , ˜𝑴,˜𝒉}. For some realistic scenarios when there is no la-

bel information, one can utilize matrices with all ones to indicate

that nodes (edges) share the same label. Further, our model can be

easily generalized to the case when there exist multiple measure-

ments/labels for one node/edge at each time slot.

In the transfer learning setting, we address the problemwhen dis-

tributions of {𝐷𝑛}𝑁
𝑛=1

and {𝐷𝑛}𝑁
𝑛=1

have a certain distance, which

causes troubles for utilizing knowledge from both graphs for ML

model training. Secondly, we assume there are much more data

in the source graph, i.e., 𝑁 ≫ 𝑁 . Therefore, it is essential to con-

vert data or features from the source graph to the target graph to

enhance the ML models.

3.2 Graph Coarsening to Improve Efficiency
In this section, we propose a pre-processing method to obtain

coarser graphs which are much smaller than source and target

graphs, thus improving the model efficiency for the following com-

putations. Mathematically, we aim to find spatial-temporal coarser

graphs {𝐺𝑛
𝐶
= {𝑉𝐶 , 𝐸𝐶 , 𝐷𝑛𝐶 }}

𝑁
𝑛=1

and {𝐺𝑛
𝐶
= {𝑉𝐶 , 𝐸𝐶 , 𝐷𝑛𝐶 }}

𝑁
𝑛=1

such

that |𝑉𝐶 | < |𝑉 | and |𝑉𝐶 | < |𝑉 |. To obtain coarser graphs, we have

the following objectives.

• Propose surjective maps 𝜋 : 𝑉 → 𝑉𝐶 and 𝜋 : 𝑉 → 𝑉𝐶 to ag-

gregate nodes. Then, design the correspondingmaps that can

project nodal measurements/labels from the source/target

graphs to the coarser graphs. Namely, we need to find 𝜋𝑀 :

R |𝑉 | → R |𝑉𝐶 |
, 𝜋𝐿 : Z |𝑉 | → Z |𝑉𝐶 |

, 𝜋𝑀 : R |𝑉 | → R |𝑉𝐶 |
, and

𝜋𝐿 : Z |𝑉 | → Z |𝑉𝐶 |
.

• Figure out the connections 𝐸𝐶 and 𝐸𝐶 with the correspond-

ing maps 𝜔 : 𝐸 → 𝐸𝐶 and 𝜔 : 𝐸 → 𝐸𝐶 . Then, find the

maps of the edge measurements/labels from source/target

graphs to the coarser graphs. Namely, we need to find 𝜔𝑀 :

R |𝐸 | → R |𝐸𝐶 |
, 𝜔𝐿 : Z |𝐸 | → Z |𝐸𝐶 |

, 𝜔𝑀 : R |𝐸 | → R |𝐸𝐶 |
, and

𝜔𝐿 : Z |𝐸 | → Z |𝐸𝐶 |
.

3.2.1 Structural Node Aggregation with Label Information. The
neighborhood of nodes for a physical system usually indicates

a group with similar physical behaviors. Thus, we can utilize one

node to represent them in the coarser graph. Secondly, the label

information of nodes can further improve the node grouping for

the local areas. Thus, node maps 𝜋 and 𝜋 should take in both fac-

tors for a reasonable coarsening process. For the convenience of

derivations, we only consider the coarsening of the source graph.

Subsequently, we first initialize a set of neighborhoods based on the

connectivity. Each neighborhood contains a center 𝑖 ∈ 𝑉 and the

neighbouring nodes Neigh(𝑖) such that 𝑗 ∈ Neigh(𝑖) if and only

if 𝑑 (𝑖, 𝑗) ≤ 𝑑𝑚𝑎𝑥 , where 𝑑 (𝑖, 𝑗) represent the pre-defined distance
between node 𝑖 and 𝑗 , and 𝑑𝑚𝑎𝑥 represents the maximum threshold.

For example, we can define 𝑑 (𝑖, 𝑗) to be the number of edges along

the shortest path between 𝑖 and 𝑗 . As shown in Fig. 1, we consider

𝑑𝑚𝑎𝑥 = 1 to aggregate nodes that are 1-hop away from the center

nodes marked with a red star. Further, if there is no path between 𝑖

and 𝑗 , we define 𝑑 (𝑖, 𝑗) = ∞.

Subsequently, based on the previous discussion, the grouping of

nodes in a neighborhood is too coarse and needs to be divided by

the node labels. Thus, we divide Neigh(𝑖) = {Neigh𝑘 (𝑖)}
𝐾1

𝑘
such

that ∀𝑗1, 𝑗2 ∈ Neigh𝑘 (𝑖), 𝑳( 𝑗1, 𝑛) = 𝑳( 𝑗2, 𝑛) = 𝑘 (recall that 𝑛 is

the index for the time slot for the discussed graph and data). For

example, in Fig. 1, the blue and purple nodes have different labels.

Thus, even though they share one neighborhood, they should be

divided into two groups. Then, we have

𝜋
(
Neigh𝑘 (𝑖)

)
= ℎ ∈ 𝑉𝐶 . (1)

Based on the above node aggregation rules, since nodes inNeigh𝑘 (𝑖)
share one label 𝑘 , the projected node ℎ ∈ 𝑉𝐶 also has a label 𝑘 .

Namely,

𝜋𝐿
(
𝑳
(
Neigh𝑘 (𝑖), 𝑛

) )
= 𝑘. (2)

For the measurements, as we assume there is no prior on the

importance of nodes, we directly average the measurements in the

related nodes. Specifically, we have

𝜋𝑀
(
𝑿
(
Neigh𝑘 (𝑖), 𝑛

) )
=

1

|Neigh𝑘 (𝑖) |

|Neigh𝑘 (𝑖) |∑︁
𝑗=1

𝑿 ( 𝑗, 𝑛) . (3)
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Figure 1: The procedure of graph coarsening. Different colors of nodes represent different labels. Different shape of lines
represent different labels.
3.2.2 Edge Identification with Label Information. After obtaining
𝑉𝐶 , we identify 𝐸𝐶 with a simple and popular𝑉𝐶 -induced approach

[4]. Namely, (ℎ1, ℎ2) ∈ 𝐸𝐶 if and only if there is an edge (𝑖1, 𝑖2) ∈ 𝐸
and labels 1 ≤ 𝑘1, 𝑘2 ≤ 𝐾2 such that 𝜋

(
Neigh𝑘1

(𝑖1)
)
= ℎ1 and

𝜋
(
Neigh𝑘2

(𝑖2)
)
= ℎ2. In other words, the connection between two

neighborhoods in the original graph implies a connection in the

coarser graph.

However, the identified edge may have multiple labels as in the

original graph, there may be many connections with multiple labels

between two neighborhoods. This causes issues when formalizing

edge measurement and label maps. For example, in the left and

middle part of Fig. 1, the connections between yellow and pink

nodes have multiple labels (i.e., different shapes of lines). To tackle

this problem, for nodes in the coarser graph with multi-labeled

edges, we propose to copy them according to the number of labels

and assign each copied pair a uni-labeled edge. In the meantime, the

outer connections to other nodes remain unchanged for each copied

pair, shown in the right part of Fig. 1. Finally, our coarser graph

only contains uni-labeled edges. For simplicity of later derivations,

we denote Conne𝑘 (ℎ1, ℎ2) ⊂ 𝐸 to be the set of edges in the original

graph that has a label 𝑘 (1 ≤ 𝑘 ≤ 𝐾2) and connects nodes in 𝜋
−1 (ℎ1)

and 𝜋−1 (ℎ2), where 𝜋−1 represents the inverse map of 𝜋 . Then, the

edge map is

𝜔
(
Conne𝑘 (ℎ1, ℎ2)

)
= ℎ ∈ 𝐸𝐶 . (4)

Further, the edge label map can be defined as

𝜔𝐿
(
𝑴

(
Conne𝑘 (ℎ1, ℎ2), 𝑛

) )
= 𝑘. (5)

Similarly, we can average the edgemeasurements in Conne𝑘 (ℎ1, ℎ2)
to obtain the edge measurement in the coarser graph:

𝜔𝑀
(
𝒀
(
Conne𝑘 (ℎ1, ℎ2), 𝑛

) )
=

1

|Conne𝑘 (ℎ1, ℎ2) |

|Conne𝑘 (ℎ1,ℎ2) |∑︁
𝑗=1

𝒀 ( 𝑗, 𝑛) .

(6)

Finally, we can follow the above procedures and generate the

coarser graph for the target grid. For the two coarser graphs, the

number of nodes can vary due to different numbers of neighbor-

hoods and the node copy process in this subsection. Further, the

connectivity can be different due to the varying topology of the

two original graphs. Thus, our obtained spatial-temporal coarser

graphs {𝐺𝑛
𝐶
}𝑁
𝑛=1

and {𝐺𝑛
𝐶
}𝑁
𝑛=1

are usually different.

3.3 GNA to Learn Common Graph Features
The two coarser graphs bring two sets {𝐷𝑛

𝐶
}𝑁
𝑛=1

and {𝐷𝑛
𝐶
}𝑁
𝑛=1

of

samples (measurements and labels) converted from source and

target physical systems, which are generated via Equations (2),

(3), (5), and (6). With the data, we develop Graph kerNel-based

distribution Adaptation (GNA).

3.3.1 Distribution Adaptation for Two Sample Sets. A prevalent

measure for the distribution difference with two sample sets is

the so-called Maximum Mean Discrepancy (MMD) [14, 25, 30].

MMD can compare distributions based on reproducing Hilbert

Space (RKHS). Specifically, the Joint Domain Adaptation (JDA) in

[25] tries to minimize:

min

𝑾⊤𝑲𝑯𝑲⊤𝑾=𝑰
𝑀𝑀𝐷 ({𝐷𝑛𝐶 }

𝑁
𝑛=1, {𝐷

𝑛
𝐶 }

𝑁
𝑛=1)

=

𝐾3∑︁
𝑘=0

tr(𝑾⊤𝑲𝑵𝑘𝑲
⊤𝑾 ) + 𝜆 | |𝑾 | |2𝐹 ,

(7)

where 𝑯 = 𝑰 − 1

𝑁+𝑁
1, 𝑰 is the identity matrix, 1 ∈ R (𝑁+𝑁 )×(𝑁+𝑁 )

is a matrix of ones, and 𝑾 ∈ R (𝑁+𝑁 )×𝑛0
(𝑛0 < 𝑁 + 𝑁 ) is the

learnable linear transformation to project kernel features to a low-

dimensional space. 𝑲 is the kernel matrix obtained from samples in

sets {𝐷𝑛
𝐶
}𝑁
𝑛=1

and {𝐷𝑛
𝐶
}𝑁
𝑛=1

. 𝜆 is a positive penalty term and | | · | |𝐹
is the Frobenius norm. 𝑵𝑘 is a weight matrix. When 𝑘 = 0, we

have:

𝑵 0 (𝑖, 𝑗) =


1

𝑁 2
, if 1 ≤ 𝑖, 𝑗 ≤ 𝑁 ,

1

𝑁 2
, if 𝑁 + 1 ≤ 𝑖, 𝑗 ≤ 𝑁 + 𝑁 ,

−1
𝑁𝑁

, otherwise,

(8)

When 𝑘 ≥ 1, we have:

𝑵𝑘 (𝑖, 𝑗) =



1

𝑁 2

𝑘

, if 1 ≤ 𝑖, 𝑗 ≤ 𝑁 and 𝒉(𝑖) = 𝒉( 𝑗) = 𝑘 ,
1

𝑁 2

𝑘

, if 𝑁 + 1 ≤ 𝑖, 𝑗 ≤ 𝑁 + 𝑁 and 𝒉̃(𝑖) = 𝒉̃( 𝑗) = 𝑘 ,
−1

𝑁𝑘𝑁𝑘

, if 1 ≤ 𝑖 ≤ 𝑁, 𝑁 + 1 ≤ 𝑗 ≤ 𝑁 + 𝑁 , 𝒉(𝑖) = 𝒉̃( 𝑗) = 𝑘
−1

𝑁𝑘𝑁𝑘

, if 1 ≤ 𝑗 ≤ 𝑁, 𝑁 + 1 ≤ 𝑖 ≤ 𝑁 + 𝑁 , 𝒉( 𝑗) = 𝒉̃(𝑖) = 𝑘
0, otherwise,

(9)

where 𝑁𝑘 and 𝑁𝑘 represent the samples with task label 𝑘 for the

source and the target coarser graph, respectively. To calculate the

kernel matrix, traditional kernels like the polynomial kernel (𝑘𝑝𝑜𝑙𝑦 )
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or the Radial Basis Function (RBF) kernel (𝑘𝑟𝑏𝑓 ) are largely used.

However, they are not suitable for datasets from physical systems.

3.3.2 Spatial-Temporal Graph Kernel withMeasurements and Labels.
In this subsection, we propose a graph kernel design for {𝐺𝑛

𝐶
}𝑁
𝑛=1

and {𝐺𝑛
𝐶
}𝑁
𝑛=1

to formalize Equation (7). The designed kernel is a

modified version of the random walk kernel [2, 38] to process both

the measurements and labels from nodes and edges. Random walk

kernels [38] perform random walks on two graphs and calculate

the number of matching walks to describe the graph similarity.

Specifically, we consider two graphs 𝐺
𝑛1
𝐶

and 𝐺
𝑛2
𝐶
. For simplifi-

cation, we eliminate the unnecessary time slot index 𝑛1 and 𝑛2 in

the later derivations. Then, the direct product graph, denoted as

𝐺𝐶 × 𝐺𝐶 , contains the node, edge set, and the adjacency matrix:

𝑉× = {(𝑖, 𝑗) : 𝑖 ∈ 𝑉𝐶 , 𝑗 ∈ 𝑉𝐶 }, 𝐸× = {
(
(𝑖1, 𝑗1), (𝑖2, 𝑗2)

)
: (𝑖1, 𝑖2) ∈

𝐸𝐶 ∩ ( 𝑗1, 𝑗2) ∈ 𝐸𝐶 }, and 𝑨× = 𝑨𝐶 ⊗𝑨𝐶 , where 𝑨𝐶 and 𝑨𝐶 are the

adjacency matrices of the 𝐺𝐶 and 𝐺𝐶 , respectively. ⊗ is the kro-

necker product. Then, the classical random walk kernel considers

the weighted sum of random walks on the direct product graph:

𝑲 (𝑛1, 𝑛2) =
|𝑉× |∑︁
𝑖, 𝑗=1

∞∑︁
𝑙=0

𝛼 (𝑨×)𝑙 (𝑖, 𝑗), (10)

where 𝛼 is a positive weight factor to guarantee convergence. To

better process nodal/edge measurement and label data, [2] proposes

to develop a modified random walk by replacing 𝑨× in Equation

(10) with a new weighted adjacency matrix 𝑩× such that:

𝑩× (𝑖1 + |𝑉𝐶 | × ( 𝑗1 − 1), 𝑖2 + |𝑉𝐶 | × ( 𝑗2 − 1))

=


𝑘𝑠𝑡𝑒𝑝

(
(𝑖1, 𝑗1), (𝑖2, 𝑗2)

)
, if (𝑖1, 𝑗1), (𝑖2, 𝑗2) ∈ 𝐸× ,

0, otherwise,

(11)

where 𝑘𝑠𝑡𝑒𝑝
(
(𝑖1, 𝑗1), (𝑖2, 𝑗2)

)
is the step kernel to measure the simi-

larity between steps (𝑖1, 𝑖2) ∈ 𝐸𝐶 and ( 𝑗1, 𝑗2) ∈ 𝐸𝐶 . However, the de-
fined step kernel in [2] can hardly capture the temporal correlations.

Therefore, we denote 𝒍1 = [𝑛1−𝛿𝑛, 𝑛1−𝛿𝑛+1, · · · , 𝑛1, 𝑛1+1, · · · , 𝑛1+
𝛿𝑛]⊤ and 𝒍2 = [𝑛2 − 𝛿𝑛, 𝑛2 − 𝛿𝑛 + 1, · · · , 𝑛2, 𝑛2 + 1, · · · , 𝑛2 + 𝛿𝑛]⊤
to be index vectors for the neighbors of time slot 𝑛1 and 𝑛2 in the

temporal dimension, respectively. Then, we propose a new step

kernel definition:

𝑘𝑠𝑡𝑒𝑝
(
(𝑖1, 𝑗1), (𝑖2, 𝑗2)

)
= 𝑘𝐿

(
(𝑖1, 𝑗1), (𝑖2, 𝑗2)

)
× 𝑘𝑀

(
(𝑖1, 𝑗1), (𝑖2, 𝑗2)

)
,

𝑘𝐿
(
(𝑖1, 𝑗1), (𝑖2, 𝑗2)

)
= 1

(
𝜋𝐿

(
𝑳
(
𝜋−1 (𝑖1), 𝑛1

) )
= 𝜋𝐿

(
𝑳̃
(
𝜋−1 ( 𝑗1), 𝑛2

) ))
× 1

(
𝜋𝐿

(
𝑳
(
𝜋−1 (𝑖2), 𝑛1

) )
= 𝜋𝐿

(
𝑳̃
(
𝜋−1 ( 𝑗2), 𝑛2

) ))
× 1

(
𝜔𝐿

(
𝑴

(
𝜔−1 (𝑖1, 𝑖2), 𝑛1

) )
= 𝜔𝐿

(
𝑴̃

(
𝜔−1 ( 𝑗1, 𝑗2), 𝑛2

) ))
,

𝑘𝑀
(
(𝑖1, 𝑗1), (𝑖2, 𝑗2)

)
= 𝑘𝑟𝑏𝑓

(
𝜋𝑀

(
𝑿
(
𝜋−1 (𝑖1), 𝒍1

) )
, 𝜋𝑀

(
𝑿
(
𝜋−1 ( 𝑗1), 𝒍2

) ))
× 𝑘𝑟𝑏𝑓

(
𝜋𝑀

(
𝑿
(
𝜋−1 (𝑖2), 𝒍1

) )
, 𝜋𝑀

(
𝑿
(
𝜋−1 ( 𝑗2), 𝒍2

) ))
× 𝑘𝑟𝑏𝑓

(
𝜔𝑀

(
𝒀
(
𝜔−1 (𝑖1, 𝑖2), 𝒍1

) )
, 𝜔𝑀

(
𝒀̃
(
𝜔−1 ( 𝑗1, 𝑗2), 𝒍2)

) ))
,

(12)

where 1(·) is the indicator function that takes 1 if the condition

inside is true and 0 otherwise. One can replace the RBF kernel

𝑘𝑟𝑏𝑓 with other kernels to evaluate the measurement similarity.

Notably, to calculate the measurement kernel 𝑘𝑀
(
(𝑖1, 𝑗1), (𝑖2, 𝑗2)

)
,

we include the neighboring time slots in 𝒍1 and 𝒍2 to extract features
with temporal correlations. Then, we can use above equations to

calculate 𝑲 . Specifically, [38] provides an equivalent equation to

convert Equations (10) to:

𝑲 (𝑛1, 𝑛2) = 𝒒⊤× (𝑰 − 𝛼𝑩×)−1𝒒×, (13)

where ∀1 ≤ 𝑖 ≤ |𝑉𝐶 |, 𝒒× (𝑖) = 1

|𝑉𝐶 | and ∀|𝑉𝐶 | + 1 ≤ 𝑖 ≤ |𝑉𝐶 | +
|𝑉𝐶 |, 𝒒× (𝑖) = 1

|𝑉𝐶 |
. To calculate the inverse matrix in Equation (13),

[38] provides an efficient way by solving Sylvester equations. One

can refer to [38] for the procedure and Section 4.2 provides the time

complexity of the calculation. Notice that the kernel calculation

can be directly implemented on the source and the target graphs.

However, the large size in the original graphs causes inefficiency

for the computation, which prevents the realistic prediction for the

classifier trained with kernel features. Thus, graph coarsening in

Section 3.2 is essential to guarantee model efficiency.

Finally, after the calculation of 𝑲 , we can construct the optimiza-

tion in Equation (7), which can be efficiently solved as a generalized

eigendecomposition problem [25, 30]. Then, we summarize the

complete learning algorithm in Algorithm 1.

Algorithm 1: Cross-Graph Domain Adaptation

Function Coarsening-GNA
Input: Spatial-temporal graphs {𝐺𝑛}𝑁

𝑛=1
and {𝐺𝑛}𝑁

𝑛=1
;

Hyper-parameters: Distance threshold 𝑑𝑚𝑎𝑥 for node

aggregation, temporal interval 𝛿𝑛 for temporal

correlation integration, parameters of RBF kernel 𝑘𝑟𝑏𝑓
(or polynomial kernel 𝑘𝑝𝑜𝑙𝑦 ), and penalty term 𝜆 for

the Frobenius norm in Equation (7);

Graph coarsening: Utilize Equations (1) to (6) to

conduct graph coarsening with 𝑑𝑚𝑎𝑥 . Then, obtain the

coarser graphs {𝐺𝑛
𝐶
}𝑁
𝑛=1

and {𝐺𝑛
𝐶
}𝑁
𝑛=1

;

Compute graph kernels: Utilize data of {𝐺𝑛
𝐶
}𝑁
𝑛=1

and

{𝐺𝑛
𝐶
}𝑁
𝑛=1

to calculate weighted adjacency matrix 𝑩×
under Equations (11) and (12). Then, solve Sylvester

equations to compute kernel matrix for Equation (13);

Solve GNA: Construct GNA model in Equation (7) and

solve the model as a generalized eigendecomposition

problem;

Train classifier: Train a classifier 𝑓 based on the

obtained common features𝑾⊤𝑲 in Equation (7) and

graph labels 𝒉 and 𝒉̃;
Output: Kernel matrix 𝑲 , linear transformation matrix

𝑾 , and classifier 𝑓 ;

end
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4 THEORETICAL ANALYSIS
4.1 Validity of the Proposed Graph Kernel
According to [14, 30], a universal kernel is required to guarantee

MMD to be a correct statistic to measure distribution distance.

Further, theorems in [30, 34] show that the positive definite kernel

matrix can guarantee the kernel is universal. Thus, we have the

following theorem.

Theorem 4.1. The proposed random walk kernel from Equations
(10) to (12) is positive definite and universal.

Proof. First, we prove the matrix of step kernel 𝑘𝑠𝑡𝑒𝑝 is positive

definite. Equation (12) shows that the step kernel is a multiplica-

tion of Dirac kernels and RBF kernels. Since the Dirac and RBF

kernels are positive definite [33], and the multiplication preserves

the positive definiteness, the step kernel matrix is positive definite.

Second, according to [2], the positive definiteness of step kernels

leads to the positive definiteness of the proposed random walk ker-

nel, which further implies that the proposed random walk kernel is

universal. □

4.2 Computational Cost of the Kernel Matrix
In this subsection, we evaluate the computational cost of the pro-

posed graph kernel. [38] obtain results of Equation (13) by solving

Sylvester equations. Due to the space limit, we eliminate the deriva-

tions, and one can refer to [38] for more details. Based on the

Sylvester equation methods, we propose the following theorem.

Theorem 4.2. If |𝑉 |𝐶 ≈ |𝑉𝐶 | ≈ 𝑀 , the computational complexity
to calculate the proposed graph kernel matrix 𝑲 is𝑂

(
(𝑁 +𝑁 )2 (𝑀3 +

𝛿𝑛𝑀
4)
)
for Sylvester equation-based method.

Proof. Equation (12) shows that the calculation of the step ker-

nel has a computational time complexity 𝑂 (𝛿𝑛). Then, it takes
𝑂 (𝛿𝑛𝑀4) to construct 𝑀2 × 𝑀2

weighted adjacency matrix 𝑩×.
Further, [38] shows that it takes 𝑂 (𝑀3) for the Sylvester equation-
based method to calculate one entry of 𝑲 using the obtained matrix

𝑩×. Thus, for (𝑁 + 𝑁 ) × (𝑁 + 𝑁 ) kernel matrix 𝑲 , the total time

complexity is 𝑂
(
(𝑁 + 𝑁 )2 (𝑀3 + 𝛿𝑛𝑀4)

)
. □

4.3 Computational Cost of GNA
For the complete training algorithm, we follow the idea in [25] to

report the time complexity.

Theorem 4.3. If |𝑉 |𝐶 ≈ |𝑉𝐶 | ≈ 𝑀 , the computational complexity
for Optimization (7) is 𝑂

(
(𝑛0 + 𝐾3 + 1) (𝑁 + 𝑁 )2

)
.

Proof. One can refer to [25] for the computational complexity

evaluation of the training algorithm. □

We note that it is possible to further reduce this complexity, by

leveraging recent advances on scalable Sylvester equation solvers,

such as [8].

5 EXPERIMENT
5.1 Dataset
Power Systems. Power systems transmit electric power from gen-

eration sides to load sides. For system profiles, we employ data

from Illinois 200-node system and South Carolina 500-node system

[9]. The profiles provide the label information for nodes and edges.

Specifically, nodes can be categorized into generators, loads, and

the slack bus. Edges can be divided into transformers and lines.

After simulation, we can obtain nodal measurements of voltage

magnitude, angle, and frequency and edge measurements of current

magnitude and angle. Finally, the system labels include line trip,

generator trip, single-phase fault, phase-to-phase fault, three-phase

fault, load shedding, and transformer failure. For simplification, we

denote the two systems as 𝑃200 and 𝑃500.

Mass-damper Systems. Mass damper systems study the mechani-

cal functions of a structure to reduce the dynamic responses. Using

MATLAB, we simulate the dynamic process of two mass-damper

systems with 5 nodes and 10 nodes for transfer learning. Then,

the force and the speed measurements of nodes are utilized for

DA. The labels of the system include edge trip and node trip. For

simplification, we denote the two systems as𝑀5 and𝑀10.

Human Activity Sensing Systems. They are action measuring

systems to measure the acceleration and the angular acceleration

when a person is conducting an action [43]. In general, the re-

searchers employ 14 subjects with 6 nodes for measuring. The node

measurements include 3-axis acceleration and 3-axis angular accel-

eration data measurements for each time slot, with a total of around

10s to 30s. The labels include acceleration and angular acceleration.

The system labels include 12 actions. We study the knowledge trans-

fer between sensing systems of two subjects. For simplification, we

denote the two systems as 𝐻16 and 𝐻26.

For power systems, graph coarsening is utilized to reduce the

system size and increase the model efficiency. For other systems,

we directly utilize the raw system data.

5.2 Benchmark Methods and Evaluations
Our GNA model can learn features in the kernelized feature space.

Then, we utilize a deep Residual network (Resnet) [15] to conduct

the classification task. Further, we use the following benchmark

methods for comparison.

• Resnet + Principal Component Analysis (PCA): we utilize

PCA to project data into a low-dimensional feature space

that has the same dimensionality as features of GNA. Then,

the features are input to Resnet without transfer learning
as a benchmark method. The same Resnet is used for the

classification.

• Transfer Component Analysis (TCA) [30] + Resnet: TCA

minimizes the MMD of marginal distributions. The same

Resnet is used for the classification.

• Joint DistributionAdaptation (JDA) [25] + Resnet: JDA jointly

minimizes the MMD of the marginal and conditional distri-

butions. The same Resnet is used for classification.

• Domain Adversarial Neural Network (DANN) [13]: DANN

employs adversarial training with Deep Neural Networks

(DNNs) to learn domain-invariant features for classification.

• Cross-networkDeepNetwork Embedding (CDNE) [31]: CDNE

utilizes DNNs to learn label-discriminative and network-

invariant representations. The network structure and net-

worked data are employed.
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Table 1: Average test accuracy (%) of cross-system DA for different methods.

𝑃500 → 𝑃200 𝑃200 → 𝑃500 𝑀10 → 𝑀5 𝑀5 → 𝑀10 𝐻16 → 𝐻26 𝐻26 → 𝐻16 AVERAGE

GNA + RESNET 93.28 94.34 95.53 98.87 90.41 91.23 93.93
JDA + RESNET 86.71 86.19 91.15 90.24 84.82 81.03 86.69

TCA + RESNET 81.25 73.37 89.64 90.08 82.32 83.15 83.30

DANN 86.65 86.53 91.13 89.35 84.51 83.47 86.94

CDNE 88.25 87.93 90.34 91.02 84.33 82.25 87.35

GCAN 83.19 85.57 89.08 90.36 83.46 85.25 86.15

PCA + RESNET 78.75 75.21 87.85 88.96 78.79 77.56 81.19

• Graph Convolutional Adversarial Network (GCAN) [29]:

GCAN employs Data Structure Analyzer to project source

and target samples into instance graph, defined in Section

2.1.2. The graph captures the similarity between different

samples. Then, GNN-based adversarial training is employed

to learn invariant features over the graphs.

These methods are inclusive and representative according to the

major DA categorizations, covering distribution metric-based (TCA,

JDA, and CDNE) and adversarial learning-based (DANN, GCAN)

methods. Further, traditional optimizations (TCA and JDA) and

deep learning models (DANN, CDNE, and GCAN) are considered.

In addition, CDNE considers networked data with structure infor-

mation and GCAN considers graph structures between samples.

Note that for TCA, JDA, and DANN models, the dimensionality

of the source and the target datasets should be the same. Thus, we

copy some nodal measurements of the smaller system to align the

dimensionality. For model evaluations, we conduct 5-fold cross-

validation for the physical datasets and report the average test

accuracy as the final score for each method.

5.3 Results of Test Accuracy
In this subsection, we evaluate the average test accuracy for differ-

ent methods. We utilize the arrow to show the transferring process.

For example, 𝑃500 → 𝑃200 shows that 500-node power system is

the source grid and 200-node power system is the target grid. Then,

Table 1 demonstrates the results. In general, our proposed GNA

performs the best over other methods, with improvements of 7.24%,

10.63%, 6.99%, 6.58%, 7.78%, and 12.74% compared to JDA, TCA,

DANN, CDNE, GCAN, and Resnet without transfer learning. This

demonstrates that our design can obtain better common knowledge

over graphs to help train the classifier.

Second, by comparing GNA, JDA, and TCA, we find that the

graph label information can help improve DA. Specifically, TCA

does not include the graph label information, thus inducing over-

compressed features with different classes. On the other hand,

graph labels re-weight the feature space and encourage adapting

distributions within one class, leading to better performances of

GNA and JDA. Third, GNA has an even better improvement since

the node/edge labels enable a second layer of re-weighting using

graph kernels. Namely, GNA can encourage the minimization over

nodes/edges from two graphs with the same label.

Fourth, GNA also has a stable improvement compared to deep

learning models DANN, CDNE, and GCAN. Though the deep mod-

els have a high capacity for extracting domain-invariant features

with discriminability, they may not include the structural, temporal,

and node/edge label information properly. For example, DANN uses

a convolutional kernel to integrate spatial correlations, which can

not sufficiently process graph structures. Further, DANN can not

incorporate the label information. Thus, DANN lacks the graph

information as regularization, and the learned common feature

representation could suffer from overfitting. GCAN considers the

graph structure over instances. In our setting, it studies the tempo-

ral correlations between samples. However, the continuous change

of system states encourages us to consider an interval of samples

rather than the structures among samples. Thus, GCAN does not

perform well. CDNE projects networked data into a common fea-

ture space under network embedding, but the embedding vector

space is restricted to be the same for minimizing the distribution

discrepancy. Thus, there is an information loss for DA between

systems of different sizes. In contrast, we design graph kernels to

maximally preserve the original information and achieve better

performances.

5.4 Ablation Study
In Section 5.3, for power systems, we utilize GNA with graph coars-

ening to process datasets of node/edge measurements and labels.

In this subsection, we conduct an ablation study to understand

the effects of different factors. Specifically, we test our models by

independently removing the following factors as comparisons: (1)
graph coarsening, (2) node measurements, (3) node labels, (4) edge
measurements, and (5) edge labels.

Figure 2: The ablation study for GNA and coarsening.

The result is shown in Fig. 2. We have the following observations.

Firstly, if we compare the model with and without coarsening,

we find the accuracy does not have a significant change. This is

because our coarsening process can correctly concentrate graphs
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(a) Accuracy with respect to 𝑑𝑚𝑎𝑥 . (b) Accuracy with respect 𝛿𝑛 . (c) Accuracy with respect to 𝑘𝑟𝑏𝑓 parameters.

Figure 3: Results of the sensitivity analysis with respect to different hyper-parameters.

based on the local structures and the label information, largely

saving the graph properties. For the scenario of 𝑃200 → 𝑃500,

the coarsening even helps to refine the raw data and improves the

performance slightly. However, the running time of computing

the complete kernel matrix for the original graphs and the coarser

graphs is 19.98min and 0.23min, respectively. This implies that the

coarsening process significantly reduces the computational time.

Secondly, we find that the availability of node measurements

and labels is the key to superior performances. If we do not input

node measurements, the accuracy reduces by around 9.8%. This

implies the nodal measurements, i.e., the voltage magnitude, an-

gle, and frequency, contain important patterns to reflect the graph

labels. Further, even if we consider the node measurements but

without node labels, the performance reduces by around 8.7%. This

is because the node labels are essential to categorize the similar-

ity of node measurements. Specifically, the three types of nodes:

generators, loads, and the slack bus, have completely different data

distributions. Thus, the labels of nodes not only help to correctly

concentrate nodes in the coarsening process but also regularizes

the calculation of graph kernels. Namely, based on Equation (12),

the node measurements of different types will not be considered

together when calculating the step kernel. This demonstrates the

importance of importing node labels for power systems.

Thirdly, the non-existence of edge measurements and labels re-

duces the performance slightly. The edge measurements can be

approximately determined by the node measurements due to the

underlying physical equations, i.e., power flow equations. Thus, we

can still obtain good results with node measurements. Further, the

edge labels in power systems bring limited capacity to categorize

edge measurements since there is a limited difference between the

flow of electric transformers and lines. Thus, the edge labels do not

affect the performance too much. This phenomenon brings a po-

tential future direction of studying the roles of physical constraints

in the DA to improve the efficiency, shown in Section 6.

5.5 Sensitivity Analysis
In this subsection, we study the model sensitivity with respect to

different hyper-parameters. In particular, we investigate the thresh-

old 𝑑𝑚𝑎𝑥 ∈ {1, 2, 3, 4, 5, 6} for spatial correlations, the interval range
𝛿𝑛 ∈ {2, 4, 6, 8, 10, 12} for temporal correlations, and the parameter

of the RBF kernel 𝑘𝑟𝑏𝑓 in the range of {0.05, 0.1, 0.15, 0.2, 0.25, 0.3}.
It is noteworthy that the polynomial kernel generally performs

worse than the RBF kernel. Thus, we only report the results of RBF

kernel to save space. Fig. 3 demonstrates the final results. Specifi-

cally, Fig. 3a shows that when𝑑𝑚𝑎𝑥 ≤ 3, the accuracy has a small os-

cillation. Under this distance, nodes can be well grouped. Especially,

the node label information can effectively avoid over-grouping and

keep the node separate by similarity. When 𝑑𝑚𝑎𝑥 ≥ 4, the accu-

racy decreases as 𝑑𝑚𝑎𝑥 increases. This is because when 𝑑𝑚𝑎𝑥 is

too large, many non-similar and non-local nodes are aggregated

together, which deteriorates the coarsening process.

Fig. 3b shows that when 6 ≤ 𝛿𝑛 ≤ 10, the temporal correlations

are well-captured, and our model can achieves the best performance.

However, when 𝛿𝑛 < 6, the calculated RBF kernels can not con-

sider the correct system changes to identify system labels. Further,

they may be non-robust with respect to measurement noises or

anomalies. When 𝛿𝑛 > 10, the incorporation of state change may

be too long and prevent the model from understanding system

dynamics. Thus, 𝛿𝑛 should be set in a proper range to obtain high

performances. Fig. 3c implies that GNA is robust to the change of

the RBF kernel parameter: a wide range of parameter values (e.g.,

0.1 ∼ 0.25) can lead to a relatively good performance.

6 CONCLUSION AND FUTURE WORK
In this paper, we study the problem of Domain Adaptation (DA) for

two physical systems. We show that the spatial-temporal correla-

tions and the label information of nodes and edges jointly determine

the graph similarity between two spatial-temporal graphs. With

specifically-designed graph kernels, we can integrate all the above

information to quantify the similarity of two graphs, which facil-

itates the learning of common knowledge. We denote our model
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as Graph kerNel-based distribution Adaptation (GNA). However,

the computational cost of GNA is high for large systems. Thus, we

develop a graph coarsening procedure to yield coarser graphs with

much smaller sizes and preserved graph similarity. We also have

the following future work. Firstly, the edge-level and node-level

tasks need to be further investigated for DA between graphs. Sec-

ondly, we can embed the designed graph kernel into deep learning

methods like GNN, which can benefit from both the high capac-

ity of similarity measuring and the power of hierarchical feature

extractions.
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