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ABSTRACT

Learning fair representations is an essential task to reduce bias
in data-oriented decision making. It protects minority subgroups
by requiring the learned representations to be independent of sen-
sitive attributes. To achieve independence, the vast majority of
the existing work primarily relaxes it to the minimization of the
mutual information between sensitive attributes and learned repre-
sentations. However, direct computation of mutual information is
computationally intractable, and various upper bounds currently
used either are still intractable or contradict the utility of the learned
representations. In this paper, we introduce distance covariance
as a new dependence measure into fair representation learning.
By observing that sensitive attributes (e.g., gender, race, and age
group) are typically categorical, the distance covariance can be con-
verted to a tractable penalty term without contradicting the utility
desideratum. Based on the tractable penalty, we propose FairDisCo,
a variational method to learn fair representations. Experiments
demonstrate that FairDisCo outperforms existing competitors for
fair representation learning.

CCS CONCEPTS

• Information systems→ Data mining; • Computing method-

ologies→ Learning latent representations; Unsupervised learning.
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1 INTRODUCTION

In many data-oriented decision making applications such as loan
approval and recidivism prediction, a fundamental requirement
is that the decision should be fairly made, i.e., free from sensitive
attributes such as gender, race, or age. However, it has been found
that classical machine learning and data mining systems may unin-
tentionally output biased predictions [5, 16, 20].

In view of this, fair representation learning [31, 48] has been pro-
posed and studied, with the goal of learning a representation free
of the impact from sensitive attributes while maintaining essential
expressiveness to aid the downstream decision making. Compu-
tationally, fair representation learning requires the learned rep-
resentations to be independent from the sensitive attributes. To
achieve the independence, most existing work aims to minimize
the mutual information (MI) between the learned representations
and the sensitive attributes. Due to the computational challenge
of MI [2, 41], existing work proposes to minimize various upper
bounds of MI. However, existing relaxations of MI may either result
in intractable penalty terms that can only be solved via the unsta-
ble and sometimes counter-productive adversarial training [32], or
contradict the utility desideratum [42] causing negative impact on
the prediction accuracy of downstream tasks.

To address the limitations of existing work, in this paper, we
propose to use distance covariance as a new dependence measure for
fair representation learning. We focus on a fundamental group fair-
ness notion named demographic parity (DP), which has attracted
a lot of attention in recent years [7, 9, 12, 28, 39, 42, 48]. Essen-
tially, DP means that different subgroups categorized according
to sensitive attributes should receive positive outcome at equal
rates. We show that distance covariance is a lower bound of MI,
and it bears nice properties such as consistence to independence
and asymptotic equivalence to MI. With the observation that sensi-
tive attributes are typically categorical (e.g., gender, race, and age
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group), we further convert the distance covariance between sensi-
tive attributes and learned representations to a penalty term, which
is tractable in optimization and does not contradict the utility terms.
We further incorporate it into a variational learning framework
named FairDisCo. Experimental evaluations are conducted on real
datasets to demonstrate the effectiveness of the proposed approach.

In summary, our main contributions include:
• Problem Definition. To the best of our knowledge, we are
the first to introduce distance covariance as a dependence
measure for fair representation learning.

• Analysis. We show that distance covariance is a tighter up-
per bound of maximal correlation compared to MI, and it
also provides a closed-form computation for the dependence
between target variables.

• Algorithm. We propose a fair representation learning ap-
proach FairDisCo. It incorporates the distance covariance
between sensitive attributes and learned representations as
a penalty term into the variational optimization framework.

• Experimental Evaluation. We conduct experiments show-
ing that FairDisCo can ensure near-perfect fairness while
generally achieving higher utility results than the existing
competitors. For example, with near-perfect fairness, the pro-
posed approach achieves up to 14.9% accuracy improvements
compared to the best competitors.

The rest of the paper is organized as follows. Section 2 analyzes
the distance covariance as a dependencemeasure. Section 3 presents
the proposed fair representation learning approach FairDisCo, and
Section 4 shows the experimental results. Section 5 reviews the
related work and Section 6 concludes the paper.

2 DISTANCE COVARIANCE AS DEPENDENCE

MEASURE

In this section, we introduce distance covariance, and show its
properties and relationships to mutual information.

2.1 Dependence Measures

For notation convenience, we start with the discussion of continu-
ous random variables, and such discussion can be easily extended
to discrete or categorical cases. For a pair of continuous random
variables (𝑋,𝑌 ) from spaceX×Y, we denote their joint probability
density function by 𝑝 (𝑋,𝑌 ) , and the marginal probability density
functions by 𝑝𝑋 and 𝑝𝑌 , respectively.

A measure of dependence indicates in some particular manner
how closely the variables 𝑋 and 𝑌 are related [37, 43], and the most
commonly used measure is Pearson’s correlation coefficient (a.k.a.
bivariate correlation):

𝜌 (𝑋,𝑌 ) = Cov(𝑋,𝑌 )√︁
Var(𝑋 )Var(𝑌 )

, (1)

where Cov(𝑋,𝑌 ) denotes the covariance of 𝑋 and 𝑌 , and Var(𝑋 )
and Var(𝑌 ) are the variances of 𝑋 and 𝑌 , respectively. However,
Pearson’s coefficient is limited to the case when 𝑋 and 𝑌 are lin-
early dependent, and it is highly insensitive for non-linear cases.
To go beyond the linear correlation measure, researchers propose
maximal correlation (a.k.a. sup correlation) [3], i.e., the supremum
of the Pearson correlation over all Borel-measurable functions 𝑓

and 𝑔 (for which Var(𝑓 (𝑋 )) and Var(𝑔(𝑌 )) are finite and nonzero):

𝜌max (𝑋,𝑌 ) = sup
𝑓 , 𝑔

𝜌
(
𝑓 (𝑋 ), 𝑔(𝑌 )

)
= sup
𝑓 , 𝑔

Cov(𝑓 (𝑋 ), 𝑔(𝑌 ))√︁
Var(𝑓 (𝑋 ))Var(𝑔(𝑌 ))

.

(2)
Though the maximal correlation enjoys many nice properties [4,
34, 46], it is usually not readily computable [1, Sec. 4.5]. Hence,
existing work tends to use mutual information as a measure of
dependence and minimize MI to boost the independence between
target variables. The MI between 𝑋 and 𝑌 is defined as

I(𝑋,𝑌 ) = 𝐷𝐾𝐿 (𝑝 (𝑋,𝑌 ) ∥𝑝𝑋 ⊗ 𝑝𝑌 )

=

∫
Y

∫
X
𝑝 (𝑋,𝑌 ) (𝑥,𝑦) log

(
𝑝 (𝑋,𝑌 ) (𝑥,𝑦)
𝑝𝑋 (𝑥)𝑝𝑌 (𝑦)

)
𝑑𝑥 𝑑𝑦,

(3)

where 𝐷𝐾𝐿 (·∥·) is the Kullback–Leibler (KL) divergence.
We summarize the two principal properties of MI as follows,

which reveal the connection to the maximal correlation (normalized
maximal covariance) and illustrate the main rationale of MI as a
dependence measure [14, 44].

Proposition 1. Consistency to independence. MI is non-
negative, i.e., I(𝑋,𝑌 ) ≥ 0, and the equation holds if and only if
𝑋 and 𝑌 are independent random variables.

Proposition 2. Upper bound to maximal covariance. For
the covariance Cov(𝑓 (𝑋 ), 𝑔(𝑌 )) of any two given functions 𝑓 and 𝑔,
we have

I(𝑋,𝑌 ) ≥ Cov(𝑓 (𝑋 ), 𝑔(𝑌 ))2

2∥ 𝑓 ∥2∞∥𝑔∥2∞
.

Proposition 1 can be proved by directly using Gibbs’ inequality.
The complete proof of Proposition 2 can be found in Appendix A.1.

However, MI is still intractable in practice. Instead, in this paper,
we propose to use the distance covariance as a dependence measure
for fair representation learning. Specifically, the distance covariance
refers to the (squared) Euclidean distance between 𝑝 (𝑋,𝑌 ) and 𝑝𝑋 ⊗
𝑝𝑌 , i.e.,

V2 (𝑋,𝑌 ) = 𝛿2𝐸 (𝑝 (𝑋,𝑌 ) , 𝑝𝑋 ⊗ 𝑝𝑌 )

=

∫
Y

∫
X
|𝑝 (𝑋,𝑌 ) (𝑥,𝑦) − 𝑝𝑋 (𝑥)𝑝𝑌 (𝑦) |2 𝑑𝑥 𝑑𝑦.

(4)

To normalize the distance covariance to [0, 1], one can divide it
by the factor

√︁
V2 (𝑋,𝑋 )V2 (𝑌,𝑌 ), and the normalized measure is

called the distance correlation [43].

2.2 Properties of Distance Covariance

Here, we start to discuss the properties of distance covariance.
Existing studies have enumerated seven properties that should be
satisfied by a dependence measure [3, 37], including symmetry,
boundedness, monotonicity to Pearson’s correlation for Gaussian
variables, etc. Both distance covariance and MI satisfy the same five
properties out of seven.1

In addition to these properties, we have the following two propo-
sitions saying that consistency to independence and upper bound to
maximal covariance also hold for the distance covariance.
1These two measures do not satisfy properties (c) and (e) as defined in [3]. The dis-
tance correlation (i.e., normalized distance covariance) can further satisfy these two
properties. However, we still use distance covariance for brevity as the two properties
have little computational benefit. Due to the space limit, we do not include the proofs
for these properties.
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Proposition 3. Consistency to independence. The distance
covariance V2 (𝑋,𝑌 ) is non-negative, and it achieves value zero if
and only if 𝑋 and 𝑌 are independent random variables.

Proposition 4. Upper bound to maximal covariance. For
the covariance Cov(𝑓 (𝑋 ), 𝑔(𝑌 )) of any two given functions 𝑓 and 𝑔,
we have

V2 (𝑋,𝑌 ) ≥ Cov(𝑓 (𝑋 ), 𝑔(𝑌 ))2

∥ 𝑓 2∥2∥𝑔2∥2
.

Proposition 3 can be proved through Jensen’s inequality [8], and
the proof for Proposition 4 is in Appendix A.2.

Next, we further compare the tightness of MI and distance co-
variance with the following theorem, which states that distance
covariance is a lower bound for MI. In other words, distance covari-
ance is a tighter upper bound to the maximal covariance compared
with MI.

Theorem 1. Lower bound to MI. If 𝑝 (𝑋,𝑌 ) and 𝑝𝑋 ⊗ 𝑝𝑌 is
(upper) bounded by 𝜏1 and 𝜏2, respectively, then

I(𝑋,𝑌 ) ≥ 1 − log(2)
max(𝜏1, 𝜏2)

V2 (𝑋,𝑌 ).

Proof. Let 𝑝 and 𝑞 be any given distributions, and define 𝜂 (𝑥) =
(𝑞(𝑥) − 𝑝 (𝑥))/𝑝 (𝑥). Then, the KL divergence can be rewritten as
follows,

𝐷𝐾𝐿 (𝑝 ∥𝑞) =
∫
X
𝑝 (𝑥) log(𝑝 (𝑥)/𝑞 (𝑥)) 𝑑𝑥 = −

∫
X
𝑝 (𝑥) log(1 + 𝜂 (𝑥)) 𝑑𝑥.

We define 𝐴 := {𝑥 | 𝜂 (𝑥) > 1} = {𝑥 | 𝑞(𝑥) > 2𝑝 (𝑥)} and 𝐵 := {𝑥 |
𝜂 (𝑥) ≤ 1} = {𝑥 | 𝑞(𝑥) ≤ 2𝑝 (𝑥)}. Then, we can obtain that

(1) for 𝑥 ∈ 𝐴, (1 + 𝜂 (𝑥)) ≤ 𝑒𝑎𝜂 (𝑥) , where 𝑎 = log(2);
(2) for 𝑥 ∈ 𝐵, (1 + 𝜂 (𝑥)) ≤ 𝑒𝜂 (𝑥)−𝑏𝜂 (𝑥)2 , where 𝑏 = 1 − log(2).

Note that we have∫
X
𝑝 (𝑥)𝜂 (𝑥) 𝑑𝑥 =

∫
X
(𝑞(𝑥) − 𝑝 (𝑥)) 𝑑𝑥 = 0,

which implies that
∫
𝐴
𝑝 (𝑥)𝜂 (𝑥) 𝑑𝑥 = −

∫
𝐵
𝑝 (𝑥)𝜂 (𝑥) 𝑑𝑥 . Putting all

together, we have
𝐷𝐾𝐿 (𝑝 ∥𝑞)

= −
∫
𝐴

𝑝 (𝑥) log(1 + 𝜂 (𝑥)) 𝑑𝑥 −
∫
𝐵

𝑝 (𝑥) log(1 + 𝜂 (𝑥)) 𝑑𝑥

≥ − 𝑎
∫
𝐴

𝑝 (𝑥)𝜂 (𝑥) 𝑑𝑥 −
∫
𝐵

𝑝 (𝑥)𝜂 (𝑥) 𝑑𝑥 + 𝑏
∫
𝐵

𝑝 (𝑥)𝜂 (𝑥)2 𝑑𝑥

=(1 − 𝑎)
∫
𝐴

𝑝 (𝑥)𝜂 (𝑥) 𝑑𝑥 + 𝑏
∫
𝐵

𝑝 (𝑥)𝜂 (𝑥)2 𝑑𝑥

=(1 − log(2))
(∫
𝐴

|𝑞(𝑥) − 𝑝 (𝑥) | 𝑑𝑥 +
∫
𝐵

𝑝 (𝑥)
(
𝑞(𝑥) − 𝑝 (𝑥)

𝑝 (𝑥)

)2
𝑑𝑥

)
.

Now, we switch to the mutual information, and we have

I(𝑋,𝑌 ) ≥ (1 − log(2))
(∫
𝐴

|𝑝𝑋 (𝑥)𝑝𝑌 (𝑦) − 𝑝 (𝑋,𝑌 ) (𝑥,𝑦) | 𝑑𝑥 𝑑𝑦

+
∫
𝐵

|𝑝𝑋 (𝑥)𝑝𝑌 (𝑦) − 𝑝 (𝑋,𝑌 ) (𝑥,𝑦) |2

𝑝 (𝑋,𝑌 ) (𝑥,𝑦)
𝑑𝑥 𝑑𝑦

)
,

where
𝐴 =

{
(𝑥,𝑦) | 𝑝𝑋 (𝑥)𝑝𝑌 (𝑦) > 2𝑝 (𝑋,𝑌 ) (𝑥,𝑦)

}
,

𝐵 =
{
(𝑥,𝑦) | 𝑝𝑋 (𝑥)𝑝𝑌 (𝑦) ≤ 2𝑝 (𝑋,𝑌 ) (𝑥,𝑦)

}
.

Hence, for the first summand in the parenthesis of the RHS,∫
𝐴

|𝑝𝑋 (𝑥)𝑝𝑌 (𝑦) − 𝑝 (𝑋,𝑌 ) (𝑥,𝑦) | 𝑑𝑥 𝑑𝑦

=

∫
𝐴

���� 𝑝 (𝑋,𝑌 ) (𝑥,𝑦)𝑝𝑋 (𝑥)𝑝𝑌 (𝑦)
− 1

����𝑝𝑋 (𝑥)𝑝𝑌 (𝑦) 𝑑𝑥 𝑑𝑦

≥
∫
𝐴

���� 𝑝 (𝑋,𝑌 ) (𝑥,𝑦)𝑝𝑋 (𝑥)𝑝𝑌 (𝑦)
− 1

����2 𝑝𝑋 (𝑥)𝑝𝑌 (𝑦) 𝑑𝑥 𝑑𝑦

=

∫
𝐴

���� 𝑝 (𝑋,𝑌 ) (𝑥,𝑦)𝑝𝑋 (𝑥)𝑝𝑌 (𝑦)
− 1

����2 (𝑝𝑋 (𝑥)𝑝𝑌 (𝑦))2
𝑝𝑋 (𝑥)𝑝𝑌 (𝑦)

𝑑𝑥 𝑑𝑦

=

∫
𝐴

|𝑝𝑋 (𝑥)𝑝𝑌 (𝑦) − 𝑝 (𝑋,𝑌 ) (𝑥,𝑦) |2

𝑝𝑋 (𝑥)𝑝𝑌 (𝑦)
𝑑𝑥 𝑑𝑦

≥ 1
max(𝜏1, 𝜏2)

∫
𝐴

|𝑝𝑋 (𝑥)𝑝𝑌 (𝑦) − 𝑝 (𝑋,𝑌 ) (𝑥,𝑦) |2 𝑑𝑥 𝑑𝑦.

For the second summand in the parenthesis of the RHS,∫
𝐵

|𝑝𝑋 (𝑥)𝑝𝑌 (𝑦) − 𝑝 (𝑋,𝑌 ) (𝑥,𝑦) |2

𝑝 (𝑋,𝑌 ) (𝑥,𝑦)
𝑑𝑥 𝑑𝑦

≥ 1
max(𝜏1, 𝜏2)

∫
𝐵

|𝑝𝑋 (𝑥)𝑝𝑌 (𝑦) − 𝑝 (𝑋,𝑌 ) (𝑥,𝑦) |2 𝑑𝑥 𝑑𝑦.

Finally, we have

I(𝑋,𝑌 ) ≥ 1 − log(2)
max(𝜏1, 𝜏2)

∫
X

∫
Y
|𝑝𝑋 (𝑥)𝑝𝑌 (𝑦) − 𝑝 (𝑋,𝑌 ) (𝑥,𝑦) |2 𝑑𝑥 𝑑𝑦

=
1 − log(2)
max(𝜏1, 𝜏2)

V2 (𝑋,𝑌 ),

which completes the proof. □

We next show an asymptotic equivalence between distance co-
variance and MI. Elaborately, as the distance covariance is mini-
mized, we can consider a “nearly” independent case, i.e., 𝑝 (𝑋,𝑌 ) ≈
𝑝𝑋 ⊗ 𝑝𝑌 , and define a reference distribution 𝑟 (𝑋,𝑌 ) as follows,

𝑝 (𝑋,𝑌 ) = 𝑟 (𝑋,𝑌 ) + 𝜖𝜙 (𝑋,𝑌 ) ,
𝑝𝑋 ⊗ 𝑝𝑌 = 𝑟 (𝑋,𝑌 ) + 𝜖𝜑 (𝑋,𝑌 ) ,

(5)

where 𝜖 > 0 and 𝜙 (𝑋,𝑌 ) , 𝜑 (𝑋,𝑌 ) are two individual perturbations.
We assume they are valid additive perturbations satisfying [30]:∫

X

∫
Y
𝜙 (𝑋,𝑌 ) (𝑥,𝑦) 𝑑𝑥 𝑑𝑦 = 0,

∫
X

∫
Y
𝜑 (𝑋,𝑌 ) (𝑥,𝑦) 𝑑𝑥 𝑑𝑦 = 0.

Theorem 2. Asymptotic equivalence toMI. If the distributions
𝑝 (𝑋,𝑌 ) and 𝑝𝑋 ⊗ 𝑝𝑌 can be expressed by 𝑟 (𝑋,𝑌 ) , 𝜙 (𝑋,𝑌 ) , and 𝜑 (𝑋,𝑌 )
as in Eq. (5), MI between them can be approximated as

I(𝑋,𝑌 ) ≈ 1
2
V2
1/𝑟 (𝑋,𝑌 )

(𝑋,𝑌 ),

where

V2
1/𝑟 (𝑋,𝑌 )

(𝑋,𝑌 ) =
∫
X

∫
Y

|𝑝 (𝑋,𝑌 ) (𝑥,𝑦) − 𝑝𝑋 (𝑥)𝑝𝑌 (𝑦) |2

𝑟 (𝑋,𝑌 ) (𝑥,𝑦)
𝑑𝑥 𝑑𝑦.

This theorem can be proved by applying Taylor’s theorem to the
odds ratio function 𝑓 (𝑡) = 𝑡 log(𝑡) of the KL divergence [35], and
details can be found in Appendix A.3. In this sense, MI can be
interpreted as a weighted distance covariance when 𝑋 and 𝑌 are
close to independence.
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3 THE PROPOSED FAIRDISCO APPROACH

In this section, we first formulate the problem under a variational
framework, and then show how to compute the proposed penalty
term, followed by some connection analysis to existing work.

3.1 Problem Formulation

We formulate the fair representation learning problem under the
variational framework. Given a dataset 𝐷 = {(x𝑖 , s𝑖 )}𝑁𝑖=1, where
x𝑖 ∈ X and s𝑖 ∈ S. The sensitive attribute s is usually categorical
(e.g., gender, race, and age group). The goal of fair representation
learning is to train an encoder to transform (x, s) to a continuous
representation z ∈ Z, which should be expressive in terms of
serving the downstream predictions while ensuring the fairness
with respect to s.

To tackle this problem, one often admits an assumption that the
data point (x𝑖 , s𝑖 ) is generated by a random process consisting of
two steps: (1) generating z𝑖 and s𝑖 from distributions 𝑝 (z) and 𝑝 (s),
respectively; and (2) generating x𝑖 from the distribution 𝑝 (x|z, s).
This random process can be modeled as a general probabilistic
graphical model [28], where the observable x is enforced to be gen-
erated from two individual sources z and s so that their correlation
can be reduced.

Let the generative model (i.e., decoder) 𝑝𝜃 (x|z, s) be param-
eterized by 𝜃 ∈ Θ, and the variational posterior (i.e., encoder)
𝑞𝜙 (z|x, s) be parameterized by 𝜙 ∈ Φ. We use a multivariate Gauss-
ian with diagonal covariance to form the posterior 𝑞𝜙 (z|x, s), i.e.,
𝑞𝜙 (z|x, s) = N𝜙 (z; 𝝁, diag(𝝈2)), and use a standard multivariate
Gaussian N(0, I) to form the prior 𝑝 (z).
Limitations of Existing Solutions. With the above variational
framework, existing work mainly incorporates an upper bound of
MI as the penalty. For example, the following upper bound has been
essentially used by several existing work [32, 33, 39],

I(z, s) ≤ I(z; x, s) ≤ E𝑝 (x,s) [𝐷𝐾𝐿 (𝑞𝜙 (z|x, s)∥𝑝 (z))] . (6)

Notice that I(z; x, s) = I(z, s) + I(z, x|s). Thus, although tractable,
Eq. (6) is also the upper bound of I(z, x|s), which represents the ex-
pressiveness of z, and it enforces the posterior close to the prior in a
similar way as 𝛽-VAE [18]. Consequently, fairness may be achieved
by Eq. (6) at the expense of sacrificing expressiveness/utility. In
view of this, a tighter upper bound is given by Song et al. [42]:

I(z, s) ≤ E𝑞𝜙 (z,s) [𝐷𝐾𝐿 (𝑝 (s|z)∥𝑝 (s))] . (7)

However, this upper bound is intractable because of posterior prob-
ability 𝑝 (s|z) is unknown, and adversarial training is needed to
approximate it. The similar adversarial-based upper bound is used
by Creager et al. [9], which minimizes the KL divergence of two
distributions using the density-ratio trick. However, it was observed
that adversarial training might be unstable and sometimes counter-
productive in the context of fair representation learning [32].

Our Objective Function. To tackle the limitations of MI-based
penalties, we use the penalty term derived from the distance co-
variance to ensure the independence of z and s, i.e.,

V2
𝜙
(z, s) =

∫
Z

∫
S
|𝑝𝜙 (z, s) − 𝑝𝜙 (z)𝑝 (s) |2 𝑑𝑧 𝑑𝑠. (8)

Therefore, the optimization problem of fair representation learning
can be formulated as follows,

max
𝜙,𝜃

{
log𝑝𝜃 (x|s) − 𝛽V2

𝜙
(z, s)

}
, (9)

where 𝛽 is a balancing parameter. A larger 𝛽 means more attention
is paid to fairness.

For the first utility term in the above formulation, both 𝜃 and 𝜙
can be jointly optimized via the SGVB algorithm which maximizes
a variational lower bound of the marginal likelihood [23]:

log𝑝𝜃 (x|s) ≥ E𝑞𝜙 (z |x,s) [log 𝑝𝜃 (x|z, s)]
− E𝑝 (x,s) [𝐷𝐾𝐿 (𝑞𝜙 (z|x, s)∥𝑝 (z))] .

(10)

Putting together, we can obtain a tractable lower bound of Eq. (9)
as follows,

max
𝜙,𝜃

{
E𝑞𝜙 (z |x,s) [log𝑝𝜃 (x|z, s)] − 𝐷𝐾𝐿 (𝑞𝜙 (z|x, s)∥𝑝 (z))

− 𝛽
∫
Z

∫
S
|𝑝𝜙 (z, s) − 𝑝𝜙 (z)𝑝 (s) |2 𝑑𝑧 𝑑𝑠

}
,

(11)

where minimizing the penalty (i.e., Eq. (8)) will not contradict the
maximization of the utility (i.e., Eq. (10)).

3.2 Penalty Computation

We next show the computation of the penalty term in Eq. (11). We
assume that s is a discrete/categorical variable, and we simplify the
value space of s as S = {1, 2..., 𝐾} without loss of generality. Using
the definition of Euclidean distance and the law of total probability,
the penalty term can be rewritten as

V2 (z, s) =
∫
Z

𝐾∑︁
𝑘=1

|𝑝 (z, s = 𝑘) − 𝑝 (z)𝑝 (s = 𝑘) |2 𝑑𝑧

=

𝐾∑︁
𝑘=1

𝑝 (s = 𝑘)2
∫
Z

|𝑝 (z|s = 𝑘) − 𝑝 (z) |2 𝑑𝑧

=

𝐾∑︁
𝑘=1

𝑝 (s𝑘 )2𝑝 (s¬𝑘 )2
∫
Z

|𝑝 (z|s𝑘 ) − 𝑝 (z|s¬𝑘 ) |2 𝑑𝑧,

where the last equation is derived by the decomposition 𝑝 (z) =

𝑝 (z, s = 𝑘) + 𝑝 (z, s ≠ 𝑘), and we denote 𝑝 (s = 𝑘) and 𝑝 (s ≠ 𝑘)
by 𝑝 (s𝑘 ) and 𝑝 (s¬𝑘 ) for simplicity. We further compute the two
terms in the integral by adding the expectation over 𝑝 (x|s𝑘 ) and
𝑝 (x|s¬𝑘 ), i.e.,

𝑝 (z|s𝑘 ) = E𝑝 (x |s𝑘 ) [𝑝 (z|x, s
𝑘 )],

𝑝 (z|s¬𝑘 ) = E𝑝 (x |s¬𝑘 ) [𝑝 (z|x, s
¬𝑘 )] .

Now, the distance covariance penalty only involves distributions
𝑝 (s), 𝑝 (x|s), and 𝑝 (z|x, s). It should be noted that s and x are both
observables, and thus we can estimate the distributions 𝑝 (s) based
on the dataset 𝐷 . For details, the approximations 𝑞(s) is

𝑞(s𝑘 ) = 𝑁𝑘

𝑁
, 𝑞(s¬𝑘 ) = 𝑁¬𝑘

𝑁

where 𝑁𝑘 means the number of s that takes value 𝑘 , and 𝑁¬𝑘 means
the number of s that do not takes value 𝑘 .
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Next, we adopt the variational posterior 𝑞𝜙 (z|x, s) as an approx-
imation of the last term 𝑝 (z|x, s). Using Monte Carlo estimate of
the distance covariance, we have

V2
𝜙
(z, s) ≈

𝐾∑︁
𝑘=1

𝑁 2
𝑘
𝑁 2
¬𝑘

𝑁 4

∫
Z

|𝑞𝜙 (z|s𝑘 ) − 𝑞𝜙 (z|s¬𝑘 ) |2 𝑑𝑧, (12)

where

𝑞𝜙 (z|s𝑘 ) =
1
𝑁𝑘

∑︁
(𝑥𝑖 ,𝑠𝑖 ) ∈D
𝑠𝑖=𝑘

𝑞𝜙 (z|x𝑖 , s𝑖 ),

𝑞𝜙 (z|s¬𝑘 ) =
1
𝑁¬𝑘

∑︁
(𝑥𝑖 ,𝑠𝑖 ) ∈D
𝑠𝑖≠𝑘

𝑞𝜙 (z|x𝑖 , s𝑖 ) .
(13)

Since 𝑞𝜙 (z|x, s) is modeled as a Gaussian distribution, the integra-
tion term over z can be viewed as the squared Euclidean distance
between two Gaussian mixture models 𝑞𝜙 (z|s𝑘 ) and 𝑞𝜙 (z|s¬𝑘 ) (in
the following, we denote them by 𝑞𝑘

𝜙
and 𝑞¬𝑘

𝜙
for brevity) [38], and

its closed-form expression is [36, Sec. 8.1.8]

𝛿2𝐸 (𝑞
𝑘
𝜙
, 𝑞¬𝑘
𝜙

) = 1
𝑁 2
𝑘

𝑁∑︁
𝑖=1,
s𝑖=𝑘

𝑁∑︁
𝑗=1,
s𝑗=𝑘

N
(
𝝁𝑖 ; 𝝁 𝑗 , diag(𝝈2

𝑖 + 𝝈2
𝑗 )

)
+ 1
𝑁 2
¬𝑘

𝑁∑︁
𝑖=1,
s𝑖≠𝑘

𝑁∑︁
𝑗=1,
s𝑗≠𝑘

N
(
𝝁𝑖 ; 𝝁 𝑗 , diag(𝝈2

𝑗 + 𝝈2
𝑗 )

)
− 2
𝑁𝑘𝑁¬𝑘

𝑁∑︁
𝑖=1,
s𝑖=𝑘

𝑁∑︁
𝑗=1,
s𝑗≠𝑘

N
(
𝝁𝑖 ; 𝝁 𝑗 , diag(𝝈2

𝑖 + 𝝈2
𝑗 )

)
.

(14)

Algorithm and Analysis. In practice, we need to update the pa-
rameters in each mini batch. For the estimation of our penalty term
(i.e., Eq. (12)), it requires 𝑂 (𝐾 ∗ 𝑑 ∗ 𝐵2) time where 𝐾 means the
number of values of discrete variable s, 𝑑 means the dimension
of latent space Z, and 𝐵 is the batch size. We can use the matrix
algebra to compute the distance covariance penalty, and further
accelerate its computation via parallelism. The overall algorithm is
summarized in Alg. 1.

3.3 Relationship with Other Penalty Functions

In addition to MI-based penalty, VFAE [28] proposes to impose the
independence constraint via maximal mean discrepancy (MMD).
Specifically, it uses the distance between the data sampled from two
distributions, which are actually the Gaussian mixture models in
Eq. (13), as a biased empirical estimate ofMMD [15]. Comparedwith
our penalty term, VFAE conducts an additional sampling process
which could hurt both accuracy and efficiency. Moreover, if we
ideally compute the exact MMD through the two Gaussian mixture
models rather than estimate it by the distance as done by VFAE, we
have the following proposition, which shows that the closed-form
expression of MMD is similar to Eq. (14) but contains an extra noise
term 1

2𝛾 𝐼 .

Proposition 5. Let the kernel of MMD be a radial basis function
𝜅 (𝑥,𝑦) = exp(−𝛾 ∥𝑥 − 𝑦∥2), and the two Gaussian mixture models

Algorithm 1 The FairDisCo Algorithm

Input: dataset D = {(x𝑖 , s𝑖 )}𝑁𝑖=1, and penalty coefficient 𝛽 ;
Output: encoder 𝑓𝜙 (x, s) and decoder 𝑓𝜃 (z, s).
1: for each batch D𝑏𝑎𝑡𝑐ℎ = {(x𝑖 , s𝑖 )}𝐵𝑖=1 sampled from D do

2: let 𝑞𝜙 (z|x𝑖 , s𝑖 ) = N(𝝁𝑖 ,𝝈𝑖 ) where (𝝁𝑖 ,𝝈𝑖 ) = 𝑓𝜙 (x𝑖 , s𝑖 );
3: calculate KL divergence loss:

𝐿𝑘𝑙 =
∑𝐵
𝑖=1 𝐷𝐾𝐿 (𝑞𝜙 (z|x𝑖 , s𝑖 )∥𝑝 (z));

4: calculate distance covariance loss: 𝐿𝑓 𝑎𝑖𝑟 = V2
𝜙
(z, s);

5: for each data point (x𝑖 , s𝑖 ) ∈ D𝑏𝑎𝑡𝑐ℎ do

6: sample z𝑖 ∼ 𝑞𝜙 (z|x𝑖 , s𝑖 );
7: if x is discrete then
8: 𝑝𝜃 (x|z𝑖 , s𝑖 ) = Cat(𝒑𝑖 ) where 𝒑𝑖 = 𝑓𝜃 (z𝑖 , s𝑖 );
9: else if x is continuous then
10: 𝑝𝜃 (x|z𝑖 , s𝑖 ) = N(𝝁𝑖 , 𝝈̂𝑖 ) where (𝝁𝑖 , 𝝈̂𝑖 ) = 𝑓𝜃 (z𝑖 , s𝑖 );
11: end if

12: end for

13: calculate reconstruction loss: 𝐿𝑟𝑒 =
∑𝐵
𝑖=1 log(𝑝𝜃 (x𝑖 |z𝑖 , s𝑖 ));

14: put all losses together: 𝐿 = 𝐿𝑘𝑙 − 𝐿𝑟𝑒 + 𝛽 ∗ 𝐿𝑓 𝑎𝑖𝑟 ;
15: update parameters 𝜙 and 𝜃 via the gradient descent of 𝐿;
16: end for

𝑞𝜙 (z|s𝑘 ) and 𝑞𝜙 (z|s¬𝑘 ) be defined as in Eq. (13). Then, MMD between
𝑞𝑘
𝜙
and 𝑞¬𝑘

𝜙
can be computed as follows.

MMD(𝑞𝑘
𝜙
, 𝑞¬𝑘
𝜙

)2 = 1
𝑁 2
𝑘

𝑁∑︁
𝑖=1,
s𝑖=𝑘

𝑁∑︁
𝑗=1,
s𝑗=𝑘

𝜅 (𝑞𝜙 (z|x𝑖 , s𝑖 ), 𝑞𝜙 (z|x𝑗 , s𝑗 ))

+ 1
𝑁 2
¬𝑘

𝑁∑︁
𝑖=1,
s𝑖≠𝑘

𝑁∑︁
𝑗=1,
s𝑗≠𝑘

𝜅 (𝑞𝜙 (z|x𝑖 , s𝑖 ), 𝑞𝜙 (z|x𝑗 , s𝑗 ))

− 2
𝑁𝑘𝑁¬𝑘

𝑁∑︁
𝑖=1,
s𝑖=𝑘

𝑁∑︁
𝑗=1,
s𝑗≠𝑘

𝜅 (𝑞𝜙 (z|x𝑖 , s𝑖 ), 𝑞𝜙 (z|x𝑗 , s𝑗 )),

where

𝜅 (𝑞𝜙 (z|x𝑖 , s𝑖 ), 𝑞𝜙 (z|x𝑗 , s𝑗 )) = ( 𝜋
𝛾
)
𝑑
2 N(𝝁𝑖 ; 𝝁 𝑗 , diag(𝝈1+𝝈2)+

1
2𝛾

I) .

4 EXPERIMENTAL EVALUATIONS

In this section, we present the experimental results.

4.1 Experimental Setup

Datasets. We perform experiments on two large public real-world
datasets that are commonly used in the fair machine learning com-
munity [28, 32, 39, 48]. The Adult dataset2 contains 45,222 individ-
uals each of which is described by some attributes (e.g., gender,
education level, age, etc.). We use gender as the sensitive attribute,
and the downstream task is to predict whether an individual earns
more than $50K/year. The Heritage Health dataset3 contains 115,143
entries and each entry describes an patient (e.g., age, gender, physi-
ological indexes, etc.). We use age group (i.e., whether a patient is
2https://archive.ics.uci.edu/ml/datasets/adult
3https://www.kaggle.com/c/hhp
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older than 75) as the sensitive attribute, and the downstream task is
to predict whether a patient will go into hospital in the next year.
Metrics. To evaluate the effectiveness of the learned represen-
tations, we consider the following metrics. For fairness, we con-
sider demographic parity Δ𝐷𝑃 [29] and an inference-based metric
sAUC. Here, sAUC is the AUC result of inferring s from z. For util-
ity/expressiveness, we adopt the yAUC metric which is the AUC
result of applying the learned representations in the downstream
prediction task. The lower Δ𝐷𝑃 , higher yAUC, and closer sAUC to
0.5, the better.
Compared Methods. We compare our method to the following
models: VFAE [28], INV [32], FFVAE [9], and CPF [39]. Among these
competitors, VFAE uses an MMD penalty, and the latter three use
MI-related penalties. In particular, INV and CPF relax MI to the
upper bound in Eq. (6), and FFVAE approximates an intractable
upper bound with adversarial learning.
Reproducibility. We tune the hyperparameters for each com-
pared method. Specifically, for VFAE, we search the fairness penalty
coefficient 𝛽 ∈ {10𝑘 |𝑘 = 0, 1, ..., 10}. For INV, we search its fair-
ness penalty coefficient 𝜆 ∈ {0.1, 0.5, 1, 10, 50, 100, 1000}. For FFVAE,
we tune its predictiveness coefficient 𝛼 in {100, 200, 300, 500} and
observe little differences; thus we fix 𝛼 = 300, and tune the fair-
ness/disentanglement coefficient 𝛾 ∈ {1, 5, 10, 20, 40, 60, 100}. We
search the fairness penalty coefficient 𝛽 ∈ {1, 1.5, 2, 2.5, 3, 5, 10, 100}
for CPF. For our own method, we set 𝛽 the same as that in VFAE.
For all datasets and baselines, we assume latent spaceZ has 8 di-
mensions, and use Adam optimizer with initial learning rate 0.001
and training epoch 1,000. For the Adult dataset, we use the same
train/test split as existing work [28, 32, 39, 48]. For the Health
dataset, we random split 80% data as the training set and use the
rest as the test set. For downstream classification task and inference
task (i.e., computing sAUC), we utilize a powerful non-linear model
Random Forest as the classifier. The density 𝑝𝜃 (x|z, s) is modeled
as a product of categorical distributions. We use one hidden layer
of 64 units MLP to approximate density, ReLU as the activation
function. All the experiments were carried out on a server equipped
with 256GB RAM, one 16-core Intel i9-9900K CPU@3.60GHz and
one NVIDIA GeForce RTX 2080Ti GPU. The datasets and the code
are available at https://github.com/SoftWiser-group/FairDisCo.

4.2 Experimental Results

(A) Classification Results. We first show the fairness-utility curves
of the classification results in Fig 1. For the curves, we sweep a
range of hyperparameters as mentioned above for each model, run
each hyperparameter 10 times, and report the mean results. We
can observe from the figures that our method achieves the best
tradeoffs in most cases. Although there is an inherent tradeoff be-
tween fairness and utility [51], our method can ensure near-perfect
fairness (Δ𝐷𝑃 ≈ 0, 𝑠𝐴𝑈𝐶 ≈ 0.5) while achieving a higher accuracy
(𝑦𝐴𝑈𝐶) in most cases. For example, on the Adult dataset, with near-
perfect fairness satisfaction (0.0064 vs. 0.0110 in Δ𝐷𝑃 and 0.5032 vs.
0.5097 in 𝑠𝐴𝑈𝐶 , respectively), FairDisCo achieves 14.9% and 13.5%
accuracy improvements compared to the best competitors (FFVAE
and CPF, respectively). The FFVAE method based on adversarial
training is less effective. This is due to the difficulty and instability
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Figure 1: Fairness-utility tradeoff curves. FairDisCo can en-

sure near-perfect fairness while generally achieving a higher

accuracy than the competitors.

of training the discriminator. The proposed FairDisCo also out-
performs the other two methods INV and CPF. The reason is that
their upper bound of I(z, s) is also an upper bound of I(z, x|s) [42].
Therefore, minimizing the upper bound may have negative impact
on the utility aspect. VFAE is based on the MMD penalty and it is
less effective than FairDisCo. This is due to the biased empirical
estimate of MMD in practice.

We notice that on the Health dataset, almost every method
achieves close tradeoffs between Δ𝐷𝑃 and𝑦𝐴𝑈𝐶 , and Δ𝐷𝑃 is within
a small interval [0, 0.0015].We further estimateMI using the nearest-
neighbor method [40]. We have I(s, y) = 0.00675 for the Health
data, and I(s, y) = 0.025431 for the Adult data. This result indi-
cates that the classification task on the Health dataset is inherently
weakly correlated to the sensitive attribute. Therefore, DP is eas-
ier to achieve in this dataset. Still, we observe that FairDisCo is
better than the competitors in tradeoffs between 𝑠𝐴𝑈𝐶 and 𝑦𝐴𝑈𝐶 ,
meaning that the learned representations of FairDisCo contain
less information about the sensitive attributes from the inference
perspective.
(B) Mutual Information versus Distance Covariance. Next, we inves-
tigate the relationship between MI I(z, s) and distance covariance
V2 (z, s) used in FairDisCo. The results are shown in Fig. 2, where
we still use [40] to estimate I(z, s) on the test set. The two figures
on the left side of Fig. 2 demonstrate the correlation between be-
tweenMI and distance covariance. Observe that these twomeasures
are strongly positively correlated (with Pearson correlation coeffi-
cient 0.89). The two figures on the right side of Fig. 2 demonstrate
how 𝛽 controls MI and distance covariance. We can observe that
these two measures have the same trend under different 𝛽’s, and
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Figure 2: The relationship between MI and distance covari-

ance. These two measures are strongly positively correlated,

and share a similar trend converging to zero.
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Figure 3: Fairness results under different hyperparameters.

both converge to zero, which is consistent with our analysis in
Section 2.2.
(C) Effect of Hyperparameters. We next investigate how the penalty
coefficient 𝛽 controls the fairness of FairDisCo, and show the re-
sults on the Adult dataset in Fig. 3. In the figure, we also show
the results of VFAE for comparison since it shares the same hy-
perparameter setting as FairDisCo. From Fig. 3, we observe that
Δ𝐷𝑃 and 𝑠𝐴𝑈𝐶 clearly decrease as 𝛽 increases for both FairDisCo
and VFAE. Additionally, FairDisCo achieves better fairness and is
smoother in terms of controlling the fairness compared with VFAE.
This is due to the fact that MMD may result in biased empirical
estimation as discussed in Section 3.3.
(D) Visualization results on handwritten digit images. Finally, we
provide some visualization results by applying FairDisCo on two
handwritten digit datasets: Color MNIST and MNIST. Note that
these two datasets do not have fairness issues and the purpose is to
provide some visualization results with better interpretability. For
Color MNIST dataset, we use the color of the digits as s, and aim to
encode all the non-color information into the latent representations
z. By manipulating the input s of the decoder in FairDisCo, we aim
to generate different color digits with the same style. For MNIST
dataset, we use the label of digital as s, and we aim to generate
other digits with the same style.

(a) Real digits (b) Generated red digits

(c) Generated green digits (d) Generated blue digits

Figure 4: Generated digits with different colors but the same

style. Here, we set the color as the sensitive attribute. The re-

sult indicates that the color is disentangled from the learned

representations.

Real Generated

Figure 5: Generated digits with different labels but the same

style. Here, we set the digit label as the sensitive attribute.

The result indicates that the digit label is disentangled from

the learned representations.

The density 𝑝𝜃 (x|z, s) is modeled as a multivariate Bernoulli dis-
tribution here. We assume latent spaceZ has 10 dimensions, and
use the same encoder and decoder architecture as in [22] to approx-
imate densities 𝑞𝜙 (z|x, s) and 𝑝𝜃 (x|z, s). For the hyperparameter 𝛽 ,
we set 𝑙𝑔𝛽 = 7.

The results are shown in Fig. 4 and Fig. 5. For Fig. 4, we encoder
a real digit by encoder 𝑞𝜙 (z|x, s) to obtain a latent representation
z, and we manipulate s ∈ {𝑟, 𝑔, 𝑏} for the decoder 𝑝𝜃 (x|z, s) to
generate a digit of the specified color with the same style. For
Fig. 5, we manipulate the s ∈ {0, 1, ..., 9} for the decoder 𝑝𝜃 (x|z, s)
to generate a digit of the specified label with the same style. We
can observe from the figures that FairDisCo successfully produces
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digits with the specified colors and labels. This result indicates
that the protected sensitive attribute in this experiment is indeed
disentangled from the learned representations.

5 RELATED WORK

In literature, various fair representation learning methods have
been proposed to ensure group fairness. For example, Zemel et
al. [48] assign each data instance to certain prototypes as latent
representations, and add a constraint on the prototype coefficients
to ensure fairness. Louizos et al. [28] propose a variational frame-
work for fair representation learning and add an MMD penalty to
constrain the dependence between sensitive attributes and learned
representations. Edwards and Storkey [11] formulate the problem
as a min-max optimization problem, and train an adversary try-
ing to predict sensitive attributes from the learned representations.
Such adversarial training method is followed by several later pro-
posals [29, 45, 49], due to the intractability of many MI-based upper
bounds. Later, Song et al. [42] find that the commonly-used MI
upper bound may contradict the utility of representation learn-
ing and thus achieve fairness at the expense of sacrificing utility.
Therefore, they propose a tighter and intractable upper bound and
solve it through adversarial training. Moyer et al. [32] identify the
instability issues in adversarial training and thus present a tractable
upper bound of MI without the need of adversarial training. Re-
cently, Creager et al. [9] and Rodriguez et al. [39] adapt the progress
of disentangled representation learning (e.g., FactorVAE [22] and
𝛽-VAE [18], respectively) into the fairness domain, and propose to
achieve fairness via disentangling the effect of sensitive attributes
from latent representations. Gitiaux and Rangwala [13] further ex-
tends 𝛽-VAE by modeling the latent representation as a binary bit
stream.

In addition to demographic parity, other group fairness notions
such as equalized odds [17] and accuracy parity [47] have also been
studied. Essentially, these notions are defined under the supervised
learning scenario requiring the availability of labels, while our
current focus is on the unsupervised case. Extending our method to
supervised settings is left as future work.

In addition to group fairness, individual fairness [10] and coun-
terfactual fairness [25] have also received much recent attention.
Kearns et al. [21] further study subgroup fairness, which interpo-
lates between group fairness and individual fairness. The incompat-
ibility and compatibility relationships between the above notions
have also been studied [24, 50]. Recent work starts to consider the
fairness issues in federated learning [19, 27], or when there are
noisy sensitive features [6, 26].

6 CONCLUSIONS

In this paper, we advocate to use distance covariance, as a bet-
ter alternative to the widely-used mutual information, to measure
the dependence between sensitive attributes and learned represen-
tations. Compared with mutual information, distance covariance
provides a tighter upper bound of maximal correlation. We incor-
porate the distance covariance as a penalty into a variational fair
representation learning framework, and show that the penalty is
tractable given that sensitive attributes are discrete or categorical.

Experimental evaluations show that the proposed fair representa-
tion learning approach outperforms the existing competitors whose
fairness penalties are based on mutual information and maximal
mean discrepancy. In the future, we plan to extend the distance
covariance measure to more fairness notions.
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A APPENDIX

A.1 Proof of Proposition 2

Proof.
I(𝑋,𝑌 ) = 𝐷𝐾𝐿 (𝑝 (𝑋,𝑌 ) ∥𝑝𝑋 ⊗ 𝑝𝑌 ) ≥ 2𝛿𝑇𝑉 (𝑝 (𝑋,𝑌 ) , 𝑝𝑋 ⊗ 𝑝𝑌 )2

=
1
2

(∫
X

∫
Y
|𝑝 (𝑋,𝑌 ) (𝑥, 𝑦) − 𝑝𝑋 (𝑥)𝑝𝑌 (𝑦) |𝑑𝑥 𝑑𝑦

)2
≥ 1

2

(∫
X

∫
Y

���� (𝑝 (𝑋,𝑌 ) (𝑥, 𝑦) − 𝑝𝑋 (𝑥)𝑝𝑌 (𝑦)
) 𝑓 (𝑥)𝑔 (𝑦)
∥𝑓 ∥∞ ∥𝑔 ∥∞

���� 𝑑𝑥 𝑑𝑦)2
≥ Cov(𝑓 , 𝑔)2

2∥𝑓 ∥2∞ ∥𝑔 ∥2∞
,

where 𝛿𝑇𝑉 denotes the total variation distance, and the first in-
equality is due to Pinsker’s inequality. □

A.2 Proof of Proposition 4

Proof.

V2 (𝑋,𝑌 ) =
∫
X

∫
Y
|𝑝 (𝑋,𝑌 ) (𝑥, 𝑦) − 𝑝𝑋 (𝑥)𝑝𝑌 (𝑦) |2 𝑑𝑥 𝑑𝑦

·

∫
X

∫
Y |𝑓 (𝑥)𝑔 (𝑦) |2 𝑑𝑥 𝑑𝑦

∥𝑓 𝑔 ∥22

≥ 1
∥𝑓 𝑔 ∥22

(∫
X

∫
Y

�� (𝑝 (𝑋,𝑌 ) (𝑥, 𝑦) − 𝑝𝑋 (𝑥)𝑝𝑌 (𝑦)
)
𝑓 (𝑥)𝑔 (𝑦)

�� 𝑑𝑥 𝑑𝑦)2
=

Cov(𝑓 (𝑋 ), 𝑔 (𝑌 ))2

∥𝑓 𝑔 ∥22
,

where the inequality is due to Cauchy-Schwarz inequality, and
∥ 𝑓 𝑔∥2 is defined as

∥𝑓 𝑔 ∥2 =
(∫

X

∫
Y
|𝑓 (𝑥)𝑔 (𝑦) |2 𝑑𝑥 𝑑𝑦

) 1
2
.

We can further use Hölder’s inequality
∥𝑓 𝑔 ∥22 = ∥𝑓 2𝑔2 ∥1 ≤ ∥𝑓 2 ∥2 ∥𝑔2 ∥2,

and have that

V2 (𝑋,𝑌 ) ≥ Cov(𝑓 (𝑋 ), 𝑔 (𝑌 ))2
∥𝑓 2 ∥2 ∥𝑔2 ∥2

,

which completes the proof. □

A.3 Proof of Theorem 2

Proof. Let 𝑓 (𝑡) = 𝑡 log(𝑡), using Taylor’s theorem at 𝑡 = 1 and
𝑓 (1) = 0:

𝑓 (𝑡 ) = 𝑓 ′ (1) (𝑡 − 1) + 1
2
𝑓 ′′ (1) (𝑡 − 1)2 + 𝑜

(
(𝑡 − 1)2

)
.

Thus we have

𝑓

(
𝑝 (𝑋,𝑌 ) (𝑥, 𝑦)
𝑝𝑋 (𝑥)𝑝𝑌 (𝑦)

)
= 𝑓 ′ (1)

(
𝜖 (𝜙 (𝑥, 𝑦) − 𝜑 (𝑥, 𝑦))

𝑝𝑋 (𝑥)𝑝𝑌 (𝑦)

)
+ 𝑓 ′′ (1)

2

(
𝜖 (𝜙 (𝑥, 𝑦) − 𝜑 (𝑥, 𝑦))

𝑝𝑋 (𝑥)𝑝𝑌 (𝑦)

)2
+ 𝑜 (𝜖2),
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where lim𝜖→0+ 𝑜 (𝜖2)/𝜖2 = 0. Now, we can obtain
𝐷𝐾𝐿 (𝑝 (𝑋,𝑌 ) ∥𝑝𝑋 ⊗ 𝑝𝑌 )

=

∫
X

∫
Y
𝑝𝑋 (𝑥)𝑝𝑌 (𝑦) 𝑓

(
𝑝 (𝑋,𝑌 )

𝑝𝑋 (𝑥)𝑝𝑌 (𝑦)

)
𝑑𝑥 𝑑𝑦

= 𝜖 𝑓 ′ (1)
∫
X

∫
Y
(𝜙 (𝑥, 𝑦) − 𝜑 (𝑥, 𝑦)) 𝑑𝑥 𝑑𝑦

+ 𝜖2 𝑓
′′ (1)
2

∫
X

∫
Y

(
(𝜙 (𝑥, 𝑦) − 𝜑 (𝑥, 𝑦))

𝑟 (𝑋,𝑌 ) (𝑥, 𝑦) + 𝜖𝜑 (𝑋,𝑌 ) (𝑥, 𝑦)

)2
𝑑𝑥 𝑑𝑦 + 𝑜 (𝜖2) .

Since 𝜙 (𝑋,𝑌 ) , 𝜑 (𝑋,𝑌 ) are valid, we have
𝐷𝐾𝐿 (𝑝 (𝑋,𝑌 ) ∥𝑝𝑋 ⊗ 𝑝𝑌 )

= 𝜖2
𝑓 ′′ (1)
2

∫
X

∫
Y

(
(𝜙 (𝑥, 𝑦) − 𝜑 (𝑥, 𝑦))

𝑟 (𝑋,𝑌 ) (𝑥, 𝑦) + 𝜖𝜑 (𝑋,𝑌 ) (𝑥, 𝑦)

)2
𝑑𝑥 𝑑𝑦 + 𝑜 (𝜖2)

=

∫
X

∫
Y

1
𝑟 (𝑋,𝑌 ) (𝑥, 𝑦)

(
𝑝 (𝑋,𝑌 ) (𝑥, 𝑦) − 𝑝𝑋 (𝑥)𝑝𝑌 (𝑦)

)2
𝑑𝑥 𝑑𝑦,

which completes the proof. □

A.4 Proof of Proposition 5

Proof. Let 𝜅 (𝑥,𝑦) = exp(−𝛾 ∥𝑥 −𝑦∥2). Define the Hilbert space
H as the reproducing kernel Hilbert space corresponding to 𝜅:
𝜅 (x, y) = ⟨𝜑 (x), 𝜑 (y)⟩H , and the mean map kernel of given distri-
butions 𝑃 and 𝑄 is

𝐾 (𝑃,𝑄) = Ex∼𝑃,y∼𝑄𝜅 (x, y) = ⟨Ex∼𝑃 [𝜑 (x) ],Ey∼𝑄 [𝜑 (y) ] ⟩.

MMD between 𝑞𝑘
𝜙
and 𝑞¬𝑘

𝜙
can then be written as

MMD(𝑞𝑘
𝜙
, 𝑞¬𝑘
𝜙

)2 = ∥Ez∼𝑞𝑘
𝜙

[𝜑 (z) ] − Ez∼𝑞¬𝑘
𝜙

[𝜑 (z) ] ∥2

= 𝐾 (𝑞𝑘
𝜙
, 𝑞𝑘
𝜙
) +𝐾 (𝑞¬𝑘

𝜙
, 𝑞¬𝑘
𝜙

) − 2𝐾 (𝑞𝑘
𝜙
, 𝑞¬𝑘
𝜙

),

where 𝑞𝑘
𝜙
and 𝑞¬𝑘

𝜙
are two Gaussian mixture models defined in

Eq. (13). Further, we have

𝐾 (𝑞𝑘
𝜙
, 𝑞¬𝑘
𝜙

) = 1
𝑁𝑘𝑁¬𝑘

𝑁∑︁
𝑖=1,
s𝑖=𝑘

𝑁∑︁
𝑗=1,
s𝑗≠𝑘

𝜅 (𝑞𝜙 (z |x𝑖 , s𝑖 ), 𝑞𝜙 (z |x𝑗 , s𝑗 ))

and similar results can be obtained for 𝐾 (𝑞𝑘
𝜙
, 𝑞𝑘
𝜙
) and 𝐾 (𝑞¬𝑘

𝜙
, 𝑞¬𝑘
𝜙

)
and thus omitted for brevity, which completes the proof. □
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