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ABSTRACT

Knowledge graph reasoning plays a pivotal role in many real-
world applications, such as network alignment, computational fact-
checking, recommendation, and many more. Among these applica-
tions, knowledge graph completion (KGC) and multi-hop question
answering over knowledge graph (Multi-hop KGQA) are two repre-
sentative reasoning tasks. In the vast majority of the existing works,
the two tasks are considered separately with different models or
algorithms. However, we envision that KGC and Multi-hop KGQA
are closely related to each other. Therefore, the two tasks will bene-
fit from each other if they are approached adequately. In this work,
we propose a neural model named BiNet to jointly handle KGC and
multi-hop KGQA, and formulate it as a multi-task learning problem.
Specifically, our proposed model leverages a shared embedding
space and an answer scoring module, which allows the two tasks
to automatically share latent features and learn the interactions
between natural language question decoder and answer scoring
module. Compared to the existing methods, the proposed BiNet
model addresses both multi-hop KGQA and KGC tasks simultane-
ously with superior performance. Experimental results show that
BiNet outperforms state-of-the-art methods on a wide range of
KGQA and KGC benchmark datasets.
CCS CONCEPTS

• Computing methodologies→ Reasoning about belief and

knowledge; • Information systems → Data mining.
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1 INTRODUCTION

A knowledge graph is a graph structure that contains a collection of
facts, where nodes represent real-world entities, events and objects,
and edges denote the relationship between two nodes. Since its
debut in 2012,1 a variety of knowledge graphs have been gener-
ated, including Freebase, Yago, Wikidata and so on. The applica-
tions of knowledge graphs are numerous, ranging from network
alignment [27], computational fact-checking [14] to recommenda-
tion [6]. Among these applications, multi-hop question answering
over knowledge graph (Muti-hop KGQA for short) aims to answer
natural language questions with the help of knowledge graphs.
Knowledge graph completion (KGC), on the other hand, seeks to
infer missing facts based on existing information in KG.

Recently, KGQA and KGC tasks have attracted great attention
from both the academia and the industry, and a multitude of al-
gorithms have been proposed. For example, for KGC, TransE [2]
models the relation as a linear transition of points in the embed-
ding space, ComplEx [25] embeds relations and entities in complex
space and makes predictions according to an energy function. For
multi-hop question answering, Pullnet [22] first extracts question
specific subgraphs, and then performs multi-hop reasoning on the
extracted subgraph via graph neural networks to find answers,
EmbedKGQA [21] uses a pre-trained BERT model to map natural
language questions to relation embeddings and finds answers by
ComplEx [25]. We note that some work [21] treats the knowledge
graph completion task as a single-hop knowledge graph question
answering task due to their interchangeable properties. For exam-
ple, the task of predicting the answer for triple (Interstellar,
hasGenre, ?) in the KGC task could be transformed to answer nat-
ural language question “What is the genre of Interstellar?”.

Despite the potential close relationship betweenmulti-hop KGQA
and KGC tasks [21], existing works usually treat them as two sep-
arate tasks without considering their reciprocal benefits. That is,
most existing multi-hop KGQA methods have implicitly assumed
the background knowledge graph is complete [22, 23], whereas the
existing KGC methods only exploit the existing information of the
input incomplete KGs, e.g., RESCAL [19] and ComplEx [25].

1https://en.wikipedia.org/wiki/Knowledge_graph
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Figure 1: An illustrative example of incomplete knowledge

graph. The dashed line represents missing links. The solid

lines are relations in the existing knowledge graph.

Different from existing methods, we envision that knowledge
graph completion (KGC) and knowledge graph question answering
(KGQA) are inherently complementary with each other due to the
following reasons. First, (R1) KGQA helps KGC. This is because new
knowledge could be inferred from the KGQA task, which in turn
could be used to complete the knowledge graph. For example, given
the knowledge graph in Figure 1, if we want to answer “which
year was A Song of Love released?”, there is no way this question
could be answered because A song of Love only has two relations
around it: direct and hasGenre. Even a human could not answer
this question only based on the existing knowledge graph. However,
if we are provided the answer (1950) to the question "which years

were all the films directed by Jean Genet released?", we can infer
that the release year of A song of Love is 1950 because Jean Genet
only directed one film in his life. This suggests that KGQA could
indeed help KGC. Second, (R2) KGC helps KGQA. This is because
KGC could help improve the performance of KGQA by providing
a KG with more complete knowledge triples of high quality. For
example, because the movie The Love of Siam is linked to Tailand
via the hasTag relation, an ideal KGC model can infer that the
movie might be intended for the Thai audiences and augment the
knowledge graph with appropriate language information for the
movie. Subsequently, the question “what is the language of the film
The Love of Siam” can then be trivially answered.

Armed with this key insight, we propose to jointly address multi-
hop KGQA and KGC tasks. We formulate it as a multi-task learning
problem. First, in order to leverage multi-hop KGQA for the KGC
task, we propose an encoder-decoder-based model which trans-
forms the natural language questions into relation paths to facilitate
KGC. Second, in order to leverage KGC for multi-hop KGQA, we
let multi-hop KGQA and KGC share both the embedding space and
the answer scoring module, which allows them to automatically
share latent features and reinforce each other.

In summary, the main contributions of this paper are:

• ProblemDefinition. To our best knowledge, we are the first
to formulate joint knowledge graph completion and multi-
hop question answering as a multi-task learning problem.

• Algorithm and Analysis. We propose a multi-task neural
model BiNet which could solve KGQA and KGC tasks at the
same time and we further analyze its theoretic feasibility.

• Empirical Evaluations. The experimental results on sev-
eral real-world datasets demonstrate that the proposed Bi-
Net consistently achieves state-of-the-art performance in
both tasks.

Table 1: Notations and definitions

Symbols Definition

𝑣𝑖 the 𝑖th entity/node in knowledge graph
𝑟𝑖 the 𝑖th relation/edge in knowledge graph

e𝑣𝑖 / e𝑖 the embedding of node 𝑣𝑖
r𝑖 the embedding of relation 𝑟𝑖
𝑄 the multi-hop natural language question training set
𝑣𝑄 the topic entity in question
e𝑄 the embedding of topic entity 𝑣𝑄
Q the embedding of natural language question𝑄
𝑤𝑖 the 𝑖th word in𝑄
𝑃 the path decoded from question embedding
𝑃 [𝑖 ] the 𝑖th relation in path 𝑃

2 PROBLEM DEFINITION

Table 1 gives the main notations used throughout this paper. A
knowledge graph can be denoted as G = (V,R,L) where V =

{𝑣1, 𝑣2, ..., 𝑣𝑛} is the set of nodes/entities, R = {𝑟1, 𝑟2, ..., 𝑟𝑚} is the
set of relations and L is the list of triples. Each triple in the knowl-
edge graph can be denoted as (ℎ, 𝑟, 𝑡) where ℎ ∈ V is the head (i.e.,
subject) of the triple, 𝑡 ∈ V is the tail (i.e., object) of the triple and
𝑟 ∈ R is the edge (i.e., relation, predicate) of the triple which con-
nects the head ℎ to the tail 𝑡 . The embedding of a node or relation
is represented by bold lowercase letters, e.g., e𝑖 , r𝑖 .

Given a knowledge graph G = (V,R,L) and a natural language
question𝑄 which contains a topic entity 𝑣𝑄 ∈ V and a sequence of
words 𝑄 = (𝑤1,𝑤2, ...,𝑤 |𝑄 |), multi-hop question answering over
knowledge graph aims to identify a set of nodes𝐴𝑄 ⊆ V to answer
this question. Following the definition in [21], we assume that all
the answer entities exist in the knowledge graph and each question
in multi-hop KBQA only contains a single topic entity 𝑣𝑄 ∈ V and
𝑣𝑄 is given. For example, The Love of Siam is the topic entity of
“what is the language of the film The Love of Siam”. Ideally, each
question can be mapped to a unique path 𝑃 = (𝑟1, 𝑟2, ..., 𝑟 |𝑃 |) in the
knowledge graph.

Knowledge graph completion intends to infermissing facts/triples
based on existing information in the knowledge graph. Typically,
KGC contains three kinds of sub-tasks: (1) given a partial triple
(ℎ, 𝑟, ?), predict the corresponding tail entities; (2) given a partial
triple (?, 𝑟 , 𝑡), predict the corresponding head entities; (3) given a
head entity and a tail entity, predict the relationship between them.
In this paper, we only consider the first sub-task. When predicting
the tail entities, the KGC method will produce a probability score
for each entity in the knowledge graph, the probability score of a
candidate entity 𝑣 denotes how likely the triple (ℎ, 𝑟, 𝑣) is true.

Many real-world knowledge graphs are incomplete. That is, some
key information may not exist in the input knowledge graph. Per-
forming KGQA on an incomplete knowledge graph could lead to
wrong answers. However, if the knowledge graph is complete, the
KGQA task is more likely to find the correct answers. On the other
hand, completing an existing knowledge graph without any extra
information might be hard. However, the question and answer pairs
in the KGQA task could provide auxiliary information to help com-
plete the knowledge graph. Based on this observation, we aim to
jointly handle KGC and multi-hop KGQA, which can be formally
defined as follows.

Problem Definition 1. Jointly multi-hop KGQA and KGC
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Given: (1) A set of training triples of the KGC task, (2) a set of

training multi-hop natural language questions of the KGQA task;

Output: (1) The answer for test triples of the KGC task, and (2)

the top-𝑘 answers for test multi-hop natural language questions of

the KGQA task.

3 PROPOSED METHOD

In this section, we present the proposed model to solve Problem 1.

3.1 Model Overview

Multi-hop question answering over knowledge graph (Multi-hop
KGQA) can be cast as an entity seeking problem on knowledge
graph G by translating𝑄 into a query path and traveling the knowl-
edge graph to find answers. However, in many real-world cases, the
knowledge graph is often incomplete. Thus, attempting to find the
answer set 𝐴𝑄 directly on G by path traverse or subgraph match-
ing [16] is impractical. Knowledge graph completion (KGC), on the
other hand, often suffers from knowledge famine (i.e., insufficient in-
formation) or key missing information, which makes it impossible
to complete the knowledge graph. For example, in Figure 1, if the
relation releaseYear between A Song of Love and 1950 is miss-
ing, this missing information is impossible to be completed without
extra information. As mentioned in Section 2, the multi-hop KGQA
and KGC are inherently complementary with each other. On one
hand, the information in the natural language question and its cor-
responding answers can help the knowledge graph completion task.
On the other hand, a more complete knowledge graph could poten-
tially improve the KGQA accuracy. To mutually reinforce these two
tasks, our model is designed to bear the following two properties.
First, to help the KGC task, we use an encoder-decoder model to
transform the natural language query to a path that contains one
or multiple relations. Second, in our model, both KGQA and KGC
leverage the same embedding space and the answer scoring module
to automatically share latent features.

Figure 2 shows the framework of our proposed model. Given a
multi-hop natural language question with a topic entity, the pro-
posed BiNet first generates a question’s embedding Q via a pre-
trained BERT [5] model, and then uses a decoder to generate a
relation path which is used by both KGQA and KGC tasks. In order
to generate a high-quality path, BiNet uses a probability model
to choose the path with the highest probability in the knowledge
graph that best interprets the question context. After obtaining the
path, the answer scoring module ranks all the nodes and selects 𝑘
candidates which are most likely to answer the question. Finally,
the topic entity 𝑣𝑄 , the path 𝑃 , and 𝑘 candidate nodes are treated
as the input of a Transformer [26] to generate the final output of
the KGQA task. In addition, the decoded path 𝑃 is used by the an-
swer scoring module to help the knowledge graph completion task.
The overall model can be optimized in an end-to-end manner by
combining the loss of different parts. Algorithm 1 and Algorithm 2
in Supplementary Material summarize the pseudocode.

3.2 Question Encoder-Decoder

A - Preprocessing Text for the Question Encoder. The pro-
posed BiNet decodes a sequence of relations between the topic
entity 𝑣𝑄 and an answer set 𝐴𝑄 in a natural language sentence

𝑄 = (𝑤1,𝑤2, ...,𝑤 |𝑄 |) where 𝑣𝑄 ∈ V and 𝐴𝑄 ⊆ V . Intuitively,
each question context 𝑄 could be mapped to a relation path in the
knowledge graph distinctively. Therefore, we train an encoder to
represent the context as a vector.

To mitigate the noise brought by the surface forms of the entities,
we introduce a special token [NE] to mask the topic entity inside
the question context/surface form (e.g., “Who starred Interstellar?”
becomes “Who starred [NE]?”). Masking the topic entity prevents
the encoder from memorizing the surface forms of the entity and
helps it generalize to similar questions involving other entities.
Besides this, we add two indicator tokens ([CLS] and <s>) to the
beginning and end of the question context to signify its boundary.
B - Question Encoder. Given the processed question context, we
first pass it through a pre-trained BERT [5] to extract contextual
embeddings for each token2:

[h𝐶𝐿𝑆 ,w1, ...,w |𝑄 |, hs] = BERT( [𝐶𝐿𝑆],𝑤1, ...,𝑤 |𝑄 |, < 𝑠 >) (1)

where h𝐶𝐿𝑆 is the embedding of the [CLS] token and hs is the em-
bedding of the <s> token. The final question embedding is obtained
from the combination of h𝐶𝐿𝑆 and hs as below, where FFN is a feed
forward neural network, and | indicates concatenation.

h𝑄 = FFN( [h𝐶𝐿𝑆 |hs]) (2)

C - Question Decoder. Given the question context embedding
h𝑄 , the proposed BiNet decodes h𝑄 and generates a sequence
of relations 𝑃 = (𝑟1, 𝑟2, ..., 𝑟𝑛) using a Long Short-Term Memory
(LSTM) [10] model. The initial hidden state h0 and initial cell state
c0 are obtained from question embedding hQ by passing it through
two feed forward neural networks, separately.

h0 = FFNℎ (h𝑄 ) c0 = FFN𝑐 (h𝑄 ) (3)

The initial input embedding x0 could be the question embedding
hQ or a zero vector. At time step 𝑡 , the hidden state h𝑡 will be passed
through a feed forward neural network with batch normalization
and dropout followed by a Softmax function to obtain the score of
each relation to form a score vector:

h𝑡 = LSTM(h𝑡−1, c𝑡−1, o𝑡−1)
a𝑡 = softmax(MLP(h𝑡 ))

The new input embedding x𝑡+1 of the decoder at step 𝑡 + 1 is the
weighted sum of all relation embedding of step 𝑡 .

x𝑡+1 =
∑︁
𝑖

a𝑡 (𝑖)r𝑖

where a𝑡 (𝑖) is the 𝑖-th element of a𝑡 . The final prediction of each
step is the relation with the highest score.
D - Training Question Encoder-Decoder. Given a natural lan-
guage question with its answer set, we want to map the question
context to its correct relation path. The topic entity 𝑣𝑄 and answer
entities can be identified in the knowledge graph according to their
surface forms. However, there might exist many paths between
them. To identify the correct path, we find all the 𝑘-shortest paths
between each entity pair (𝑣𝑄 , 𝑣𝑖 ) where 𝑣𝑖 ∈ 𝐴𝑄 . We treat all these
shortest paths as potentially correct path candidates. We use Bayes’
Rule to infer the probability of whether the shortest path is the cor-
rect mapping of the question context. First, all the questions in the
2For dataset MetaQA, the surface forms of KGC training triples are treated as the input
questions.
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Figure 2: Architecture of our proposed BiNetModel. The gray part corresponds to Subsectioon 3.3 which is used by both the

KGQA and KGC tasks. The red parts are designed for the KGQA task, while the yellow part is intended for the KGC task. The

green part will be used by KGQA and KGC tasks. The shared embedding space contains pre-trained embeddings of entities and

relations by the training data of KGC. Best viewed in color.

training set can be divided into𝑚 groups: 𝑆1, 𝑆2, .., 𝑆𝑚 where𝑚 is the
number of unique question contexts after masking the topic entity.
Each group has a corresponding answer pool 𝑃𝐿𝑖 = {𝐴𝑄 𝑗

|𝑄 𝑗 ∈ 𝑆𝑖 }.
Each answer entity 𝑣𝑖 ∈ 𝐴𝑄 𝑗

has a corresponding candidate path
set 𝑃𝐶 (𝑄 𝑗 , 𝑣𝑖 ) = {𝑃𝑖 | (𝑣𝑄 𝑗

, 𝑃𝑖 , 𝑣𝑖 ) ∈ G}. If we assume the occurrence
of different paths in 𝑃𝐶 as i.i.d. random variables, the probability
that a path interprets the question context can be expressed as

𝑃𝑟 (𝑃𝑖 |𝑆 𝑗 , 𝜃 ) =
∑
𝑄 𝑗 ∈𝑆 𝑗 𝑃𝑟 (𝑃𝑖 , 𝑄 𝑗 |𝜃 )

|𝑃𝐿𝑗 |
where |𝑃𝐿𝑗 | is the number of answer sets in 𝑃𝐿 𝑗 , 𝑄 𝑗 ∈ 𝑆 𝑗 denotes
a specific question 𝑄 𝑗 (e.g., “Who starred Interstellar?”) belongs to
𝑆 𝑗 (e.g., “Who starred [NE]?”) and 𝑃𝑟 (𝑃𝑖 , 𝑄 𝑗 |𝜃 ) is the probability
that 𝑃𝑖 ∈ 𝑃𝐶 (𝑄 𝑗 , 𝑣𝑖 ) for any 𝑣𝑖 ∈ 𝐴𝑄 𝑗

, which is defined as follows,
where 1() is the indicator function.

𝑃𝑟 (𝑃𝑖 , 𝑄 𝑗 |𝜃 ) =

∑
𝑣𝑖 ∈𝐴𝑄𝑗

|𝑃𝐶 (𝑄 𝑗 , 𝑣𝑖 ) |1(𝑃𝑖 ∈𝑃𝐶 (𝑄 𝑗 ,𝑣𝑖 ))

|𝐴𝑄 𝑗
| (4)

After calculating the probability for all the potential paths, we
choose the path with the highest probability as the answer. If mul-
tiple paths have the highest probability, we treat all of them as
correct answers. When training the question encoder and decoder,
we use binary cross-entropy loss which is defined as:

L(𝑃, 𝑃) = 1
𝑁

𝑁∑︁
𝑖=1

|𝑃 |∑︁
𝑗=1

1(𝑃 [ 𝑗] = 𝑟𝑖 )𝑙𝑜𝑔(𝑃𝑟 (𝑟𝑖 |M))

+(1 − 1(𝑃 [ 𝑗] = 𝑟𝑖 ))𝑙𝑜𝑔(1 − 𝑃𝑟 (𝑟𝑖 |M))
whereM is the parameters of the question encoder-decoder model,
𝑁 is the number of relations in G. 𝑃 is the path obtained by Equa-
tion (4). 𝑃 is the output of path decoder. Note that the output of
path decoder at time step 𝑡 is a probability distribution over all
relations in G.

3.3 Answer Scoring

When answering multi-hop natural language questions, traditional
knowledge graph traversal or subgraph matching method [20] is

infeasible due to the incompleteness of the knowledge graph. When
using learning-based methods to solve this problem, we aim to
find a function 𝑓 () which takes in the topic entity 𝑣𝑄 , the path
𝑃 = (𝑟1, 𝑟2, ..., 𝑟 |𝑃 |), the knowledge graph G and a candidate entity
𝑣 to output a score which is used to denote how likely it is to travel
from 𝑣𝑄 , according to path 𝑃 , to reach 𝑣 .
A - Background. If an algorithm satisfies the transitivity property
of knowledge graph, the operation on path 𝑃 can be expressed as

p = r1 ★ r2 ★ · · ·★ r𝑛 (5)

where ★ is a composition operation and p is the embedding of 𝑃 .
According to different designs, the composition operation can have
different forms. For example, in TransE [2], each relation represents
a linear translation operation in the embedding space, so the path
representation can be obtained by:

p =
∑︁
𝑟𝑖 ∈𝑃

r𝑖

In RotaE [24], each relation represents a rotation in the complex
space, and the composition operation is the Hadamard (i.e., element-
wise) product which means

p = r1 ⊙ r2 ⊙ · · · ⊙ r𝑛

However, naively using Equation (5) to calculate the path em-
bedding and finding answers may suffer from low accuracy. This
is because noise often exists in the embedding space, and with
the increase of the path length, the cascading error will become
larger [12] [15]. So, it is necessary to use the intermediate candi-
dates to adjust the search process.
B - Probabilistic Reasoning Model. We address this issue by
using a probability model Θ. Considering a relation sequence 𝑃 =

(𝑟1, ..., 𝑟 |𝑃 |) originated from topic entity 𝑣𝑄 , the model predicts
the likelihood Θ : (𝑟, 𝑣) → [0, 1] of following a certain edge in
a relation sequence from 𝑣𝑄 to any node in 𝐴𝑄 . Specifically, we
compute the likelihood of 𝑣 by multiplying the likelihood of all
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intermediate steps traversed by 𝑃 in G = (V,R,L) by:

𝑃𝑟 (𝑣 |𝑃, 𝑣𝑄 ,G) ∝
|𝑃 |∏
𝑖=1

Θ(𝑟𝑖 , 𝑣𝑖 |𝑃1→𝑖−1, 𝑣𝑄 ,G) (6)

where 𝑃1→𝑟𝑖 is the subsequence of 𝑃 up to the 𝑖-th relation and
𝑃1→0 means empty set. Finding the best answer is equivalent to
maximizing the probability function. A naive way to find answers
is by choosing the intermediate entity 𝑣𝑖 which can maximize the
probability at each time step. However, due to the incompleteness of
the knowledge graph, it may fail to find the correct answer. Iterating
all the intermediate candidates can make sure to find the correct
answer with a high probability, but it could hamper the efficiency. In
order to strike a good balance between effectiveness and efficiency,
as well as mitigate the cascading error [12], at each step, we select
the top-𝑘 candidates with maximum likelihood 𝑃𝑟 (𝑣 |𝑃1→𝑖−1, 𝑣𝑄 ,G).
This can be done by an efficient search algorithm, such as beam
search starting from 𝑣𝑄 . In the last step, we choose the candidate
with the highest probability.

𝑜 = max𝑣𝑖 ∈V (𝑃𝑟 (𝑣𝑖 |𝑃, 𝑣𝑄 ,G))

Note that, the goal of probability model Θ is to estimate how likely
an entity is the answer. It is used by both the KGQA task and the
KGC task to allow them automatically share information. Many
methods could be used to modelΘ, e.g., bilinear transformation [28],
convolutional networks [4] and so on. In our experiment, we use
ComplEx [25] for its simplicity. Given 𝑣ℎ , 𝑣𝑡 ∈ V and 𝑟𝑖 ∈ R,
and their embedding eℎ, e𝑖 , r𝑖 , the probability score of 𝑣𝑡 that is
reachable from 𝑣ℎ by 𝑟𝑖 is calculated by:

𝑃𝑟 (𝑣𝑡 |𝑟𝑖 , 𝑣ℎ,G) = 𝑅𝑒 (< r𝑖 , eℎ, e𝑖 >) (7)

where 𝑅𝑒 () is the real part of ComplEx [25] output.
C - Connection with Existing Methods. Most existing algo-
rithms which satisfy the transitivity property of knowledge graph
are special cases of our model. For example, in TransE [2], each
relation represents a linear translation operation in the embedding
space, so the probability score of (𝑟𝑖 , 𝑣𝑡 ) can be calculated by:

Θ(𝑟𝑖 , 𝑣𝑡 |𝑃1→𝑖−1, 𝑣𝑄 ,G) ∝ ||e𝑣𝑄 +
∑︁

𝑟 𝑗 ∈𝑃1→𝑖

r𝑗 − e𝑡 | |−1(𝑖= |𝑃 |)2

and similarly in RotatE [24], the probability score of (𝑟𝑖 , 𝑣𝑡 ) can be
calculated by:

Θ(𝑟𝑖 , 𝑣𝑡 |𝑃1→𝑖−1, 𝑣𝑄 ,G) ∝ ||e𝑣𝑄 ⊙ r1 ⊙ ... ⊙ r𝑖 − e𝑡 | |−1(𝑖= |𝑃 |)2

3.4 Answer Refinement

In most cases, the set of candidate answers found by model Θ
may already be a reasonable estimate of 𝐴𝑄 . Sometimes, however,
noise may exist in the candidate set and has a higher probabil-
ity than true answers. One possible reason is that relations in KG
exhibit various types of patterns and properties. For example, re-
lations like FatherOf and liveIn are asymmetric, but relations
like IsFriendWith are symmetric property. Ideally, a good model
should be able to learn all combinations of different properties,
like symmetry, asymmetry, and transitivity. However, due to the

Transformer

…
𝑟𝑛 𝑟𝑛−1 𝑟1

…
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…
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… …
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Drama 0.99
Comedy 0.98
… …

Figure 3: Answer Refinement.

incompleteness and complexity of the knowledge graph, it is al-
most impossible to find a perfect model which can satisfy all the
properties and find answers without errors. If we could refine the
results, the accuracy of the model may be further increased.

Based on this observation, we propose an answer refinement
model to re-order the top-𝑘 candidates of the answer scoringmodule.
Given the top-𝑘 candidates which have the highest scores found by
the answer scoring module, we want to re-select the high quality
entities from them. Inspired by [26] [11], given a topic entity 𝑣𝑄
and a path 𝑃 , we concatenate them with each of the candidates to
get 𝑘 sequences. We treat each sequence as a language sentence
and pass it through a Transformer [26] to predict the soundness of
this sentence.

ℎ𝑖 = TRANSFORMER( [e𝑣𝑄 |r1 |...|r𝑛 |e𝑣𝑖 ])

where ℎ𝑖 is the output embedding of entity 𝑣𝑖 . The final score is
predicted by passing ℎ𝑖 through a feed forward neural network
with Sigmoid function:

𝑃𝑟 (𝑣𝑖 |𝑃, 𝑣𝑄 ,G) = Sigmoid(FFN(ℎ𝑖 ))

In the last step, a classifier will be used to return the answer pre-
dicted by the answer scoring module or the transformer module.
The architecture is shown in Figure 3. Note that the Refinement
step is optional.

3.5 Learning Algorithm

The overall loss function of the proposed BiNet is as follows:

L = L𝐾𝐺𝑄𝐴 + L𝐾𝐺𝐶 + L𝑃𝑎𝑡ℎ + L𝑅𝐸𝐺
=

∑︁
𝑄 ∈𝑄

J (𝑦,𝑦) + 𝜆1
∑︁

(ℎ,𝑟,𝑡 ) ∈G
J (𝑡, 𝑡) + 𝜆2

∑︁
𝑄 ∈𝑄

L(𝑃, 𝑃) + 𝜆3 | |W| |22

where 𝜆1, 𝜆2 and 𝜆3 are hyper parameters used to balance the loss.
𝑄 is the KGQA training set and (ℎ, 𝑟, 𝑡) belongs to KGC training
set. L𝐾𝐺𝑄𝐴 is the KGQA loss, and L𝐾𝐺𝐶 is the KGC loss. Both
of them are calculated by J which is binary cross entropy loss.
The first term J (𝑦,𝑦) measures the loss of the KGQA task, 𝑦 is the
answer predicted by BiNet and 𝑦 is the ground truth. The second
term J (𝑡, 𝑡) calculates the loss in the KGC task, 𝑡 is the answer
predicted by BiNet and 𝑡 is the ground truth. The third item | |W| |22
is the regularization term for preventing overfitting. The last term
L(𝑃, 𝑃) is the path decoder loss. Note that the KGQA task L𝐾𝐺𝑄𝐴
contains two parts. The first part is the loss of answer scoring model
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before answer refinement. The second part is the loss of answer
scoring model after answer refinement.

3.6 Proof and Analysis

In this section, we analyze the expressive power of our model.
In particular, we show in Lemma 1 and Lemma 2 that KGC and
KGQA can indeed mutually benefit each other. We further show in
Lemma 3 that if the exact matching of a path exists in the knowledge
graph and Equation (7) is equal to 1 for any (ℎ, 𝑟, 𝑡) ∈ L, the
proposed BiNet is guaranteed to find it.

Lemma 1. (Benefit of KGQA for KGC) Given a natural language

question 𝑄 = (𝑤1,𝑤2, ...,𝑤 |𝑄 |) with topic entity 𝑣𝑄 and answer set

𝐴𝑄 . Path 𝑃 = (𝑟1, 𝑟2, ..., 𝑟 |𝑃 |) is a relation sequence of𝑄 . If there is no

exact matching between 𝑣𝑄 and any 𝑣 ∈ 𝐴𝑄 in the knowledge graph

G, suppose < 𝑣𝑘 , 𝑟 𝑗 , 𝑣𝑚 > is the missing link in the knowledge graph

which is on the path from 𝑣𝑄 to a node 𝑣𝑎 ∈ 𝐴𝑄 , minimizing KGQA

loss L𝐾𝐺𝑄𝐴 will also minimize KGC loss L𝐾𝐺𝐶 .

Proof. Given anmulti-hop path 𝑃 = (𝑟1, 𝑟2, ..., 𝑟 |𝑃 |), minimizing
L𝐾𝐺𝑄𝐴 means maximizing 𝑃𝑟 (𝑣 |𝑃, 𝑣𝑄 ,G) for any 𝑣 ∈ 𝐴𝑄 . Note
that < 𝑣𝑘 , 𝑟 𝑗 , 𝑣𝑚 > is the missing link on the path from 𝑣𝑄 to a
node 𝑣𝑎 ∈ 𝐴𝑄 . Then, maximizing 𝑃𝑟 (𝑣𝑎 |𝑃, 𝑣𝑄 ,G) means maximiz-
ing 𝑃𝑟 (𝑣𝑚 |𝑟 𝑗 , 𝑣𝑘 ,G) which is the output of the KGC task on triple
(𝑣𝑘 , 𝑟 𝑗 , 𝑣𝑚). Therefore, we have that L𝐾𝐺𝐶 is minimized. □

Lemma 2. (Benefit of KGC for KGQA) Given a natural language

question 𝑄 = (𝑤1,𝑤2, ...,𝑤 |𝑄 |) with topic entity 𝑣𝑄 and answer set

𝐴𝑄 . Path 𝑃 = (𝑟1, 𝑟2, ..., 𝑟 |𝑃 |) is a relation sequence of 𝑄 . If there is

no exact matching between 𝑣𝑄 and any 𝑣 ∈ 𝐴𝑄 in the knowledge

graph 𝐺 , minimizing KGC loss L𝐾𝐺𝐶 will also minimize KGQA loss

L𝐾𝐺𝑄𝐴 .

Proof. Minimizing L𝐾𝐺𝐶 means maximizing 𝑃𝑟 (𝑣𝑡 |𝑟𝑖 , 𝑣ℎ,G)
for any (𝑣ℎ, 𝑟𝑖 , 𝑣𝑡 ) ∈ G. Given a path 𝑃 = (𝑟1, 𝑟2, ..., 𝑟 |𝑃 |) and a
topic entity 𝑣𝑄 , for any 𝑣𝑎 ∈ 𝐴𝑄 , the probability 𝑃𝑟 (𝑣𝑎 |𝑃, 𝑣𝑄 ,G)
can be expressed as Equation 6. Since each item in this formula is
maximized, 𝑃𝑟 (𝑣𝑎 |𝑃, 𝑣𝑄 ,G) is also maximized. Therefore, L𝐾𝐺𝑄𝐴
is minimized. □

If the background knowledge graph is complete, traditional path
traverse or subgraph matching methods could find exact matches
from knowledge graph G, where each exact match is a subgraph
in G which could be mapped to multi-hop query (𝑣𝑄 , 𝑃, ?) exactly.
Ideally, if the answer scoring model in BiNet could output 1 for
any triple (ℎ, 𝑟, 𝑡) in G, BiNet could also find exact matches like
subgraph matching methods.

Lemma 3. (Model Soundness) Given a natural language question

𝑄 = (𝑤1,𝑤2, ...,𝑤 |𝑄 |) with topic entity 𝑣𝑄 and answer set 𝐴𝑄 . Path

𝑃 = (𝑟1, 𝑟2, ..., 𝑟 |𝑃 |) is a relation sequence of𝑄 . If Equation (7) is equal
to 1 for any (ℎ, 𝑟, 𝑡) ∈ L, and if there is an exact match between 𝑣𝑄
and any 𝑣 ∈ 𝐴𝑄 in the knowledge graph G, the proposed BiNet is

guaranteed to find it as long as 𝑘 ≥ 𝐷 |𝑃 |−1
, where 𝐷 is the maximum

out-degree of a node on a specific relation type in the knowledge graph.

Proof. Because 𝐷 is the maximum out-degree of a node on a
specific relation type in the knowledge graph, there are at most

𝐷 |𝑃 |−1 exact matching paths of (𝑟1, 𝑟2, ..., 𝑟 |𝑃 |−1) exist in the knowl-
edge graph started from topic entity 𝑣𝑄 . If 𝑘 ≥ 𝐷 |𝑃 |−1, they will be
all included in the top-𝑘 candidates. Therefore, the exact match can
be found. □

Note that |𝑃 | is a relatively small value (e.g., usually |𝑃 | ≤ 3).

4 EXPERIMENTS

In this section, we evaluate the performance of the proposed Bi-
Net on several public datasets. We first introduce the datasets and
baselines used in the paper, and then present the experiment results.

4.1 Experimental Setting

Three datasets are used in the paper which are listed below:
• MetaQA is a multi-hop question dataset on movie domain
which contains more than 400K natural language questions.
The background knowledge graph contains more than 100K
triples which includes different relationships among direc-
tors, movies, genres and actors. All questions can be divided
into three categories: 1-hop, 2-hop and 3-hop.

• WebQuestionsSP contains about 4,000 questions which
could be answered by Freebase. It is a mixture of 1-hop
questions and 2-hop questions.

• SimpleQuestions
3 is a dataset which consists of more

than 100K simple 1-hop natural language questions and their
corresponding triples from Freebase. In this paper, we use a
subset of SimpleQuestions which contains all the questions
that can be answered by Freebase used in WebQuestionsSP.

The statistics of these datasets are shown in Table 8. Their corre-
sponding knowledge graphs are shown in Table 9. In the experiment,
we compare the proposed BiNet with baselines in the challeng-
ing settings with incomplete KG with 50% and 70% missing edges
(we randomly delete 50% and 70% edges from the full knowledge
graph). This is because KGQA on the complete KG becomes trivial
on these datasets. For example, simply using path traverse or sub-
graph matching could achieve nearly 100% accuracy, the results of
which are shown in Table 8.

We compare our method BiNet with 4 baselines on the KGQA
task, including:

• GraftNet [23] finds a question-specific subgraph containing
KG facts, and then uses a graph neural network to predict
the answers.

• PullNet [22] utilizes the shortest path as supervision to train
graph retrieval module and conduct multi-hop reasoning
with GraftNet on the retrieved sub-graph.

• Key-Value Memory Network (KVMem) [17] maintains a
memory table which stores KG facts and uses this for re-
trieval.

• EmbedKGQA [21] conducts multi-hop reasoning through
matching pre-trained entity embeddings with question em-
bedding obtained from RoBERTa. We use EmbedKGQA with-
out relation matching.

We compare our method BiNet with 4 baselines on the KGC
task, including
3The query paths of WebQuestionsSP and SimpleQuestions are given, so we don’t
need to use Question Encoder-Decoder.
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Table 2: KGQA Hits@1 results of MetaQA on 50% and 30% incomplete knowledge graphs.

50% KG 30% KG
Model MetaQA-1 MetaQA-2 MetaQA-3 Avg MetaQA-1 MetaQA-2 MetaQA-3 Avg

GraftNet 64.0 52.6 59.2 58.6 48.4 48.4
PullNet 65.1 52.1 59.7 59.0 - - - -
KV-Mem 63.6 41.8 37.6 47.7 44.7 44.7

EmbedKGQA 83.1 91.8 70.3 81.7 77.7 81.2 69.0 76.0
BiNet 84.2 92.8 75.9 84.3 77.8 86.4 74.3 79.5

Table 3: KGQA Hits@1 results of WQSP and SimpleQA on

50% and 30% incomplete knowledge graphs.

50% KG 30% KG
Model Webqsp SimpleQA Webqsp SimpleQA

GraftNet 32.7 39.8 34.9 25.7
PullNet 48.2 - 34.6 -
KV-Mem 50.1 28.9 25.8 22.8

EmbedKGQA 47.3 41.7 38.8 33.5
BiNet 49.4 42.6 40.5 33.9

• RESCAL [19] is a three-way tensor factorization method
which embeds each entity as a latent vector and each relation
as a matrix.

• DistMult [28] uses low dimensional vectors to represent
nodes and uses bilinear functions to represent relations.

• ComplEx [25] embeds each entity as a complex vector which
contains a real part and an imaginary part, and the relations
are represented as bilinear functions.

4.2 Knowledge Graph Question Answering

Performance

Following the standard setup in KGQA [21], we evaluate the accu-
racy using the Hits@1 metrics. Table 2 shows the results of all base-
line methods on the MetaQA dataset with 50% incomplete KG and
30% incomplete KG, respectively. The code of PullNet is not publicly
available, so we omit its performance on 30% incomplete knowl-
edge graph. The results of GraftNet and KV-Mem are from [23]. As
we can see from the table, when the background knowledge graph
becomes sparse, the Hits@1 accuracy of all methods decreases. This
means that the quality of the background knowledge graph has a
significant impact on the KGQA task. For subgraph retrieval-based
methods: GraftNet and PullNet, their performances suffer severely
from the incompleteness of the background knowledge graph. This
is because, when the KG becomes sparse, the generated subgraphs
of these methods are unable to cover the answer entities. Among
all the methods, our method achieves the best results. For 50% in-
complete KG, our BiNet is about 2.5% better than EmbedKGQA
and more than 25% better than all other baseline methods. For 30%
incomplete KG, our BiNet is about 3.5% better than EmbedKGQA
and 28% better than other baseline methods on average.

Table 3 shows the performance of different methods on We-
bQuestionsSP and SimpleQuestions datasets. We have the similar
results. When the background knowledge graph becomes sparse,
the accuracy of all methods decreases. Nonetheless, the proposed
BiNet consistently outperforms other baseline methods, and it is
about 1.2% better than baseline methods on average.

4.3 Knowledge Graph Completion Performance

Figure 4(a) and Figure 4(b) show the accuracy of different knowledge
graph completion methods on 50% incomplete knowledge graph
and 30% incomplete knowledge graph, respectively. Traditional
knowledge graph embedding methods like RESCAL, DistMult and
ComplEx do not perform very well on MetaQA knowledge graph.
This is because the knowledge graph is very sparse. It only contains
about 66,791 edges which is 2.3% that of Freebase. Since Embed-
KGQA is not designed for knowledge graph completion, when
using EmbedKGQA for knowledge graph completion, we first trans-
form the KG triple (ℎ, 𝑟, 𝑣) to a natural language question, and then
train EmbedKGQA. As we can see, for MetaQA knowledge graph,
EmbedKGQA performs quite well. It is higher than other existing
knowledge graph completion baseline methods without the ques-
tion data. When using the question date, EmbedKGQA is about
15% higher than other baselines. Compare with other methods, the
proposed BiNet consistently has the highest KGC performance.

(a) Accuracy on 50% Incomplete KG (b) Accuracy on 30% Incomplete KG

Figure 4: Knowledge Graph Completion Accuracy. ‘Merge’

dataset is the combination of Webqsp and SimpleQA.

4.4 Ablation Studies

In this section, we evaluate the effectiveness of each component of
the proposed BiNet.
A - Answer Refinement. In this subsection, we show the effec-
tiveness of the answer refinement module. The results are shown
in Table 4. As we can see, the refinement module could improve
the prediction accuracy by about 2% on average on both 50% in-
complete and 30% incomplete knowledge graphs. This means that
the proposed refinement model indeed alleviates the sparsity of
the background knowledge graph. Compared with 1-hop natural
language questions, e.g., Webqsp and SimpleQA, the accuracy im-
provement on long path questions is more significant (3.2% vs 1.3%).
This means that when the path becomes longer, the refinement
module is even more effective.
B - The Power of Knowledge Graph Completion. In this sub-
section, we study whether simply completing the knowledge graph
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Table 4: Ablation study of Answer Refinement.

50% KG
Model MetaQA-3hop Webqsp SimpleQA

BiNet without refinement 70.3 47.2 41.8
BiNet with refinement 75.9 49.4 42.6

30% KG
Model MetaQA-3hop Webqsp SimpleQA

BiNet without refinement 71.2 39.1 33.2
BiNet with refinement 74.3 40.5 33.9

first could help KGQA task. When completing the knowledge graph,
we use two strategies. The first one is the heuristic based method to
complete the knowledge graph according to the natural language
questions in the KGQA training and validation sets. This heuris-
tic based method is similar to some rule based knowledge graph
completion methods [8]. For example, if A is the child of B and C is
the husband of B, then A is the child of C. After we complete the
knowledge graph by the heuristic method, we further use the sec-
ond strategy to complete the knowledge graph. We train ComplEx
on the partially completed knowledge graph. Then given a triple
(ℎ, 𝑟, ?), we use ComplEx to predict the answer. Note that we only
keep those triples which satisfy 𝑃𝑟 (𝑣𝑡 |𝑟𝑖 , 𝑣ℎ,G) >= 0.99 where 1
is the highest score. We also prune some obvious wrong predic-
tions from the triple list. For example, if the head entity is a movie
Interstellar and the relation is starredBy, but the prediction is
not a movie star, we delete this triple even though its probability is
greater than or equal to 0.99.

Table 5: The power of knowledge graph completion.

50% KG
Model EmbedKGQA KGC + EmbedKGQA BiNet

MetaQA-1hop 83.1 83.2 84.2
MetaQA-2hop 91.8 92.4 92.8
MetaQA-3hop 70.3 73.5 75.9

Webqsp 47.3 47.7 49.4
SimpleQA 41.7 41.9 42.6

30% KG
Model EmbedKGQA KGC + EmbedKGQA BiNet

MetaQA-1hop 77.7 77.8 77.8
MetaQA-2hop 81.2 85.1 86.4
MetaQA-3hop 69.0 71.1 74.3

Webqsp 38.8 39.1 40.5
SimpleQA 33.5 33.7 33.9

Table 5 shows the performance of KGC+EmbedKGQA and the
proposed BiNet. The performance of KGC+EmbedKGQA is better
than EmbedKGQA on all three kinds of questions. This means
that completing the knowledge graph first can indeed improve the
KGQA performance. In MetaQA-2hop questions on 30% incomplete
KG, it achieves the largest accuracy improvement which is 3.9%.
On average, completing the knowledge graph first could improve
about 1.2% Hits@1 accuracy. The proposed BiNet further improves
the performance by 1.3%.
C - Path Prediction. A good path decoder is important for the
proposed model BiNet. Before training the path decoder, we man-
ually add ground-truth paths to the training data. When training
the model, at each time step the path decoder will predict what the
next relation is according to the previous relation decoded. With
probability equal to the 𝛼 (𝛼 = 0.5), the decoder will use the actual

Figure 5: BiNet Training and Test Time.

ground-truth relation as the input to the decoder during the next
time-step. However, with probability 1 − 𝛼 , it will use the relation
that the model predicts as the next input to the model, even if it does
not match the actual next relation in the ground-truth. Table 11
shows some results of the path decoder. As we can see, the path
decoder could generate relation paths with high accuracy.
D - Efficiency. Figure 5 show the training time and test time of
BiNet on different datasets. As we can see, the runtime of BiNet on
Webqsp and SimpleQA is much larger than that on MetaQA dataset.
This is because the background knowledge graph of Webqsp and
SimpleQA is much larger than that of MetaQA. Despite the long
training time, the test time of BiNet is relatively short which is
less than 15 minutes.

5 RELATEDWORK

Multi-hop Knowledge Graph Question Answering. Multi-hop
knowledge graph question answering aims to answer the question
which could be transformed to a relation path in the knowledge
graph. Existing methods could be divided into several different
categories, e.g, semantic parsing based method, information re-
trieval based method, embedding based method and so on. For
example, GraftNet [23] and PullNet [22] are information retrieval-
based methods that retrieve a subgraph of candidate answers from
the knowledge base to guide prediction. KV-Mem [17] and Embed-
KGQA [21] are embedding and deep learning-based methods that
use deep learning networks to embed the question into a point in
the embedding space and find answers according to a similarity
function. For a comprehensive survey on KGQA, see a recent sur-
vey [30]. In this paper, we focus on using deep learning model to
answer multi-hop natural language questions.
Knowledge Graph Completion. knowledge graph completion
aims to predict missing links or entities based on existing infor-
mation in the knowledge graph. Most of the existing methods like
TransE [2], RESCAL [19] and DistMult [28] embed entities as points
in the low dimensional Euclidean and model relations as linear or
bilinear transformation in the space. Other methods like RotatE [24]
and ComplEx [25] represent entities as points in the complex space
and relations as rotation or bilinear transfromation. Other meth-
ods like BoxE [1] and KG2E [9] use geometry box or Gaussian
distribution to represent an entity.
Multi-task Learning.Multi-task learning aims to learn a model
which could simultaneously learn knowledge from several differ-
ent tasks. Such approaches could offer advantages like improving
model accuracy, preventing over-fitting through shared representa-
tions and fast learning. Most existing methods for multi-task learn-
ing focus on designing competitive models which enable sharing
knowledge among different tasks [7, 18, 29]. For example, in [18],
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the authors propose Cross-stitch units which allow two deep neu-
ral networks to share representations as a linear combination of
input activation maps. In [29], the authors propose a model which
shares the adjacency matrix between the network alignment task
and network completion task. Other methods, like [13] aims to
study how to weigh each task in multi-task learning to prevent
tuning different weights by hand, while [3] aims to make train-
ing deep multitask models easier, and proposes an algorithm that
automatically balances training in deep multitask models by dy-
namically tuning gradient magnitudes. In this paper, we build a
new multi-task model for joint KGQA and KGC.

6 CONCLUSION

In this paper, we propose to use multi-task learning to solve multi-
hop question answering on knowledge graph and knowledge graph
completion at the same time. We propose a neural network-based
model named BiNet to accomplish this. By allowing the KGQA and
KGC to use the same embedding space and a shared answer scoring
module, both tasks could learn latent features from each other
in a mutually beneficial way. The experiment results show that
the proposed BiNet consistently outperforms the state-of-the-art
methods on both KGC and KGQA on multiple datasets.
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SUPPLEMENTARY MATERIAL:

REPRODUCIBILITY

Reproducibility. All experiments are performed on a machine
with an Intel(R) Xeon(R) Gold 6240R CPU, 1510GB memory and
NVIDIA-SMI Tesla V100-SXM2. The details of datasets, machine
and parameters can be found in Section 4. All datasets are publicly
available. The source code of this paper can be found at https:
//github.com/lihuiliullh/BiNet.
Baselines.The implementation code of GraftNet, Key-Value Mem-
ory Network and EmbedKGQA can be found from the Table below.
Because the source code of PullNet is not publicly available. We
obtain its results from [23].

Table 6: Baseline Source.

Model github
GraftNet https://github.com/haitian-sun/GraftNet
KV-Mem https://github.com/jojonki/key-value-memory-networks

EmbedKGQA https://github.com/malllabiisc/EmbedKGQA

For the knowledge graph completion baselines, we use LibKGE
https://github.com/uma-pi1/kge. The training and testing configure
file can be found from the repository.
Dataset.All the datasets used in this paper are publicly available
which could be found in the Table below.

Table 7: Dataset Source.

Model github
MetaQA https://github.com/malllabiisc/EmbedKGQA
Webqsp https://github.com/malllabiisc/EmbedKGQA
SimpleQA https://github.com/davidgolub/SimpleQA/tree/master/datasets

Table 8 and Table 9 show the details of the datasets. Table 10
shows the background knowledge graph used in the experiment
which contains 70% missing edges. The number of entities, number
of relations and number of test edges are the same as 50% incomplete
knowledge graph. However, the number of train edges is much
smaller.
Training Parameters. When training BiNet on MetaQA, we use
embedding dimension 200 and batch size 128. The learning rate is
set to 0.0005. For datasets Webqsp and SimpleQA, we set embedding
dimension to 200 and batch size to 16. The learning rate is set to
0.00002.

Table 8: Summary of datasets. Coverage is the accuracy of

subgraph matching. As we can see, simply applying edge

traverse on the complete knowledge graph could achieve

nearly 100% accuracy.

Dataset Train Valid Test Coverage
MetaQA 1-hop 96,106 9,992 9,947 100%
MetaQA 2-hop 118,948 14,872 14,872 100%
MetaQA 3-hop 114,196 14,274 14,274 99%

WebQSP 2,950 - 1,560 99%
SimpleQA 15,3188 2,105 4,345 99%

Table 9: Statistics of the 50% KG for the three datasets. Note

thatWebQSP and SimpleQA use the same background knowl-

edge graph.

Dataset Entities Relations Train Edges Test Edges
MetaQA 43,234 18 66,791 4,000
WebQSP 1,886,683 1,144 2,872,880 20,000
SimpleQA 1,886,683 1,144 2,872,880 20,000

Table 10: Statistics of the 30% KG for the three datasets. Note

thatWebQSP and SimpleQA use the same background knowl-

edge graph.

Dataset Entities Relations Train Edges Test Edges
MetaQA 43,234 18 40,074 4,000
WebQSP 1,886,683 1,144 1,764,663 20,000
SimpleQA 1,886,683 1,144 1,764,663 20,000

The Pseudocodes. The pseudocodes of BiNet are listed below.

Algorithm 1 Knowledge Graph Question Answering Training

1: Input: knowledge graph G = (V,R,L), training dataset
{𝑄,𝐴𝑄 }𝑡𝑟𝑎𝑖𝑛 , hyper parameter 𝑘

2: Training:
3: Obtain question embedding Q from pre-trained BERT
4: Calculate scores for all entities by Answer Scoring Module
5: Select top-𝑘 candidates 𝑆
6: Decode question embedding Q to obtain path 𝑃

7: for each 𝑣𝑖 ∈ 𝑆 do

8: Concatenate topic entity 𝑣𝑄 , path 𝑃 and 𝑣𝑖
9: Use Transformer to calculate the score of 𝑣𝑖
10: end for

11: Return sorted top-𝑘 candidates

Algorithm 2 Knowledge Graph Completion Training

1: Input: knowledge graph G = (V,R,L), training datasets
{𝑣𝑄 , 𝑃, 𝐴𝑄 }𝑡𝑟𝑎𝑖𝑛 , {(ℎ, 𝑟, 𝑡)}𝑡𝑟𝑎𝑖𝑛 for KGC, hyper parameter 𝑘

2: Training:
3: Pre-train shared entity and relation embedding by

{(ℎ, 𝑟, 𝑡)}𝑡𝑟𝑎𝑖𝑛
4: Head = topic entity 𝑣𝑄
5: for each 𝑟𝑖 ∈ 𝑃 do

6: Beam search according to Head and 𝑟𝑖
7: Head = top-𝑘 candidates
8: end for

9: Return the best sorted candidate

The Results of Path Decoder. Table 11 shows the results of the
path decoder.

https://github.com/lihuiliullh/BiNet
https://github.com/lihuiliullh/BiNet
https://github.com/jojonki/key-value-memory-networks
https://github.com/malllabiisc/EmbedKGQA
https://github.com/uma-pi1/kge
https://github.com/malllabiisc/EmbedKGQA
https://github.com/malllabiisc/EmbedKGQA
https://github.com/davidgolub/SimpleQA/tree/master/datasets
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Table 11: Results of Path Decoder.

Question Path
the movies starred by [Tanner Maguire] were in which genres starred_actors_reverse | has_genre
when did the movies written by [Cristian Nemescu] release written_by_reverse | release_year

the films acted by [Benjamin Pitts] were released in which years Starred_actors_reverse | release_year
who are movie co-writers of [Ray Ashley] written_by_reverse | written_by
who co-starred with [Mary McDonnell] starred_actors_reverse | starred_actors

who are movie co-directors of [Jack Hazan] directed_by_reverse | directed_by


	Abstract
	1 Introduction
	2 Problem Definition
	3 Proposed Method
	3.1 Model Overview
	3.2 Question Encoder-Decoder
	3.3 Answer Scoring
	3.4 Answer Refinement
	3.5 Learning Algorithm
	3.6 Proof and Analysis

	4 Experiments 
	4.1 Experimental Setting
	4.2 Knowledge Graph Question Answering Performance
	4.3 Knowledge Graph Completion Performance
	4.4 Ablation Studies

	5 Related work
	6 Conclusion
	7 Acknowledgement
	References
	Supplementary Material: Reproducibility

