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Abstract
Clique-counting is a fundamental problem that has
application in many areas eg. dense subgraph discovery,
community detection, spam detection, etc. The problem
of k-clique-counting is difficult because as k increases, the
number of k-cliques goes up exponentially. Enumeration
algorithms (even parallel ones) fail to count k-cliques beyond
a small k. Approximation algorithms, like TuránShadow
have been shown to perform well upto k = 10, but are
inefficient for larger cliques. The recently proposed Pivoter
algorithm significantly improved the state-of-the-art and was
able to give exact counts of all k-cliques in a large number
of graphs. However, the clique counts of some graphs (for
example, com-lj) are still out of reach of these algorithms.

We revisit the TuránShadow algorithm and propose
a generalized framework called YACC that leverages
several insights about real-world graphs to achieve faster
clique-counting. The bottleneck in TuránShadow is a
recursive subroutine whose stopping condition is based on
a classic result from extremal combinatorics called Turán’s
theorem. This theorem gives a lower bound for the k-clique
density in a subgraph in terms of its edge density. However,
this stopping condition is based on a worst-case graph that
does not reflect the nature of real-world graphs. Using
techniques for quickly discovering dense subgraphs, we relax
the stopping condition in a systematic way such that we get a
smaller recursion tree while still maintaining the guarantees
provided by TuránShadow. We deploy our algorithm on
several real-world data sets and show that YACC reduces
the size of the recursion tree and the running time by over
an order of magnitude. Using YACC, we are able to obtain
clique counts for several graphs for which clique-counting
was infeasible before, including com-lj.

Keywords: cliques, TuránShadow, sampling,
degeneracy

1 Introduction
Pattern counting (also known as motif counting) is an
important graph analysis tool with applications in social
network analysis, bioinformatics, cybersecurity, physics and
many other domains [28]. One of the characteristic properties
of real-world graphs is that they show very high counts
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of certain patterns – much higher than what one would
expect from a random graph of the same size [16, 21]. Of
particular interest are k-cliques: complete subgraphs on
k-vertices. Cliques are the archetypal examples of dense
subgraphs and have been used in many applications including
spam detection, anomaly detection, community detection
among others [25, 30, 34]. There is a large body of
literature for counting triangles (3-cliques) [20, 3, 17, 28].
Obtaining counts of higher-order cliques is however, a
difficult problem – essentially, as k increases, the count of
k-cliques goes up exponentially and as a result, enumeration
based algorithms are unable to count beyond small k
(typically 5). In recent years, other approaches have yielded
significant improvement. One such line of work (consisting
of algorithms like TuránShadow [17], PEANUTS [19] )
uses a combination of enumeration and sampling to give
approximate clique-counts. It made clique counting feasible
for k upto 10. Several parallel and distributed algorithms
have also been proposed which are typically able to count
upto k = 13. The largest improvement was arguably due
to Pivoter [18] which was the first algorithm to be able
to count cliques without enumerating them. It was able
to obtain exact counts of k-cliques for all k for a large
number of graphs. However, the authors of [18] point out,
there are graphs like com-lj for which Pivoter was not
able to obtain even the count of 8-cliques within a day (the
parallel version of the algorithm also was unable to count
beyond k = 10) and we discovered that there are several such
examples where the existing techniques do not suffice for
counting the number of k-cliques. We want to design faster
clique-counting algorithms that can handle such graphs.

1.1 Problem Definition A k-clique is a complete
graph on k vertices. Given an undirected, simple graph
G(V,E) and a positive integer k ≤ |V |, we want to count
all k-cliques in G. Note that these cliques need not be
maximal (they could be a part of bigger cliques). We make
no distributional assumption on the graph. All probabilities
are over the internal randomness of the algorithm itself and
are independent of the instance.

1.2 Main Contributions We present an algorithm
called YACC1 that uses the framework of the
TuránShadow [17] algorithm and combines it with

1Yet Another Clique Counter
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(i) Timing in seconds for counting k = 20 cliques
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(ii) Size of the recursion tree for k = 20

Figure 1: Fig. 1i shows the time required by the YACC,
TuránShadow and Pivoter for estimating the number
of 20-cliques. In most cases, YACC is > 10× faster. The
horizontal line corresponds to 1 day and TuránShadow
(Pivoter had not terminated in 24 hours for many of
the graphs). Fig. 1ii shows the number of recursive calls
(size of the recursion tree) made by the three algorithms
for estimating the number of 20-cliques. The red circle
represents graphs for which TuránShadow crashed
and we used the size of its recursion tree at the time of
crashing. For algorithms that crashed, we looked at the
size of the tree created in 1 day. In all cases, the size
of the recursion tree goes down by at least an order or
magnitude using YACC. Details about these graphs can
be found in Tab. 1

several observations that better leverage the structure
of real-world graphs, to obtain a faster clique-counting
algorithm with provable guarantees. TuránShadow is
a recursive algorithm whose running time is proportional
to the size of the recursion tree. The main objective of
our techniques is to reduce the size of the recursion tree,
thereby giving faster algorithms for clique counting. Our
main contributions can be summarized as follows:

Generalized framework incorporating Turán
Shadow: TuránShadow comprises two subroutines: a
recursive procedure to build an object called the Turán
Shadow (a collection of dense subgraphs), and a sampling
procedure that samples cliques in the Turán Shadow to
give an unbiased estimate for the count of k-cliques. As
noted by PEANUTS [19], sampling is cheap whereas a
large part of the total running time of TuránShadow is
spent in constructing the shadow. The density threshold
used to determine when a subgraph is “dense” determines
how much time the algorithm spends in constructing the
shadow vs. how much time the algorithm spends in sampling,

and there is a tradeoff in the time required for these two
tasks. The TuránShadow algorithm resolves this tradeoff
in a hard way (using a classic result from extremal graph
theory called Turán’s theorem) and is oblivious to the
structure of the graph at hand. However, in many real-world
scenarios, this is wasteful and indeed, minimizing this waste
is critical for being able to obtain clique-counts in certain
hard graphs. We provide a generalized framework that gives
greater control over this tradeoff, while still maintaining the
guarantees provided by TuránShadow. As a result, we
are able to obtain clique counts for several graphs for which
clique-counting was infeasible before.

Smaller recursion tree: TuránShadow is a recursive
algorithm whose running time is proportional to the size of
its recursion tree. It uses the classic Turán’s theorem as
a stopping condition which in turn governs the size of the
recursion tree. We use several observations about real-world
graphs to systematically relax this stopping condition (which
results in a much smaller recursion tree than the recursion
tree of TuránShadow) while providing the same guarantees
as TuránShadow. Although this reduction in the size of
the recursion tree, in theory, comes at the cost of requiring
more samples, in practice we observe that this cost is
negligible. Fig. 1ii shows the size of the recursion trees
generated by TuránShadow, YACC and Pivoter for
counting the number of 20-cliques in several graphs. In many
cases, we obtain at least an order of magnitude reduction
in the size of the recursion tree in YACC as compared to
TuránShadow (and several orders of magnitude compared
to that of Pivoter). This opens the doors for faster versions
of algorithms which use TuránShadow as a subroutine, for
example PEANUTS.

Faster clique-counting: The reduced size of the
recursion tree directly translates into savings in runtime.
Fig. 1i shows the time required by YACC, TuránShadow
and Pivoter for obtaining the counts of 20-cliques in several
real-world graphs. In most cases, YACC was able to estimate
the clique counts in minutes and was at least an order
of magnitude faster than TuránShadow and Pivoter.
For several graphs, TuránShadow and Pivoter had not
terminated even after 24 hours, and this difference in running
time was even more pronounced for k = 40. Because of
this ability to count cliques quickly, YACC is able to obtain
clique-counts for several graphs for which clique-counting was
infeasible before. For example, to the best of our knowledge,
this is the first work to be able to count the number of
40-cliques in uk-2002. This will allow the use of counts
of bigger cliques in the analysis of real-world graphs.

1.3 Related Work Works showing the importance
of subgraph-counting (also known as motif-counting and
graphlet-counting) in the social-sciences date back to the
70’s [16]. Since then their use has been demonstrated in
many different applications in network science, bioinformatics,
recommendation systems etc. (refer the tutorial [28] and
references therein). It started with couting cliques of size 3
(also known as triangles). Triangles are especially important
as they are intimately tied to the community structure in
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real-world graphs and are used in spam detection [5], graph
modeling [26], and role detection [10]. Recent works have
used cliques of larger sizes for graph visualization [22],
dense subgraph discovery and community detection [25, 30]
and several other applications [32, 24, 33]. For all such
applications, having fast algorithms for counting cliques is
crucial.

A long line of work has been dedicated to counting
triangles and some of these have been extended for up to
k = 5 [11, 4, 27, 20]. A number of randomized techniques
like color coding [4, 35], edge sampling methods [23] and
MCMC methods [6] have also been proposed. However, these
do not scale beyond a small k (typically k = 5) for graphs
with millions of vertices [20].

[15] gave a MapReduce algorithm that used orientation
and sampling and was able to count up to k = 8. [17]
proposed an approximation algorithm called TuránShadow
that used the classic Turán’s theorem and was able to count
k-cliques for k <= 10, and this algorithm is the starting
point for both algorithms presented in this paper. Several
other parallel algorithms have been proposed that use clever
orientations and remarkably, have been able to enumerate
cliques (typically) up to size 13 [12, 29]. The first algorithm
that was able to obtain clique-counts for larger k is the
recently proposed Pivoter algorithm [18] which used the
classic technique of pivoting and was able to count k-cliques
for all k in a large number of graphs. However, many of these
works [18, 12, 29] note the difficulty of obtaining clique-counts
in several hard graphs, which are the focus of this paper.

2 Main Ideas
The starting point for this work is the TuránShadow
algorithm proposed in [17]. We give a description of the
TuránShadow algorithm and its stopping condition below,
and list some of the challenges in counting k-cliques for large
k. We then discuss how we address those challenges and
state our main algorithm.

2.1 TuránShadow Clique-counting has traditionally
been done through recursive enumeration algorithms [11, 12].
The main idea in these algorithms is that to discover all
k-cliques involving a vertex v, it suffices to discover all
(k− 1)-cliques among vertices adjacent to v. By calling itself
recursively on the set of vertices in the neighborhood of v to
discover all (k − 1)-cliques among them, and by combining
every (k − 1)-clique it finds in the neighborhood with v, the
algorithm will have discovered every k-clique involving vertex
v. By carrying out this procedure for every v ∈ V , the
algorithm will have discovered every k-clique in the graph.
But it will have discovered every clique multiple times. In
order to get around this problem, the graph is first converted
into a DAG by ordering the vertices and orienting the edges
from lower to higher vertices according to the ordering, and
instead of the neighborhood of every vertex v, the algorithm
calls itself recursively on only the outneighborhood of v.
One can show that this recursive procedure will discover
every clique exactly once. The ordering used is often the

degeneracy ordering which is formed by peeling the lowest
degree vertex at every step (ties are broken by id). The
largest outdegree of any vertex in this ordering is known as
the degeneracy (denoted by α) of a graph. Many real-world
graphs have low degeneracy (even graphs with millions of
vertices have degeneracy typically in the 100s [17]). Ordering
by degeneracy thus helps ensure that the outneighborhoods
are small.

It would be useful to look at the recursion tree of this
algorithm. At every recursive call, the algorithm has a set
of vertices, say S, in which the algorithm wants to count
`-cliques for ` ≤ k. The nodes of the recursion tree (we
will use ‘vertices’ for vertices in the graph G and ‘nodes’ for
nodes in the tree) represent the recursive calls made by the
algorithm and are labeled by the tuple (S, `) (the root is
labeled (V, k)). For every vertex v ∈ S, let N+

v (S) represent
the outneighborhood of v in S. For every vertex v ∈ S,
the algorithm calls itself recursively on N+

v (S) to count the
number of (`−1)-cliques in N+

v (S). In the recursion tree, this
is represented as |S| children of that node, and the link to the
child call corresponding to N+

v (S) is labeled by v. A pictorial
representation of this tree is given in Fig. 2. Note that for
any node (labeled say, S) in this tree, if we let P be the set
of link labels encountered on the path from the root to that
node, then P represents a clique and S is the set of vertices
that lies in the common outneighborhood of all vertices in
P . Moreover, ` = k − |P |. Thus, in the subgraphs at level i,
we are interested in counting the number of (k − i)-cliques.
Moreover, every path P from the root to some node at level i
represents a unique i-clique from G (and every i-clique from
G is represented by the set of labels on the root-to-node path
of a unique node at level i i.e. there is a bijection).

As the number of child nodes that can be spawned is
bounded by α i.e. the degeneracy of the graph, the size of
this tree can blow up as the depth of the tree increases. One
could optimize the calculation of clique counts slightly by
noting that if S is a clique, the number of `-cliques in S is
exactly

(|S|
`

)
and we can save on building the subtree rooted

at S. However, despite this optimization, recursion trees of
real-world graphs blow up in size as k increases [18]. This is
why enumeration algorithms typically terminate at a certain
depth and are able to count k-cliques only up to that depth.

TuránShadow remedies this by noting that as the
recursion goes deeper the subgraphs S typically become
denser. It uses the observation that when a subgraph is
sufficiently dense, estimating the counts of cliques using
random sampling is more efficient than expanding out the
entire subtree. Hence, when a subgraph becomes “dense”,
the algorithm simply adds the subgraph to a collection of
subgraphs – called the Turán Shadow, and terminates that
branch. Once all the dense subgraphs have been collected,
the algorithm performs random sampling on the subgraphs
to give an unbiased estimate of the total count of k-cliques
in the graph. If a subgraph at level i is dense then in the
subgraph, the algorithm will sample for (k − i)-cliques. But
how dense does a subgraph have to be before it can be added
to the Shadow and how many samples does one need to take?
To answer this question, the TuránShadow algorithm uses
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(i) Convert G to DAG using degeneracy ordering. (ii) Recursion tree for G.

Figure 2: Fig. 2i and Fig. 2ii depict the stages of obtaining the recursion tree for an example graph.
the classic Turán’s theorem which gives a lower bound for
the `-clique density in terms of the edge density. We describe
this theorem below.

We will use n for the number of vertices and m for
the number of edges in the given graph G(V,E). For
any arbitrary graph H = (V (H), E(H)), we will use
ρ`(H) := |C`(H)|/

(|V (H)|
`

)
for the `-clique density where

C`(H) denotes the set of `-cliques in H. ρ2(H) represents the
edge density. Let ex(n,H, F ) denote the maximum number
of (non-induced) copies of a graph H that an n-vertex graph
can have without having a copy of F . Turán’s theorem
determines this quantity for H = 2-clique (edge) and F =
`-clique. It states the following:

Theorem 2.1. (Turán [31]) For F =`-clique, and H =

2-clique, ex(n,H, F ) = (1− 1
`−1

)n2

2
.

Turán and Erdos also showed that if the graph has
density greater than the Turán edge-density for ` then in fact
it has Ω(n`−2) `-cliques.

Theorem 2.2. (Erdős [14]) For any graph H over n vertices,
if ρ2(H) > 1− 1

k−1
, then H contains at least (n/(k − 1))k−2

k-cliques.

The density threshold given by Turán’s theorem controls
how deep the algorithm needs to go before it deems a
subgraph dense enough for sampling. The higher this density
threshold, the deeper the algorithm has to go, and larger
the size of the recursion tree. Herein lies the challenge for
counting k-cliques for large k using TuránShadow.

2.2 Challenges and Main Insights As k (and
correspondingly, `) increases, the density threshold given
by Turán’s algorithm becomes very large. For ` = 20, the
threshold value is 0.95. This means that unless 95% of the
possible edges in the subgraph are present, the subgraph will
not qualify as “dense”. This is a prohibitively large value that
is seldom met. In such cases, the TuránShadow algorithm
defaults to continuing to build the recursive subtree. As k
becomes larger, this problem becomes even more pronounced
and TuránShadow is unable to count k-cliques for such k.

The underlying assumption here is that if the Turán
density threshold is not met by the subgraph, then we cannot
give any guarantees about the number of `-cliques in the
subgraph. However, this is not necessarily true. If the
subgraph has a dense region (which is likely to be the case if
the subgraph has large cliques), then the subgraph could
still have enough `-cliques such that sampling would be

efficient. Indeed, the Turán density is derived from highly
structured and contrived, worst-case graphs that are rarely
seen in practice and as a result, the Turán density threshold is
unnecessarily high. For example, for ` = 3, Turán’s theorem
says that a graph needs to have edge density > 1

2
before

we are guaranteed that there are triangles in it. The only
graph that has this high number of edges without having a
triangle is the complete bipartite graph on n vertices with
each side of size n/2 (analogous graphs for `-cliques are
balanced (`−1)-partite graphs. These graphs are called Turán
graphs). In real-world graphs neighborhoods of vertices are
rarely bipartite (in fact, they have community structure and
high clustering coefficients) and even when they don’t have
very high edge-density they have many triangles. How then
can we capture this phenomena which clearly differs from the
Turán graph, no subset of which is dense? Our main ideas
essentially try to answer this question.

We are thus looking for indicators of the existence of
`-cliques. We do the following: if a subgraph of size s in
which we are looking for `-cliques has a dense region of a
significant size that is guaranteed to have many `-cliques then
we declare the subgraph dense and add it to the Shadow. We
take as input a parameter µ, 0 < µ < 1 that helps us control
how large this dense region needs to be compared to the size
of the subgraph before we declare the subgraph dense and
sample in it. Note that a dense subgraph of size µs contains
Ω((µs)`−2) `-cliques. This guarantees a smaller number of
`-cliques compared to the number of `-cliques that would
have been guaranteed to exist had the entire subgraph been
dense (Ω(s`−2)). As a result, the number of samples required
goes up by a factor of µ`−2 in theory. However, in practice
we find that the increase in the number of samples required
is negligible. In essence, this technique achieves the effect
of declaring the subgraph dense even when the subgraph as
a whole does not meet the Turàn density. But if we would
have done so directly by manually reducing the threshold to
a lower value (say 0.6), we would not have been able to give
any guarantees about the number of samples required, nor
about the probability of error or error margin.

What about the case when only a small region of the
subgraph (< µs in size) is dense? Can we extract this dense
region and add it to the shadow, and build the recursion tree
for only the remaining vertices? Note that naively splitting
the graph into dense and sparse regions and calculating the
cliques in the two regions separately (using sampling for
the dense region and continuing recursive enumeration for
the sparse region) would mean that we miss out on cliques
going across these two regions. More importantly, how do
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we efficiently find a dense region to extract? Checking for
every possible subset of vertices (whether it is dense or not)
would become computationally prohibitive.

We solve both these problems using properties of the
degeneracy ordering. The TuránShadow algorithm, at
each recursive call, orients the vertices of the subgraph S
according to the degeneracy ordering of S. If the vertices
that we remove (i.e. vertices in the dense region, say R) form
a suffix of the ordering, then vertices from this dense region
can still appear in the outneighborhood of vertices earlier in
the ordering that are not part of the dense region i.e. vertices
from R can still appear in the outneighborhood of vertices in
S \R. Any clique that goes across the dense region and the
remaining subgraph (i.e. across R and S \R) must contain
a vertex from S \ R and will be discovered by the subtree
rooted at the smallest vertex in the clique according to the
ordering.

Crucially, the degeneracy ordering has the property that
the dense parts of the graph tend to be towards the end of
the ordering. For example, one can show that if the subgraph
S has a t-clique and the degeneracy of subgraph is t − 1
(degeneracy cannot be < t− 1), and if every subgraph that
has minimum degree t− 1 is a clique, then the suffix of size
t of the ordering (last t vertices of the ordering) must form a
clique. (Refer §3 for a proof).

Thus, given a subgraph S of size s in which we want to
count `-cliques, we form the degeneracy ordering of S and
consider progressively larger suffixes as long as the subgraph
induced by the suffix is “dense” (i.e. the edge density is
greater than the Turán threshold). Let R represent the dense
suffix. We remove a suffix R′ of |R|/µ vertices and add it
to the shadow. We do not explore the outneighborhoods
of the vertices in R′. The outneighborhoods of the rest
of the vertices (S \ R′) continue to get explored as in
TuránShadow.

Finally, at every recursive call, we aggressively prune
away vertices whose degree is < `. We use these techniques
to obtain a Turán Shadow (the object that TuránShadow
creates and on which sampling can be performed with
guarantees about the solution quality). The main technical
insights are geared towards obtaining this Shadow much
more efficiently than TuránShadow. The rest of our
algorithm (sampling from the Shadow and using the samples
to estimate the count of cliques) follows the same procedure
as TuránShadow. Note that the Shadow and the recursion
tree are of independent interest as algorithms like PEANUTS
use this Shadow (for purposes like counting near-cliques).

3 YACC
We will first show that under certain reasonable conditions,
a suffix of the degeneracy ordering forms a large clique.

Theorem 3.1. Let G be a graph with degeneracy α. For
any set of vertices S, let G|S denote the subgraph induced
by the vertices in S. Let δ(S) represent the minimum degree
of any vertex in G|S. Suppose every S for which δ(S) = α
is a clique. Let φ denote the degeneracy ordering of G (ties
are broken by id) and let R represent the suffix of φ of length

α+ 1. Then R is an (α+ 1)-clique.

Proof. The degeneracy of a graph G = max
S⊆V

δ(S) [13]. Let G

be a graph with degeneracy α such that every subset S of G
with δ(S) = α is a clique.

The degeneracy ordering of a graph is obtained through
a peeling process: at every step, a vertex with the minimum
degree is removed from the graph (ties are broken by id) and
the degeneracy ordering is the order in which the vertices are
peeled. It can be shown that if we orient all the edges from
lower to higher vertices in the ordering then the maximum
outdegree of any vertex in the ordering is exactly α [13].

Let K be an (α+1) clique in G. If R = K then the claim
is trivially true. If R 6= K then ∃v ∈ K, v /∈ R. Consider the
smallest such v according to φ. Consider the step at which v
is peeled from G. Let W represent the set of vertices not yet
peeled at the start of this step. Thus, v ∈W,K ⊂W,R ⊂W .
Thus, |W | ≥ (α+1). Since v is about to be peeled from W , v
must be a min degree vertex in W . Moreover, since K ⊂W ,
degree of v is at least α. But this violates the condition that
every S for which δ(S) = α is a clique (since W is not a
clique because if it were, degeneracy would be > α). Hence,
proved.

We will need this important corrollary from [17].

Corollary 3.1. (Corollary 3.3 from [17]) Let
f(k) = kk−2/k!. For any graph H over n vertices, if
ρ2(H) > 1− 1

k−1
, then ρk(H) ≥ 1/f(k)n2.

Our main algorithm follows the framework of
TuránShadow. Central to TuránShadow is an object
called the γ-saturated Turán Shadow which the algorithm
builds.

Definition 3.1. [From [17]]: A k-clique shadow S for
graph G is a multiset of tuples {(Si, `i)} where Si ⊆ V and
`i ∈ N such that: there is a bijection between Ck(G) and⋃

(S,`)∈S C`(S).
Furthermore, a k-clique shadow S is γ-saturated if

∀(S, `) ∈ S, ρ`(S) ≥ γ.

Using the techniques described in the previous section,
YACC-Shadow-Builder builds a γ-saturated k-clique shadow.
A crucial difference from TuránShadow is that in Step 9,
the algorithm recursively explores the outneighborhoods of
only those vertices in S that are not in R′. Thus where the
TuránShadow algorithm made |S| recursive calls, YACC
only makes |S| − |R′| recursive calls.

Once a γ-saturated Turán Shadow is obtained, both
TuránShadow and YACC sample from this shadow to
estimate the count of k-cliques. The main task is to prove
that the output of YACC-Shadow-Builder is a γ-saturated
Turán Shadow (for γ = 1/max(S,`)∈S(f(`)|S|2/µ`−2)). Once
we have a γ-saturated Turán Shadow, all the guarantees
of space, time complexity and accuracy of TuránShadow
apply.

Theorem 3.2. The output S of
YACC-Shadow-Builder(G, k, µ) is a γ-saturated k-clique
shadow, where γ = 1/max(S,`)∈S(f(`)|S|2/µ`−2).
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Algorithm 1: YACC-Shadow-Builder(G, k, µ)

1 Initialize T = {(V, k)} and S = ∅
2 While ∃(S, `) ∈ T such that ρ2(S) ≤ 1− 1

`−1
3 Construct the degeneracy DAG D(G|S) and
let Π denote the degeneracy ordering

4 Let R be the largest suffix of Π such that
ρ2(R) ≥ 1− 1

`−1 .
5 Let R′ be a suffix of Π of size min(|R|/µ, |S|).
6 Add (R′, `) to S
7 Let N+

s denote the outneighborhood (within
D(G|S)) of s ∈ S

8 Delete (S, `) from T
9 For each s ∈ S \R′

10 If ` ≤ 2 or ρ2(N+
s ) > 1− 1

`−2
11 Add (N+

s , `− 1) to S
12 Else, add (N+

s , `− 1) to T
13 Output S

Proof. Similar to theorem 5.2 in [17], we first
prove by induction the following loop invariant for
YACC-Shadow-Builder: T ∪ S is always a k-clique shadow.

At the start, T = {(V, k)} and S = ∅. Thus the base
case is valid.

For the induction step, assume that at the beginning of
some iteration T ∪ S is a k-clique shadow.

The element (S, `) is deleted from T .
For s ∈ S \R′, (N+

s , `− 1) is added to S or to T . Also
R′ is added to S.

Thus, it suffices to prove that there is a bijection mapping
between C`(S) and

⋃
s∈S\R′ C`−1(N+

s ) ∪ C`(R
′).

Let C be a `-clique in S. If C ⊆ R′, then C * C`−1(N+
s )

for any s ∈ S \ R′ and C can be mapped to its copy in
C`(R

′). If C /∈ R′, then ∃s ∈ S \ R′, s ∈ C. Let s′ be the
smallest vertex in C according to the degeneracy ordering of
S. Then C \ s′ is an (` − 1)-clique contained exactly once
and in C`−1(N+

s′ ) thus C can be mapped to this `− 1-clique
in N+

s′ .
In the other direction, every C ∈ R′ can be mapped to

its own copy in S. Every (`−1)-clique J in N+
s for s ∈ S \R′

can be mapped uniquely to exactly the clique {s} ∪ J in S.
Thus, there is a bijection between the cliques in C`(S) and⋃

s∈S\R′ C`−1(N+
s ) ∪ C`(R

′).
When YACC-Shadow-Builder terminates, T ∪ S is a

k-clique shadow. Since T must be empty, S is a k-clique
shadow. Moreover, whenever a pair (R′, `) is added in S, R′

contains a dense part of size at least R′/µ. By Corollary 3.1,
ρ`(R

′) ≥ µ`−2/f(`)(|R′|)2.

Once the Turán Shadow is obtained by
YACC-Shadow-Builder, the sampling of cliques is carried out
in the same manner as TuránShadow.

We restate the sample algorithm from [17] here for
completeness.

ϕ denotes what fraction of the sample space consisting

Algorithm 2: YACC(G, k, ε, δ, µ)

1 Compute S = YACC-Shadow-Builder(G, k)

2 Set γ = 1/max(S,`)∈S(f(`)|S|2/µ`−2)

3 Output Ĉk = sample(S, k, ε, δ, γ)

Algorithm 3: sample(S, k, ε, δ, γ)
S is γ-saturated k-clique shadow
ε, δ are error parameters

1 For each (S, `) ∈ S, set w(S) =
(|S|
`

)
2 Let W (S) =

∑
(S,`)∈S

(|S|
`

)
3 Set probability distribution D over S where
p(S) = w(S)/W (S)

4 For r ∈ 1, 2, . . . , t = 20
γε2 log(1/δ)

5 Independently sample (S, `) from D
6 Choose a u.a.r. `-tuple A from S
7 If A forms `-clique, set indicator Xr = 1. Else,
Xr = 0

8 Let ϕ =
∑

r Xr

t denote the fraction of samples
that are cliques (we will also call this the success
ratio)

9 Output ϕ ∗W (S) as estimate for |Ck(G)|

of W (S) sets of vertices are cliques. Thus, the sampling
procedure essentially sets up a Bernoulli distribution over
W (S) sets and estimates the success probability of this
Bernoulli distribution. Note that if W (S) > 0, the shadow
definitely consists of k-cliques.

By Theorem3.2, the shadow built by YACC is a
γ-saturated k-clique shadow. Hence, the results of [17]
apply and our final theorem looks as follows:

Theorem 3.3. Consider graph G = (V,E) with m edges,
n vertices, and degeneracy α(G). Let 1 ≥ µ >
0. Let S be the γ-saturated Turán k-clique shadow
of G as output by YACC-Shadow-Builder where γ =
1/max(S,`)∈S(f(`)|S|2/µ`−2).

With probability at least 1 − δ (this probability is over
the randomness of YACC; there is no stochastic assumption
on G), |Ĉk − |Ck(G)|| ≤ ε|Ck(G)|.

The running time of YACC is O(α(G)size(S) +
f(k)m log(1/δ)/ε2γ + n) and the total storage is O(size(S) +
m+ n).

Tuning µ: The higher the value of µ, the denser a
subgraph has to be before it is put in the shadow and hence,
larger the recursion tree. On the other hand, since the
subgraphs are denser, the number of samples required to
reach a certain level of accuracy is smaller. Thus, there is a
tradeoff between the size of the recursion tree to be explored
and the number of samples required. The parameter µ helps
us control this tradeoff. A small value of µ may require us to
take a prohibitively large number of samples. In such a case,
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increasing the value of µ can offset the time cost of taking a
large number of samples.

4 Experimental results
We implemented YACC in C++ and ran our experiments
on a commodity machine equipped with a 2x Intel Xeon
CPU E5-2670 processor with 32 cores and 256KB L2 cache
(per core), 20MB L3 cache, and 64GB memory. Our code
is available here: https://bitbucket.org/sjain12/yacc/. The
codes for Pivoter [2] and TuránShadow [1] have been
made publicly available by their authors for modification and
reproduction for non-commercial use.

We performed our experiments on a collection of
real-world graphs from SNAP [36] and the Laboratory for
Web Algorithmics [9, 8, 7], consisting of social networks, web
networks, etc. For graphs that are directed, we ignore the
direction. Basic properties of these graphs are presented in
Tab. 1. We fix the number of samples to be 500K for YACC
and 50000 for TuránShadow (based on the value used by
its authors in [17]). If and when the paper gets selected for
publication, we will be making our code open-source.

We focus on counting k-cliques for k ranging from 10 to
40 and showcase results for k = 20, 40.

4.1 Running Time Tab. 1 shows the time in seconds
required to get the estimates for k = 20, 40 for eight different
graphs using YACC. We were able to get estimates for all
graphs in < 24 hours, and in many cases in minutes. For
many of these graphs, these estimates have become available
for the first time.

4.2 Accuracy Since YACC is the first algorithm to be
able to count k-cliques for several of the graphs, the ground
truths for many of our experiments are not available and as
a result, we are unable to obtain the exact values of error in
the estimates of our randomized algorithm. However, there
are other indicators one can measure to gauge the accuracy
of the experiments. As explained in [17], the sampling
procedure sample estimates clique counts by estimating the
success probability of a Bernoulli random variable, for which,
the algorithm samples several sets of vertices (in this case,
500000). The fraction of these sets that happen to be cliques
(which we call the success ratio and denote by ϕ) gives us an
estimate for the fraction of W (S) that are cliques. If ϕ is
large then the estimates are more stable across different runs
of the algorithm and the error in the estimates is likely to be
small. As a practical rule of thumb, if the number of samples
that are cliques is > 100, the estimates are likely to have less
error. In other words, we want the success ratio from taking
500000 samples to be > 0.0002. When this is not the case
and W (S) > 0, it means that W (S) is much larger than the
number of cliques and hence, 500000 samples are not enough
to see enough cliques. In this case, we can either increase the
number of samples, or rerun the experiment with a higher
value of µ. We do so for the graphs in Tab. 1 for which ϕ is
small (andW (S) 6= 0), setting µ = 1.0 to get a better success
ratio and hence, better estimates. Note that increasing the

value of µ comes at the cost of more time. Note also, that the
cost of sampling goes up linearly with the number of samples
and for graphs like as-skitter and com-orkut, for k = 40 we
do not know apriori how many more samples we need to take
to have enough cliques sampled.

4.3 Convergence Fig. 4i and Fig. 4ii shows convergence
over 100 runs of YACC using 50K, 500K and 5M samples for
com-lj and soc-lj for k = 20, respectively. There is a red dot
for the estimate from each of the 100 runs. Since the exact
values of these clique counts are not known, we compared the
spread of these outcomes with the average of the 100 runs
using 5M samples, represented by the blue line. YACC has
an extremely low spread and converges quickly.

4.4 Size of Recursion Tree Fig. 1ii and Fig. 3ii show
the comparison of the sizes of the recursion trees of YACC,
TuránShadow and Pivoter for several graphs for k = 20
and k = 40, resp. The red circle represents graphs for
which TuránShadow crashed and we used the size of its
recursion tree at the time of crashing. As we can see, in
many of the cases, the size of recursion tree decreases by an
order of magnitude in the case of YACC. Essentially, this is
because of the relaxed stopping criteria and a finer control
over the tradeoff of time spent between building the tree
and sampling. The time for sampling scales linearly with
the number of samples so the reduced tree size comes at
the price of more samples. However, in practice this is a
negligible cost compared to the time for building the tree;
500K samples (which take < 2 minutes to take) sufficed
for all of our experiments involving YACC. As the proof
of Theorem 5.4 in [17] shows, the size of the shadow is
proportional to the size of the recursion tree and we suspect
the TuránShadow algorithm crashed because of running
out of memory.

4.5 Comparison with other Algorithms We
compared with TuránShadow [17] and Pivoter [18] (codes
for both have been made publicly available by the authors)
which are the state-of-the-art clique counting algorithms.
Pivoter is an exact clique-counting algorithm and as the
authors of Pivoter point out, it is unable to obtain the
counts of cliques for graphs like com-lj. We discovered that
this was the case for many more graphs like soc-lj, uk-2002,
among others. For such graphs, approximation algorithms
are the only feasible solution currently available. Fig. 3i
shows the time required by the YACC, TuránShadow and
Pivoter for estimating the number of 40-cliques. In most
cases, YACC takes an order of magnitude less time than other
methods. Note that the maximum y value corresponds to 1
day and TuránShadow and Pivoter had not terminated
in 24 hours for many of the graphs.

Comparison with PEANUTS: [19] proposed
a heuristic algorithm for counting cliques that uses
TuránShadow as a subroutine. We replaced the
TuránShadow subroutine with YACC and found significant
improvement in the performance of the PEANUTS
algorithm. Fig. 5 shows that the time and the number of
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Figure 3: Comparing YACC, TuránShadow and Pivoter for estimating the number of 40-cliques.

k=20 k=40
graph n m α µ Ck W (S) ϕ time Ck W (S) ϕ time
web-Google 8.7E+05 4.3E+06 44 0.5 6.8E+12 1.5E+13 0.43749 3 9.9E+5 3.7E+08 0.003 4

as-skitter 1.7E+06 1.1E+07 111 0.5 1.45E+18 8.05E+22 1.80E-05 11 0 1.61E+30 0 5
1.0 1.29E+18 3.01E+19 0.042652 68 5.10E+19 6.25E+21 0.00816 117

soc-pokec 1.6E+06 2.2E+07 47 0.5 4.95E+07 1.24E+12 4.00E-05 11 0 0.00 0 0
1.0 4.49E+07 1.32E+08 0.33977 12 - - - -

com-lj 4.0E+06 3.4E+07 360 0.5 5.49E+32 6.88E+32 0.797518 79 2.51E+53 6.27+E53 0.399702 344
soc-LJ 4.8E+06 4.2E+07 372 0.5 1.31E+33 2.83E+33 0.463904 172 5.88E+53 5.00E+56 0.001176 384

com-orkut 3.0E+06 1.1E+08 253 0.5 2.11E+17 2.64E+22 8.00E-06 1887 0 1.32E+27 0 824
1.0 3.38E+17 1.40E+20 2.41E-03 5469 2.61E+13 1.19E+18 2.20E-05 6665

indo-2004 7.4E+06 1.9E+08 13642 0.5 2.92E+58 3.06E+58 0.954504 1233 5.44E+105 6.40E+105 0.849698 1564
uk-2002 1.8E+07 2.9E+08 1885 0.5 1.07E+41 1.07E+41 1 1860 5.29E+70 5.29E+70 1 768

Table 1: Table shows the sizes and degeneracy of the graphs, the counts of 20 and 40 cliques (denoted by Ck),
W (S), success ratio ϕ obtained using YACC, and time in seconds required to get the estimates. By default,
we used µ = 0.5 and number of samples = 500000. Whenever the success ratio ϕ was very low (< 0.0002) and
W (S) 6= 0, we reran the algorithm setting µ = 1.0.
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Figure 4: Convergence and success ratio of YACC.

recursive calls goes down significantly using YACC.
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