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Abstract—This paper explores the use of changepoint detection
(CPD) for an improved time-localization of forced oscillations
(FOs) in measured power system data. In order for the au-
toregressive moving average plus sinusoids (ARMA+S) class of
electromechanical mode meters to successfully estimate modal
frequency and damping from data that contains a FO, accurate
estimates of where the FO exists in time series are needed.
Compared to the existing correlation-based method, the proposed
CPD method is based on upon a maximum likelihood estimator
(MLE) for the detection of an unknown number changes in signal
mean to unknown levels at unknown times. Using the pruned
exact linear time (PELT) dynamic programming algorithm along
with a novel refinement technique, the proposed approach is
shown to provide a dramatic improvement in FO start/stop
time estimation accuracy while being robust to intermittent
FOs. These findings were supported though simulations with the
minniWECC model.

I. INTRODUCTION

Power system forced oscillations can bias electromechanical

mode meters toward ultra-low damping if not handled with

proper care as seen in, e.g., [1]–[8]. This could cause false

alarm scenarios where operators are led to believe that the

system is nearly unstable, when in reality it is just a poorly

behaving tool responding to a FO.

The least squares autoregressive moving average plus si-

nusoids (LS-ARMA+S) mode meter was shown in [4]–[8]

to accurately estimate the electromechanical modes whether

FOs are present or not. The algorithm does, however, require

separately-estimated FO frequency and start/stop samples.

Estimating FO frequency is a classical signal processing

problem. In contrast, the estimation of the start/stop samples

has not been given the same attention. The authors of [4]

proposed a correlation-based approach in [9] that performed

reasonably well but cannot accommodate FOs with multiple

start/stop times in an analysis window.

In this paper, a changepoint detection (CPD) approach

to estimating FO start/stop times is presented. So far, CPD

applications in power systems have been limited. For example,

the work done in [10] focused on using a subspace approach to

detect changes in power system operating point in a fast, online

setting. Here it is seen that CPD provides start/stop estimates

that are substantially more accurate than those found by [9]
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while also handling intermittent FOs with multiple start/stop

times. The end results is an LS-ARMA+S mode meter that is

more accurate and robust than before.

In the next section, a review of the ARMA+S mode meter

is provided. In Section III the proposed CPD-based method of

FO start/stop time estimation is presented. The performance

of the proposed method is explored using simulations with the

minniWECC model in Section IV, and concluding remarks are

given in Section V.

II. BACKGROUND

It is well known that when a power system is linearized

under small-signal stability analysis, measured system outputs

such as voltage angle, frequency, active power, etc., may

be modeled as an autoregressive moving average (ARMA)

process under ambient conditions (e.g. [11]). In the presence

of a FO, the ARMA plus sinusoids (ARMA+S) model may

be used [4]

y[k] = x[k] + s[k] (1)

where y is some measured output as a function of discrete

sample k ∈ [0, 1, . . . , N − 1], x is an ARMA process, and

sinusoids s are defined as

s[k] =

p
∑

i=1

Ai cos(ωik + θi)Iǫi,ηi
[k] (2)

where A is the amplitude, ω is the frequency, θ is the phase

angle, and indicator function I defines the FO starting sample

ǫ and ending sample η by

I[k] =

{

1, ǫ ≤ k ≤ η

0, else
(3)

Using the ARMA+S model has been shown in [4]–[8] to

be a highly effective way of estimating the power system

electromechanical modes in the presence of FOs that would

otherwise bias the mode estimates toward zero damping and

the FO frequency. The linear parameters of the model, i.e.,

the ARMA portion along with the FO amplitudes and phases,

can be estimated using a least squares approach as detailed in

[4]. Note that the LS algorithm uses estimates of the nonlinear

model parameters, i.e., the frequency and start/stop samples,

that must be estimated separately.
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The task of FO frequency estimation was addressed in [12],

where a zero-padding periodgoram method was developed and

subsequently used in the ARMA+S estimation contained in

[5], [6]. In [8] it was shown that while optimized for FO

detection, the methods in [12] were not necessarily the best

choice for estimation. In particular, it was established that

for FOs with high enough energy, the accuracy required to

get good mode meter performance was impossible to achieve

using zero-padding. Instead, the iterative approach from [13]

was suggested for being both computationally and statistically

efficient, and indeed a striking improvement in mode meter

estimation accuracy was observed.

An approach to estimating the FO start/stop samples was

proposed in [9]. It is based upon the fact that the cross-

correlation between one of the cosine elements in (2) and a

complex exponential of the same frequency and record length

is essentially a trapezoid, the vertices of which are directly

related to the starting and stopping samples of the cosine.

The algorithm from [9] fits a trapezoid to the cross-correlation

between y and a complex exponential at the estimated FO fre-

quency and assumes that the correlation only contains a single

trapezoid. This approach was used in conjunction with the

periodogram-based FO frequency estimation algorithm from

[12] to successfully estimate mode frequency and damping in

the presence of FOs using the ARMA+S model in [5], [6].

III. CHANGEPOINT DETECTION AND FOS

The sudden appearance or disappearance of a FO in y can

be viewed as a model change, the detection of which is heavily

covered in [14]. In particular, the problem of detecting multiple

jumps in signal mean where neither the values of the means

nor the jump times are known is described. It is shown that

the joint MLE for m + 1 means and m jump times is the

minimization of cost function

J(Y, n) =

n1−1
∑

k=0

(y[k]− Y0)
2 +

n2−1
∑

k=n1

(y[k]− Y1)
2

+ . . .+
N−1
∑

k=nm

(y[k]− Ym)2

(4)

where Y =
[

Y0 Y1 · · · Ym

]T
are the means and n =

[

n1 n2 · · · nm

]T
are the changepoints. As illustrated

in [14], the solution to (4) may be found using dynamic

programming, which can be computationally burdensome.

The authors of [15]–[17] developed an approach to solving

(4) that introduces a pruning step within the dynamic pro-

gramming to lower the computational cost to O(n) from, e.g.,

O(n2) or O(n log n) in other methods. Named the pruned

exact linear time (PELT) method, it has the ability to optimally

select the number of changepoints m. Note that MATLAB

function ischange uses PELT in its CPD algorithm to return

estimates of both the means and the changepoints. Here it used

with the ‘MaxNumChanges’ option which places an upper

limit on the optimal number of changepoints m to be found; a

value that should be chosen to be larger than number of times

a particular FO is expected to be appearing or disappearing

throughout the data record.

A. Mode Meter Workflow

Before discussing how CPD is applied to the FO problem,

its place in the overall mode meter algorithm must be ex-

plained. First, the presence of an FO is detected in the data

analysis window using the periodogram-based method of [12].

Then, the frequency of the FO is estimated using the iterative

method of [13]. Next, the FO frequency estimate is used by

the CPD algorithm presented below to provide estimates of

the FO start/stop samples. Finally, the LS-ARMA+S model is

estimated with a two-stage least squares algorithm that uses

the FO frequency and start/stop time estimates to produce

modal frequency and damping estimates comparable to those

observed in purely ambient conditions.

B. The CPD Algorithm

To apply the PELT-based CPD algorithm to FO start/stop

sample estimation, the data is first preprocessed to produce a

signal that has nonzero mean when a FO is present and zero

mean otherwise. Note trigonometric identity

scos[k] = A cos(ωk + θ) cos(ωk + φ)

=
A

2
cos(θ − φ) + cos(2ωk + θ + φ)

(5)

where the mean of scos is maximized when φ = θ. Thus

multiplying y by a cosine of the FO frequency and phase will

result in a signal that has a mean of approximately A/2 when

the FO is present and zero otherwise. Define

ycos[k] = y[k] cos
(

ω̂k + θ̂
)

(6)

where ω̂ is the FO frequency estimated using [13] and phase

θ̂ is estimated via the Discrete-Time Fourier Transform as

Â∠θ̂ =
N−1
∑

k=0

y[k]e−jω̂k (7)

The main algorithm is shown in Fig. 1 with ycos as the input.

It must be initialized with NmaxCP the maximum number

of changepoints passed to the ‘MaxNumChanges’ option,

NminSL the minimum segment length to consider, and the

estimate of the amplitude of the FO Â from (7). Assuming

CPs are detected, Nshort, the number of segments shorter than

NminSL, is subtracted from NmaxCP and ischange is rerun.

This eliminates any erroneously estimated FO segments that

are a few samples long. NminSL should be chosen such that

it corresponds to an FO duration that would have negligible

effect on mode meter performance. This loop runs until either

no CPs are detected or all segments are long enough. Finally,

the segments are categorized as either FO “on” or “off” based

upon the segment mean relative to αÂ, where α is a scaling

factor on the estimated FO amplitude. Note an extremely

important area of future work is to study the sensitivity of

the method to parameters NmaxCP , NminSL, and αÂ.
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Fig. 1. The FO start/stop time CPD algorithm.

IV. SIMULATION STUDY

To assess the effectiveness of the proposed approach, a

simulation study was conducted using the minniWECC model

of the Western Electricity Coordinating Council (WECC)

power system (see [18] for technical details). In each of the

studies below, 300 Monte Carlo simulations of 20-minutes

in duration were conducted. Ambient system conditions were

created by modeling 0.125% of each load as random using

1/f filtered Gaussian White Noise (GWN). The system output

was chosen as the difference between voltage angles at buses

from the northern and southern edges of the grid, chosen for

the high observability of the mode under study, i.e., the 0.37

Hz and 4.67% damping mode often referred to as the “North-

South B” (NSB) mode. Gaussian white measurement noise

was added to the output to achieve an SNR of 80 dB.

The simulations were conducted at the common PMU re-

porting rate of 120 samples per second, and the system outputs

were preprocessed by lowpass filtering and downsampling to

5 samples per second and then detrended with a high pass

filter. The LS-ARMA+S mode meter was implemented with

model orders of AR-32, MA-6, and high-order AR of 50 (stage

1 in the Two-Stage Least Squares process). In each Monte

Carlo trial, the mode estimates from LS-ARMA+S were sifted

such that only those between 0.3 and 0.42 Hz and below

25% damping were kept. To establish a baseline, ambient-

only data was analyzed, and the resulting mode estimates are

shown in Fig. 2. The CPD altorighm was implemented with

NmaxCP = 10, NminSL = 2 minutes, and α = 0.7.

A. Contiguous Forced Oscillations

A FO was introduced by applying a square wave to the

mechanical power input of a particular generator beginning 5

-5 0 5 10 15
0.3

0.35

0.4

Fig. 2. Mode estimates from 300 Monte Carlo simulations of the minniWECC
under ambient conditions. (True mode in red, estimates in black)
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Fig. 3. Preprocessed minniWECC output with a 0.35-Hz 3-dB FO present
from the 5- to 15-minute marks.
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Fig. 4. Estimates of the FO start and stop times using the correlation method
(black) and CPD (red) from simulations with a 0.35-Hz 3-dB FO present from
the 5- to 15-minute marks.

minutes into the simulation and ending at the 15-minute mark

of 20 minutes of otherwise ambient data. First consider a 0.35-

Hz FO with a 3 dB SNR, defined with the FO as the signal

and the ambient data as the noise. An example realization of

the system output is shown in Fig. 3.

As can be seen in Fig. 4, the estimates of the FO start and

stop times are vastly improved using the CPD approach. The

mode frequency and damping estimates are, however, far less

dramatic. Shown in Fig. 5, the FO is bothersome enough that

the classic LS-ARMA mode meter is severely biased, while

the correlation-based LS-ARMA+S mode meter has a small

bias. The new CPD-based LS-ARMA+S mode meter provided

nearly identical results to the purely ambient case.

Next, the amplitude of the FO was increased to 13 dB and

the simulation study was repeated. See Fig. 6 for an example

simulation output. The increased observability of the FO in

the data greatly improved the estimation accuracy of both
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Fig. 5. Estimates of mode frequency and damping from simulations with a
0.35-Hz 3-dB FO present from the 5- to 15-minute marks. (True mode in red,
estimates in black).

approaches as seen in Fig. 7. As with the 3-dB case, the stan-

dard deviations of the correlation-based approach were about

6 times those of the CPD-based method. The mode estimates,

shown in Fig. 8, reveal that the increased FO energy had a

catastrophic effect on the LS-ARMA mode meter; virtually

every estimate is at the FO frequency with nearly 0% damping.

Despite the improved FO start/stop estimation accuracy, the

correlation-based LS-ARMA+S mode meter demonstrated a

performance degradation as compared to the 3-dB case, while

the CPD approach maintained its accuracy. These simulation

cases demonstrate the trend discussed in [8] that the more

severe the FO, the greater the accuracy needed when passing

values of the nonlinear FO parameters to the LS-ARMA+S

algorithm.

B. Intermittent Forced Oscillations

While the previous subsection demonstrated mild to moder-

ate improvement in mode meter performance using the CPD

approach, here we consider a case where the correlation-

based method necessarily fails. If a FO suddenly turns off

and on again any number of times within an analysis window,

perhaps due to a malfunctioning controller tripping briefly

or an oscillatory load going offline temporarily, the cross

correlation waveform used in the correlation-based approach

will be comprised of several trapezoids - one for each segment

of data where the FO is “on.” Because the correlation-based

approach operates by fitting the cross-correlation data to

a single trapezoid, it will fail. Granted, if the number of

“on” segments of the FO are known, the correlation method

could be adapted. The CPD approach, due to its dynamic

programming, does not require prior knowledge of the number

of segments.

To demonstrate, a simulation was conducted with the 0.35-

Hz 3-dB FO from above, but with opposite on/off states. The

FO was present from the start through the 5-minute mark, and

then again from the 15-minute mark through the end. Figure

9 provides an example realization of the system output under

0 2 4 6 8 10 12 14 16 18 20
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Fig. 6. Preprocessed minniWECC output with a 0.35-Hz 13-dB FO present
from the 5- to 15-minute marks.
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Fig. 7. Estimates of the FO start and stop times using the correlation method
(black) and CPD (red) from simulations with a 0.35-Hz 13-dB FO present
from the 5- to 15-minute marks.
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Fig. 8. Estimates of mode frequency and damping from simulations with a
0.35-Hz 13-dB FO present from the 5- to 15-minute marks. (True mode in
red, estimates in black).

these conditions. The cross correlation is shown in Fig. 10

where one trapezoid from each “on” period is clearly visible.

Indeed, the correlation-based algorithm failed on each of

the Monte Carlo trials, leading to mode meter estimates no

better than the LS-ARMA cases as seen in Fig. 11. The CPD

algorithm correctly identified both “on” segments in all Monte

Carlo trials, and estimated the start/stop times with accuracy
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Fig. 9. Preprocessed minniWECC output with a 0.35-Hz 3-dB FO present
from the 0- to 5-minute marks, and then again from the 15- to 20-minute
marks.
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Fig. 10. Cross correlation of the data from Fig 9 with a 0.35-Hz complex
exponential.
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Fig. 11. Estimates of mode frequency and damping from simulations with
a 00.35-Hz 3-dB FO present from the 0- to 5-minute marks, and then again
from the 15- to 20-minute marks. (True mode in red, estimates in black)

comparable to that of Fig. 4, leading once again to mode

estimates that nearly match the purely ambient case.

V. CONCLUSIONS

This paper explores the use of changepoint detection for

estimating the start/stop samples of forced oscillations in

otherwise ambient data. Compared to the correlation-based

method, it provides estimates with lower variance and has

the ability to handle multiple changepoints, allowing for the

analysis of intermittent FOs. These improvements make the

LS-ARMA+S mode meter both more accurate and robust.

Ongoing work includes an investigation into alternative

CPD methods, e.g., [10], [14]. A battery of tests is being

conducted under a variety of difficult simulation conditions

including multiple FOs of closely spaced frequency, and power

system conditions that include ringdowns or low-damping

system modes. Additionally, these methods must be validated

with data measured from actual power systems. Finally, it must

be noted that these approaches so far assume stationary FOs.

An extremely important area of future work is the task of

dealing with FOs with amplitude and frequency that drift over

time.
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