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Abstract—This paper explores the use of changepoint detection
(CPD) for an improved time-localization of forced oscillations
(FOs) in measured power system data. In order for the au-
toregressive moving average plus sinusoids (ARMA+S) class of
electromechanical mode meters to successfully estimate modal
frequency and damping from data that contains a FO, accurate
estimates of where the FO exists in time series are needed.
Compared to the existing correlation-based method, the proposed
CPD method is based on upon a maximum likelihood estimator
(MLE) for the detection of an unknown number changes in signal
mean to unknown levels at unknown times. Using the pruned
exact linear time (PELT) dynamic programming algorithm along
with a novel refinement technique, the proposed approach is
shown to provide a dramatic improvement in FO start/stop
time estimation accuracy while being robust to intermittent
FOs. These findings were supported though simulations with the
minniWECC model.

I. INTRODUCTION

Power system forced oscillations can bias electromechanical
mode meters toward ultra-low damping if not handled with
proper care as seen in, e.g., [1]-[8]. This could cause false
alarm scenarios where operators are led to believe that the
system is nearly unstable, when in reality it is just a poorly
behaving tool responding to a FO.

The least squares autoregressive moving average plus si-
nusoids (LS-ARMA+S) mode meter was shown in [4]-[8]
to accurately estimate the electromechanical modes whether
FOs are present or not. The algorithm does, however, require
separately-estimated FO frequency and start/stop samples.

Estimating FO frequency is a classical signal processing
problem. In contrast, the estimation of the start/stop samples
has not been given the same attention. The authors of [4]
proposed a correlation-based approach in [9] that performed
reasonably well but cannot accommodate FOs with multiple
start/stop times in an analysis window.

In this paper, a changepoint detection (CPD) approach
to estimating FO start/stop times is presented. So far, CPD
applications in power systems have been limited. For example,
the work done in [10] focused on using a subspace approach to
detect changes in power system operating point in a fast, online
setting. Here it is seen that CPD provides start/stop estimates
that are substantially more accurate than those found by [9]

This material is based upon work supported by the National Science
Foundation under Grant No. 1944689

978-1-6654-0823-3/22/$31.00 ©2022 IEEE

while also handling intermittent FOs with multiple start/stop
times. The end results is an LS-ARMA+S mode meter that is
more accurate and robust than before.

In the next section, a review of the ARMA+S mode meter
is provided. In Section III the proposed CPD-based method of
FO start/stop time estimation is presented. The performance
of the proposed method is explored using simulations with the
minniWECC model in Section IV, and concluding remarks are
given in Section V.

II. BACKGROUND

It is well known that when a power system is linearized
under small-signal stability analysis, measured system outputs
such as voltage angle, frequency, active power, etc., may
be modeled as an autoregressive moving average (ARMA)
process under ambient conditions (e.g. [11]). In the presence
of a FO, the ARMA plus sinusoids (ARMA+S) model may
be used [4]

ylk] = x[k] + s[k] (D

where y is some measured output as a function of discrete
sample k£ € [0,1,...,N — 1], « is an ARMA process, and
sinusoids s are defined as

P
slk] = Z A; cos(wik + 6;) I, . [K] 2)
i=1
where A is the amplitude, w is the frequency, 6 is the phase
angle, and indicator function I defines the FO starting sample
€ and ending sample 7 by

{1, e<k<np 3)
0, else

Using the ARMA+S model has been shown in [4]-[8] to
be a highly effective way of estimating the power system
electromechanical modes in the presence of FOs that would
otherwise bias the mode estimates toward zero damping and
the FO frequency. The linear parameters of the model, i.e.,
the ARMA portion along with the FO amplitudes and phases,
can be estimated using a least squares approach as detailed in
[4]. Note that the LS algorithm uses estimates of the nonlinear
model parameters, i.e., the frequency and start/stop samples,
that must be estimated separately.
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The task of FO frequency estimation was addressed in [12],
where a zero-padding periodgoram method was developed and
subsequently used in the ARMA+S estimation contained in
[5], [6]. In [8] it was shown that while optimized for FO
detection, the methods in [12] were not necessarily the best
choice for estimation. In particular, it was established that
for FOs with high enough energy, the accuracy required to
get good mode meter performance was impossible to achieve
using zero-padding. Instead, the iterative approach from [13]
was suggested for being both computationally and statistically
efficient, and indeed a striking improvement in mode meter
estimation accuracy was observed.

An approach to estimating the FO start/stop samples was
proposed in [9]. It is based upon the fact that the cross-
correlation between one of the cosine elements in (2) and a
complex exponential of the same frequency and record length
is essentially a trapezoid, the vertices of which are directly
related to the starting and stopping samples of the cosine.
The algorithm from [9] fits a trapezoid to the cross-correlation
between y and a complex exponential at the estimated FO fre-
quency and assumes that the correlation only contains a single
trapezoid. This approach was used in conjunction with the
periodogram-based FO frequency estimation algorithm from
[12] to successfully estimate mode frequency and damping in
the presence of FOs using the ARMA+S model in [5], [6].

III. CHANGEPOINT DETECTION AND FOS

The sudden appearance or disappearance of a FO in y can
be viewed as a model change, the detection of which is heavily
covered in [14]. In particular, the problem of detecting multiple
jumps in signal mean where neither the values of the means
nor the jump times are known is described. It is shown that
the joint MLE for m + 1 means and m jump times is the
minimization of cost function

nlfl ’I’szl
J(YV,n) =Y (ylk] = Y0 + > (ylk] — V1)
k= k=n
’ N-1 1 @
oot Y (YK - V)
k=nm
where Y = [Yy Y} Ym]T are the means and n =

[nl No nm]T are the changepoints. As illustrated
in [14], the solution to (4) may be found using dynamic
programming, which can be computationally burdensome.
The authors of [15]-[17] developed an approach to solving
(4) that introduces a pruning step within the dynamic pro-
gramming to lower the computational cost to O(n) from, e.g.,
O(n?) or O(nlogn) in other methods. Named the pruned
exact linear time (PELT) method, it has the ability to optimally
select the number of changepoints m. Note that MATLAB
function ischange uses PELT in its CPD algorithm to return
estimates of both the means and the changepoints. Here it used
with the *‘MaxNumChanges’ option which places an upper
limit on the optimal number of changepoints m to be found; a
value that should be chosen to be larger than number of times
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a particular FO is expected to be appearing or disappearing
throughout the data record.

A. Mode Meter Workflow

Before discussing how CPD is applied to the FO problem,
its place in the overall mode meter algorithm must be ex-
plained. First, the presence of an FO is detected in the data
analysis window using the periodogram-based method of [12].
Then, the frequency of the FO is estimated using the iterative
method of [13]. Next, the FO frequency estimate is used by
the CPD algorithm presented below to provide estimates of
the FO start/stop samples. Finally, the LS-ARMA+S model is
estimated with a two-stage least squares algorithm that uses
the FO frequency and start/stop time estimates to produce
modal frequency and damping estimates comparable to those
observed in purely ambient conditions.

B. The CPD Algorithm

To apply the PELT-based CPD algorithm to FO start/stop
sample estimation, the data is first preprocessed to produce a
signal that has nonzero mean when a FO is present and zero
mean otherwise. Note trigonometric identity

Scos[k] = A cos(wk + 0) cos(wk + ¢)

5
= g cos(f — ¢) + cos(2wk + 0 + @) ©)

where the mean of s.,s is maximized when ¢ = 6. Thus
multiplying y by a cosine of the FO frequency and phase will
result in a signal that has a mean of approximately A/2 when
the FO is present and zero otherwise. Define

Yeos [k] = y[k] cos (wk + é) (6)

where @ is the FO frequency estimated using [13] and phase
0 is estimated via the Discrete-Time Fourier Transform as

N-1
Aszf = Z y[k]e %k (7
k=0

The main algorithm is shown in Fig. 1 with y.,s as the input.
It must be initialized with N,,,.cp the maximum number
of changepoints passed to the ‘MaxNumChanges’ option,
Nininsr the minimum segment length to consider, and the
estimate of the amplitude of the FO A from (7). Assuming
CPs are detected, Ngport, the number of segments shorter than
NninsL, 18 subtracted from N,,,.cp and i schange is rerun.
This eliminates any erroneously estimated FO segments that
are a few samples long. N,,;,sz should be chosen such that
it corresponds to an FO duration that would have negligible
effect on mode meter performance. This loop runs until either
no CPs are detected or all segments are long enough. Finally,
the segments are categorized as either FO “on” or “off” based
upon the segment mean relative to oA, where o is a scaling
factor on the estimated FO amplitude. Note an extremely
important area of future work is to study the sensitivity of
the method to parameters N,,qozcp> NminsL, and aA.
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Fig. 1. The FO start/stop time CPD algorithm.

IV. SIMULATION STUDY

To assess the effectiveness of the proposed approach, a
simulation study was conducted using the minniWECC model
of the Western Electricity Coordinating Council (WECC)
power system (see [18] for technical details). In each of the
studies below, 300 Monte Carlo simulations of 20-minutes
in duration were conducted. Ambient system conditions were
created by modeling 0.125% of each load as random using
1/ f filtered Gaussian White Noise (GWN). The system output
was chosen as the difference between voltage angles at buses
from the northern and southern edges of the grid, chosen for
the high observability of the mode under study, i.e., the 0.37
Hz and 4.67% damping mode often referred to as the “North-
South B” (NSB) mode. Gaussian white measurement noise
was added to the output to achieve an SNR of 80 dB.

The simulations were conducted at the common PMU re-
porting rate of 120 samples per second, and the system outputs
were preprocessed by lowpass filtering and downsampling to
5 samples per second and then detrended with a high pass
filter. The LS-ARMA+S mode meter was implemented with
model orders of AR-32, MA-6, and high-order AR of 50 (stage
1 in the Two-Stage Least Squares process). In each Monte
Carlo trial, the mode estimates from LS-ARMA+S were sifted
such that only those between 0.3 and 0.42 Hz and below
25% damping were kept. To establish a baseline, ambient-
only data was analyzed, and the resulting mode estimates are
shown in Fig. 2. The CPD altorighm was implemented with
Npazcp = 10, Npinsr, = 2 minutes, and o = 0.7.

A. Contiguous Forced Oscillations

A FO was introduced by applying a square wave to the
mechanical power input of a particular generator beginning 5
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Fig. 2. Mode estimates from 300 Monte Carlo simulations of the minniWECC
under ambient conditions. (True mode in red, estimates in black)
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Fig. 3. Preprocessed minniWECC output with a 0.35-Hz 3-dB FO present
from the 5- to 15-minute marks.
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Fig. 4. Estimates of the FO start and stop times using the correlation method
(black) and CPD (red) from simulations with a 0.35-Hz 3-dB FO present from
the 5- to 15-minute marks.

minutes into the simulation and ending at the 15-minute mark
of 20 minutes of otherwise ambient data. First consider a 0.35-
Hz FO with a 3 dB SNR, defined with the FO as the signal
and the ambient data as the noise. An example realization of
the system output is shown in Fig. 3.

As can be seen in Fig. 4, the estimates of the FO start and
stop times are vastly improved using the CPD approach. The
mode frequency and damping estimates are, however, far less
dramatic. Shown in Fig. 5, the FO is bothersome enough that
the classic LS-ARMA mode meter is severely biased, while
the correlation-based LS-ARMA+S mode meter has a small
bias. The new CPD-based LS-ARMA+S mode meter provided
nearly identical results to the purely ambient case.

Next, the amplitude of the FO was increased to 13 dB and
the simulation study was repeated. See Fig. 6 for an example
simulation output. The increased observability of the FO in
the data greatly improved the estimation accuracy of both
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Fig. 5. Estimates of mode frequency and damping from simulations with a
0.35-Hz 3-dB FO present from the 5- to 15-minute marks. (True mode in red,
estimates in black).

approaches as seen in Fig. 7. As with the 3-dB case, the stan-
dard deviations of the correlation-based approach were about
6 times those of the CPD-based method. The mode estimates,
shown in Fig. 8, reveal that the increased FO energy had a
catastrophic effect on the LS-ARMA mode meter; virtually
every estimate is at the FO frequency with nearly 0% damping.
Despite the improved FO start/stop estimation accuracy, the
correlation-based LS-ARMA+S mode meter demonstrated a
performance degradation as compared to the 3-dB case, while
the CPD approach maintained its accuracy. These simulation
cases demonstrate the trend discussed in [8] that the more
severe the FO, the greater the accuracy needed when passing
values of the nonlinear FO parameters to the LS-ARMA+S
algorithm.

B. Intermittent Forced Oscillations

While the previous subsection demonstrated mild to moder-
ate improvement in mode meter performance using the CPD
approach, here we consider a case where the correlation-
based method necessarily fails. If a FO suddenly turns off
and on again any number of times within an analysis window,
perhaps due to a malfunctioning controller tripping briefly
or an oscillatory load going offline temporarily, the cross
correlation waveform used in the correlation-based approach
will be comprised of several trapezoids - one for each segment
of data where the FO is “on.” Because the correlation-based
approach operates by fitting the cross-correlation data to
a single trapezoid, it will fail. Granted, if the number of
“on” segments of the FO are known, the correlation method
could be adapted. The CPD approach, due to its dynamic
programming, does not require prior knowledge of the number
of segments.

To demonstrate, a simulation was conducted with the 0.35-
Hz 3-dB FO from above, but with opposite on/off states. The
FO was present from the start through the 5-minute mark, and
then again from the 15-minute mark through the end. Figure
9 provides an example realization of the system output under
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Fig. 6. Preprocessed minniWECC output with a 0.35-Hz
from the 5- to 15-minute marks.
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Fig. 7. Estimates of the FO start and stop times using the correlation method

(black) and CPD (red) from simulations with a 0.35-Hz
from the 5- to 15-minute marks.
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Fig. 8. Estimates of mode frequency and damping from simulations with a
0.35-Hz 13-dB FO present from the 5- to 15-minute marks. (True mode in
red, estimates in black).

these conditions. The cross correlation is shown in Fig. 10
where one trapezoid from each “on” period is clearly visible.

Indeed, the correlation-based algorithm failed on each of
the Monte Carlo trials, leading to mode meter estimates no
better than the LS-ARMA cases as seen in Fig. 11. The CPD
algorithm correctly identified both “on” segments in all Monte
Carlo trials, and estimated the start/stop times with accuracy
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Fig. 9. Preprocessed minniWECC output with a 0.35-Hz 3-dB FO present
from the 0- to 5-minute marks, and then again from the 15- to 20-minute
marks.
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Fig. 10. Cross correlation of the data from Fig 9 with a 0.35-Hz complex
exponential.

04 +F LS-ARMA &
[
0.35 b |
03 : ‘ ‘
-5 0 5 10 15
N
= o4t LS-ARMA+$ (correlation) }
5 °
£ 035f - |
=
o
o
£ 03 ‘ w ‘
-5 0 5 10 15
04l LS-ARMA+S (CPD)
T X
0.35 x .
03 : ‘ ‘
-5 0 5 10 15

Damping (%)

Fig. 11. Estimates of mode frequency and damping from simulations with
a 00.35-Hz 3-dB FO present from the 0- to 5-minute marks, and then again
from the 15- to 20-minute marks. (True mode in red, estimates in black)

comparable to that of Fig. 4, leading once again to mode
estimates that nearly match the purely ambient case.

V. CONCLUSIONS

This paper explores the use of changepoint detection for
estimating the start/stop samples of forced oscillations in
otherwise ambient data. Compared to the correlation-based
method, it provides estimates with lower variance and has
the ability to handle multiple changepoints, allowing for the
analysis of intermittent FOs. These improvements make the
LS-ARMA+S mode meter both more accurate and robust.

Ongoing work includes an investigation into alternative
CPD methods, e.g., [10], [14]. A battery of tests is being
conducted under a variety of difficult simulation conditions
including multiple FOs of closely spaced frequency, and power
system conditions that include ringdowns or low-damping
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system modes. Additionally, these methods must be validated
with data measured from actual power systems. Finally, it must
be noted that these approaches so far assume stationary FOs.
An extremely important area of future work is the task of
dealing with FOs with amplitude and frequency that drift over
time.
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