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Abstract

Machine learning or deep learning models have been widely used for taxonomic classi�cation of
metagenomic sequences and many studies reported high classi�cation accuracy. Such models are usu-
ally trained based on sequences in several training classes in hope of accurately classifying unknown
sequences into these classes. However, when deploying the classi�cation models on real testing data sets,
sequences that do not belong to any of the training classes may be present and are falsely assigned to
one of the training classes with high con�dence. Such sequences are referred to as out-of-distribution
(OOD) sequences and are ubiquitous in metagenomic studies. To address this problem, we develop a
deep generative model-based method, MLR-OOD, that measures the probability of a testing sequencing
belonging to OOD by the likelihood ratio of the maximum of the in-distribution (ID) class conditional
likelihoods and the Markov chain likelihood of the testing sequence measuring the sequence complexity.
We compose three di�erent microbial data sets consisting of bacterial, viral, and plasmid sequences for
comprehensively benchmarking OOD detection methods. We show that MLR-OOD achieves the state-
of-the-art performance demonstrating the generality of MLR-OOD to various types of microbial data
sets. It is also shown that MLR-OOD is robust to the GC content, which is a major confounding e�ect
for OOD detection of genomic sequences. In conclusion, MLR-OOD will greatly reduce false positives
caused by OOD sequences in metagenomic sequence classi�cation.

1 Introduction

Classi�cation of metagenomic sequences into di�erent taxons is an essential problem for understanding the
compositions of microbial communities. Some mapping based computational software tools [1, 2, 3, 4, 5, 6]
can rapidly and accurately classify mappable microbial sequences based on reference databases. However,
due to the lack of a complete set of reference genomes, such mapping based approaches are not able to
discover novel sequences in speci�c classes, which is becoming increasingly important since a large portion of
the metagenomic sequences, the so-called "microbial dark matter", remain poorly understood [7, 8, 9]. For
example, several studies have estimated that around 85%-99% of bacteria and archaea cannot be cultured
[8] and up to 60%-80% bacterial sequences in some environments belong to unknown taxons [10, 11, 12].
Meanwhile, only several thousand of viral species have been recognized by 2017 [13]. Recently, many machine
learning or deep learning based approaches have been developed to classify metagenomic sequences into
several classes without depending on reference databases [14, 15, 16, 17, 18]. These approaches are usually
based on classi�cation models trained on sequences in several training classes. High classi�cation accuracies
have been reported in these studies and it is believed that these approaches can generalize well to unknown
sequences, meaning that novel sequences belonging to these classes can also be discovered. However, due to
the complexity of compositions of metagenomic sequences, it is inevitable for these approaches to deal with
sequences that do not belong to any of the training classes, the so-called out-of-distribution (OOD) genomic
sequences. Although microbial researchers usually tend to believe that these OOD sequences will receive low
classi�cation scores in real applications, this assumption is unlikely to hold true as some studies have reported
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that modern neural network classi�ers may assign higher classi�cation scores for OOD inputs [19, 20, 21].
Thus, the detection of OOD genomic sequences is urgently needed to ensure that only in-distribution (ID)
sequences, i.e. those belonging to one of the training classes, will be classi�ed so that the credibility of
taxonomic classi�cation approaches can be improved.

The detection of OOD inputs is an active research topic in machine learning and many approaches have
been proposed to address this problem [22, 23, 24, 25, 26, 27, 28, 29]. However, most of the current methods,
either generative model based or discriminative model based, are designed for detecting OOD images on
which very high prediction accuracy can be easily achieved. However, image data and genomic sequence
data are distinct in nature. For example, genomic sequences are one-dimensional data with only four possible
nucleotides at each position, while images are multi-dimensional data with much more complex pixel values
for di�erent dimensions of colors. Therefore, most of these methods are either not directly applicable or
have much lower prediction accuracy on the genomic data [28]. Among all these attempts, the likelihood
ratio (LLR) method proposed by Ren et al. particularly addressed the problem of detecting OOD genomic
sequences [28]. The LLR method uses likelihood ratios of two generative models for the ID data and randomly
perturbed ID data, based on the hypothesis that only the semantic part of a sequence is associated with
its taxon while the background part, in contrast, bias the prediction of OOD sequences. For example, the
semantic part can be understood as the coding genes or motifs speci�c to a taxon and the background part
can be understood as the repeated regions or transferred genes shared by sequences in di�erent taxons. Ren
et al. [28] compared LLR with nine di�erent approaches and showed that their approach achieves the highest
prediction accuracy on detecting OOD bacterial sequences. It is also shown in [28] that LLR is robust to the
GC content of genomic sequences which is a major confounding e�ect on detecting OOD genomic sequences.
Another major contribution of LLR is that it composed the �rst data set consisting of bacterial sequences
from multiple genera for benchmarking future OOD detection methods.

Despite its e�ectiveness, the prediction accuracy of LLR for detecting OOD genomic sequences is still
not very high, leaving room for improvement based on more powerful methods. For example, the reported
optimal area under the receiver operating characteristic curve (AUROC) for predicting 250bp bacterial OOD
sequences using LLR is 0.755 [28], which is based on tuning two model-parameters. Besides, LLR requires
a validation data set containing both ID and OOD sequences for model-parameters tuning, leading to the
concern that the model trained on one data set may not be able to easily generalize to another data set.
For example, Ren et al. [28] used sequences in 10 bacterial genera as the ID sequences and constructed
the OOD validation data set using OOD sequences from 60 other bacterial genera. However, in practice,
we usually have knowledge on the ID sequences only and OOD sequences can belong to any other classes
such as sequences in other bacterial genera, viral sequences, contaminations from the human genome, etc.
Therefore, it is unrealistic to expect that the model-parameters of LLR tuned on a speci�c validation data
set can perform well on any other testing data set.

In this paper, we present MLR-OOD, a Markov chain based likelihood ratio method, for detecting
OOD genomic sequences. MLR-OOD detects OOD genomic sequences based on the likelihood ratio of the
maximum of the ID class conditional likelihood and the likelihood of the sequence under a Markov chain model
mimicking the sequence complexity of testing sequences. The rationale of MLR-OOD is based on two aspects.
First, compared to LLR that uses one general model for all ID sequences, MLR-OOD uses the maximum of
the ID class conditional likelihood taking into account di�erent models for sequences in various ID classes,
promoting a more precise modeling of the ID sequences. Second, based on the assumption that input sequence
complexity, which can be modeled by Markov chain likelihood, is a factor that biases OOD detection, we
propose to use Markov chain likelihoods to adjust the maximum of the ID class conditional likelihood,
bypassing the generation of background null sequences used by LLR. Thus, MLR-OOD is completely free of
tuning model-parameters. On the other hand, LLR depends on the optimal perturbation rate that needs to
be determined by a validation set consisting of both ID and OOD sequences. In addition to the bacterial
data sets composed by Ren et al. [28], we composed two more microbial data sets for viruses and plasmids, to
more comprehensively benchmark the performance of MLR-OOD. We show that MLR-OOD yields notably
higher prediction accuracy than LLR. We also conclude that MLR-OOD is robust to the GC content on
almost all data sets while LLR can be somewhat biased on the viral and plasmid data sets.

In summary, we have two major contributions in this paper. First, we construct viral and plasmid data
sets that can be jointly used with the bacterial data set composed by Ren et al. [28] for comprehensively
benchmarking the performances of di�erent OOD detection methods for genomic sequences. Second, we
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Table 1: The data sets we use for benchmarking the detction of OOD genomic sequences. The details
about the speci�c ID and OOD genera names and the construction of the training and testing data sets are
discussed in Supplementary Materials.

Type Bacteria Virus Plasmid
Name Test2016 Test2018 N/A N/A

Phytogenetic level
Genus Family Genus

for classes
Number of ID classes 10 6 6

Number of OOD classes 60 20 20

Description
The same data The same genera as Viruses whose Plasmids whose
set as the one the Test2016 data set, hosts are bacteria hosts are bacteria
used in [28] but more novel and archaea and archaea

develop MLR-OOD, a powerful method achieving the current state-of-the-art prediction accuracy for OOD
detection of genomic sequences without tuning model-parameters on validation data sets. We believe that
MLR-OOD will improve the credibility of machine learning based metagenomic taxonomic classi�cation.

2 Materials and Methods

2.1 Data sets for detecting OOD genomic sequences

Ren et al. [28] composed a genomic sequence data set consisting of bacterial sequences in di�erent genera
that can serve as a benchmark for detecting OOD genomic sequences. Although bacteria are abundantly
distributed in microbial communities, there are many other types of molecules including viruses, plasmids,
fungi, archaea, etc [30, 31]. To benchmark the prediction accuracy of OOD detection on di�erent types of
molecules, we construct a new testing data set for bacteria and two more data sets for viruses and plasmids,
respectively. A brief summary of the data sets we use is shown in Table 1.

2.1.1 The bacterial data set

Ren et al. have already constructed a comprehensive bacterial data set that is publicly available in [28]
for OOD detection. We use the same data set and add another new testing data set to demonstrate the
prediction accuracy of MLR-OOD.

Speci�cally, Ren et al. downloaded 11,672 bacteria genomes from National Center for Biotechnology
Information (NCBI) and chopped the genomes to short 250bp sequences [28]. Di�erent genera of these
genomes were used to de�ne the class labels (both ID and OOD classes). For example, genomes in 10
particular bacterial genera and that were discovered before 01/01/2011 are used to construct the ID training
data set. The validation data set contained ID sequences in these 10 genera but were discovered between
01/01/2011 and 01/01/2016, and OOD sequences in other 60 genera discovered in the same time period.
The testing data set similarly contained ID sequences in the 10 genera and that were discovered between
01/01/2016 and September 2018, and OOD sequences in the 60 genera that did not overlap with the validation
OOD genera discovered in the same time period. We collected the accession numbers of the original bacterial
genomes and downloaded them from NCBI in order to chop the bacterial genomes into non-overlapping
sequence fragments of di�erent training and testing lengths as discussed in Sections 2.5 and 2.6. We choose
non-overlapping training and testing sequences to avoid potentially redundancy information from overlapping
sequences. To distinguish from our newly constructed testing data set, we refer to the testing data set
consisting of bacterial genomes used by Ren et al. as the Test2016 data set. For the details, please refer to
[28].

We also constructed another testing data set consisting of ID and OOD sequences discovered between
10/01/2018 and 10/1/2021 to benchmark OOD detection methods on relatively more novel sequences. The
ID and OOD sequences were from the same ID and OOD genera used by Ren et al. [28] for constructing the
Test2016 data set. We refer to the new testing data set as the Test2018 data set.
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2.1.2 The viral data set

We downloaded 1295 viral genomes whose hosts are bacteria and archaea from NCBI and then constructed
an ID training data set and a testing data set containing both ID and OOD sequences. Since viral sequences
from NCBI are much fewer and shorter compared to bacterial sequences, we used di�erent viral families to
de�ne ID and OOD classes. Viral genomes that were in 6 particular families and were discovered before
01/01/2016 were used to construct 6 ID viral classes. Viral genomes that were in these families but were
discovered between 01/01/2016 and 10/01/2021 were treated as ID testing sequences. The OOD testing
data set contained viral genomes in 20 other randomly chosen families and were also discovered between
01/01/2016 and 10/01/2021. Since potentially highly similar sequences will bias the training and testing
process, we use CD-HIT [32] with parameters "=c 0.95 =n 10 =M 0 =T 16" to cluster all the sequences
and then remove the duplicate ones. The viral genomes were then chopped into non-overlapping sequence
fragments of length 250bp for training and various lengths for testing. The details about the speci�c ID and
OOD family names and the construction of the training and testing data sets are discussed in Supplementary
Materials.

2.1.3 The plasmid data set

We also downloaded 818 plasmid genomes whose hosts are bacteria and archaea from NCBI to build up
a data set for detecting OOD plasmid sequences. We used plasmid genera to de�ne ID and OOD classes,
the same as the bacterial data set. Similar to Section 2.1.2, we built up an ID training data set containing
plasmid genomes discovered before 01/01/2016 in 6 di�erent classes. The testing data set contains plasmid
genomes discovered between 01/01/2016 and 10/01/2021 in 6 ID and 20 randomly chosen OOD classes.
The plasmid genomes were similarly clustered by CD-HIT and then chopped into non-overlapping sequence
fragments of length 250bp for training and various lengths for testing. The details about the speci�c ID and
OOD genera names and the construction of the training and testing data sets are discussed in Supplementary
Materials.

2.2 Outline of the Methods

Suppose we have an in-distribution (ID) data set of genomic sequences D(X ,Y). Let the pair (x, y) denote
an individual nucleotide sequence x = x1 . . . xd . . . xD,x ∈ X , xd ∈ {A,C,G, T} and its in-distribution class
label y ∈ Y := {1, . . . , k, . . . ,K}), i.e., the speci�c taxon that sequence belongs to, where K denotes the
number of in-distribution classes and D denotes the sequence length. We are interested in these ID sequences
belonging to particular taxons and aim to detect other sequences that do not belong to any of the K ID
classes, i.e. y /∈ Y, that are referred to as the OOD sequences, for accurate downstream analyses of both ID
and OOD sequences.

We develop MLR-OOD, a Markov chain based likelihood ratio method combining both the ID generative
models and the Markov models for the testing sequences, for the detection of OOD genomic sequences.
Before discussing the details of our method, we �rst give a brief review on the LLR method proposed by
Ren et al. [28] which was the �rst study paying particular attention to detecting OOD genomic sequences.

2.3 The framework of the likelihood ratio method

The LLR method proposed by Ren et al. uses the likelihood ratio of an original model and a background
model to measure the chance of being OOD for the testing sequences [28]. The original model, denoted
as pθ(·), is a generative model trained on all the ID sequences that can be naturally used to measure the
likelihoods of being OOD for testing sequences. However, Ren et al. observed that the likelihood of the
original model fails to separate ID and OOD testing sequences and is biased by the GC content of each
testing sequence [28]. This observation can be explained by the fact that the original model captures both
the semantic and the background parts of the ID sequences but only the semantic part is helpful for OOD
detection. The GC content is considered a confounding e�ect arising from the background part of the
sequences, thus motivating them to generate a background model that can adjust the confounding e�ects of
the original model. Based on the assumption that random perturbations can corrupt the semantic part in the
data, Ren et al. [28] randomly perturbed a certain fraction µ of the nucleotides in the original sequences by
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changing the speci�c nucleotides to the other three with equal probability to build a null set of background
sequences. The background model pθ0(·) is then trained on the background sequences. For an incoming
testing sequence x, the predicting score SLLR(x) is calculated as the log-likelihood ratio of the original and
background models

SLLR(x) = log
pθ(x)

pθ0(x)
= log pθ(x)− log pθ0(x). (1)

As shown in equation (1), the information of the background part, which is contained in both the original and
background likelihoods, is canceled out by taking the ratio, so that the semantic part in the original model
stands out for OOD detection. A larger value of SLLR(x) indicates a higher chance of being ID (equivalently,
a lower chance of being OOD) for sequence x.

The original and background models were trained using long short-term memory (LSTM) [33], a deep
generative model that has been widely used to model genomic sequences [34, 35, 36], on entire original
or background sequences. Speci�cally, Ren et al. [28] used one-hot encoder to transform the genomic
sequences from strings comprised of {A,C,G, T} nucleotides to binary numeric vectors and then feed them
to a LSTM layer, followed by a dense layer and a softmax function to predict the probability distribution
over {A,C,G, T} at each position. The LSTM model was jointly trained at all positions from 1 to D. Then,
if we denote the LSTM model trained for the original model by pθ(x), the log-likelihood log pθ(x) for any
incoming testing sequence x can be calculated as follows

log pθ(x) =
D∑

d=1

log pk,θ(xd|x<d),

where x<d means all the nucleotides of sequence x before position d. The calculation for the log-likelihood
of the background model log pθ0(x) is similar as above.

Two model-parameters need to be carefully tuned during the training process of LLR: the perturbation
rate µ and the coe�cient of L2 regularization λ added to the model weights when training the background
model (optional). Ren et al. used a validation data set consisting of additional ID and OOD data to
determine these two model-parameters [28].

2.4 The framework of the new MLR-OOD method

Although the LLR method achieves a higher prediction accuracy and is more robust to the GC content
compared to the method only using the original likelihood, there is still room for improvement in two
aspects. First, the LLR method only considers a general model pθ(·) for all ID sequences and does not
consider the K ID classes when modeling ID training data. This may not be optimal since sequences in
di�erent ID classes may follow di�erent models. Therefore, we borrow the ideas of using likelihood ratios
from [28] but utilize the information of the ID classes to further increase the prediction accuracy. Second,
the LLR method relies on the validation data set for tuning model-parameters, that is, to have access to
some of the OOD data, which is unlikely to remain true in real practice.

We �rst propose using the the likelihood that is maximum across LSTM models across all ID classes
pmax,θ(·) instead of pθ(·) for modeling the ID data. The high level idea is to train the generative models for
the data in each ID class separately and choose the most appropriate model for new testing sequences by
taking the maximum of the class conditional likelihoods across all ID classes. In addition to using LSTM
which is also used by LLR to train the generative models, we also tried Markov chains which are generally
more interpretable than LSTM on the bacterial data set but the prediction accuracy was much lower, at
AUROC around 0.6 for 250bp bacterial sequences. We present the details and the results in Supplementary
Materials. Therefore, we only present our LSTM model and the corresponding results in the rest of the main
text. Let pk,θ(·) be the model we trained on the sequences in the k-th ID class. For each incoming sequence
x, we calculate the maximum of the class conditional likelihoods as follows

pmax,θ(x) = max
k∈{1,··· ,K}

pθk(x), (2)

where pθk(x) denotes the LSTM likelihood of sequence x belonging to class k. We use the same model
parameters as in [28] for training the LSTM models on the ID data for the methods listed above. In detail,
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the size of the hidden units in the LSTM model is 2,000. The number of epoches is 900,000 and the learning
rate is 0.0005. The batch size is 100 and Adam optimizer is used to minimize the training loss. We denote
the method using pmax,θ(x) as the prediction score by the max-LL method. As a preliminary method for
predicting OOD sequences proposed in this paper, we will show in Section 3 that the max-LL method itself is
a very powerful predicting statistic compared to SLLR, even without background adjustment. Note that the
mixture model likelihood pmix,θ(·) =

∑K
k=1 pθk(x)p(k) is another natural way to more precisely model the

ID data, where p(k) denotes the prior probability for each ID class. However, it is challenging to estimate
p(k) for real metagenomic data since a large portion of the metagenomic sequences still cannot be classi�ed.
Therefore, we adopt pmax,θ(x) for our method.

However, since the prediction score of the max-LL method is still likely to be biased by confounding
e�ects such as the GC content, another key question is yet remaining: how to adjust pmax,θ(x) to bypass the
e�ect of confounding e�ects such that the prediction accuracy can be further increased without tuning model-
parameters? We propose to adjust the maximum of the class conditional likelihoods pmax,θ(x) by the Markov
chain likelihood of the testing sequence which can be regarded as a special case of sequence complexity. Serra
et al. observed that input complexity can bias the likelihood as relatively �simple" patterns generally have
higher likelihoods compared to complex patterns [37]. Several measures have been proposed [38, 39] to model
the complexity of genomic sequences. Among all these sequence complexity measures, the CE complexity [39]
based on entropy of sequences is essentially a constant times the log-likelihood of the testing sequence under
the independent and identically distributed (i.i.d.) model, which is equivalently, a zero-th order Markov
chain. The GC content is essentially related to the i.i.d. likelihood if we do not distinguish between G and
C (also A and T ) nucleotides. Inspired by the idea that the likelihood under the i.i.d. model may confound
OOD detection, we generalize the idea and use the log-likelihood of each testing sequence modeled by a
Markov chain to adjust pmax,θ(x) given that Markov chains have been widely used in genomic sequence
analyses [40, 41, 42, 43, 44, 45, 46, 47]. Speci�cally, assume that the testing sequence x = x1 . . . xd . . . xD

is modeled by a r-th order Markov chain, then the log-likelihood of x is estimated as follows if we safely
disregard the initial distribution π(x1 · · ·xr)

Lr
MC(x) = log π(x1 · · ·xr) +

∑
w

Nw logP (wr+1|w−),

≈
∑
w

Nw log
Nw

Nw−
,

where w = w1w2 · · ·wr+1 denotes a word of nucleotides of length r+1, Nw denotes the count of occurrences
of w in sequence x, w− = w1w2 · · ·wr denotes word w with the last letter removed, and Nw− is the count
of occurrences of w− . When r = 0, Nw− degenerates to the sequence length D. The transition probability
is denoted by P (wr+1|w−) and is estimated by Nw

Nw−
using the maximum likelihood estimation.

Therefore, we propose to use Sr
MLR-OOD

(x) de�ned in equation (3) for OOD genomic sequences detection.

Sr
MLR-OOD(x) = log pmax,θ(x)− Lr

MC(x). (3)

A larger value of Sr
MLR-OOD

(x) indicates a higher probability of belonging to ID. Note that the calculation of
Sr
MLR-OOD

(x) is completely free of tuning model-parameters since r is data-driven, determined by the most
commonly estimated Markov order of the testing sequences, and has nothing to do with the training process.
We use Bayesian information criterion (BIC) [48] to estimate the Markov orders of the testing sequences.

To facilitate the understanding of MLR-OOD, we present its complete work�ow in Figure 1 summarizing
the above procedures.

2.5 Investigating the e�ect of training sequence length on prediction accuracy

and computational time

Ren et al. [28] chopped the bacterial genomes into short sequences of 250bp for training the LSTM model.
However, the e�ect of the training sequence length on prediction accuracy is yet unknown since di�erent
lengths of training sequences may lead to di�erent model performances and computational time. We study
the e�ect of training sequence length on our MLR-OOD method by chopping the original bacterial genomes
used by [28] into short sequences of 100bp, 250bp, and 500bp, respectively. Then we train the LSTM models
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Figure 1: The complete work�ow of MLR-OOD for predicting OOD sequences.

for ID classes based on di�erent training lengths and test the corresponding model performances on the
Test2016 bacterial testing data set with testing contig lengths being 1000bp, 2500bp, and 5000bp. We
follow the protocol in Section 2.6 to deal with di�erent training and testing lengths. Our target is to select
the best training sequence length for MLR-OOD balancing both prediction accuracy and computational
time. We will use the selected training sequence length on the other data sets and compare with the LLR
method.

2.6 Investigating the e�ect of testing contig length on prediction accuracy

Ren et al. present the usefulness of the LLR method by showing the prediction accuracy on 250bp testing
sequences [28]. However, in reality, metagenomic reads are usually assembled from short reads of several
hundred of basepairs into contigs that are consecutive regions of genomes with overlapping reads to facilitate
downstream analyses. These contigs usually have various lengths greater than 250bp. To show the e�ect of
testing contig length on the prediction accuracy of MLR-OOD, we �x the training sequence length as 250bp
as it performs the best compared to 100bp and 500bp as shown in Figure 3 and chop the testing genomes
into contigs of lengths 250bp, 500bp, 1,000bp, 2,500bp, and 5,000bp. For each contig length except 2,500bp
and 5,000bp for the bacterial Test2018 and the viral data set, 10k ID and 10k OOD contigs are randomly
selected to build up the corresponding testing data sets. The bacterial Test2018 data set contains 4k OOD
2,500bp and 2k OOD 5,000bp testing contigs. The viral data set contains 5k ID and 5k OOD 2,500bp tesing
contigs and 3k ID and 3k OOD 5,000bp testing contigs. It is expected that longer contigs generally contain
more information about the taxons and thus should have higher prediction accuracy for OOD detection. To
overcome the discrepancy of the training and testing sequence lengths, we follow the ideas in [49] by splitting
the testing contigs into non-overlapping fragments of 250bp and calculating the prediction score for each of
these fragments. The �nal predicting score for one contig is calculated by averaging the prediction scores of
all fragments in that contig. We follow the same protocol to compare MLR-OOD with other methods.

2.7 Investigating the e�ect of the genome distance between OOD testing se-

quences and ID training sequences on prediction accuracy

In real applications, the OOD sequences may come from any genetic materials other than the ID sequences.
Therefore, it would be interesting to study how the prediction accuracy of MLR-OOD changes with the
overall similarity between OOD testing sequences and our ID training sequences. Ren et al. concluded
that the prediction accuracy of LLR becomes generally higher if the minimum dS2 distance [50, 51] between
the OOD bacterial classes and the ID bacterial classes increases. We investigate the same problem on all
bacterial, viral, and the plasmid data sets we built for MLR-OOD as a byproduct of our analyses. First,
we combine all the genomes in each ID training class into a single fasta �le representing that class. Second,
for each OOD testing genome, we calculate its pairwise Mash distance [52] to all the ID training classes
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and then take the minimum. We specify the number of sketches as "-s 1000000" and use default values for
other parameters for decent performance of the Mash distance. The reason for choosing the Mash distance
is due to that it achieves much faster computational time than dS2 . Once we obtain the minimum distance
to ID classes for each OOD testing genome, we cut a threshold and then only select those genomes having
a minimum distance greater than that threshold to build the OOD testing data set. Since currently most
metagenomic contigs have length greater or equal to 1,000bp, we cut the ID and OOD testing genomes to
1,000bp sequences and then calculate the prediction accuracy metrics (see Section 2.10) based on MLR-OOD
to study the relationship between the Mash distance threshold and the prediction accuracy. We use the same
ID testing data set while varying the OOD testing data set in comparison. The number of available OOD
testing sequences after constraining the threshold on the minimum Mash distance is certainly fewer and we
report the detailed numbers for each type of sequences in Supplementary Materials.

2.8 Investigating the e�ect of chimeric contigs on the prediction accuracy of

MLR-OOD

Chimeric contigs can happen in the assembly process of metagenomic sequences since multiple closely related
species usually exist in metagenomic samples [53, 54]. In practice, OOD detection methods may face chimeric
contigs containing sequence fragments from both ID and OOD genomes. We investigate the performance
of MLR-OOD when dealing with such chimeric contigs. First, for each given fraction c, we simulate 10k
chimeric contigs in which the proportion of nucleotides belonging to ID genomes is c and the proportion
of nucleotides belonging to OOD genomes is 1 − c. The contig length is �xed at 1,000bp. For example, if
c = 0.25, we randomly sample a 250bp sequence fragment from the ID genomes in a particular testing data
set, then sample another 750bp sequence fragment from the OOD genomes, and �nally insert the 750bp OOD
sequence fragment at a random position of the 250bp ID sequence fragment. We test di�erent values of c =
0, 0.25, 0.5, 0.75, and 1 for all bacterial, viral, and plasmid data sets. Second, we calculate the prediction
scores of MLR-OOD on those chimeric contigs following the procedures introduced in Section 2.6. Third, we
calculate the prediction accuracy metric AUROC (see Section 2.10) for classifying completely OOD contigs
(c = 0) and contigs containing a certain fraction of ID sequences (c = 0.25, 0.5, 0.75, and 1) based on the
prediction scores of MLR-OOD. We study how the distribution of the prediction scores and the prediction
accuracy change with di�erent values of c.

2.9 Comparison to LLR and other classi�er-based methods for OOD detection

Since Ren et al. [28] already compared the LLR method with a large number of other methods [22, 23, 24,
55, 56, 57, 58], most of which are designed for detecting OOD images, and showed that the LLR method
achieved the best prediction accuracy, we �rst focus on comparing our proposed methods with LLR for
detecting OOD genomic sequences. In particular, we �rst comapre LLR with two methods proposed in
this paper: 1) the max-LL method directly using the maximum of the in-distribution (ID) class conditional
likelihoods, and 2) the re�ned MLR-OOD method on the bacterial, viral, and plasmid data sets.

Unlike the LLR method, the max-LL and the MLR-OOD methods do not have model-parameters to be
tuned. Therefore, we do not need a validation data set. To compare with the LLR method on the bacterial
data set, we use the optimal model-parameters µ = 0.1 and λ = 10−4 that have already been chosen by Ren
et al. for the LLR method based on the validation data set [28]. We try di�erent values of the perturbation
rate µ = [0.1, 0.15, 0.2] for the LLR method as suggested by Ren et al. [28] and report all these results.
Ren et al. use another model-parameter λ which is the coe�cient of L2 regularization in training the LSTM
model [28]. Ren et al. reported that λ is optional and does not markedly a�ect the overall performance of
the LLR method compared to µ [28], we �x λ = 0 while changing µ to save computational resources. We
also report the results based on λ = 1e-4 which are very similar to the results based on λ = 0 for the viral
and plasmid data sets in Supplementary Materials.

LLR was the state-of-the-art method and was the only available method that particularly focused on
detecting OOD genomic sequences before MLR-OOD to the best of our knowledge. There are other methods
developed for OOD tasks in vision that have not been adapted and evaluated in genomics. To make a
comprehensive comparison with these methods, we compare MLR-OOD with three other methods that
are commonly used for detecting OOD images. Specially, (1) Maximum of Softmax Probability (MSP)
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based on a 1-dimensional convolutional neural networks (CNN) that classi�es the in-distribution classes [22],
(2) Deep Ensemble that takes the average of the predictive probabilities from 5 CNN classi�ers trained
based on di�erent random initializations and random shu�ing of training inputs [55], and (3) adjusted
Out-of-DIstribution detector for Neural networks (ODIN) that uses temperature scaling and adds small
perturbations to the input to enhance the separation of the softmax score distributions between ID and
OOD samples [23]. This method was designed for continuous inputs and cannot be directly applied to
discrete genomic sequences. We propose instead to add perturbations to the input of the last layer that is
closest to the output of the neural network. We report the results in Supplementary Materials Section 2.2.

2.10 Evaluation metrics

We use two widely adopted metrics to evaluate the prediction accuracy for detecting OOD genomic sequences.
The �rst one is the area under the receiver operating characteristic courve (AUROC). Assume we have
calculated the predicting scores of whatever method for the testing sequences. For a given threshold we
predict all the sequences having a prediction score higher than the threshold as ID sequences and otherwise
as OOD sequences. The corresponding true positive rate (TPR) and false positive rate (FPR) are then
calculated. By varying the threshold we can draw a receiver operating characteristic (ROC) curve with
FPR and TPR as the two axes. Finally, we calculate the AUROC as the evaluation metric. The second
one is the area under the precision-recall curve (AUPRC). The calculation of AUPRC is similar to that
of AUROC except that we use precision and recall as the two axes. Higher values of both metrics indicate
better model performance. Both metrics have been commonly used for evaluating the model performance of
OOD detection [28, 22].

For each testing data set, we randomly select 1,000 ID and 1,000 OOD testing contigs from the testing
data set and calculate the AUROC or AUPRC based on these 2,000 contigs. We repeat the process for 30
rounds and report the mean and standard deviation of both metrics.

3 Results

3.1 CNN classi�cation models fail to distinguish between ID and OOD testing

sequences

Although Ren et al. [28] have shown that deep neural network classi�ers fail to properly deal with OOD
bacterial sequences, we reproduce the conclusion and extend it to viral and plasmid sequences, showing that
this phenomenon is universal in metagenomic sequence classi�cation regardless of the sequence type. We
use convolutionary neural network (CNN) as used by Ren et al. [28] to train classi�cation models on the ID
bacterial, viral, and plasmid data sets. We use the same CNN architecture as in Ren et al. [28]. Speci�cally,
the CNNs contain one convolutional layer, one max-pooling layer, and a �nal dense layer with softmax
activation for predicting class probabilities. The number of motifs for the convolutional layer is set as 1000
for the bacterial data set and 100 for the viral and plasmid data sets since there are much fewer ID training
sequences in these two data sets. We monitor the ID validation loss that is calculated every 100 epoches up
to 100,000 epoches and choose the epoch yielding the smallest validation loss. Since the viral and plasmid
data sets lack an ID validation data set, we split each ID training data set and use 90% of the sequences for
training the classi�cation models and the remaining 10% for validation. Then we use the trained classi�cation
models to calculate the maximum softmax probability (MSP) p(ỹ|x) = maxk p(y = k|x), 1 ≤ k ≤ K on the
ID and OOD testing data sets. Conceptually ID testing sequences should have much higher MSP than OOD
testing sequences if the classi�ers work well.

Figure 2 shows the MSP of ID and OOD 250bp testing sequences based on the CNN classi�cation models
in the bacterial, plasmid, and viral data sets. As shown in the �gure, ID sequences have slightly higher MSP
than OOD sequences in the bacterial Test2016 and Test2018 testing data sets. On the other hand, no
clear separation between the distributions of ID and OOD sequences can be observed. For the plasmid and
viral data sets, on the contrary, OOD sequences even have relatively higher MSP compared to ID sequences,
indicating that OOD sequences are more likely to be classi�er into one of the training classes than ID
sequences. This �gure clearly demonstrates that the CNN models may fail to distinguish OOD sequences
from ID sequences, meaning that OOD sequences are very likely to be misclassi�ed by deep learning models
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Figure 3: The prediction accuracy of MLR-OOD on the Test2016 bacterial data set based on di�erent
training/testing sequence lengths. Each bar shows the mean accuracy of 30 random repetitions for a partic-
ular training/testing sequence length. Error bars indicate the standard deviation.

relatively lower with the least computational time. Models trained using 500bp sequences perform poorly
in terms of both prediction accuracy and computational time. The poor performance of LSTM on long
sequences (500bp) is probably due to the fact that the use of activation functions may result in gradient
decay over layers [60]. Therefore, in this paper, we �x the training sequence length at 250bp as in Ren et al.
[28] which gives excellent prediction accuracy and acceptable computational time.

3.2.3 The computational time of MLR-OOD

The computational time of MLR-OOD is dominated by training the generative models. Compared to train-
ing, the time for calculating the likelihoods of LSTM and Markov models is minimal. The computational
time for training is proportional to both the number of epoches and the training sequence length. For ex-
ample, training 900,000 epoches for lengths 100bp, 250bp, and 500bp sequences using the NVIDIA Tesla
V100 GPU takes approximately 42, 105, and 210 hours, respectively. We recommend using GPU resources
for training a large number of epoches in practice.

3.2.4 The comparison between MLR-OOD, max-LL, and LLR on di�erent lengths of testing

sequences

Next, we compare our MLR-OOD and max-LL methods with the LLR method using di�erent lengths of
testing contigs and present the results in Figure 4. The ID LSTM models are trained using the training
data set of Ren et al. [28] and two corresponding testing data sets (Test2016 and Test2018) are used for
evaluating the performances of di�erent methods. As shown in Figure 4 (A)-(D), our MLR-OOD method
greatly outperforms the LLR method for detecting OOD genomic sequences, regardless of the contig length.
Note that the max-LL method improves the prediction accuracy by a remarkable margin compared to the
LLR method, revealing that considering the ID classes separately instead of using one general model for
all ID classes is the major reason for the superiority of MLR-OOD. That being said, the Markov chain
likelihood further increases the prediction accuracy as shown therein that MLR-OOD performs consistently
better than max-LL, which can be possibly attributed to that Markov chain likelihoods reduced the e�ects
of the confounding factors.

We would like to emphasize that MLR-OOD does not need to tune model-parameters and does not access
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to the extra OOD validation data, while the LLR method does need to tune two extra model-parameters
on the validation data set. For the comparison, we used the optimal model-parameters chosen by Ren et al.
[28]. As for the contig length, all these three methods show an increasing trend of the prediction accuracy
for longer contigs, which can be explained by that longer contigs generally contain more information for the
particular taxons they belongs to. It is also worth mentioning that MLR-OOD yields very high prediction
accuracy (AUROC and AUPRC > 0.9) when the testing contig length is at least 1,000bp, a length that many
assembled metagenomic contigs can easily reach, clearly demonstrating that MLR-OOD is highly promising
for detecting OOD bacterial sequences in real practice.

We present the results for predicting OOD viral sequences in Figure 4 (E) and (F). As shown therein,
although the prediction accuracy still increases with the testing contig length, all these three methods
generally yield a lower performance compared to the results of the bacterial data sets shown in Figure 4
(A)-(D). This can be possibly explained by the fact that viruses tend to have much shorter genomes but much
higher mutation rates than their hosts [61, 62], making it more di�cult to train LSTM models using limited
amount of data for the ID classes to accurately capture the underlying taxonomic characteristics. Among
these three methods, the two methods proposed in this paper: max-LL and MLR-OOD both perform much
better than LLR in all scenarios, regardless of the choice of the model-parameter µ. Although the prediction
accuracy of MLR-OOD is slightly lower than max-LL, the di�erences are minimal. This phenomenon can be
explained by the fact that the prediction scores of max-LL of the viral contigs are already robust to the GC
content, thus the adjustment by Markov likelihood is no longer needed, as we will show later in Figure 5. In
general, max-LL and MLR-OOD are exchangeable for the viral data sets and both of them have noticeable
improvement compared to the LLR method. Note that µ = 0.1 performs better than µ = 0.15 and µ = 0.2
among the three di�erent models of LLR.

Finally, we compare the model performances of the three methods on the plasmid data sets in Figure
4 (G) and (H). It is clearly shown in Figure 4 (G) and (H) that the prediction accuracy of these methods
remains relatively low for short contigs compared to the bacterial data set, but increases rapidly if the contigs
become longer than 1,000bp. Similar to the results of the viral data sets, we see that both max-LL and MLR-
OOD achieve higher prediction accuracy than the LLR method even if compared with the model-parameters
yielding the highest accuracy for LLR. Unlike the viral data sets, MLR-OOD slightly outperforms max-LL.
The di�erences are almost negligible though. We will see in Figure 5 that both max-LL and MLR-OOD are
robust to the GC content compared to LLR. For LLR, it is interesting to observe that µ = 0.2 performs better
than µ = 0.1 and µ = 0.15 for this data set, which is di�erent from the viral data sets. This phenomenon
indicates that the choice of the model-parameter µ using an extra validation data set is essential for LLR,
as di�erent data sets require di�erent optimal choices of µ. In conclusion, MLR-OOD has better model
performances than LLR even without using the information from extra validation data sets.

We also compare MLR-OOD with other state-of-the-art vision OOD detection methods adapted to ge-
nomic sequences including MSP, Deep Ensemble CNN, and adjusted ODIN. The results are shown in Table
S3 in Supplementary Materials. Consistent with the results from Ren et al. [28], these methods do not
perform as well as LLR and let alone MLR-OOD for bacterial sequences. For viruses and plasmids, the
AUROC scores of the classi�er-based methods are even lower than 0.5 as the mean score for ID sequences is
even lower than that for OOD sequences as shown in Figure 2.

3.3 MLR-OOD is robust to the GC content on all data sets

In this section, we show that the MLR-OOD method is robust to the GC content that is a major confounding
e�ect for detecting OOD genomic sequences. Figure 5 shows the relationship between the GC content and
the prediction scores of LLR, max-LL and MLR-OOD de�ned in equations 1-3 on the bacterial, viral and
plasmid testing data sets.

For the bacterial Test2016 data set in which Ren et al. showed that the LLR method was robust to the
GC content, we observe the same pattern they presented in [28] for LLR. As for max-LL, it is shown that
the separation between ID and OOD sequences becomes clearer compared to LLR. However, the prediction
score of max-LL is slightly biased by the GC content as OOD sequences having GC content between 0.4 and
0.7 tend to have slightly lower prediction scores. In contrast, our MLR-OOD method is less biased by the
GC content compared to max-LL while maintaining a much better separation than LLR, explaining the best
performance among the three methods shown in Figure 4 (A) and (B).
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Figure 4: The prediction accuracies of LLR, max-LL, and MLR-OOD for OOD genomic sequences detection
on the Test2016, Test2018 bacterial data sets, viral datasets, and the plasmid datasets. (A) and (B):
AUROC and AUPRC for the bacterial Test2016 data set. (C) and (D): AUROC and AUPRC for the
bacterial Test2018 data set. (E) and (F): AUROC and AUPRC for the viral dataset. (G) and (H):
AUROC and AUPRC for the plasmid data set. Each bar shows the mean accuracy of 30 random repetitions
for each method and a particular sequence length. Error bars indicate the standard deviation.
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The viral data sets and the plasmid testing data sets, nevertheless, display di�erent patterns from the
bacterial Test2016 data set. First, the LLR method is biased by the GC content for both data sets. For the
plasmid data set, there is a slightly increasing trend between the GC content and the prediction score. For
the viral data set, the trend is reversed. Second, the prediction scores of max-LL of testing sequences in both
data sets are not obviously associated with the GC content, possibly explaining the decent performances
of max-LL on these two data sets. Third, as shown in Figure 5, the prediction scores of MLR-OOD are
similar to those of max-LL, which is consistent to the results shown in Figure 4 that max-LL and MLR-OOD
have very close prediction accuracy on the viral and plasmid data sets. This is understandable because the
prediction score of max-LL is less biased by GC content compared to the bacterial data sets and adjustment
using Markov chain likelihoods does not markedly improve the prediction scores. That being said, MLR-
OOD still makes the prediction score slightly more independent of the GC content for the plasmid testing
data set.

3.4 The prediction accuracy of MLR-OOD increases with the Mash distance

threshold for choosing the OOD testing sequences

After constraining the OOD testing sequences to have minimum Mash distance to the ID classes greater
than a certain threshold, we observe in Figure 6 that the prediction accuracy for OOD genomic sequences
increases with the Mash distance threshold. For bacterial sequences which have been studied by Ren et al.
based on the dS2 distance [28], the trend is consistent as shown in Figure 6 (A) and (B). It is shown therein
that the prediction accuracy increases from threshold 0 (no constrain) to 0.3 and then remains stable. For
viral sequences shown in Figure 6 (C) and (D), the slightly increasing trend is similar. The plasmid sequences
are shown in Figure 6 (E) and (F) to have the most obvious increment. The AUROC and AUPRC increase
by more than 0.1 from Mash distance threshold 0 to 0.3 and then remain stable. We choose di�erent cuto�
thresholds for di�erent types of sequences because that the distributions of the Mash distances for bacterial,
viral, and plasmid sequences are di�erent and we choose these cuto�s where the majority of OOD testing
sequences have minimum Mash distance to ID classes. The histograms of the minimum Mash distance of
OOD testing sequences to ID classes of bacterial, viral, and plasmid sequences are shown in Supplementary
Materials Figure S1.

3.5 The impact of chimeric contigs on the prediction score and prediction ac-

curacy of MLR-OOD

In this section, we show that the prediction score of MLR-OOD increases with the fraction of ID sequence
fragments for chimeric contigs. As a result, the prediction accuracy of MLR-OOD also changes accordingly.
Figure 7 illustrates the impact of chimeric contigs on the prediction score and prediction accuracy of MLR-
OOD. The distributions of the prediction scores of MLR-OOD for bacterial, viral, and plasmid chimeric
contigs are shown in Figure 7 (A), (C), and (E), respectively. It is shown that there is an obvious increasing
trend with the fraction of ID sequence fragments for both bacterial and plasmid chimeric contigs. For viral
chimeric contigs the trend is not as clear, which is possibly due to the fact that the prediction accuracy
of MLR-OOD on the viral data set is generally low as shown in Figure 4. However, we still see generally
more contigs receive higher prediction scores when the fraction of ID sequence fragments increases. This
phenomenon is understandable since ID sequence fragments generally receive higher prediction scores than
OOD sequence fragments. We also quantify the trend by calculating the AUROC for classifying completely
OOD contigs (ID fraction c = 0) and contigs containing a certain fraction of ID sequences (c = 0.25, 0.5,
0.75, and 1) based on the prediction scores of MLR-OOD. As shown in Figure 7 (B) and (F), the AUROC
increases remarkably from classifying completely OOD contigs and chimeric contigs with ID fraction 0.25
to classifying completely OOD and ID (ID fraction c = 1) contigs. For viral chimeric contigs shown in
Figure 7 (D), the trend is also monotonically increasing although the slope is relatively low. These results
are reasonable and consistent with the results shown in Figure 7 (A), (C), and (E). In conclusion, chimeric
contigs receive intermediate prediction scores between completely ID and OOD contigs from MLR-OOD and
the prediction accuracy depends on the fraction of ID/OOD sequences in those contigs.
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Figure 5: The relationship between the GC content and the prediction scores of LLR, max-LL and MLR-OOD
on three types of testing sequences. Each sub�gure contains 500 randomly selected ID and 500 randomly
selected OOD 250bp testing sequences. For the bacterial data set, we use the Test2016 data set. For the
viral and the plasmid data sets, we select the prediction score corresponding to the µ yielding the highest
prediction, that is, µ = 0.1 for the viral data sets and µ = 0.2 for the plasmid data sets.
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Figure 6: The relationship between the Mash distance threshold for choosing OOD sequences and the
prediction accuracy of MLR-OOD on the bacterial Test2016, viral, and the plasmid datasets. (A) and (B):
AUROC and AUPRC for the bacterial Test2016 dataset. (C) and (D): AUROC and AUPRC for the viral
dataset. (E) and (F): AUROC and AUPRC for the plasmid dataset. Each point shows the mean accuracy of
30 random repetitions for each method and a particular sequence length. Error bars indicate the standard
deviation. The x-axis represents the minimum Mash distance threshold for choosing OOD testing genomes.
The contig length is �xed as 1,000bp.
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Figure 7: The impact of chimeric contigs on the prediction score and prediction accuracy of MLR-OOD.
(A), (C), and (E): the violin plots of the prediction scores of bacterial Test2016, viral, and plasmid chimeric
contigs, respectively. The x-axis represents the fraction of ID sequences in the chimeric contigs. The
contig length is �xed at 1,000bp. (B), (D), and (F): the AUROC for classifying bacterial Test2016, viral,
and plasmid contigs containing di�erent fractions of ID sequences, respectively. For example, "ID 0/25"
represents classifying contigs containing 0% and 25% ID sequences. Each bar shows the mean accuracy of 30
repetitions based on 1k randomly drawn testing contigs from each chimeric contig set. Error bars indicate
the standard deviation.

17



Table 2: The comparison among MLR-OOD, max-LL, and LLR in several aspects showing their strengths
and weaknesses.
Methods MLR-OOD max-LL LLR
Accuracy High High Relatively low
Parameter tuning No No Two model-parameters to be tuned manually
E�ect of GC content Highly robust Relatively robust Not robust on the viral and plasmid datasets
Computational resource High High Low

4 Discussion and Conclusions

Machine learning or deep learning models have been gaining in popularity for classifying microbial sequences
because of their power in learning sequence patterns and generality to discover unknown sequences. However,
their weakness in dealing with OOD sequences has been long neglected. Several studies show that deep
learning classi�ers are likely to classify OOD sequences into one of the training classes with high con�dence,
revealing that the detection of OOD genomic sequences is urgently needed. In this paper, we propose MLR-
OOD, a Markov chain based likelihood ratio method to tackle this problem. We summarize the strengths and
weaknesses of the three methods for detecting OOD genomic sequences: MLR-OOD and max-LL proposed
by us and the LLR method proposed by Ren er al. [28], in di�erent aspects in Table 2. Compared to the
LLR method, the �rst work particularly addressing the detection of OOD genomic sequences, MLR-OOD
has several key advantages. First, MLR-OOD utilizes the speci�c ID class labels by training a generative
model for each ID class separately, making it possible to more precisely capture the distribution of ID
sequences. Second, MLR-OOD bypasses tuning model-parameters by using the Markov chain likelihoods
to adjust the likelihoods given by the ID models. This is of paramount importance for real applications
since the assumption that part of the OOD data are accessible for tuning model-parameters is questionable
in reality. Third, we show that the prediction score of MLR-OOD is robust to the GC content which is a
main confounding e�ect for detecting OOD genomic sequences. Fourth, MLR-OOD consistently achieves
remarkably higher prediction accuracy compared to the LLR method on all testing data sets even if LLR
is based on the optimal model-parameters chosen from the validation data sets, clearly revealing the state-
of-the-art performance of MLR-OOD. Compared to the max-LL method, the prediction accuracy gain of
MLR-OOD is minimal on the viral and plasmid data sets though, possibly because the e�ect of adjustment
based on sequence complexity is low on these data sets. Fifth, in addition to the bacterial data set composed
by Ren et al. [28], we also construct a more updated bacterial testing data set along with the viral and
plasmid data sets for comprehensively benchmarking current and future OOD detection methods.

Despite these key advantages, there are also some limitations for MLR-OOD. First, the training of the
generative models for the ID classes requires a large amount of computational time and resource, especially
when there are many ID classes. Second, just like other deep learning based methods, MLR-OOD needs a
large training data set to avoid over�tting. For example, we observe that the prediction accuracy of MLR-
OOD on the viral data set dropped compared to the bacterial data set, which can possibly be explained by
the fact that the viral data set contains much fewer training sequences and thus over�tting may happen. We
acknowledge that using overlapping sequences chopped from genomes rather than nonoverlapping sequences
for training the generative models may be a better alternative in such scenarios. Third, it is di�cult for
MLR-OOD to increase the prediction accuracy if the maximum of the class conditional likelihoods is already
robust to the GC content, just as shown on the plasmid and viral data sets. In the future, we hope to develop
an updated version of MLR-OOD which can save the computational resource without compromising on the
prediction accuracy. We also expect to combine novel methods targeting optimizing the model parameters
of deep neural networks [63, 64, 65, 66] with MLR-OOD to make it more robust and powerful.

Code availability

The MLR-OOD software package is available at https://github.com/xinbaiusc/MLR-OOD.
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Data availability

The metagenomic data consisting of bacterial, viral, and plasmid sequences for benchmarking the detection
of OOD genomic sequences are available at
https://drive.google.com/drive/folders/1Kz0kQ_D1VWYqA-GDld783O7H8AzNuHkC?usp=sharing.
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