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Abstract

Motivation: Metagenomic binning aims to retrieve microbial genomes directly from ecosystems by
clustering metagenomic contigs assembled from short reads into draft genomic bins. Traditional shotgun-
based binning methods depend on the contigs’ composition and abundance profiles and are impaired by the
paucity of enough samples to construct reliable co-abundance profiles. When applied to a single sample,
shotgun-based binning methods struggle to distinguish closely related species only using composition
information. As an alternative binning approach, Hi-C-based binning employs metagenomic Hi-C technique
to measure the proximity contacts between metagenomic fragments. However, spurious inter-species Hi-C
contacts inevitably generated by incorrect ligations of DNA fragments between species link the contigs
from varying genomes, weakening the purity of final draft genomic bins. Therefore, it is imperative to
develop a binning pipeline to overcome the shortcomings of both types of binning methods on a single
sample.

Results: We develop HiFine, a novel binning pipeline to refine the binning results of metagenomic
contigs by integrating both Hi-C-based and shotgun-based binning tools. HiFine designs a strategy of
fragmentation for the original bin sets derived from the Hi-C-based and shotgun-based binning methods,
which considerably increases the purity of initial bins, followed by merging fragmented bins and recruiting
unbinned contigs. We demonstrate that HiFine significantly improves the existing binning results of both
types of binning methods and achieves better performance in constructing species genomes on publicly
available datasets. To the best of our knowledge, HiFine is the first pipeline to integrate different types of
tools for the binning of metagenomic contigs.

Availability: HiFine is available at https://github.com/dyxstat/HiFine.

Contact: fsun@usc.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Metagenomics is a field that characterizes the diversity of species from
microbial samples without the cultivation or isolation of microorganisms
(Handelsman, 2004). Metagenomic studies reveal the complex community
structures and establish interactions between microbial organisms
(Hugenholtz and Tyson, 2008). High throughput metagenomic shotgun
sequencing technologies directly capture genomic fragments from various
environments and generate a tremendous number of short reads (Albertsen
et al., 2013). These shotgun reads can be either clustered into groups to

reduce the size of metagenomic datasets (Luo et al., 2019; Balvert et al.,
2021) or assembled into longer contigs, which are usually a portion of
the full-length genomes (Li et al., 2015; Nurk ez al., 2017). To retrieve the
complete genomes present in microbial ecosystems, assembled contigs are
grouped into bins that represent draft genomes of different species. This
grouping process, termed binning, is the foundation of the downstream
taxonomic profiling and functional analysis.

Traditional shotgun-based binning methods make use of the contigs’
compositions and/or abundance profiles (Alneberg et al., 2014; Wu et al.,
2016; Lu et al., 2017; Kang et al., 2019). Compositions of contigs usually
refer to GC-content and oligonucleotide frequencies and the shotgun-based
binning tools assume that contigs from the same genome share similar
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compositions (Chatterji et al., 2008; Yang et al., 2009). Besides, it has
been shown that coverage profiles of metagenomic contigs from the same
genome are highly correlated across multiple samples (Nielsen et al.,
2014). Although some shotgun-based binning pipelines have achieved
good retrieval performance combining the information of the compositions
and abundance, effective co-abundance profiles cannot be constructed if
there are not enough samples due to the cost of sequencing or the limited
ability to collect samples, which is common in clinical studies, for instance.
When applied to a single sample, the shotgun-based binning methods can
merely rely on the composition information to group contigs and struggle
to distinguish closely related species with similar genomic compositions.

Hi-C-based binning is an alternative binning approach designed for
a single sample based on the high-throughput chromosome conformation
capture (Hi-C) experiments (Lieberman-Aiden et al., 2009). Metagenomic
Hi-C is a genomic proximity ligation technique generating millions
of paired-end reads linking metagenomic squences in close three-
dimensional distance within cells (Burton ez al., 2014; Beitel et al., 2014).
Therefore, the number of Hi-C read pairs connecting two assembled
contigs is significantly related to the probability that contigs belong to
the same genome, resulting in multiple binning pipelines making use
of Hi-C interactions to group contigs (Press et al., 2017; DeMaere and
Darling, 2019; Du and Sun, 2022). In the Hi-C-based binning analysis,
paired-end Hi-C sequencing reads derived from the same community of
the shotgun library are mapped to the assembled contigs to construct raw
contact maps between contigs. Raw Hi-C contact maps are then normalized
to remove the high experimental biases (Du et al., 2022). Finally, contigs
are grouped using normalized contact maps to obtain draft genomic bins.
The potential of Hi-C to deconvolute metagenomes and separate closely
related genomes has been demonstrated on synthetic and real microbial
communities (DeMaere and Darling, 2019; Du and Sun, 2022). However,
spurious inter-species contacts inevitably generated from the ligation of
DNA fragments between species link contigs from various genomes.
Hence, contigs from different species may be incorrectly grouped into
highly complete bins as contamination, weakening the purity of the final
draft genomes (Stalder et al., 2019; Du et al., 2022).

To tackle the shortcomings of both shotgun-based and Hi-C-based
binning methods on a single sample, we put forward HiFine, anovel single-
sample binning pipeline to refine the binning results of metagenomic
contigs by integrating existing Hi-C-based and shotgun-based binning
tools. HiFine is a generic approach for integrating Hi-C based with shotgun
based binning methods and consists of three steps. In the first step, HiFine
designs a strategy of fragmentation by selecting out the intersections as
fragmented bins between two bin sets constructed by a Hi-C-based binning
method and a shotgun-based binning tool. Theoretically, contigs within
fragmented bins are more likely to come from the same genomes as they
have been grouped together according to both criteria of proximity contacts
and composition similarity. Hence, our fragmentation approach can greatly
increase the purity of bins, which is also demonstrated by our experimental
results in Subsection 4.2. Considering that some genomes can only be
detected by Hi-C-based or shotgun-based binning methods and thus are
not included in the fragmented bins, HiFine adds original bins that remain
relatively complete after removing shared contigs into the set of fragmented
bins. In the second and third steps, HiFine merges the fragmented bins
that potentially belong to the same species and recruits contigs that are
not contained in the fragmented bins by reusing the normalized Hi-C
contact maps. To the best of knowledge, HiFine is the first pipeline to
integrate different types of binning tools on a single sample and is able to
significantly improve the existing binning results of both types of binning
methods.

2 Methods

2.1 Obtain the initial binning results from different types of
binning methods

As HiFine aims at refining binning of metagenomic contigs by integrating
both Hi-C-based and shotgun-based tools, we first need to generate two
initial binning sets, where one binning set is constructed by a Hi-C-based
binning method and the other set is derived by a shotgun-based binning
pipeline.

2.2 Pipeline of the HiFine refinement method

2.2.1 Step1: Construct fragmented bins

We design a fragmentation algorithm to obtain a set of fragmented bins.
The pseudo-code workflow of the algorithm to generate fragmented bins
can be found in Supplementary Materials Algorithm S1. Specifically, the
output bin sets generated by a Hi-C-based binning method and a shotgun-
based binning tool are used as inputs in the first step. Since HiFine is
developed to refine bins derived from the same set of assembled contigs,
intersections between two bin sets were carried out by contig indices
assigned by the assembly software as groups of shared contigs, which
are then extracted and removed from the original bins as fragmented bins.
Since contigs within the same fragmented bins have been clustered together
by both the shotgun-based binning method in terms of composition
similarity and the Hi-C-based binning method in terms of proximity
contacts, they are more likely to come from the same genome. Therefore,
we expect that the strategy of fragmentation can improve the purity of each
fragmented bin, which has also been demonstrated in Subsection 4.2.

Moreover, Hi-C-based and shotgun-based binning sometimes identify
different genomes due to different abilities to ascertain the same pool of
genomes (Stalder et al., 2019). In other word, a few genomes are only
detected by Hi-C-based or shotgun-based binning methods and thus cannot
be included into the fragmented bins by figuring out the groups of shared
contigs. Bins containing such kind of genomes always remain relatively
complete after we remove shared contigs from the original bins and we
refer to these bins as remaining complete bins. Discarding remaining
complete bins may lead to the loss of some detected genomes. Therefore,
if the total length of retained contigs in one bin is larger than 80% of the
original bin size and above a lower bound restriction (default, 500 kbp),
we regard this bin as the remaining complete bin and then add this bin into
fragmented bins.

After the first step, we can obtain fragmented bins from two sets
of draft bins constructed by one Hi-C-based binning method and one
shotgun-based binning tool. The fragmented bins come from two sources:
sets of intersected contigs from the two types of binning approaches and
remaining complete bins.

Despite the advantage of our strategy of fragmentation, taking the
intersection between two sets of bins generates some small genomic
bins, where multiple fragmented bins may belong to the same genome.
Moreover, some contigs are included in either set of bins but are not
contained in the fragmented bins after the strategy of fragmentation.
Therefore, we design the second and third steps to solve these two
problems, respectively.

2.2.2 Step2: Merge fragmented bins
To solve the problem of small genomic bins, we merge the fragmented
bins that potentially belong to the same species in the second step.

We employ the Hi-C contact maps normalized by HiCzin (Du et al.,
2022), a state-of-the-art normalization method designed for metagenomic
Hi-C contact maps, to merge the fragmented bins. HiCzin applied a
zero-inflated negative binomial regression framework to remove potential
experimental biases, including the number of enzymatic restriction sites
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on contigs, contig length and coverage. The specific steps to generate the
normalized Hi-C contact maps can be found in Supplementary Materials
Section 1. Let M and F}, denote the normalized Hi-C contact maps and the
k-th fragmented bin, respectively, and let M, ., represent the normalized
Hi-C contacts between contigs c1 and c2. Noticeably, M, ., reflects the
proximity between two contigs. The larger M, ¢, is, the closer c1 and
co tend to be, indicating that contigs c¢1 and c2 are more likely to belong
to the same genome. To measure the similarity between two fragmented
bins, we design a modularity-like bin-to-bin similarity score .S using the
normalized Hi-C contact maps M as

ch €F;,co€F; My ,eo

Sk, . = (1

B #E; X #F; ’
where Sp, | F; represents the similarity between the bins F; and F}, c1
and c2 denote the contigs in the bins and # F; and #F); are the number
of contigs in bins F; and F};.

The similarity score S, Fj reflects average Hi-C contacts between
two fragmented bins. High similarity score indicates close relationship
with respect to the proximity contacts. In a special case when F} is equal
to Fj, the similarity score Sf, , becomes the average Hi-C contacts
within fragmented bin, i.e,

S 20176265; c1#ca Moy,
F;,F; = .

(#F;)?
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Infact, Sk, r, canalso be regarded as the bin-to-bin similarity between the
fragmented bin F;; and its copy. If similarity score between the fragmented
bin F; and F; is slightly smaller or even larger than the score between the
fragmented bin F; and its copy, we consider that fragmented bin F is a
closely-related bin to F;; and has the potential to merge with F;.

Based on the aforementioned discussions, we put forward an algorithm
to merge the fragmented bins. Let F denote the set of all fragmented bins.
Algorithm 1 describes the pseudo-codes of the merging process where the
function UpdateMI is presented in Supplementary Materials Algorithm S2.
To render the merging strategy less tedious and more scalable, we assume
that larger fragmented bins are more stable in the merging procedure and we
always attempt to merge smaller bins to larger ones. Under this assumption,
we sort and handle the fragmented bins in descending order of the bin
size. For each sorted fragmented bin F; (i € [1,|F]|]), we define that a
fragmented bin F} is closely-related to F}; if

S, Fp; 2 X Sp, R, ©)]

where j is larger than 4. Since the set of fragmented bins F has been
sorted in descending order according to their size, the bin size of F is
smaller than that of F;. In this way, all closely-related bins of F; can be
identified. Noticeably, a (default, 0.6) serves as a merging coefficient and
the merging standard becomes stricter with the increase of «. Initially, all
fragmented bins are not merged. During the merging steps, we merge all
closely-related bins of F7 to F7 in the first step. Then in the i-th step,
we deal with the fragmented bin F;. On the one hand, if the bin Fj has
not yet been merged, we then check the current merging status of all its
closely-related bins as follows:

e If all closely-related bins of F; are not merged, we then merge those
bins into F;.

e If one or more closely-related bins have been merged to a bin F},, we
then merge the bin F; and the rest of closely-related bins to FJ.

e If closely-related bins are merged to different bins, then the bin Fj is
regarded as an ambiguous bin and discarded.

On the other hand, if the bin Fj has already been merged to one bin,
denoted by F},, situations become more complicated:

Algorithm 1 Merge fragmented bins.

Input: The set of fragmented bins, F; The normalized Hi-C contact
matrix, M ; Merging coefficient, « (default, 0.6);

Output: Merging index, M1,

1: Sort the fragmented bins within F by bin size in descending order;

2: Initialize the merging index M I as an zero vector with length | F|;

3: for each ¢ € [1,|F|] do

4. Initialize an empty list L, and Ifr;;

5 Compute SF,, r, as Eq. (2);

6: foreachj € [i + 1,|F|] do

7 Compute Spl.,pj as Eq. (1);

8 ifSFi,Fj zaXSFi,Fi then

9 if MI[j] # 0and MI[j] ¢ I, then

11: else if M I[j] = O then
12: Lpi :LFi U{j};
13: end if
14: end if
15:  end for
16: MI:UtheA/H(MI,LFi,]Fi);
17: end for
return M [,

e If all closely-related bins of F;; are not merged, we then merge those
bins into Fy,.

o If one or more closely-related bins have also been merged to Fj,, we
then merge the rest of unmerged closely-related bins to F.

e If closely-related bins are merged to one bin that is different from Fj,
or merged to more than one bin, the bin F; is then regarded as an
ambiguous bin and removed from Fj.

The pseudo-codes in Supplementary Materials Algorithm S2 follow
the aforementioned rules. Algorithm 1 outputs the merging index M I
where the k-th fragmented bin will be merged to the MI[k]-th bin.
Therefore, fragmented bins with the same index will be merged together.
Moreover, those bins with merging index 0 are ambiguous bins and are
discarded. Finally, we can obtain a set of merged bins, denoted by B.

2.2.3 Step3: Recruit unbinned contigs into merged bins
The third step is designed to recruit contigs that are not included in
the merged bins. We reutilize the normalized Hi-C contact maps M to
assign the unbinned contigs into merged bins and hence we only consider
unbinned contigs showing in the contact maps.

We first define the contig-to-bin association A between a contig ¢ and
amerged bin B € B as

ch €B Mc,cl

“B . “

AC,B =

where ¢ denotes the contigs in the merged bin B, M ¢, is the normalized
contacts between contigs ¢ and c¢; and #B represents the number of
contigs in the bin B.

Then, for each unbinned contig ¢, we compute contig-to-bin
association from the contig to each of the merged bin in 3. We identify the
bin with the highest association as the potential bin to recruit the contig c.
However, there exist some mistakes if we recruit all unbinned contigs to the
merged bins according to the contig-to-bin association as some contigs do
not belong to any of the merged bins. To solve this problem, a discarding
procedure is introduced. Specifically, assume that the k-th merged bin
By, € B is the potential bin of the contig c. We compute the bin-to-bin
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Algorithm 2 Recruit unbinned contigs into merged bins.

Input: The set of merged bins, 3; The normalized Hi-C contact maps,
M ; Recruiting coefficient, 8 (default, 0.3);

Output: Unbinned contig set, C'; Recruiting index, RI;

1: Construct unbinned contig set C'

2: Initialize the recruiting index R as an zero vector with length |C/;

3: for each B € Bdo

4 Compute the bin-to-bin similarity score Sg, g as Eq. 2

5: end for

6: for each i € [1,|C|] do

7 for each B € B do

8 Compute the contig-to-bin association Ac,, g as Eq. 4

9 end for

10:  j = argmax Ag; B,

11: ifAci,Bj zﬁXSBj,Bj then

12: RIfi)=j
13:  endif
14: end for

return C, RI;

similarity score Sp, g, asEq.(2) and compare A. p, and Sp, B, .If
Ac,By, 2> B X SBy, By » (&)

where 3 (default 0.3) denotes the recruiting coefficient. Noticeably, with
the increase of 3, the contig recruiting adheres to stricter criteria, leading to
higher recruiting accuracy but fewer recruited contigs. The default value of
3 can balance the ‘trade-off” between the recruiting quality and the total bin
size as shown in Subsection 4.3. We assign contig c to the merged bin By,.
Otherwise, we discard this contig because the contig-to-bin association is
not strong enough to ensure the recruitment.

Algorithm 2 gives the pseudo-code of the recruiting step. The input of
the algorithm is the set of merged bins obtained from the second step, the
normalized Hi-C contact maps, and the value of recruiting coefficient.
Algorithm 2 then outputs the set of the unbinned contigs C' and the
recruiting index R, where the k-th contig in the set C' will be assigned to
the RI[k]-th merged bin in . Contigs with recruiting index 0 fail to pass
the recruiting criteria (5) and are discarded. Therefore, after the recruiting
step, we can obtain the final refinement bins, denoted by R.

In conclusion, HiFine employs three steps to refine the Hi-C-based and
shotgun-based binning results. It first designs a fragmentation algorithm
by selecting out groups of shared contigs as fragmented bins between two
bin sets constructed by a Hi-C-based binning method and a shotgun-based
binning tool. Bins that remain relatively complete after removing shared
contigs are also added into the set of fragmented bins. In the second and
third steps, HiFine merges the fragmented bins that potentially come from
the same species and recruits unbinned contigs by reusing the normalized
Hi-C contact maps.

3 Experiments
3.1 Datasets

We validated our method on three publicly available datasets.

3.1.1 The synthetic metagenomic yeast datasets

The synthetic metagenomic yeast sample was composed of 16 yeast strains
from 13 yeast species (NCBI accession: SRR1263009 and SRR1262938)
(Burton et al., 2014). Shotgun libraries were constructed by the Nextera
DNA Sample Preparation Kit (Illumina) and included 85.7 million read
pairs at 101 bp per read. Hi-C libraries were prepared using HindIII and

Ncol restriction endonuclease (NEB) and then sequenced by the HiSeq
and MiSeq Illumina platforms. Raw Hi-C dataset contained 81 million
read pairs at 100 bp per read. As contigs’ identities and species in this
sample are known, we can validate the ability to retrieve species genomes
and the accuracy of contig recruitment for HiFine.

3.1.2 The inoculated beer datasets

The inoculated beer sample was generated from the top of a wine
barrel containing the spontaneously inoculated beer (NCBI accession:
SRR5890763, SRR5890764) (Smukowski Heil ef al., 2018). Shotgun
libraries were prepared using the Nextera Kit (Illumina). Hi-C libraries
were prepared with HindIII and Ncol restriction enzymes and then
sequenced on the NextSeq 500 Illumina platform. After sequencing, 27.5
million and 28.1 million of read pairs at 100 bp per read were produced
for the shotgun and Hi-C libraries, respectively. This sample is used for
evaluating the performance of HiFine on the low-complexity real sample.

3.1.3 The human gut datasets

The human gut datasets were derived from a fecal sample of a human
subject (NCBI accession: SRR6131122, SRR6131123, and SRR6131124)
(Press et al., 2017). Two restriction enzymes MIuCI and Sau3AI (New
England Biolabs) were used to construct two different Hi-C libraries.
The shotgun and Hi-C libraries were sequenced on the Illumina HiSeqX
platform at 151 bp. The raw shotgun libraries consisted of 250,884,672
read pairs and the sequencing of two Hi-C libraries produced 41,733,770
read pairs (Sau3Al library) and 48,798,091 read pairs (MIuCI library),
respectively. This sample is used for evaluating the performance of HiFine
on the high-complexity real sample.

3.2 Deriving the initial sets of binning results

In this paper, we selected two state-of-the-art Hi-C-based binning tools
HiCBin (v1.0.0) (Du and Sun, 2022) and bin3C (v0.1.1) (DeMaere
and Darling, 2019), and three popular shotgun-based binning methods
MetaBAT2 (v2.12.1) (Kang et al, 2019), MaxBin2 (v2.2.4) (Wu
et al., 2016), and VAMB (v3.0.3) (Nissen et al., 2021). Therefore,
we can obtain six combinations as inputs of HiFine on the three
datasets, i.e., HICBin+MetaBAT?2, HiCBin+MaxBin2, HiCBin+VAMB,
bin3C+MetaBAT?2, bin3C+MaxBin2, and bin3C+VAMB. HiFine was
validated for all six cases on the three datasets. We presented the results
of combining HiCBin and MetaBAT2 by HiFine in the following section
in the main text and the results of other combinations were shown in
Supplementary Materials Figures S2-S6.

HiCBin (v1.0.0) (Du and Sun, 2022) and MetaBAT?2 (v2.12.1) (Kang
et al., 2019) were exploited to generate the initial binning results. HiCBin
is a state-of-the-art metagenomic Hi-C-based binning pipeline. After the
normalization of raw Hi-C contact maps, the Leiden algorithm (Traag
et al., 2019) combined with the Reichardt and Bornholdt’s Potts model
(Reichardt and Bornholdt, 2006) was utilized to cluster contigs based
on the normalized Hi-C contacts. HICBin outperformed all other Hi-C-
based binning pipelines on both synthetic and real microbial samples (Du
and Sun, 2022). MataBAT2 was one of the most popular shotgun-based
binning tools and achieved one of the best binning performance in the
CAMI Challenge Dataset (Sczyrba et al., 2017). MetaBAT2 computed
the composition scores by integrating both normalized tetra-nucleotide
frequency scores and abundance scores, followed by contig clustering
using a modified label propagation algorithm.

Specifically, after the pre-processing of raw shotgun and Hi-C libraries,
short reads were assembled into contigs using MEGAHIT (v1.2.9) (Table
1) and Hi-C read pairs were aligned to the assembled contigs (see
Supplementary Materials Section 2). Then, we employed HiCBin and
MetaBAT2 to derive two initial binning sets. HiCBin was run with
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Table 1. Contigs assembled by MEGAHIT for three datasets.

Dataset Contig num N50 Total length
Synthetic yeast 6,566 63,305 126,030,343
Beer 4,418 57,561 67,968,628
Human gut 105,267 14,166 530,969,816

Note: Contig num represents the number of contigs assembled by MEGAHIT.
N50 is defined by the length of the shortest contig where contigs with longer and
equal length cover at least 50% of the assembly.

parameters ‘-min-signal 2 -min-binsize 100000’ and MetaBAT2 was
executed with default parameters.

3.3 Evaluation metrics

To evaluate HiFine, we identified the ground-truth on the species level
of assembled contigs in all three datasets. For the metagenomic yeast
datasets, as the reference genomes of all strains within the sample
are known, we downloaded all reference genomes of these 16 yeast
strains and then aligned contigs to reference genomes at the species
level by BLASTn (Ye et al., 2006) (see Supplementary Materials
Section 3). For the real beer and human gut samples, TAXAassign
(v0.4) (https://github.com/umerijaz/TAX Aassign) was utilized to label the
contigs by searching in the NCBI nucleotide database with the 95%
identity percentage. After labeling contigs, three common clustering
metrics including F-score, Adjusted Rand Index (ARI), and Normalized
Mutual Information (NMI) were used to evaluate the binning results. To
demonstrate our strategy of fragmentation, we apply a homogeneity metric
to measure the extent of clusters containing only data points of a single class
(Rosenberg and Hirschberg, 2007). The homogeneity metric examines the
conditional entropy of the class distribution given the proposed clustering
and is equal to one when each cluster contains only members of a single
class. Definitions of all metrics are shown in Supplementary Materials
Section 4.

4 Results
4.1 Performance of HiFine on three datasets

e For the synthetic yeast datasets (Figure 1a), HICBin and MetaBAT2
achieved 0.908 and 0.608 in terms of F-score, 0.894 and 0.480 in
terms of ARI, and 0.895 and 0.712 in terms of NMI, respectively. All
three binning metrics were improved to 0.963, 0.958, and 0.959 by
HiFine. In the third step of HiFine, 1221 contigs were recuited into
the bins. Among these contigs, 1187 contigs (97.2%) were assigned
correctly, demonstrating the high accuracy of our recruiting algorithm.
Moreover, 12 out of 13 species were detected in exactly 12 bins by
HiFine with high purity in each bin. The exception was P. pastoris,
which had a very low fraction of read coverage as reported in the
original paper ((Burton et al., 2014)). In comparison, HiCBin detected
12 species except P. pastoris in 14 bins, where two draft genomes
belonged to the same species S. cerevisiae and one bin was highly
contaminated. As for MetaBAT?2, 11 species except P. pastoris and
S. kudriavzevii could be detected in 13 bins, where two bins came
from A. gossypii, two belonged to L. kluyveri, and two other bins were
highly contaminated. Consequently, HiFine could perform better in
constructing species genomes.

e Figure 1b shows the results for the inoculated beer datasets. MetaBAT2
and HiCBin showed very high scores on this low-complexity sample.
The F-scores of MetaBAT2 and HiCBin were 0.945 and 0.991,
respectively. The F-score was further improved to 0.998 by HiFine.
The values of ARI of MetaBAT2 and HiCBin were 0.924 and 0.989,

respectively. HiFine further increased this score to 0.997. As for
NMI, MetaBAT2 and HiCBin got 0.898 and 0.974, respectively. In
comparison, the NMI was improved to 0.995 by HiFine. Therefore,
HiFine could improve the binning quality on the low-complexity real
sample.

e The results of the human gut datasets were shown in Figure Ic.
HiCBin and MetaBAT2 obtained 0.788 and 0.678 in terms of F-
score, respectively, which was further improved to 0.931 by HiFine.
The values of ARI of HiCBin and MetaBAT2 were 0.768 and 0.662,
respectively while the ARI score of HiFine was further increased to
0.926. The HiFine improved the NMI from 0.791 and 0.854 achieved
by HiCBin and MetaBAT?2, respectively to 0.911. Hence, we validated
the significant improvement of HiFine on the highly complicated
microbial community.

Moreover, for all three datasets, the total bin size of HiFine with default
parameter was close to the total size of HiCBin and were much larger than
that of MetaBAT?2 (Supplementary Materials Table S2). This indicated that
HiFine could achieve better binning quality and at the same time group
most of the contigs.

4.2 The fragmentation strategy improves the purity of bins

As shown in Table 2, the homogeneity scores of the fragmented bins
constructed by the first step of HiFine were larger than the scores of both
sets of bins generated by MetaBAT2 and HiCBin for all three datasets.
As the homogeneity metric reflected the purity of the bins, this finding
demonstrated that contigs from the same fragmented bin are more likely
to come from the same genome and proved the rationality of our strategy
to select out shared contigs.

Table 2. Homogeneity scores of bins from MetaBAT2, HiCBin, and fragmented
bins in HiFine for three datasets.

Dataset MetaBAT2 HiCBin  Fragmented bins in HiFine
Synthetic Yeast 0.627 0.909 0.970
Beer 0.962 0.978 0.999
Human gut 0.907 0.877 0.959

4.3 Evaluating the impacts of merging and recruiting
coefficients on the performance of HiFine

We study the impacts of two coefficient parameters (i.e., the merging
coefficient « in the second step and the recruiting coefficient 5 in the
third step) on the performance of HiFine.

For the merging coefficient v, the binning results were not affected
by o on the low-complexity beer sample (Figure 2a). On the synthetic
yeast datasets, the three clustering metrics (i.e., F-score, ARI and NMI)
of HiFine were all stable when the merging coefficient & was no more
than the default value (0.6) and slightly decreased when o was larger than
0.6 (Figure 2c). On the human gut datasets, the clustering metrics first
increased and then decreased with the increase of o and reached the local
maximum when o was equal to the default value 0.6 (Figure 2e).

For the recruiting coefficient 3, the clustering metrics were still stable
on the low-complexity beer sample (Figure 2b). On both the synthetic yeast
(Figure 2d) and the human gut (Figure 2f) datasets, the three clustering
metrics increased with the increase of 8 when 8 was no more than the
default value (0.3). However, the growth significantly slowed down when
8 was larger than 0.3. The NMI even decreased from 0.911 to 0.909 when
[ increased from 0.3 to 0.4. Meanwhile, the proportion of the total bin
size within the total length of the assembled contigs decreased with the
increase of (3. This can be explained by the fact that the smaller 3 leads to
looser recruiting criteria, resulting in more recruited contigs but relatively
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Fig. 1. HiFine outperforms MetaBAT2 and HiCBin based on (a) the synthetic yeast datasets, (b) the inoculated beer datasets, and (c) the human gut datasets using evaluation metrics of

F-score, ARI and NMI.

lower recruitment accuracy. Therefore, we selected the default value of 3
as 0.3 to balance the ‘trade-oft’ between the binning quality and the total
bin size.

In conclusion, the choice of different merging coefficients and the
recruiting coefficients did not have a large impact on the final binning
results of HiFine and our default values could yield relatively satisfying
and consistent binning performance on all three samples.

4.4 Comparing HiFine with assembly-graph based
refinement pipeline GraphBin

In the read assembly process, contigs are constructed from the underlying
assembly graph providing valuable connected relationship between contigs
(Pevzner et al., 2001; Simpson and Durbin, 2012). Therefore, assembly
graph can be utilized in the binning refinement. GraphBin is a typical
pipeline making use of the assembly graph to improve the binning results
of existing tools (Mallawaarachchi et al., 2020). To evaluate the refinement
performance of the assembly graph on a single sample, we applied
GraphBin in the MEGAHIT version with default parameters on all three
datasets and compared the binning results of GraphBin to that of the initial
bins (Supplementary Materials Figure S7). We found that the GraphBin
could not improve the binning quality of the initial bins on our three
datasets. In comparison, the binning scores were significantly increased
by HiFine. From our observations, one potential reason was that the
assembly graphs were extremely sparse for all three datasets, which might
be ascribed to the relatively small shotgun library derived from only one
sample. Specifically, there were only 4,740, 14,140, 416,808 edges in three
assembly graphs corresponding to 6,566, 4,418, and 105,267 assembled
contigs, respectively. Therefore, the assembly graphs could not provide
enough information to refine the initial bins on a single sample.

5 Conclusion and Discussion

In this paper, we developed a binning method, HiFine, to integrate
the Hi-C-based and shotgun-based binning tools on a single sample.
We put forward the strategy of fragmentation by selecting out the
intersected contigs between sets of bins from different types of binning
tools. Experimental results confirmed the effectiveness of our strategy of
fragmentation in the first step to improve the purity of bins and validated the
high accuracy of the recruiting process of unbinned contigs in the third step.
We also demonstrated that HiFine achieved a significant improvement on
the existing binning results of both types of binning methods and performed
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Fig. 2. Impacts of the (a) merging coefficient and (b) recruiting coefficient on the inoculated
beer sample, (c) merging coefficient and (d) recruiting coefficient on the synthetic yeast
sample, and (e) merging coefficient and (f) recruiting coefficient on the human gut sample.
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better in retrieving species genomes. The high-purity genomes generated
by HiFine can significantly facilitate the downstream analyses, such as
tracking horizontal gene transfer and probing virus-host interactions.

However, our method has its own limitations. We observe that HiFine
might not have a significant improvement if one of the existing binning
method only grouped a considerably smaller number of contigs than the
other type of binning method. Intuitively, if this situation happens, the
set size of intersected contigs will be extremely small compared to the
larger initial bin set. Then the fragmented bin set will be dominated by
the relatively complete bins from the initial bin set. In other word, the
fragmented bin set does not have a significant difference with the larger
initial bin set. Normally, the Hi-C-based binning method outperforms the
shotgun-based method when applied to the single sample. Hence, this
problem might happen to the shotgun-based binning tool.

In the future research, there still exists a lot of work to do on a single
sample. The idea of HiFine can be regarded as integrating the composition
and proximity contact information together to refine the binning quality.
Hence, one natural question is whether we can further improve the binning
performance by incorporating more information from different sources,
such as gene prediction information and DNA methylation.
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